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We present a Bayesian approach for analysis of competing risks survival data with masked causes of failure.-is approach is often
used to assess the impact of covariates on the hazard functions when the failure time is exactly observed for some subjects but only
known to lie in an interval of time for the remaining subjects. Such data, known as partly interval-censored data, usually result
from periodic inspection in production engineering. In this study, Dirichlet and Gamma processes are assumed as priors for
masking probabilities and baseline hazards. Markov chain Monte Carlo (MCMC) technique is employed for the implementation
of the Bayesian approach. -e effectiveness of the proposed approach is illustrated with simulated and production
engineering applications.

1. Introduction

In survival analysis, competing risks models are often used
when multiple potential causes of failure are observed.
Often, the causes of failure are unidentified [1, 2]. Consider
the example shown in Reiser et al. [1]. Out of the 682 IBM
PS/2 computer system units tested (a system is made of three
components: motherboard, disc drives, and power supply),
eight failed and the remaining 674 were right censored at
various times [1]. -e eight systems failed due to mal-
function in at least one of the three components {1, 2, 3} and
often the cause is narrowed down to several possibilities, e.g.,
{1, 3}, indicating that the cause of failure is either the
motherboard or power supply [1]. -is type of incomplete
data is generally referred to as masked data, where the cause
of failure can only be identified up to a minimum random
subset (MRS) S ⊆ 1, . . . , K{ }.

Let T be the time until a unit experiences a failure due to
one of the K possible causes of failure. If the precise cause of
failure is identified as K, then S � K{ } is a singleton. If the

cause of failure is not identified, then S � 1, . . . , K{ },
resulting in full masking of the cause. -us, every observed
failure time Ti, i � 1, . . . , N, is accompanied by a observed
MRS denoted by Si. However, another reason for incom-
plete observations could be due to the unavailability of
knowledge about the exact failure time T.

-ere is abundant literature of masked data [1–9].
Miyakawa [8] provided maximum likelihood estimates
(MLEs) with two causes of failure and independent expo-
nential failure times when the data is masked and uncen-
sored. Dinse [9] suggested nonparametric maximum
likelihood estimators of prevalence and mortality when the
MRS is a known cause or a full masked cause.

In production engineering, researchers were often in-
terested in the assessment of components reliability. When
the impact of the risk factors on the hazard function is of
interest, Bayesian analysis under cause-specific hazard
framework is often considered; see, for example, [1–7].
Bayesian approach is preferred as it is flexible in allowing a
general pattern of masking as well as relaxing assumptions
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[2]. In their work, Reiser et al. [1] presented a Bayesian
analysis assuming exponentially distributed component
lifetimes, and Guttman et al. [7] took this work further to the
case where the masking probability depends on the actual
cause of failure. Considering the partial masking cases,
Mukhopadhyay and Basu [4] explored a Bayesian approach
with independent Weibull distributions and made the as-
sumption of identical shape structures for all the K risks. On
the other hand, Basu et al. [6] used a Bayesian analysis for
masked data from a general K component system with
nonidentical Weibull distributions. In their follow-up study,
Basu et al. [5] explored a Bayesian approach based on a
general flexible parametric framework for complex forms of
censoring. Without the symmetry assumption, Kuo and
Yang [10] developed a Bayesian analysis with independent
exponential as well as Weibull distributions, while
Mukhopadhyay and Basu [3] studied the case of a series
system, the components of which follow independent log-
normal life distribution. Xu and Tang [11] considered a
nonparametric Bayesian approach for masked data which
extended the findings of Neath and Samaniego [12] to series
systems with partially masked competing risks. In contrast
and based on a cause-specific formulation, Flehinger et al.
[13] proposed an approach of completely parametric cause-
specific hazards using stage 1 and stage 2 information when
the failure times for the competing risks have a Weibull
distribution. In their work, Craiu and Reiser [14] developed
an expectation-maximization- (EM-) based method that
allowed dependent competing risks and produced estima-
tors for the subdistribution functions. Similarly, Lu and
Tsiatis [15] presented parametric models to estimate the
regression coefficients whereby the cause-specific hazard for
the cause of interest is associated with the covariates through
a proportional hazards relationship. Sen et al. [2] introduced
a semiparametric Bayesian approach using variety in priors.

Most of the works mentioned above were developed for
masked data based on the series of system formulation
considering cases where the failure time was complete (no
censored units), right-censored (RC), or interval-censored.
In this paper, we investigated the case where the data is
masked and the failure time is partly interval-censored (PIC)
using the Bayesian approach. We employed the Cox pro-
portional hazards model, which is used extensively but
mostly for public health studies; see, for example, Han et al.
[16] and Liu et al. [17].

-e rest of the paper is organized as follows. Section 2
introduces the model formulation and Bayesian

computation techniques. Section 3.1 provides some results
from modest simulation to evaluate the model performance.
-e illustration of our approach using an actual data set were
presented in Section 3.2 Section 4 concludes the paper.

2. Materials and Methods

2.1.Model Structure. Inmasked data, we do not only observe
the failure time for every unit but also a set of causes that
contains the true cause of failure. Assume that we observe N

units each with K causes of failure acting on it. Let X denote
the observed collection of covariates, then for any unit i, we
observe the vector (Ti, Si, Xi), where Ti denotes the failure
time and Si denotes the minimum random subset (MRS) of
causes that are possibly responsible for the unit failure.
Following Kuo and Yang [10], for the ith unit, the likelihood
contribution from the data (Ti, Si, Xi) consists in
P(Ti, Si | Xi) can be expressed as
P Ti, Si

 Xi  � P Ti, Ci � j
 Xi P Si

 Ti, Ci � j, Xi , j � 1, . . . , K,

(1)

where Ci denotes the actual cause of failure of the ith unit.
Note that P(Ti, Ci � j | Xi) � fj(Ti | Xi). When the obser-
vation of C is incomplete (see Crowder [12]), the likelihood
contribution for an observed failure can be modified to


j∈Si

P Ti, Si

 Xi  � 
j∈Si

fj Ti

 Xi P Si

 Ti, Ci � j, Xi .

(2)

In the case of partly interval-censored data where the
time of failure is incomplete, but observe the exact failure
time for some units, however only the interval of time that
includes the true failure time for the remaining units is
observed. -is type of data often arises in production en-
gineering when units are inspected periodically. Let (Li, Ri],
where Li <Ri, denotes the observed interval including the
true failure time of the ith unit (Ti ∈ (Li, Ri]). If the unit
failure occurs before the first inspection time, then we have a
left-censored observation (Ti ∈ (0, Ri]); if the unit does not
fail until the last inspection time, then we have a right-
censored observation (Ti ∈ Li,∞]). Define δi, ci as censor-
ing indicators taking the value of one if the failure time Ti is
left-censored or interval-censored and taking a value of zero
otherwise. -en, the likelihood contribution of the ith unit
when the observation of T is incomplete can be expressed as

L � 
n

i�1
f Ti

 Xi  

m

i�n+1
S Li

 Xi  − S Ri

 Xi  , L � 
n

i�1
f Ti

 Xi  

m

i�n+1
1 − S Ri

 Xi  
δi

S Ri

 Xi 

S Li

 Xi 
⎛⎝ ⎞⎠ − 1⎡⎢⎢⎣ ⎤⎥⎥⎦

ci

S Li

 Xi  
1− δi

.

(3)

where n and m (n + m � N ) are the numbers of the units
whose failure time is exact and interval-censored (including
left- and right-censored), respectively.

In this study, we used semiparametric Bayesian approach
to estimate the regression coefficients for the set of cova-
riates. Further, we adopted the cause-specific formulation
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utilizing the popular proportional hazards (PH) model that
is of the form

λj(T, X) � λ0j(T)e
βj′X , j � 1, . . . , K , (4)

where λ0j and βj are the baseline hazard and the regression
coefficient of the ith cause of failure and X represents the
vector of the covariates, respectively.

In this study, both failure time and cause of failure are
incomplete; therefore, we need to consider the two cases
discussed above to formulate the likelihood function. Let
n1, n2, n3 (n1 + n2 + n3 � N) denote the numbers of the
units whose failure times are exact, right-censored, and
interval-censored (including left-censored), respectively.
-en, the full likelihood of masked and partly interval-
censored data can be expressed as

L � 

n1

i�1

j∈Si

P Si

 Ti, Ci � j, Xi fj Ti

 Xi  

n2

i�n1+1
S Li

 Xi  × 

n3

i�n2+1

j∈Si

P Si

 Ti, Ci � j, Xi  Fj Ri

 Xi  − Fj Li

 Xi  ,

L � 

n1

i�1

j∈Si

P Si

 Ti, Ci � j, Xi λj Ti

 Xi e
− 

K

j�1 
Ti

0
λj t|Xi( )dt

× 

n2

i�n1+1
e

− 
K

j�1 
Ti

0
λj t|Xi( )dt

× 

n3

i�n2+1

j∈Si

P Si

 Ti, Ci � j, Xi  
Ri

0
λj t|Xi( e

− 
K

j�1 
Ti

0
λj s|Xi( )dtdt − 

Li

0
λj t | Xi( e

− 
K

j�1 
Ti

0
λj s|Xi( )dsdt .

(5)

Substituting equation (4) in (5), the full-likelihood
function emerges as

L � 

n1

i�1

j∈Si

P Si

 Ti, Ci � j, Xi λ0j Ti( e
βj′X e

− 
K

j�1 
Ti

0
λ0j(t)e

βj′X

dt × 

n2

i�n1+1
e

− 
K

j�1 
Ti

0
λj t | Xi( )dt

× 

n3

i�n2+1

j∈Si

P Si

 Ti, Ci � j, Xi  
Ri

0
λ0j(t)e

βj′Xe
− 

K

j�1 
t

0
λ0j(s)e

βj
%
′X
ds dt − 

Li

0
λ0j(t)e

βj′Xe
− 

K

j�1

t

0

λ0j(s)e
βj′X

ds dt
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(6)

When dealing with the masked data, the unrealistic
symmetry assumption that involves an equal chance of
observing a similarly masked subset of causes regardless of
the actual cause is often adopted, i.e.,

P Si

 Ti, Ci � j, Xi  � P Si

 Ti, Ci � j′, Xi , j, j′ ∈ Si.

(7)

Assumption (7) makes the analysis proceed with a re-
duced likelihood function that is not reliant on the masking
probabilities. In contrast, in this paper, we applied a
Bayesian analysis, which does not rely on the symmetry
assumption [1], using the full likelihood function of equation
(6). We model the masking probabilities to be independent
of the failure time and dependent on the cause of failure.
Moreover, we allow them to depend on subject-level
covariates.

It is often of interest to determine the cause that is re-
sponsible for the unit failure when it is masked. For this
purpose, we need to compute the diagnostic probability,
which is the probability of the ith risk, causing the unit to fail
given the observed masking set and the unit’s failure time.
According to our full likelihood, we have two different ways
to compute the diagnostic probabilities depending on
whether the failure time of the unit is exact or interval-
censored (including left-censored). First, when the ith unit is
exact, the diagnostic probability can be defined as

P Ci � j | Si, Ti, Xi(  �
P Si

 Ti, Ci � j, Xi fj Ti

 Xi 

l∈Si
P Si

 Ti, Ci � l, Xi fl Ti

 Xi 
, j ∈ Si.

(8)

Second, when the ith unit is interval-censored, the di-
agnostic probability can be defined as

P Ci � j | Si, Ti, Xi(  �
P Si

 Ti, Ci � j, Xi  Fj Ri

 Xi  − Fj Li

 Xi  

l∈Si
P Si

 Ti, Ci � l, Xi  Fl Ri

 Xi  − Fl Li

 Xi  
, j ∈ Si. (9)
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2.2. Bayesian Framework. For semiparametric approaches to
Bayesian inference involving hazard regression models, Cox’s
PH model is one of the most commonly adopted models.
Suppose there areN units under observation with K competing
risks acting on them, and the observed data
D � Nij(t), Yij(t), X , i� 1, . . ., N, j� 1, . . ., K, where
Nij(t) is the process counting the failures due to cause j oc-
curring up to time t andYij(t) is the at risk indicator for cause j.
Let dNij(t) be a small increment of Nij(t) over the interval [t,
t+dt), thenNij(t) and dNij(t) equal 1 if the event occurs in [0,
t) and [t, t+dt), respectively, and 0 otherwise. Under non-
informative censoring, the likelihood (specific to the jth cause of
failure) of the data is proportional to



N

i�1

t≥0

Iij(t)
dNij(t)⎤⎦ e

− Iij(t)dt
.⎡⎣ (10)

-is is basically as if the counting process increments
dNij(t) over the time interval [t, t+ dt) are independent
Poisson random variables with means Iij(t)dt. -at is,

dNij(t) ∼ Poisson Iij(t)dt ,

Iij(t)dt � Yi(t)e
βj′XdΛ0j(t),

(11)

where dΛ0j(t) � λ0j(t)dt is the immediate probability that
the unit at risk at time t has the event j in the next time
interval [t, t+dt). After specifying the likelihood form, the
interest turns to the prior distributions. We need to define
prior distributions to the unknown parameters which are
assumed to be stochastically independent. -e prior spec-
ifications follow standard practice in semiparametric
Bayesian analysis where popular priors that conjugate for the
likelihood function are utilized. Following Sen et al. [2] and
Xu and Tang [11], we assigned independent Dirichlet priors
to the masking probabilities. Let J � 2j− 1 denote the number
of sets that include the cause j and let Sj � Sj1, . . . , Sj2 

denote the collection of potential MRS’s that contain cause
j, then the random Dirichlet variables can be defined as

μij Sj1 , . . . , μij SjJ  ∽DirJ αj , i � 1, . . . , N; j � 1, . . . , K; J � 2j− 1
,

(12)

where μij � P(Si | Ti, Ci � j, Xi) and αj � (αj1, . . . , αjJ) are
the Dirichlet parameters.

Using an independent gamma process for the prior for
cause-specific baseline hazards, Λ0j(t)∽GP(cωj(t), c),

j � 1, . . . , K, where Λ0j is the cumulative baseline hazard
specific to ith cause of failure. Here, ωj(t) can be regarded as
a prior guess at unknown hazard function specific to jth

cause of failure while c represents the degree of confidence in
this guess.

-e regression coefficients are assumed to be indepen-
dently normal distributed, i.e.,

βj ∽ N θj, σ
2
j , j � 1, . . . , K, (13)

where βj , θj , and σ2j are the regression coefficient, the mean,
and the variance, respectively, specific to the ith cause of
failure.

After defining the prior distributions, our interest turns
to the joint posterior distribution:

P β,Λ0, μ | D( ∝ L D | β,Λ0, μ( Π(β)Π Λ0( Π(μ), (14)

where L denotes the likelihood function,Π denotes the prior
distribution, andD denotes the observed data. Since (14) has
a complicated form, we utilize the MCMC technique to
generate random draws from the related full conditional
posterior distributions, namely, P(β | D,Λ0, μ), P(Λ0 | D, β,

μ), and P(μ | D, β,Λ0). -ese distributions need to be
identified for the construction of an effective simulation
method.

In order to assess the performance of our approach, we
followed the cause-specific hazards-based simulation design
of Beyersmann et al. [18]. All analyses were implemented in
WinBUGS software [19] and R statistical software version
2.6.2 [20].

3. Results and Discussion

3.1. Simulation Study. We considered a competing risks
model with two causes of failure, where each has a Weibull
distributed lifetime with parameters (λj, ρj), j � 1, 2 , and
set λ1 � 0.005, λ2 � 0.003, ρ1 � 1.9, ρ2 � 1.3. First, we
simulate the failure times and the censored times. -en, we
simulate the causes of failure and mask them randomly with
equal chances to be masked or unmasked, which results in
masked right-censored data. Last, we create inspection times
so that the data becomes partly interval-censored data that
includes exact, left-censored, right-censored, and interval-
censored failure times. -e obtained data consists of 46%
exact failure times, as well as 32% right-, 10% left-, and 12%
interval-censored failure times. Furthermore, 32% of the
observations are masked while 30% and 6% of the obser-
vations fail due to causes 1 and 2, respectively.

A comparison of our approach on simulated partly
interval-censored (PIC) data with the ones obtained using
Sen’s approach was done [2]. -e reported results are based
on five chains each of 4000 iterations with burn-in of 1000
iterations. We present the results from the simulated study
in Table 1 and Figure 1. -e results show that the estimates
from the two approaches are comparable. Although our
model deals with left-, right-, and interval-censored failure

Table 1: -e posterior summaries of the regression coefficients from the two approaches.

Parameters
Right-censored (RC) data Partly interval-censored (PIC) data

Mean Median SE 95% PCI∗ Mean Median SE 95% PCI∗

β1 1.009 1.002 0.486 0.066–1.973 0.774 0.768 0.473 −0.144–1.730
Β2 0.733 0.719 0.667 −0.057–2.072 0.508 0.500 0.644 −0.741–1.803
∗Posterior credible interval.
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times with considerable missing information, Table 1 shows
that its posterior estimations of regression coefficients are
reasonably close to those estimated by the model with only
right-censored failure times. On the other hand, Figure 1
shows a comparison between the cumulative baseline haz-
ards.-e cumulative baseline hazards obtained from the two
models are noticeably close with slight fluctuation for both
causes (Figure 1).

3.2. Application to Electric Motors Data. We applied our
approach to the data on failure times of insulation systems for
electric motors (with their corresponding causes of failure),
reported in Klein and Basu [21]. -ere are three common

types of insulation system failures: turn, phase, and ground.
-e experiment was conducted at three different stress levels
Z1 � (190 + 273.16)/1000, Z2 � (220 + 273.16)/ 1000, and
Z3 � (240 + 273.16)/1000, where 20 units were tested at each
level. To illustrate our approach, we converted this data
into a PIC data with masked causes of failure. -e ob-
tained results are based on five chains where each is run
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Figure 1: Comparison of cumulative baseline hazards from the two approaches, RC and PIC.

Table 2: Number of units across masking sets and failure/censored times.

Failure time type
Masking sets

Total
{0}∗∗ {T} {P} {G} {T, P} {T, G} {P, G} {T, P, G}∗

Exact 0 0 0 1 0 1 0 0 2
Interval — 7 4 6 6 4 3 11 41
Left — 3 0 0 1 1 1 1 7
Right 10 — — — — — — — 10
Total 10 10 4 7 7 6 4 12 60
∗T� turn; P� phase; G� ground. ∗∗{0}�no cause of failure or right-censored.

Table 3: -e posterior summaries of the regression coefficients.

Parameters Mean Median SE 95% PCI
β0T −21.49 −21.32 6.744 (−35.33, −8.82)
β0P −18.94 −18.74 7.739 (−34.82, −4.36)
β0G −20.96 −20.83 7.424 (−36.11, −6.73)
β1T 28.67 28.39 13.71 (2.69, 56.70)
β1P 22.55 22.17 15.75 (−7.59, 54.51)
β1G 27.09 26.88 15.10 (−1.97, 57.73)

Table 4: Diagnostic probabilities of the full masked units.

Diagnostic probability Causes of failure
Turn Phase Ground

P3 0.289 0.444 0.267
P5 0.513 0.215 0.272
P11 0.498 0.245 0.257
P16 0.263 0.224 0.513
P17 0.290 0.204 0.506
P37 0.599 0.165 0.237
P38 0.353 0.189 0.459
P39 0.670 0.155 0.174
P40 0.614 0.167 0.219
P42 0.371 0.406 0.223
P54 0.375 0.402 0.223
P58 0.505 0.235 0.260
∗Pi � (k� j | ti,si), where i�no.of unit and Si � {T, P, G}.
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with a burn-in of 20000 iterations, 50000 retained draws,
and a thinning to every 15th draw. Convergence is
monitored and achieved for all parameters. Table 2 de-
scribes the number of units across the masking sets and
the failure/censored times. Table 3 summarizes the pos-
teriors estimates (mean, median, standard error (SE), and
posterior credible interval (PCI)) of the regression coef-
ficients while Table 4 shows the posterior mean of the
diagnostic probabilities of the full masked units which are
computed through equations (8) and (9). -e results

indicate that 50%, 25%, and 25% of the units fail due to
turn, phase, and ground causes, respectively. Figure 2
depicts the cumulative baseline hazard functions of the
three causes of failure. It is obvious from the figure that the
three causes have almost the same cumulative hazard. In
addition, Figures 3–5 demonstrate that the hazard in-
creases with growing stress, irrespective of the cause. -is
is exactly the purpose of such experiments as it is run at
high levels of stress to accelerate the failure as well as to
reduce the cost and the experiment period.
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4. Conclusion

In this study, we have presented a Bayesian approach for the
analysis of competing risks data with masked causes of
failure. -e Bayesian approach for competing risks models
was derived where the cause of failure is masked and failure
time is incomplete. -is method offers some flexibility in
modelling as it is not built on assumptions with questionable
validity such as the symmetry assumption or independence
of the competing risks. Furthermore, it provides an as-
sessment of the risk factors’ (covariates) effect on the hazard
function. -e results of the simulation support the feasibility
of our modelling approach.
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