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Abstract: Immunological memory is fundamental to maintain immunity against re-invading
pathogens. It is the basis for prolonged protection induced by vaccines and can be mediated
by humoral or cellular responses—the latter largely mediated by T cells. Memory T cells belong to
different subsets with specialized functions and distributions within the body. They can be broadly
separated into circulating memory cells, which pace the entire body through the lymphatics and blood,
and tissue-resident memory T (TRM) cells, which are constrained to peripheral tissues. Retained in the
tissues where they form, TRM cells provide a frontline defense against reinfection. Here, we review
this population of cells with specific attention to the liver, where TRM cells have been found to protect
against infections, in particular those by Plasmodium species that cause malaria.
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1. Introduction

The successful containment of infections relies on the speed with which immune responses of
sufficient intensity are mounted. Immunological memory enables the long-term maintenance of a
small fraction of those cells that responded to and resolved an earlier infection. The number of specific
memory T cells generated after an infection, while declining over time, is generally larger than that of
naïve T cells of the same specificities [1]. In addition, memory T cells display an enhanced antigen
sensitivity, requiring lower levels of antigen for activation [2]. Memory T cells thus respond more
rapidly and potently to pathogen invasion, and can exert efficient protection, potentially lifelong,
against previously encountered infections. Different subsets of memory CD8+ T cells have been
identified on the basis of their migratory properties, e.g., circulatory memory T cells and resident
memory T cells (TRM cells). The latter have recently emerged as important mediators of protection in
peripheral organs, a common point of entrance of pathogens, by inducing rapid and local responses
upon antigen recall [3]. By combining transcriptional and phenotypic features with different approaches
to investigate residency, studies have identified TRM cells in various disease models and within several
tissue settings, including the liver. Importantly, strategies have been devised to favour the formation
of TRM cells through vaccination, achieving promising results, for example, in the case of herpes virus
infection in the mucosa of the female genital tract [4] and Plasmodium infection of the liver [5–9].

The liver is essential for the maintenance of homeostasis and is central to many metabolic and
immunological processes. Hepatic functions are tightly regulated; and disturbances that lead to liver
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diseases such as microbial infections, chronic inflammation or cancer can result in death. The liver
is also the target of certain pathogens, such as Plasmodium, Leishmania, or Listeria, which infect and
develop in this organ during stages of their life cycles. Given the highly protective capacity of memory
T cells, and in particular of TRM cells, studying the biology of these cells may aid the development
of prophylactic and therapeutic strategies against life-threatening conditions associated with organ
damage or infection. In this review, we will focus on recent advances in understanding memory
T cell and TRM cell biology, focusing on liver TRM cells. Indeed, knowledge on this cell subset has
been successfully implemented in the development of novel, highly effective immunization strategies
against infectious diseases.

2. Memory T Cells

Shortly after activation, T cells generally differentiate into either short-lived effector cells (SLECs),
expressing KLRG1, CX3CR1, and S1PR5, or memory precursor effector cells (MPECs), which are
KLRG1- CX3CR1- and IL-7R+ [10–13]. T cell activation results in the formation of large numbers of
SLECs, but these cells rapidly decline in numbers upon clearance of the infection. MPECs, however,
are less numerous but become long lived memory cells and show a greater ability to generate recall
responses [11]. IL-7Rhi cells comprise most of the memory cells at late time points (>8 months) after
infection [14]. Importantly, this general classification is not exhaustive. Thus, while certain memory
T cells (KLRG1hi, described in detail below) mainly arise from IL-7Rhi cells [11,12], a small proportion
of IL-7Rlo cells can persist for prolonged periods [11], and display low expression of this marker in
the spleen 60 days after lymphocytic choriomeningitis virus (LCMV) infection [12]. Indeed, splenic
CX3CR1- (KLRG1lo) effector T cells can give rise to all circulating and non-circulating memory T cell
population, while CX3CR1+ (KLRG1hi) effector cells mainly differentiate into effector memory T cells
after LCMV infection [13]. However, a peptide immunization model revealed that not all IL-7R+ cells
in the spleen are long-lived [15] and, conversely, some KLRG1hi T cells can persist for long periods of
time, providing control against Listeria infection [16].

The establishment and long-term survival of MPECs and the memory T cells they give rise to,
requires the cytokines IL-7 and IL-15 [11,17]. Downstream signaling after IL-15 and IL-7 recognition
results in the expression of anti-apoptotic molecules, such as Bcl2 and Mcl1, shown to prevent the
death of activated effector T cells and therefore to promote memory formation [18–21].

IL-15 signaling induces a metabolic switch from glycolysis, typical of effector T cells, to fatty
acid oxidation [22], which comparably generates about 6 times more energy per unit of weight of
substrate [23] and is essential to sustain memory T cell survival. Indeed, TRAF6 deficient T cells,
presenting defective mitochondrial fatty acid oxidation, display an enhanced contraction phase after
activation. In turn, stimulation of fatty acid metabolism in these cells with a drug that promotes
AMP-activated kinases and circumvents the deficiency in TRAF6, prevents this decline in the number of
activated T cells [24]. The expression of the chemokine receptor CCR7 on MPECs facilitates migration
to T cell areas in secondary lymphoid organs along a CCL19 and CCL21 gradient. In these organs,
T cells are exposed to IL-7 predominantly produced by stromal cells [25]. IL-7 is also produced by
epithelial cells in organs such as the skin and the intestine [25]. As mentioned above, most memory
T cells arise from the subpopulation of effector T cells that express IL-7R [11]; and IL-7 signaling has
been linked with elevated fatty acid uptake and oxidation in CD8+ T cells through the induction of
aquaporin 9 expression, a glycerol transporter that supports fatty acid uptake [26].

In the absence of IL-15, basal CD8+ T cell memory proliferation is impaired and leads to a
progressive decline in memory T cell numbers [27,28]. In addition, under steady state conditions or
after infection, mice lacking IL-15 display low numbers TRM cells in liver and skin [29–31], suggesting
this cytokine provides an important maintenance and/or developmental signal for resident memory
T cells. However, more recent studies suggest that IL-15 dependency might not be absolute for CD8+

memory T cells or tissue-resident T cell populations in some organs, such as the mucosa and central
nervous system, after viral infection [32–34].
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Memory T cells were initially separated into two subsets based on the expression of the lymph
node homing molecules CCR7 and CD62L, with CCR7+ CD62L+ cells being termed central memory
(TCM), and CCR7- CD62L- cells, effector memory T (TEM) cells [35]. TCM cells were found to migrate
through lymphoid tissues, whereas TEM cells were thought to traffic through peripheral tissues and the
blood [35,36]. However, recent work has shown that T cell memory populations display a higher degree
of complexity. Based on the expression of the chemokine receptor CX3CR1, CX3CR1int peripheral
memory (TPM) cells can be discriminated from CX3CR1- TCM and CX3CR1hi TEM cells [13]. Gerlach et al.
showed that TPM cells can also express CCR7 and CD62L, reflecting a TCM phenotype. However,
contradicting previous descriptions [35,36], this study found CX3CR1int TPM cells in tissues and the
thoracic duct lymph, while CX3CR1high TEM cells were predominantly found in the blood. Gerlach et al.
therefore concluded that TPM cells and not TEM cells embody the major migratory memory subsets
in peripheral tissues [13]. Another memory T cell subpopulation described, in humans and mice,
are termed memory T stem cells (TSCM) [37,38]. These cells are CD44low CD62Lhi, similarly to naive
T cells, but can be further distinguished by the expression of Bcl2 and CD122 and, in mice, of Sca-1.
Transcriptome analyses showed that TSCM cells are the least differentiated memory subset population.
TSCM, as their name suggests, can give rise to a variety of different T cell populations such as SLECs,
TEM, and TCM cells. Furthermore, the capacity of TSCM cells for self-renewal, survival, and proliferation
exceeds that of TCM and TEM cells. They are also of major interest in cancer research due to their
superior anti-tumor response and resistance to chemotherapy [37–39].

3. Resident Memory T Cells

In addition to the aforementioned memory T cell subtypes, which all circulate throughout
lymphoid and/or non-lymphoid organs, another subtype of memory T cells that reside in peripheral
tissues, termed tissue-resident memory T (TRM) cells, became evident in the skin after infection
with herpes simplex virus (HSV) type 1 [3]. These skin-resident CD8+ T cells were found to be in
disequilibrium with circulating T cells, and efficiently controlled re-infection in a herpes simplex
virus model [3]. TRM cells have now been identified in virtually all organs in mice [40,41] and
humans [42] including lymphoid and non-lymphoid tissues (Table 1). Recent evidence suggests that,
upon restimulation, a small portion of these cells may seed back into the circulation [43,44]. However,
the veracity of this conclusion is questioned by other studies that indicate TRM cells remain localized to
their niche even when exposed to antigen [45]. While we will focus on CD8+ TRM cells in this review,
TRM cells can derive from both CD4+ or CD8+ T cells. TRM cells have become a major focus of T cell
research throughout the last decade as they are an essential first line of defense against pathogen
invasion in most tissues.

3.1. TRM Cell Development and General Features

Identification of cell surface markers that can clearly distinguish TRM cells from other memory T cell
subsets in both mouse and human tissues is complicated by the fact that no single marker associated
with TRM cells is exclusive to this cell subset. Different TRM cell populations are known to share a
common transcriptional signature [31]. However, they can adapt to their local microenvironment
resulting in marker and cell feature variations from tissue to tissue [41]. Examples of this phenomenon
will be given in the following paragraphs.

The cell surface molecule CD69 is a canonical marker of TRM cells. This molecule promotes
tissue retention by complexing with and antagonizing sphingosine-1 phosphate receptor 1 (S1PR1),
a receptor that is required for tissue egress [46]. In mice, the majority, but not all of TRM cells retained
in tissues during parabiosis studies express CD69 [41]. In humans, sorting of CD69+ memory T cells
from different tissues demonstrated a conserved transcriptional profile distinct from blood memory
T cells and similar to that of mouse TRM cells [47,48]. However, expression of CD69 is not sufficient
to distinguish TRM cells from other T cell subsets. One major issue is that T cells express CD69 upon
TCR engagement, and hence local exposure to antigen may prevent distinction of TRM cells from
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activated T cells. Exposure to type I IFN can also cause upregulation of this molecule on T cells [46],
complicating TRM cell identification during ongoing inflammation. Finally, CD69 has been shown
to be dispensable for the generation and maintenance of TRM cells in various tissues, such as liver,
salivary gland, or lymph nodes [49]. Other markers are therefore necessary for TRM cell identification.

Another marker widely used to identify TRM cells is the molecule CD103 (the α subunit of the
αEβ7 integrin), which binds E-cadherin expressed on epithelial and thus retains cells on the epithelium.
This molecule is broadly expressed by murine TRM cells from mucosa and barrier tissues [31,50–52].
However, murine TRM cells from lymphoid organs and some non-barrier tissues such as the kidney
and the liver do not express CD103 [6,53–55]. Similar observations have been made in humans where
TRM cells express CD103 in mucosa and barrier tissues but not in lymphoid organs [47,48,56,57].
Interestingly, unlike mice, some human liver TRM cells do express CD103 [58]. This is thought to be
related to the broad expression of E-cadherin by human hepatocytes [58], which may promote the
retention of human TRM cells within the liver. On the contrary, the retention of murine liver TRM cells
within the liver is achieved through the interaction of lymphocyte function-associated antigen-1 (LFA-1)
with the intercellular adhesion molecule-1 (ICAM-1) expressed by the liver sinusoidal endothelial
cells [55]. Thus, while CD69 and CD103 are useful markers to define TRM cells from several tissues,
they are not sufficient, and the context of expression must be considered when interpreting analyses.

More recent studies in both mice and humans have demonstrated the importance of the molecule
CD49a in the biology of some TRM cell subsets. This protein, also known as integrin α1, pairs with CD29
(integrin β1) to form the very late antigen (VLA-1), which binds to extracellular collagen and laminin
and promotes the retention of T cells in tissues [59]. In peripheral tissues, like skin or liver, the majority,
but not all, of murine and human TRM cells express CD49a [3,48,60–63]. Importantly, in human skin,
CD49a expression has been shown to discriminate two functionally different populations of TRM cells,
with CD49a+ TRM cells producing IFN-γ and CD49a- TRM cells producing IL-17 [64]. CD49a may play
a role in adhesion of TRM cells to basement membranes of the epithelium. In support of this view,
depletion of CD49a results in a decrease of memory T cells within the lung [59]. However, a recent
study has shown that CD49a expression on T cells facilitates locomotion of virus specific CD8+ T cells
in the trachea, suggesting that CD49a supports TRM motility in this organ [63].

Other molecules have been identified as signature markers of TRM cells in different tissues.
For instance, the chemokine receptor CXCR6 is expressed by TRM cells in several mouse organs like the
liver and the lung, where it promotes respectively their maintenance and airway localization [6,65,66].
Likewise, human TRM cells express CXCR6 across multiple tissues [48]. The molecules PD-1 and CD101
are also commonly expressed by TRM cells from different tissues [45,48,67,68]. In contrast, most TRM

cells are negative for the chemokine receptor CX3CR1 [6], which is found on some circulating memory
T cells in mice and humans [13,48]. Similarly, murine and human TRM cells do not express KLRG1,
nor lymph node homing molecules, such as CD62L, CCR7, or S1PR1 [40,48,69].

Environmental factors particular to each tissue, such as the expression of differential cytokines,
can shape the formation and maintenance of TRM cells. For example, tumor necrosis factor (TNF), IL-33,
IL-15, IL-21, as well as transforming growth factor-β (TGF-β) have been shown to influence generation
of TRM cells in various non lymphoid tissues, such as the skin, salivary glands, or intestine [31,69–71].
As TGF-β is known to promote CD103 upregulation, and some TRM cells such as those in the liver
are CD103-, these cells are suggested to be maintained in a TGF-β independent manner. However,
these cells are not unresponsive to TGF-β, as a recent RNA-seq based study revealed that TGF-β
stimulation in vitro induced the upregulation of core signature TRM cell genes in CD8+ T cells from
several tissues, including the liver [72].

Transcription profiling has also highlighted a broad range of transcription factors associated with
TRM cell formation and/or maintenance. For instance, the development of several murine TRM cell
populations, including liver resident cells, requires cooperation of the transcription factors Hobit and
Blimp1 [73]. Nonetheless, in humans, different observations have been made. For instance, while Pallett
et al. found that human liver TRM cells are Hobitlow Blimp1high and suggested that Blimp1 compensates
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for the lack of Hobit upregulation [58], Stelma et al. showed that human liver TRM cells express low
levels of both molecules indicating that an alternative molecular mechanism could be involved in their
differentiation process [74]. Indeed, it is possible that these studies looked at different subsets of TRM

cells: a recent study on memory CD8+ T cells in the murine intestine suggests that Blimp1 expression
identifies functionally and transcriptionally distinct TRM cell subsets [75]. Blimp1high TRM cells display
strong effector capabilities and govern the early phase of acute infections whereas Blimp1low TRM cells
are described as a memory population that persists long after infection [75].

Table 1. Expression of the canonical markers used to define CD8+ TRM cells in diverse murine and
human organs.

Organs
Expression of Canonical Markers (CD69, CD103, CD49a and CXCR6)

Mice Humans

Intestine, Gut

CD69+
CD103+/−

CD49a+
CXCR6+

[40,41,52,76,77] CD69+
CD103+

[64,78]

Skin

CD69+
CD103+/−

CD49a+
CXCR6+

[31,79]
CD69+

CD103+/−
CD49a+/−

[64,80]

Lungs

CD69+
CD103+
CD49a+

CXCR6+/-

[59,66,81]

CD69+
CD103+
CD49a+
CXCR6+

[47,48]

Female reproductive tract CD69+/−
CD103+/−

[40,41,82]

CD69+
CD103+

(transcriptomic profiling is
yet to be determined)

[83,84]

Salivary glands
CD69+/−
CD103+/−
CD49a+

[41,85] CD69+
CD103+/−

[48]

Lymphoid organs (Spleen,
lymph nodes, tonsil)

CD69+
CD103−
CD49a+

[53,86]
CD69+

CD103+/−
CD49a-

[87]

Liver

CD69+
CD103−
CD49a+
CXCR6+

[6,62,73]
CD69+

CD103+/−
CXCR6+

[58,74]

Kidneys CD69+/−
CD103- [40,41,54]

CD69+
CD103+/−
CD49a+/−
CXCR6+/−

[88]

Pancreas CD69+/−
CD103+/−

[40,41]

CD69+
CD103+
CD49a+
CXCR6+

[67]

Brain CD69+
CD103+/−

[40,68,89,90]

CD69+
CD103+/−

CD49a+
CXCR6+/−

[61]

3.2. Function of TRM Cells

Upon re-exposure to a pathogen, TRM cells provide a first line of adaptive cellular defense in
peripheral non-lymphoid tissues. Mouse TRM cells from various organs have been shown to mediate
rapid protection against diverse bacterial, viral, and parasitic infections with more effective and rapid
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pathogen clearance compared with other subsets of memory T cells [3,6,53,85,91]. TRM cells have also
been associated with improved solid cancer prognosis (reviewed in [92]).

Upon antigen encounter TRM cells rapidly produce different effector molecules including cytotoxic
factors like granzyme B (GzmB) or perforin, and inflammatory cytokines such as Interferon-γ
(IFN-γ) and Tumor Necrosis Factor (TNF) as observed in different organs and upon various infection
model [6,93,94]. Hence, TRM cells likely exert their protective function by either direct killing of
infected cells or by attracting other immune cells to the site of infection. TRM cells in the skin have
been found able to clear HSV infection in the absence of circulating cells [95], and WT, but not IFN-γ
or perforin-deficient TRM cells in the brain were able to control intracerebral LCMV infection in mice
depleted of circulating cells [94]. These findings suggest that TRM cells can mediate direct killing of
pathogens. Additionally, the chemokines and inflammatory cytokines produced by TRM cells upon
recall infection can trigger the recruitment and the activation of other inflammatory cells in particular
circulating memory T cells [53,96,97]. As a consequence of their recruiting capacity, a small number of
pathogen specific TRM cells can trigger very rapid and efficient local immunity.

As a result of their remarkable protective capacities, TRM cells have emerged as a promising means
to combat infection and cancer. Indeed, recent studies on liver TRM cells provide a clear example of
the protective potential of these cells, as well as the opportunities to promote their formation through
vaccination for effective immunity against infection.

4. Liver TRM Cell Location

The liver is the recipient of both arterial and venous blood. The portal vein delivers large volumes
of blood from the gastrointestinal tract and spleen to the liver [98]. Once there, the blood flows through
narrow vascular capillaries known as hepatic sinusoids, which reduce the flow rate and allow resident
cells to interact with a vast variety of antigens and circulating cells [99]. The hepatic sinusoids are lined
with liver sinusoidal endothelial cells that form a fenestrated thin layer that separates hepatocytes
from circulating cells. These fenestrae grant lymphocytes in the blood direct access to the surface of
hepatocytes for antigen recognition and effector function [100,101]. In contrast to TRM cells in most
tissues, which are anatomically separated from the circulation, liver TRM cells are present within the
sinusoids and are constantly exposed to the blood stream but are able to access antigen on tissue stroma
through the fenestrated endothelium [6]. Intravital images shows that liver TRM cells, which display
an ameboid shape, are uniquely located in the vasculature where they patrol the hepatic sinusoids at
migration speeds more rapid than seen for skin TRM cells (Figure 1) [6,41,73].

4.1. Identification of Liver TRM Cells

Malaria is a major infectious disease caused by Plasmodium parasites. In their vertebrate host,
parasites first develop in the liver for a short period of time, where they infect hepatocytes, before
being released into the bloodstream to cause blood-stage infection, which leads to disease symptoms.
Early evidence supporting the existence of resident memory T cells in the liver came from studies
investigating the role of CD8+ T cells against the liver-stage of Plasmodium. These studies identified
a long-lasting population of memory CD8+ T cells present in the liver and absent in the spleen of
mice vaccinated with radiation-attenuated Plasmodium sporozoites (the infectious stage transmitted
by the mosquito) [102]. Vaccinated mice were protected against Plasmodium sporozoite challenge
for more than 6 months [102]. Later reports revealed that a subpopulation of memory CD8+ T cells
associated with the liver, but absent from the circulation, expressed high levels of CXCR6, CXCR3,
and CD69 [5,65], markers commonly displayed by TRM cells [103].
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Figure 1. The liver is a unique niche for tissue resident memory cells. The portal vein delivers
antigen-rich blood from the gastrointestinal tract and spleen to the liver. This blood flows through
the liver hepatic sinusoids lined with a thin layer of fenestrated liver sinusoidal endothelial cell
(LSEC). Liver TRM cells are localized within the hepatic sinusoids, where they remain long-term and
do not recirculate despite direct connection to the circulatory system and constant exposure to the
blood. The expression of ICAM-1 and CXCL16 by LSEC can promote the retention of lymphocytes,
through interactions with LFA-1 and CXCR6, respectively. Murine and human TRM cells in the liver
express CD69, CXCR6, CXCR3 and high levels of LFA-1. Of note, human but not murine TRM cells
express CD103. It has been suggested that this difference is associated with a broad versus a restricted
expression of E-cadherin by human and murine hepatocytes, respectively. Intrahepatic lymphocytes
including circulating and resident memory cells can access the surface of hepatocytes through LSEC
fenestrae and exert effector functions. Using cytoplasmic protrusions, lymphocytes probe hepatocytes
for the presence of antigen and can release factors such as GzmB and IFN-γ to promote hepatocyte
killing. In murine studies, liver TRM cells can be generated through different vaccination strategies to
confer protection against Plasmodium parasites and in humans they have been associated with disease
control against HBV and HCV.

The presence of bona fide memory cells permanently residing in the liver was confirmed
by parabiosis studies in mice systemically infected with LCMV or Plasmodium sporozoites [6,41].
Parabiosis requires the surgical union of the flank skin of two animals. This enables the mixing of
blood between the parabionts, and thus evaluation of T cell migration from one animal to the other.
Unlike circulating cells, which equilibrate between both animals, resident populations remain in the
parabiont in which they originally formed. This technique has been extensively used to identify TRM

cells in different murine tissues [41]. Although liver TRM cells are in constant contact with circulating
blood [6], parabiosis studies have confirmed that these cells, counterintuitively, do not recirculate and
can only be found in the livers of the immunized parabiont partner [6,41].

Liver TRM cells were found to express a similar phenotypic and transcriptional signature to that
of TRM cells previously identified in the lung, skin, and gut [6,31]. Maintenance of liver TRM cells in
mice relies on the expression of the transcription factor Hobit, and on basal levels of expression of
Blimp1 [73]. These TRM cell signatures have been found in T cells from grafted or isolated human
tissues, enabling the unequivocal identification of TRM cells in several human organs [48], including the
liver [58,74]. As mentioned earlier, contrary to liver TRM cells in mice which express high levels of
Hobit and low to intermediate levels of Blimp1 [73], human liver TRM cells are Hobitlow Blimp1high [58].
In a recent publication, a small proportion of donor cells were found in HLA-mismatched liver and



Int. J. Mol. Sci. 2020, 21, 8565 8 of 15

allografts 11 years after transplant, demonstrating the resident nature and remarkable longevity of
these cells [104].

4.2. Liver TRM Cell Immune Responses to Infection

Murine studies have shown that liver TRM cells can confer efficient protection against liver-stage
Plasmodium infection [6,9]. These studies have also demonstrated that substantial numbers of liver
TRM cells are associated with higher levels of immunity to malaria, and depletion of these cells ablates
protection [6,9]. Based on these results, several complex vaccinations strategies, aimed at trapping
activated CD8+ T cells in the liver, have now successfully induced the formation of liver TRM cells in
mice [6–9]. One vaccination strategy, prime-and-trap, is a single injection of a 3-component vaccine
designed to prime Plasmodium-specific CD8+ T cells in the spleen and recruit them to the liver to
form TRM cells via locally expressed antigen recognition and adjuvant-induced inflammation [6,9].
Another strategy, termed prime and target requires the administration of two components injected
two weeks apart and uses a modified adenovirus for priming and either nanoparticles or a modified
viral vector to target cells to the liver [7]. More recently, we have also used a glycoprotein-peptide
vaccination strategy that utilizes NKT cell help to induce the formation of liver TRM cells [8]. In mice,
vaccine-induced TRM cells patrol the liver sinusoids, form aggregates around infected hepatocytes and,
based on expression of molecules such as GzmB, IFN-γ and TNF-α (Figure 1) [6,7], potentially exert
infection control through direct lysis and/or cytokine-mediated mechanisms. Moreover, vaccination
studies with attenuated Plasmodium sporozoites in non-human primates have found high frequencies
of intrahepatic memory CD8+ T cells in protected subjects [105].

Importantly, in humans, liver TRM cells have been associated with disease control. For example,
recent studies have investigated paired blood and liver samples from patients with chronic hepatitis
B and hepatitis C virus infection and healthy volunteers to determine the role of liver TRM cells
during viral infections [58,74]. Researchers found that human TRM cells in the liver express high
levels of IL-2 and accumulate in larger numbers in the livers of infected patients compared to healthy
patients. These studies also determined higher expression of GzmB and IFN-γ in HBV infected
patients. Importantly, an inverse correlation between liver TRM frequencies and viral titers was
observed, indicating that high numbers of specific liver TRM cells were associated with viral control [58].
However, accumulation of intrahepatic CD8+ CD103+ perforin+ T cells has been observed in cases of
autoimmune hepatitis, particularly in indetermined pediatric acute liver failure [106]. These findings
suggest that liver TRM cells could also have a pathogenic function.

5. Conclusions

TRM cells are pivotal mediators of protective immune responses within tissues and have been
identified in nearly all organs, including lymphoid, non-lymphoid and barrier tissues. They are loaded
with effector molecules, including GzmB, perforin, IFN-γ, and TNF, and likely exert their function
by the direct killing of targets, or by recruiting other immune cells. Several infection models have
correlated the presence of TRM cells with pathogen and tumour control in tissues. Notably, in the
liver, CD8+ TRM cells can mediate efficient control of liver-stage Plasmodium parasites, and likely,
HBV and HCV infections. For this reason, TRM cells appear of particular interest in the course of
vaccine development, especially for liver TRM cells for malaria vaccines. Further research unveiling the
mechanisms for the formation and maintenance of TRM cells will facilitate the design of next generation
TRM-based vaccines that realize the protective potential of these cells for unprecedented immunity
against infections.
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HCV Hepatitis C Virus
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