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Abstract: Coastal wetland ecosystems, such as saltmarsh and mangroves, provide a wide range
of important ecological and socio-economic services. A good understanding of the spatial and
temporal distribution of these ecosystems is critical to maximising the benefits from restoration and
conservation projects. We mapped mangrove and saltmarsh ecosystem transitions from 1991 to 2015
in south-eastern Australia, using remotely sensed Landsat data and a Random Forest classification.
Our classification results were improved by the addition of two physical variables (Shuttle Radar
Topographic Mission (SRTM), and Distance to Water). We also provide evidence that the addition
of post-classification, spatial and temporal, filters improve overall accuracy of coastal wetlands
detection by up to 16%. Mangrove and saltmarsh maps produced in this study had an overall User
Accuracy of 0.82–0.95 and 0.81–0.87 and an overall Producer Accuracy of 0.71–0.88 and 0.24–0.87
for mangrove and saltmarsh, respectively. We found that mangrove ecosystems in south-eastern
Australia have lost an area of 1148 ha (7.6%), whilst saltmarsh experienced an overall increase in
coverage of 4157 ha (20.3%) over this 24-year period. The maps developed in this study allow local
managers to quantify persistence, gains, and losses of coastal wetlands in south-eastern Australia.

Keywords: mangrove; saltmarsh; distribution; south-eastern Australia; Landsat; land-cover change;
random forest

1. Introduction

Coastal wetland ecosystems (mangrove, saltmarsh, and seagrasses) provide a wide
range of important ecological and socio-economic services to coastal areas [1], including
provisioning, coastal protection, recreational and aesthetic uses, and climate change mit-
igation through soil formation and carbon sequestration [2–5]. However, the extent of
coastal wetlands has significantly decreased worldwide as a result of anthropogenic im-
pacts, particularly near populated areas [6,7]. Coastal wetland ecosystems are susceptible
to a range of natural and anthropogenic-related threats, including climate change, and
the associated impacts of sea level rise, storms, tidal surges, and changes in precipitation
and temperature [8–10], coastal development, and conversion to agriculture, such as stock
grazing [11].

In Australia, mangroves and saltmarshes occur throughout coastal regions, covering
an area of approximately 25,000 km2 [12,13]. Although they are protected under the
Environment Protection and Biodiversity Conservation Act 1999 [14], they have seen
extensive loss since European colonisation. Large losses of coastal wetland ecosystems
have been documented over the past 50 years due to increasing agriculture and urbanisation
near estuarine fringes [15] or climate change-associated extreme weather events [8]. In
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temperate regions of south-eastern Australia, around 20 percent of Australia’s mangroves
and saltmarshes have been lost since colonisation [16], with some estuaries losing up
to 80 percent [15]. As a consequence, coastal wetland ecosystems have been a focus
of many conservation and restoration projects in temperate and sub-tropical regions of
Australia [17–19]. The success of such projects requires a good understanding of spatial
and temporal ecosystem distribution to inform better management strategies and to ensure
effort is directed towards appropriate areas [20–22].

Comprehensive, statewide mapping and inventory studies of coastal wetlands have
been completed over the past two decades along the south-eastern coast of Australia, using
a mixture of airborne and on-ground surveys (Victoria [23] and New South Wales [19,24]).
Although some historical mapping has been undertaken with the use of aerial photogra-
phy [19,25] and archival maps [23] in specific study areas, the majority of these statewide
maps were made for single years. This is a result of the methodologies used to obtain these
maps (aerial and on-ground surveys), which are expensive and not widely available, often
prohibiting the collection of frequent repeat surveys [26,27]. As a result, there is a lack of
temporally consistent data at an appropriate temporal and spatial resolution for ecosystem
monitoring and management.

Remotely sensed satellite data provide a fast, cost-effective, and efficient method to
monitor the distribution of coastal wetlands ecosystems [27–30]. The Landsat satellites
(Thematic Mapper, TM; Enhanced TM+, ETM+; and Operational Land Imager, OLI) have
been the most widely used sensors for mapping coastal wetlands distribution [28,31–34],
as they provide access to a high temporal frequency (every 16 days), medium resolution
(~30 m), long-term dataset over the past 35+ years [35]. This long temporal coverage
allows investigation of transitional patterns of ecosystems and land uses across broad
spatial scales [36–39]. While multiple mangrove maps have been developed at global
scales [31,33], consistent and repeatable time-series are lacking, particularly those trained
for local use mapping and application.

Recent development of machine learning (ML) methods provides new opportunities
for accurately mapping coastal wetlands ecosystems [34]. Traditionally, coastal wetland
mapping using satellite data has been performed using individual vegetation indices [34].
Numerous classical vegetation indices (i.e., Normalised Difference Vegetation Index, En-
hanced Vegetation Index, and Normalised Difference Water Index) and novel vegetation
indices (i.e., Combined Mangrove Recognition Index and Modular Mangrove Recognition
Index) have been tested for coastal wetlands detection [40,41]. These indices are generally
good at differentiating flooded vegetated areas from adjacent water sources or non-flooded
vegetation [40]. However, they often struggle to differentiate between specific flooded veg-
etated types, such as mangroves, saltmarshes, and freshwater wetlands [42]. On the other
hand, machine learning algorithms such as random forest, artificial neural networks, or
support vector regression have proven to be more successful in mapping coastal wetlands
distribution than single indices [40,42,43]. These models generally use a list of individual
multispectral bands and vegetation indices [40,44]. However, although important for forest
detection [45,46], physical variables such as Shuttle Radar Topographic Mission (SRTM)
elevation and Distance to Water (DistW) have rarely been used for the detection of coastal
wetlands [42]. As their name indicates, coastal wetlands are known for occurring across
the land-sea interface [47]. Therefore, we hypothesised that the addition of a DistW layer
would improve coastal wetland detection with satellite data. Additionally, these ecosys-
tems have very low growth rates in south-eastern Australia due to the colder climate [48],
and therefore will benefit from the use of SRTM elevation as a variable, despite it being
collected for a single year (2000; [49]).

In this study, we present triennial mangrove and saltmarsh distribution maps at
30 m resolution from 1991 to 2015 across the south-eastern coast of Australia. We use a
combination of cloud-based (Google Earth Engine) and local computing to map coastal
areas by applying a Random Forest (RF) model to Landsat time series data. We also
propose the use of two physical variables (SRTM and Distance to Water) and a set of post-
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classification filters to improve mangrove and saltmarsh modelling. Finally, we perform a
land-use change analysis to assess the gains and losses of mangrove and saltmarsh extent
over the 24-year period. The map outputs from this study provide a long-term time series
of the dynamics of these important coastal ecosystems, which can help with management
by quantifying ecosystem losses or gains and persistence, along with impacts on their
associated ecosystem services.

2. Materials and Methods
2.1. Study Area

We focused our research on the south-eastern coast of Australia (Figure 1), which
comprises two climatic regions: temperate in Victoria (VIC) and sub-tropical in New South
Wales (NSW). The southernmost distribution of mangrove ecosystems in the world can be
found in Corner Inlet (VIC). Air temperatures in this region can reach 0 ◦C during winter,
making mangrove survival very difficult [48]. Only one species of mangrove has adapted
to live in these conditions (Avicennia marina), forming dwarf stands with a height range
between 1 and 3.5 m [50] and covering an area of approximately 5000 ha in VIC [23]. In
contrast, saltmarshes along the VIC coast encompass a variety of species with different
structural forms such as woody shrubs (e.g., Tecticornia arbuscula and Salicornia quinqueflora)
and grasses (e.g., Distichlis disichophylla and Austrostipa stipoides), and cover an area of
approximately 20,000 ha [23].

Mangrove forests in the sub-tropical regions of NSW are more diverse, both in species
composition (with up to 4 species: Avicennia marina, Aegiceras corniculatum, Bruguiera
gymnorhiza, and Excoecaria agallocha) and height range (between 2 and 17 m), and cover
an area of approximately 12,000 ha [19]. Saltmarsh can be found in estuaries along the
entire NSW coastline, covering an estimated total area of over 7200 ha [19]. Saltmarsh
species diversity decreases as latitude increases along the coast of NSW, with Jervis Bay
(Nowra, Figure 1) being the northern limit for several species [51]. On the Northern Rivers
region of NSW (Figure 1), saltmarshes are dominated by a few plant species very similar to
tall graminoids or pastureland, such as Saltwater Couch (Sporobolus virginicus), Samphire
(Sarcocornia quinqueflora), and rushes, including Sea Rush (Juncus kraussii).

2.2. Landsat Imagery Acquisition and Pre-Processing

We obtained all datasets and their sub-products from the GEE platform repository. We
used atmospherically corrected surface reflectance (SR) data from the Landsat 5 TM and
Landsat 8 OLI/TIRS sensors, which include Level-1 Precision Terrain (L1TP) processed
data [52,53]. These datasets include a pixel Quality Assessment (QA) band generated from
the CFMASK algorithm, which populates cloud, cloud shadow, and snow/ice pixels, as
well as a per-pixel saturation mask [54].

We used SR data to produce annual cloud-free composites, ranging from the 1 January
to the 31 December, for the years 1988, 1991, 1994, 1997, 1999, 2003, 2006, 2009, 2013, 2015,
and 2018, at approximately at 3-year intervals; note that the years 2000 and 2012 have been
changed for the years 1999 and 2013, respectively. This is due to lack of suitable Landsat
5 SR data for our area of interest while Landsat 7 was working correctly (2000–2002), as
well as lack of data due to Landsat 5 TM sensor failure in November 2011, one year before
the launch of Landsat 8 in 2013. We based the choice of triennial (every 3 years) maps as
a trade-off between local memory and computing capabilities and the minimum gap to
detect coastal wetland changes. Landsat 5 TM data were used for the maps from 1988 to
2009, while Landsat 8 OLI was used for 2013, 2015 and 2018.
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Figure 1. South-eastern coast of Australia. Figure includes the 5 sub-regions our study area was divided into: three in NSW
(Northern Rivers, from Tweed Head to Manning River at Taree; Central Coast, from Manning River to Shoalhaven River
at Nowra; and Southern Rivers, from Shoalhaven River to Cape Howe) and two in VIC (Gippsland, from Cape Howe to
Powlett River at Kilcunda; and Central Bays, which include Westernport and Port Phillip Bay).

We used the cloud/shadow removal script within GEE to remove pixels that might be
affected by artifacts or cloud contamination [55]. For this, we used a combination of: (1)
the quality assessment (QA) band by discarding pixels labelled as cloud or cloud shadows
by the CFMASK algorithm [54]; and (2) the GEE median reducer by picking the median
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pixel value in each band over the annual composites to further remove cloud-contaminated
pixels that might not have been discarded by the QA.

2.3. Data Masking

Data masking has been widely used for improving the overall accuracy of coastal
wetlands distribution maps by reducing processing time and decreasing the vegetation
diversity of coastal areas [32,40,56]. In this study, four consecutive masks were applied to
the annual cloud-free composites before classification:

First, we masked all areas on the Landsat images that were higher than 20 m using
SRTM data within GEE [49]. We determined 20 m to be the maximum height for mangrove
and saltmarsh forests in south-eastern Australia using ground-truthed data from Navarro,
et al. [57].

Second, we applied a RF classifier using training classes from the Department of
Planning, Industry and Environment of NSW from the year 2007 [58] and the Department of
Environment, Land, Water, and Planning of VIC [59], to create a water layer and sand layer
for each individual timestep, which were subsequently masked from the Landsat images.

Third, we eliminated water bodies whose distance to the 3 closest water bodies was
on average greater than 250 m apart (i.e., small ponds and water reservoirs) from the
previously generated water layer, as vegetation associated with these water bodies could
potentially be mistaken as coastal wetlands. Coastal wetlands ecosystems in temperate and
sub-tropical regions of Australia do not generally form wide forests, but grow in relatively
thin strips around estuaries and embayments due to the colder climate [48] and other
anthropogenic pressures [23]. Therefore, a Distance to Water (DistW) layer was created
with the remaining water layer and all pixels that had a DistW over 1000 m were masked
from the Landsat images.

Finally, preliminary analyses of the data revealed that foredune vegetation has the
potential to be falsely classified as coastal wetlands (especially saltmarsh). Consequently,
a Distance to Sand (DistS) layer was created and all pixels whose distance to water was
greater than distance to sand were again masked from the Landsat images. This mask
allowed us to remove coastal vegetated areas that were not in direct contact with water and
therefore helped us avoid false classifications of foredune vegetation as coastal wetlands.

2.4. Coastal Wetlands Classification
2.4.1. Training and Validation Datasets

Due to its length and biogeographical characteristics, the south-eastern coast of Aus-
tralia was split into five sub-regions (Figure 1): three in NSW (Northern Rivers, from
Tweed Head to Manning River at Taree; Central Coast, from Manning River to Shoalhaven
River at Nowra; and Southern Rivers, from Shoalhaven River to Cape Howe) and two in
VIC (Gippsland, from Cape Howe to Powlett River at Kilcunda; and Central Bays, which
include Westernport and Port Phillip Bay). We used ancillary data collected from various
sources to create training and validation datasets for the 5 classes used in this study (Man-
grove, Saltmarsh, Built, Crop, and Other Vegetation). Mangrove and Saltmarsh training
datasets were obtained for each region from existing wetland maps derived from airborne
photogrammetry for NSW [19] and VIC [23]. The other 3 classes (Built, Crop, and Other
Vegetation) were derived from land use maps from 2006 obtained from the Department of
Planning, Industry, and Environment for NSW [58] and the Department of Environment,
Land, Water, and Planning for VIC [59].

Having set the refined training region, all classes were statistically filtered (with the
90th percentile function) and visually inspected to remove inadequate training samples.
Of the remaining sample dataset, a proportional number of samples (5%) were randomly
selected for every class (Mangrove, Saltmarsh, Built, Crop, and Other Vegetation), per
region for the year 2006 (closest one to the years all data was obtained). Proportional strati-
fied sampling and statistical filtering are necessary to address imbalanced class problems,
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allowing the removal of outliers from the sample bag [60]. All samples were then separated
into training (70%, n = 107,150) and validation datasets (30%, n = 45,938).

Due to the spectral differences between Landsat 5 and Landsat 8 imagery [61], the
training regions were revised using high resolution imagery from Google Earth for the year
2013 (first Landsat 8 annual composite), and a new set of training and validation datasets
were created. A full dissection of all training and validation datasets for every class and
every sub-region can be found in the supplementary (Table S1).

2.4.2. Random Forest Model

Finally, we performed two RF classifications [62] at every sub-region (one for the
Landsat 5 annual composite of the year 2006, and the other for the Landsat 8 annual
composite of the year 2013) to categorise the south-eastern coast of Australia into 5 distinct
classes: Mangrove, Saltmarsh, Built, Cropland, and Other Vegetation. To obtain the full
range of the Landsat imagery, the two models were applied respectively to the remaining
annual composites (2006/Landsat 5 for 1988–2009 and 2013/Landsat 8 for 2015–2018)

RF classification [62] has been widely applied for coastal land-use modelling [40,42,43].
RF works by aggregating the predictions made by multiple uncorrelated decision trees
(ntree). Each tree is trained on a randomly selected with replacement subset of the training
samples (roughly 2/3), while the remaining third are used for estimating the Out-of-bag
(OOB) error. At each node of the trees, a number of predictors (mtry) are selected at random
from all the variables to split the nodes. In our case, both the ntree and mtry were left as
default (500 and square root of the total number of all predictors, respectively).

The RF models were implemented using the randomForest package in R [63] us-
ing a combination of spectral bands and indices and physical variables. The variables
used within the model are defined in Table 1. To test the individual performance of the
physical variables (SRTM height and Distance to Water, hereafter DistW), we created
4 RF models with different combinations of variables: (1) Spectral; (2) Spectral + DistW;
(3) Spectral + SRTM; and (4) Spectral + DistW + SRTM.

Table 1. Set of physical variables and vegetation indices used for modelling land use maps used in our study.

Type Variables Variable Specifications Reference

Spectral Bands

Blue 0.45–0.52 µm (L5)
0.452–0.512 µm (L8)

NA

Green 0.52–0.60 µm (L5)
0.533–0.590 µm (L8)

Red 0.63–0.69 µm (L5)
0.636–0.673 µm (L8)

Near Infrared (NIR) 0.77–0.90 µm (L5)
0.851–0.879 µm (L8)

Short-wave Infrared (SWIR 1) 1.55–1.75 µm (L5)
1.566–1.651 µm (L8)

Short-wave Infrared (SWIR 2) 2.08–2.35 µm (L5)
2.107–2.294 µm (L8)

Spectral Indices

Normalised Difference Vegetation
Index (NDVI)

ρNIR−ρRed
ρNIR+ρRed

Rouse et al. [64]

Modified Normalised Difference
Water Index (MNDWI)

ρGreen−ρSWIR1
ρGreen+ρSWIR1

Xu [65]

Modular Mangrove Recognition
Index (MMRI)

|MNDWI|−|NDVI|
|MNDWI|+|NDVI|

Diniz et al. [40]

Physical

Shuttle Radar Topography Mission
(SRTM) NA Farr et al. [49]

Distance to Water (DistW) NA
Created using the gDistance

function within the rgeos package
(Bivand and Rundel [66])
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2.4.3. Post-Classification Filters

Two different post-classification filters were applied to the resulting maps: a spatial
and a temporal filter.

First, due to the pixel-based nature of the classification method, a post-classification
spatial filter was applied. Mangrove and saltmarsh pixels that share at least one side
with neighbouring pixels of the same ID were grouped into clumps. Then, we used two
constraints to remove mangrove and saltmarsh clumps that are very uncommon (less
than 5% of all pixels in the ground-truthed training datasets met these criteria), which are
summarised in Table 2. First, it is very uncommon for any mangrove or saltmarsh patch
to be less than 0.2 ha and 0.5 ha in size respectively, so we excluded smaller patches for
these classes; and second, it is very uncommon for any mangrove or saltmarsh patch to
be more than 45 m (1 pixel) and 120 m (4 pixels) from water, respectively. However, we
cannot eliminate all of these patches as the ones that are actually farther from that distance
are usually the bigger ones (more than 1 ha in size for mangroves and 5 ha for saltmarsh).
Therefore, we used a second constraint eliminating all mangrove patches that are more
than 45 m away from a water body and less than 5 ha in size; and all saltmarsh patches that
are more than 120 m away from water and less than 5 ha in size. This post-classification
filter assisted in eliminating noise in the classification in the form of small and isolated
mangrove and saltmarsh clusters likely to be artefacts. Two consecutive focal functions
using a moving 3*3 window and a modal function (most repeated surrounding category)
were then applied to fill the holes left by the spatial filter.

Table 2. Post-classification spatial filter applied to our land-use maps. It searches for uncommon
(less than 5% of all pixels in the ground-truthed training datasets met these criteria) mangrove and
saltmarsh patches and removes them according to the following excluding criteria.

Class
Excluding Criteria

Distance to Water Patch Size

Mangroves Any <0.2 ha
>45 m (1 pixel) <1 ha

Saltmarsh
Any <0.5 ha

>120 m (4 pixels) <5 ha

Second, a temporal filter was used to identify transitions between classes that are
implausible. The temporal filter examines every pixel of three consecutive maps and, if
the central map is found to be different than the edges, then it is reclassified to match its
temporal neighbour class, as shown in Table 3. Similar temporal filters have been applied
for mangrove change analysis by Diniz et al. [40].

Table 3. Post-classification temporal filter applied to our land-use maps. It searches for deviations in
the central timestep of three consecutive maps and changes it according to the following rules.

Before Temporal Filter After Temporal Filter

Mapn−1 Mapn Mapn+1 Mapn−1 Mapn Mapn+1

Class X Non-Class X Class X Class X Class X Class X
Class Y Class X Class Y Class Y Class Y Class Y

2.4.4. Accuracy Assessment and Validation

We created confusion matrices using the independent validation datasets to test the
Overall Accuracy (OA), Kappa statistics and class-specific balanced accuracies (using the
R package “caret” [67]) of the 4 models we created [68]: (1) Spectral; (2) Spectral + DistW;
(3) Spectral + SRTM; and (4) Spectral + DistW + SRTM.

We then proceeded to evaluate the performance of the most accurate model (as
determined by the previous statistics) at 3 different stages (after classification, after spatial
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filter, after temporal filter). We used the confusion matrices to determine the Producer
Accuracy (PA) and User Accuracy (UA) of the distribution of mangroves and saltmarsh.
This allowed us to test and compare the benefits of each of the post-classification filters
used in this study for improving coastal wetlands detection.

2.5. Land-Cover Transitions

We compared the extent of area classified as mangrove or saltmarsh within each of
the 5 regions between 1991 and 2015 (1988 and 2018 were discarded due to not being able
to apply the temporal filter to them). In addition, we assessed annual change intensity
in terms of gains (gross annual gain divided by the size of the category at the final time
point of the interval) and losses (gross annual loss divided by the size of the category at
the initial time point of the interval) for all the land cover classes using the R package
“intensity.analysis” [69]. We then compared these intensities with uniform change in the
study area to distinguish whether transitions between land cover classes were random
(relatively dormant) or systematic (active; Pontius et al. [70]). Finally, we evaluated transi-
tional patterns (gains and losses in hectares from the earliest distribution maps to the latest)
between our two ecosystems of interest and all the other classes (i.e., Built, Croplands,
Mangroves, Other Vegetation, Saltmarsh, Water, and Sand).

3. Results
3.1. Random Forest Classification

A consistent time-series of ten annual land-cover maps was created for the south-
eastern coast of Australia for the period 1991–2015 at approximately three-year time
intervals. We used the independent validation datasets to create confusion matrices specific
for every sub-region and for the whole area of interest (Table S2). Based on the OA,
Kappa statistics and class-specific balanced accuracies (summarised in Table 4 for the
2006/Landsat 5 model), the best RF model was model (4), which included spectral bands
(blue, green, red, NIR, SWIR1, and SWIR2), spectral indices (NDVI, MNDWI, and MMRI)
and the two physical indices (SRTM and DistW). The average overall accuracy of this
model across all regions of interest is 89% for the Landsat 5 TM model (Table 4) and 88% for
the Landsat 8 OLI model. For simplicity, and due to its similarity with the 2006/Landsat
5 model, the results for the 2013/Landsat 8 model are shown in Table S3. On average, the
addition of SRTM and DistW to the RF model improved the OA and Kappa statistics by
approximately 2% (Table 4 and Table S3). However, the two classes of interest of our study
(mangroves and saltmarsh) improved by up to 4% and 10%, respectively. The triennial
land-cover maps created using this RF model are freely available for download as tif files
from https://doi.org/10.6084/m9.figshare.14343500 (accessed on 7 April 2021).

3.2. Post-Classification Filters

The performance of the two post-classification filters (2006/Landsat 5 and 2013/Land-
sat 8) in terms of Producer and User Accuracy can be found in Table 5 and Table S4,
respectively. We used the independent validation datasets (using 30% of our samples,
Table S1) to create a confusion matrix (Table S2) from which the Producer and User Accu-
racy were derived. We compared the accuracy of our models at three different stages (after
initial classification, after spatial filter and after temporal filter). We observe improvements
in User Accuracy of up to 17% in some cases after applying the post-classification filters
(Table 5 and Table S4). However, Producer Accuracy tends to slightly decrease due to the
inherent nature of the spatial post-classification filter (removal of mangrove and saltmarsh
pixels, some of which are rightly classified from the beginning), being as low as 0.24 for
saltmarsh in Northern Rivers (Table 5 and Table S4). In general, User and Producer Accu-
racy is substantially higher for mangroves than for saltmarsh across both regions, and is
also higher in VIC than it is in NSW for both ecosystems (Table 5 and Table S4).

https://doi.org/10.6084/m9.figshare.14343500
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Table 4. Overall Accuracy (OA), Kappa statistics, and class specific balanced accuracies for Mangroves (MgA) and Saltmarsh (SmA) across all regions of interest for the 2006/Landsat 5
model after applying post-classification filters.

NSW VIC

Northern Rivers Central Coast Southern Rivers Gippsland Central Bays

OA Kappa MgA SmA OA Kappa MgA SmA OA Kappa MgA SmA OA Kappa MgA SmA OA Kappa MgA SmA

Spectral 0.88 0.77 0.81 0.52 0.87 0.82 0.83 0.72 0.86 0.79 0.82 0.67 0.87 0.74 0.92 0.83 0.86 0.80 0.94 0.87
Spectral + DistW 0.89 0.78 0.82 0.59 0.88 0.83 0.84 0.74 0.87 0.80 0.83 0.69 0.87 0.74 0.92 0.84 0.87 0.81 0.94 0.88
Spectral + SRTM 0.89 0.79 0.83 0.55 0.88 0.84 0.87 0.78 0.87 0.80 0.84 0.73 0.88 0.76 0.94 0.85 0.88 0.83 0.94 0.92
Spectral + DistW

+ SRTM 0.90 0.80 0.85 0.62 0.89 0.84 0.87 0.79 0.88 0.80 0.85 0.73 0.88 0.77 0.93 0.85 0.88 0.83 0.94 0.92

Table 5. User (UA) and Producer Accuracy (PA) for the classes of interest (Mangroves and Saltmarsh) across all regions for the 2006/Landsat 5 model before and after applying the
classification filters.

NSW VIC

Northern Rivers Central Coast Southern Rivers Gippsland Central Bays

Mangrove Saltmarsh Mangrove Saltmarsh Mangrove Saltmarsh Mangrove Saltmarsh Mangrove Saltmarsh

UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

Initial 0.76 0.73 0.64 0.38 0.79 0.76 0.68 0.63 0.77 0.74 0.74 0.54 0.82 0.85 0.73 0.76 0.87 0.87 0.81 0.86
After Spatial Filter 0.83 0.71 0.73 0.26 0.84 0.76 0.80 0.59 0.83 0.73 0.88 0.48 0.87 0.86 0.79 0.75 0.91 0.88 0.84 0.87

After Spatial & Temporal
Filter 0.88 0.71 0.77 0.24 0.87 0.75 0.85 0.58 0.86 0.71 0.83 0.46 0.90 0.87 0.82 0.73 0.90 0.88 0.84 0.87
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3.3. Coastal Wetlands in South-Eastern Australia

Overall, there was a decrease in mangrove coverage (−1148 ha or 7.6%), with two
periods of slight but constant decrease (1991–1997 and 1999–2006) and a period of relatively
rapid increase (1997–1999). Mangrove area remained fairly stable around 14,000 ha after
2006 (Figure 2). On the other hand, saltmarsh experienced an overall increase in coverage
(+4157 ha or 20.3%), most of which happened between 1999 and 2006, remaining stable
before and after that period (Figure 2).

Figure 2. Mangrove (a) and saltmarsh (b) area extent in ha for every region of interest and in total.

The gains, losses, and persistence between 1991 and 2015 of our two classes of interest
(mangroves and saltmarsh) across the whole region can be visualised in Figures 3 and 4,
respectively, along with several noteworthy zoomed-in examples. Figures 3b and 4b show
mangrove extension and saltmarsh loss to water, respectively. Figure 3c shows an example
of extensive mangrove declines in Karuah River (Central Coast, NSW), while Figure 4c
shows extensive saltmarsh expansion (associated with the rapid saltmarsh increase between
1999 and 2006) in Lake Wellington (Gippsland, VIC). Finally, Figures 3d and 4d show the
same area of the northern shore of WesternPort (Central Bays, VIC), where mangroves
have lost area to saltmarsh ecosystems while gaining area through water.



Remote Sens. 2021, 13, 1450 11 of 22

Figure 3. Mangrove gains, losses, and persistence between 1991 and 2015 across the south-eastern coast of Australia (a),
along with several zoomed-in examples (b–d).
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Figure 4. Saltmarsh gains, losses, and persistence between 1991 and 2015 across the south-eastern coast of Australia (a),
along with several zoomed-in examples (b–d).

3.4. Land-Cover Change

We evaluated transitional patterns between land cover classes by grouping all regions
together and comparing the earliest map of the time series (1991) to the latest (2015).
Total afforestation and deforestation rates for mangroves are 0.75% and 1.3% annually,
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respectively. Saltmarsh experienced a higher rate of increase at 1.5% and a slightly lower
rate of decline at 1.1%. (Figure 5). Saltmarsh ecosystems are actively both gaining and
losing area; although, there is a clear tendency for gains (which is expected due to the
rapid increase in saltmarsh extension in VIC). Mangroves on the other hand are only
systematically losing area, as gain intensity is below the uniform change threshold (blue
dashed vertical line, Figure 5) and can be considered dormant (or expected due to random
processes; [70]).

Figure 5. Annual change intensity in terms of gains (in green, calculated as the size of each gross annual gain divided by
the size of the category at the final time point of the interval) and losses (in red; calculated as the size of each gross annual
loss divided by the size of the category at the initial time point of the interval). The dashed vertical line indicates the land
categories that are relatively dormant (left of the line) versus active (right of the line) in terms of loss and gain between 1991
and 2015, by comparing these intensities with uniform change in the study area. For more information see Pontius and
Khallaghi [69].

Moreover, we evaluated the annual land cover change for saltmarsh and mangroves
(Figure 6). Saltmarsh ecosystems experience higher systematic gains than losses through
all the other categories, including “Cropland” (+161 vs. −130 ha annually), “Water” (+90
vs. −28 ha annually), “Other Vegetation” (+78 vs. −24 ha annually), and “Mangroves”
(+79 ha vs. −16 ha annually).

On the other hand, mangrove ecosystems are consistently losing to all categories but
“Water” (+43 ha vs. −14 ha annually). They gain and lose the most area to the category
“Other Vegetation” (+52 ha vs. −77 ha annually), followed by “Saltmarsh” (+16 ha vs.
−79 ha annually) and “Cropland” (+17 ha vs. −37 ha annually).
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Figure 6. Annual Land Cover change for saltmarsh (top) and mangrove (bottom) ecosystems from 1991 to 2015. Gains in
blue to the right of the central line and loses in red to the left.

4. Discussion

In this study, we developed a time-series of ten medium resolution (30 m) land-cover
maps between 1991 and 2015 for the coastal areas of south-eastern Australia, with a special
focus on mangrove and saltmarsh ecosystems. We found that mangrove ecosystems are de-
clining in south-eastern Australia (−1148 ha or 7.6%), while saltmarshes have experienced
an overall increase (+4157 ha or 20.3%) over the 24-year period. A hotspot for these changes
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is Lake Wellington (Gippsland, VIC), which has experienced extensive conversion from
freshwater wetlands to saltmarsh between 1999 and 2006 due to higher salinity conditions.

We tested the addition of two physical variables (SRTM and DistW) to our RF models
and determined that the best model was the one using spectral bands and indices in
combination with the two physical variables. The mangrove and saltmarsh maps produced
in this study had an overall User Accuracy of 0.82–0.95 and 0.81–0.87 (for mangrove
and saltmarsh, respectively) and an overall Producer Accuracy of 0.71–0.88 and 0.24–0.87
(for mangrove and saltmarsh, respectively) (Table 5 and Table S4). These values are
consistent with other studies using similar methodology for mapping coastal wetlands
in Australia [13], Brazil [40], Mozambique [32], and Mexico [71]. Furthermore, the high
overall accuracy of our estimates (~90%) at the two time-steps where the models were
created (2006 and 2013) provides the necessary confidence in the validity of the maps and
their role in understanding coastal wetlands land-use change in south-eastern Australia.

4.1. Accuracy Assessment

To test the individual performance of the physical variables (SRTM height and DistW),
we created 4 RF models with different combinations of variables: (1) Spectral; (2) Spectral +
DistW; (3) Spectral + SRTM; and (4) Spectral + DistW + SRTM. Using OA, kappa statistics
and class-specific accuracies (Table 4) we determined that the best model was model (4),
which included spectral bands (blue, green, red, NIR, SWIR1 and SWIR2), spectral indices
(NDVI, MNDWI, and MMRI) and the two physical indices (SRTM and DistW). Our classes
of interest (mangrove and saltmarsh ecosystems) showed above average improvement in
overall accuracy (Table 4). This is most likely due to the fact that these ecosystems can be
considered mature vegetation stands, and have very low growth rates in south-eastern
Australia, due to the cold climate [48]. Therefore, they are unlikely to show variability in
canopy height through time and will not be negatively affected by the addition of SRTM
as a variable, as SRTM’s vertical error is likely higher than the possible growth of these
ecosystems over the study period [72]).

Producer and User Accuracy is consistently higher for mangroves than it is for salt-
marsh (see Table 5). This is consistent with other studies that have performed similar
classifications in coastal wetlands [71,73,74]. Several Ecological Vegetation Classes (EVCs)
with different floristic and structural properties have been identified for saltmarsh ecosys-
tems in the south-eastern coast of Australia [75,76]. In this study, we decided to combine
all EVCs for saltmarsh ecosystems into only one class. As we are combining saltmarshes as
spectrally and structurally different as woody succulent shrubs (e.g., Tecticornia arbuscula
and Salicornia quinqueflora), rushes (Juncus kraussii), or grasses (e.g., Distichlis distichophylla),
we expected a detrimental effect on overall accuracy of saltmarsh predictions due to the
spectral differences they present [77]. On the other hand, mangrove ecosystems in the
south-eastern coast of Australia are usually dominated by only one species (Avicennia
marina) and therefore we expected the higher overall accuracies for this class that we found.

While Producer Accuracy for saltmarsh ecosystems is almost 0.8 in VIC, it is below 0.5
in NSW after applying the post-classification filters. We believe the main reason for this is
that saltmarsh in the north of NSW is mainly composed of salt tolerant graminoids (such as
Juncus kraussii) very similar to pastureland or crops. Indeed, the Producer Accuracy in the
Northern Rivers section (NSW) is 0.24, while it is closer to 0.6 in the Central Coast (NSW).
Moreover, the use of proportional samples in Random Forest algorithms tends to produce
maps with lower producer accuracy for the classes with the lower number of samples [60];
in our case, the class “Crops” outbalance the class “Saltmarsh” in a 18 to 1 proportion in
NSW (see Table S1). Others have used an equal number of samples to overcome this issue
(see [32,40]). However, Millard and Richardson [60] warn us of the importance of carefully
selecting training data so that landscape proportions are maintained. They found that when
an equal number of training data samples were allocated for each class, the classes that
were over-represented in the training sample were also over-represented in the predicted
classification and vice versa. To verify this pattern (although not shown in this study), we
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also performed our analysis using an equal number of samples for each class (n = 2000)
and found that, while overall coastal wetland accuracy tends to improve, mangrove and
saltmarsh predictions were more than twice the size of our training regions. Nevertheless,
the high User Accuracy for saltmarsh ecosystems in NSW (over 0.82) indicates that, while
our model is not predicting very well all the areas where saltmarsh is present in NSW, we
can be quite certain of the areas predicted.

Additionally, we demonstrated that the two post-classification filters applied in this
study improve overall accuracy of coastal wetlands detection (Table 5). They provide
a significant increase of User Accuracy across all regions of interest (up to 16%), while
maintaining or slightly decreasing Producer Accuracy. Only a few other studies [32,40]
have performed similar post-classification filters for mangrove detection. However, they
did not demonstrate empirically the efficacy of these filters.

4.2. Mangrove and Saltmarsh Distribution

We show that mangrove ecosystems in the south-eastern coast of Australia have lost
an area of 1148 ha (7.6%) over the 24 years period between 1991 and 2015. The major
mangrove losses in terms of area can be found in Port Stephens estuary (Central Coast,
NSW; Figure 3c) and Lake Wellington (Gippsland, VIC). The causes for mangrove dieback
in Port Stephens are unclear but point to extreme weather events (hail damage [78]), and
human development (upgrade of a highway that included the removal of 47 hectares of veg-
etation and affected mangroves and saltmarsh around Karuah River Nature Reserve; [79]).
However, mangrove losses in Lake Wellington are likely produced by noise in our models,
as Boon et al. [23] reported minimal presence of mangroves in the surroundings of the lake.

On the other hand, saltmarsh experienced an overall increase of 4157 ha (20.3%),
most of which happened between 1999 and 2006 (Figure 2). Several hotspots for this
rapid increase have been recognised from comparing the 1991 and 2015 distribution maps.
Lake Wellington (Gippsland, VIC) is the most prominent one and has experienced an
extensive increase in saltmarsh area (Figure 4c), accounting for nearly 75% of the total
saltmarsh expansion (nearly 3000 ha, Figure 2). Since the permanent artificial opening
of the lake to the sea in 1889 [80], Lake Wellington has experienced rapid fluctuations
in salinity that have transformed the waters from fresh/brackish to saline, especially
during drought years [81]. These transformations have caused a transition from freshwater
vegetation to saltmarsh. Moreover, in 1998 (one year before the start of the rapid saltmarsh
increase), there were extreme storm events associated with big floods in the area that
pushed exceedingly large amounts of salt from the more saline Lake Reeve into the system,
with the consequent dieback of predominant freshwater wetlands at the time [81]. Since
then, saltmarsh coverage has remained constant around the lake (Figure 2) and it is likely
to remain that way due to higher salinities in the lake correlated with the impacts of more
frequent extreme weather events associated with climate change, like intensified drought
conditions [10,82].

Other hotspots of saltmarsh expansion include small embayments around the western
coast of Port Phillip Bay (Central Bays, VIC; Figure S1a), which have experienced similar
droughts that have permitted the advancement of saltmarsh to cover previously known
water sources (Figure S1c in supplementary). Moreover, we managed to capture the
performance of several restoration projects in the north-western coast of Port Phillip
Bay [17,83,84], with over 60 ha (according to our maps) of area reconverted from salt ponds
or water management facilities to saltmarsh ecosystems (Figure S1b). However, there are
some limitations with our models, as some of that increase has been associated with rapid
expansion of Phragmites reed (especially in interior lakes of the western coast of Port Phillip
Bay in Victoria, see Reedy Lake in Figure S1d and [85]), a rapidly growing freshwater grass
that can live in brackish waters and which is spectrally similar to other, often adjacent,
saltmarsh graminoids [77].

We also show that higher rates of increase can be found for saltmarsh (near 1.5%
annually; Figure 5) than for mangroves (0.75% annually; Figure 5). Moreover, higher
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annual change rates for both mangrove and saltmarsh can be found in NSW compared to
VIC (Figure S2), which could be a consequence of the lower accuracy numbers for both
classes in NSW (Table 5). We then compared these intensities in change with the expected
uniform change in the study area and determined that, while both saltmarsh accretion and
decline are considered active, only mangrove declines are. Annual mangrove accretion is
below the uniform change threshold and, consequently, more likely caused by random
processes [70]. Therefore, we can assume that mangrove ecosystems are systematically
losing area in the south-eastern coast of Australia over the time period analysed, which
has been supported by a number of studies in the region [15,18,23].

4.3. Land-Cover Change

Finally, we evaluated the annual land cover change for saltmarsh and mangroves
(Figure 6). Saltmarsh ecosystems gain and lose the most area to the category “Cropland”
(+161 vs. −130 ha annually). As we expect saltmarsh and cropland to share spectral traits
(especially in northern NSW, due to the aforementioned grassy nature of predominant
saltmarshes in the area), we explored the location of these changes to determine if they
are caused by systematic changes or random mislabelling of saltmarsh ecosystems. We
expected a great proportion of the pixels to be due to true swap between classes, especially
after the two post-classification filters we applied. Indeed, we found several hotspots
of systematic change from saltmarsh to pastureland. These spots are often found in the
fringe between saltmarsh and livestock grazing areas with no fencing, and result in the
degradation of saltmarsh ecosystems to the point where we detect them as “Crops” in our
maps (Figure S3). However, this systematic change is only a small percentage (~5%) of
the total swap between these two classes. We then assume that most of the swap between
these two classes is due to random mislabelling and indeed, we observe that saltmarsh
ecosystems have the most omission and commission errors to the Crops category (see
confusion matrix, Table S2).

Similarly, mangroves gain and lose the most area to the category “Other Vegetation”
(+52 ha vs. −77 ha annually). Again, we expect a high proportion of these changes to be
due to random mislabelling of mangrove ecosystems, which is confirmed by the confusion
matrix (Table S2, mangrove ecosystems have the most omission and commission errors to
the Other Vegetation category). These two problems are common among mangrove and
saltmarsh distribution studies due to the spectral similarity between saltmarsh graminoids
and pastureland [77], and mangroves and other evergreen vegetation [30,33].

We also notice that both ecosystems have higher gains than losses to the Built category
(around −12 ha annually for both mangroves and saltmarsh). However, using high
resolution imagery from Google Earth we determined that 100% of the observed area
being transformed from “Built” to the “Mangrove” and “Saltmarsh” categories is due to
previously undetected water and sand pixels that are being predicted as “Built”. This is
caused by the generally low spectral reflectance typical of these 3 categories [86]. On the
other hand, while some of the change from “Mangrove” and “Saltmarsh” to “Built” is also
due to undetected water and sand pixels, we established that approximately 2 ha of coastal
wetlands are being lost to coastal development annually, including ports (Figure S4a,b),
aquaculture facilities (Figure S4c), and residential areas (Figure S4d).

Moreover, we found that mangrove and saltmarsh ecosystems gain more area from
water (43 ha and 90 ha annually, respectively) than they lose (14 ha and 28 ha annually,
respectively). This is contrary to what we would expect under the current climate change
conditions and, indeed, to what others have reported in the region [25]. Using high
resolution imagery from Google Earth, we determined that, even though some of this
change is truly associated with mangrove expansion into water, the majority comes from
canopy and coverage growth of sparse mangrove trees in the fringe between mangrove
and water (Figure 3d).

Furthermore, another surprising land cover change was mangroves losing more
area to saltmarsh than they gained (Figure 6). The opposite effect (encroachment of
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mangrove ecosystems into saltmarshes) has been well documented in several estuaries
and embayments of the south-eastern coast of Australia [15,25,87,88]. A hotspot area for
these two unforeseen changes is Westernport in VIC (Figures 3d and 4d). Here, both
Rogers et al. [87] and Whitt et al. [25] reported general encroachment of mangroves into
saltmarsh ecosystems using very high-resolution aerial imagery. It is likely that their
reported general encroachment of mangroves into saltmarsh ecosystems is less extensive
than the resolution of our pixels (30 m). We established that the area that is being modelled
as change from mangrove to saltmarsh is actually the fringe where both ecosystems occur
simultaneously. Therefore, instead of actual swap from mangrove to saltmarsh, the changes
we observe are likely due to other factors like intensified drought conditions [82], which
can alter mangroves structure and spectral traits, potentially making them more similar to
saltmarsh ecosystems [89], or cyclical spatio-temporal expansion/contraction of mangrove
and saltmarsh ecosystems as reported by Rodriguez et al. [90] in Florida, USA. Moreover,
on a similar study in the Texas Gulf Coast, Armitage et al. [91] concluded that the saltmarsh
to mangrove shift is not as widespread when analysed at a larger, regional level using
medium resolution satellite imagery (Landsat 5 TM) when compared to small-scale studies.

4.4. Potential Data Applications and Management Implications

Coastal change monitoring has become a critically essential tool for assessing the
effects that rapid increases of Australian population along the coast have on coastal wet-
lands both directly (i.e., high rates of agricultural expansion and urban growth [11]), and
indirectly (i.e., climate change and the associated impacts of sea level rise [10]). The high
accuracy and temporal resolution of our maps make them particularly suitable inputs
into studies spanning a wide range of purposes, including carbon sequestration projects
seeking to gain carbon credits for mangrove and saltmarsh rehabilitation under the impacts
of climate change related issues [10]. Although some care must be taken when using these
maps, they can be used to provide a broad understanding of the spatial and temporal
distribution of these important coastal ecosystems to inform management.

As an example, areas like Lake Wellington (Gippsland, VIC) could become the focus of
conservation projects to take advantage of the rapid increase of saltmarsh extent observed
in the area. Similarly, areas of widespread losses of mangrove and saltmarsh ecosystems,
such as Port Stephens estuary (Central Coast, NSW) and Westernport (Central Bays, VIC),
could be the focus of restoration projects to recover coastal wetland area lost by extreme
weather events and other anthropogenic related threats.

5. Conclusions

Our results provide a comprehensive set of coastal land-cover uses and land change
information for the south-eastern coast of Australia, with a focus on coastal wetland
(mangrove and saltmarsh) ecosystems. We have demonstrated that the addition of SRTM
and Distance to Water layers, and spatial and temporal post-classification filters improves
overall accuracy of coastal wetlands detection using Random Forest models. While there
are a growing number of studies investigating land cover changes for coastal wetland
ecosystems, we are, to the best of our knowledge, the first to study the transitional patterns
of coastal wetlands into other land uses at the state level in Australia. The resultant maps
obtained in this study have the potential to provide local and statewide managers with
an effective method for quantifying the gains and losses of coastal wetlands in south-
eastern Australia.
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