JCU ePrints

This file is part of the following reference:

Berge, Bjorn (2003) Predatory behaviour of theraphosid spiders in Northern Queensland. Masters (Research) thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/78

TITLE PAGE

Predatory behaviour of theraphosid spiders in Northern Queensland

Thesis submitted by Bjørn Egil BERGE Candidatus Magisterii in January 2003

for the research Degree of Master of Science in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this theses will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

(Name)

Abstract:

The predatory behaviours of three theraphosid spiders (*Selenotypus plumipes*, *Selenocosmia stirlingi*, and *Phlogiellus* sp.) from Northern Queensland, Australia, were studied using laboratory experiments and field observations. The project investigated how theraphosids detect the presence and location of prey or enemy organisms, which senses they use, and indicated how accurate these senses are. Further, the project explored whether Australian theraphosids employ a pure "sit and wait" predatory strategy, or if they will regularly leave their retreat and temporarily search for prey in a more active manner.

The importance and sensitivity of the various senses were explored in purpose-built experimental apparatus, controlling which stimuli were available to the spider. Spider behaviour was recorded using IR video. Tapes were either analysed directly or were computer-digitised for frame-by-frame analysis. For field observations the observer was seated on a vibration-dampening base and used a red light for direct observation of spider behaviour.

Importance of vision was explored by testing responses to visual stimuli in a set-up of two terrariums, vibrationally and olfactorily isolated from each other. Responses to olfactory cues were studied in a two-choice olfactometer. The ability to detect substrate related chemical cues was explored in a two-way labyrinth, while the presence of taste was tested by introducing raw meat into the terrariums. An artificial spider burrow emerging into a "test-arena" was used to record and study prey capture responses, to measure precision and distance of prey detection, as well as observing methods of prey handling. This apparatus was also used to evaluate spider responses to falling leaves, sticks and a leaf "rattling" in wind, cues characteristic of abiotic noise.

An apparatus with four "propellers" at 0, 1, 3, and 5 cm depth in a "river sand" substrate was used to test whether spiders could detect depth of burrowing "prey". Locomotory activity was studied in individual holding-terrariums and in a large container.

Spiders did not respond to visual stimuli. Similarly, reactions to airborne and substraterelated chemical cues from prey were not detected. A sense of taste is present, as the meat was eaten by 6 of 10 spiders. Responses to vibratory stimuli were complex: prey animals were detected at least 26 cm away, but seldom attacked at distances further than 10 cm. Falling leaves often initiated attacks, whereas falling sticks and a "rattling" leaf were mostly ignored.

Responses to propellers were clear-cut: at 3 and 5 cm depth the propellers were detected but not attacked. At 1 cm depth the spiders dug down and attacked the propeller, while no digging was observed when attacking the surface propeller.

Spiders in the laboratory walked considerable distances in their terrariums (max 113m in one night), until given an artificial burrow, whereupon they, like all spiders in the field, stayed close to their retreat at all times.

In conclusion, the patterns found in laboratory and field are consistent with a picture that Australian theraphosids predominantly hunt by ambushing prey near their refuge. Prey is primarily detected by air- and substrate-borne prey-generated vibrations. Different vibrational "signatures" are detected and can influence the types of spider response. Results indicate that surface and subsurface prey have different "signatures", detected by the spiders. Prey capture, and responses to various vibratory stimuli appear dynamic and complex, and are recommended for further research.

Acknowledgements:

Dr. Richard Rowe, my supervisor, for invaluable help and guidance in all phases of the project, and for taking the chance on a "crazy Viking".

All staff and students at James Cook University, for help and friendly advice.

The Valentine family, Townsville, for letting me do fieldwork on their property and the world's greatest office mate (thanks Leonie).

Dr Peder Fiske, Vera Sandlund, and other staff members, at The Norwegian University of Science and Technology (NTNU), for motivation and support during my undergraduate studies.

Tore and Karin Loe, teachers of biology at Stranda secondary school, for making me believe I could once complete a project like this.

Mum and Dad, for still loving me although I frequently fill their house with big spiders.

All my friends that have supported me, especially: Asle Økelsrud, Simon Fearn, Nicole Kenyon, Leonie Valentine, Jan Ove Rein, Per Helge Johannesen, Gunnar Inge Eide, Greg Harald Håkonsen, and Geir Berge.

Table of contents:

Abstract	3
Acknowledgements	
Table of contents	
Chapter 1: Introduction	15
Chapter 1: Swiden compass and the model own helperious of	4h anamh agidg
Chapter 2: Spider senses and the predatory behaviour of	tnerapnosids,
a literature review	19
Abstract	19
2.1. About theraphosids	
2.2. Australian theraphosids	21
2.3. Spider senses	23
2.3.1. Visual sense.	
2.3.1.1. General background	
2.3.1.2. Structure	
2.3.1.3. Resolution and sensitivity	
2.3.1.4. Fields of view	
2.3.1.5. Polarised light	
2.3.2. Chemical senses	
2.3.2.1 Types of chemical stimuli	
2.3.2.2. Spider chemoreceptors	
2.3.2.3. Finding mates	
2.3.2.4. Locating prey	
2.3.3. Vibration detecting senses	
2.3.3.1. General background	
2.3.3.2. Tactile hairs	
2.3.3.3. Spines	
2.3.3.4. Scopula hairs	
2.3.3.5. Trichobothria	
2.3.3.6. Slit-sense and Lyriform organs	
2.3.3.7. Proprioreceptors	
2.3.4. Thermal sensing	
2.4. Predatory behaviour/behavioural studies	
2.4.1. Prey detection and recognition	40
2.4.1.1. General background	
2.4.1.2. Vibrations in sand	
2.4.1.3. Vibrations through plants	
2.4.1.4. Vibrations in water	
2.4.1.5. Vibrations in air	
2.4.1.6. Vibrations from subsurface prey	45

	2.4.2. Communication	45
	2.4.3. Hunting and prey capture	50
	2.4.3.1. Hunting	50
	2.4.3.2. Prey capture	53
	2.4.4. Navigation	55
	2.4.4.1. General background	55
	2.4.4.2. Optical cues	55
	2.4.4.3. Gravitational cues	56
	2.4.4.4. Substrate-related cues	56
	2.4.4.5. Chemical cues	56
	2.4.4.6. Internal cues	56
	2.4.5. Respiration rate and activity level	57
	2.4.6. Anti-predatory behaviour	57
	2.5. Discussion	59
	2.6. Conclusion	61
Chapt	er 3: Materials and methods	62
	3.1. General methods	62
	3.1.1. Locating spiders for laboratory experiments and field observations	62
	3.1.2. Spider housing, handling and maintenance in the laboratory	63
	3.1.2.1. Housing	63
	3.1.2.2. Handling	64
	3.1.2.3. Maintenance	65
	3.1.3. General video techniques	65
	3.1.4. Behavioural categories used in field observation and video analysis	66
	3.2. Experimental procedures and data analysis	67
	3.2.1 Locomotory behaviour	68
	2.2.1.1 Experiment 1: Locomotory behaviour in individual holding terraria	68
	3.2.1.2. Experiment 7. Locomotory behaviour in heaviour in land terraria.	70
	3.2.1.2. Experiment 2. Locomotory behaviour in large terrarium	70
	2.2.2. Importance of vision in providetation	70
	3.2.2. Importance of vision in prey detection	71
	3.2.2.1. Laboratory experiment.	71
	3.2.2.2. Data analysis.	74
	2.2.2.1 Europiment 1: Dead for different	13
	3.2.3.1. Experiment 1: Dead food items	13 74
	3.2.3.2. Experiment 2: Olfactory stimulus	70 77
	3.2.3.4 Data analysis	// 80
	5.2.5.4. Data analysis	90

3.2.4. Function of vibration detecting senses in prey detection	1
3.2.4.1. "Hole in the ground set-up"	1
3.2.4.2. Experiment 1: Accuracy of spider responses to vibratory stimulus 8	3
3.2.4.3. Experiment 2: Responses to various "vibrational signatures"	5
3.2.4.4. Experiment 3: Is detection of vibrations aided by silk or other items 8	6
3.2.4.5. Data analysis	6
3.2.5. 3D detection of prey stimulus position	7
3.2.5.1. "Propeller set-up"	7
3.2.5.2. Data analysis	9
3.3. Field observations	0

Chapter 4: Locomotory behaviour	
4.1. Introduction	91
4.2. Results	94
4.2.1. Experiment 1: Locomotory behaviour in individual holding ter	raria 94
4.2.2. Experiment 2: Locomotory behaviour in large terrarium	96
4.2.3. Observations common in both studies	
4.2.4. Field observations	
4.3. Discussion	
4.3.1. General discussion	102
4.3.2. Conclusion	
Chapter 5: Importance of vision in prey detection	106
5.1. Introduction	
5.2. Results	
5.2.1. Direct observations	107
5.2.2. Control recordings	107
5.2.3. Responses to stimulus	
5.2.4. Other observations.	
5.3. Discussion	109
5.3.1. General discussion.	109
5.3.2. Conclusion	

Chapter 6	: Importance of chemical senses, in prey detection	113
6.1.	Introduction	113
6.2.	Results	115
	6.2.1. Experiment 1: Dead food items	115
	6.2.2. Experiment 2: Substrate-related chemical cues	115
	6.2.3. Experiment 3: Olfactory stimulus	116
	6.2.4. Responses to stimulus	116
6.3.	Discussion	117
	6.3.1. General discussion	117
	6.3.2. Dead food items	117
	6.3.3. Substrate-related chemical cues	118
	6.3.4. Olfactory stimulus	119
	6.3.5. Conclusion	120
Chapter 7	: Function of vibration detecting senses in prey detection	121
7.1.	Introduction	121
7.2.	Results	123
	7.2.1. Experiment 1: Accuracy of spider responses to vibratory stimulus	123
	7.2.2. Experiment 2: Responses to various "vibrational signatures"	128
	7.2.3. Experiment 3: Is detection of vibrations aided by silk or other items?.	129
7.3.	Discussion	131
	7.3.1. General discussion.	131
	7.3.2. Conclusion	135
Chapter 8	3: 3D detection of prey stimulus position	136
8.1.	Introduction	136
8.2.	Results	138
8.3.	Discussion	139
	8.3.1. General discussion	139
	8.3.2. Conclusion	141
Chapter 9	e: Other observations	142
9.1.	Use of silk	142
	9.1.1. Silken curtains	142
	9.1.2. "Urticating moulting cradle"	142
	9.1.3. "Washing the floor"	143
9.2.	"Plugging" the retreat entrance	143
9.3	Drinking rain water	144
9.4	Threats to theraphosids	144

Chapter 10: Discussion and conclusion	
10.1. General discussion	145
10.1.1. Introduction	145
10.1.2. Practical aspects and problems	
10.1.3. Locomotory behaviour	146
10.1.4. Senses and prey detection	
10.1.5. Field work	
10.1.6. Recommendations for further research	149
10.2. Overall conclusion	
List of References	151

Appendices	162
A1: Locomotory behaviour	162
A2: Visual experiment	164
A3: Olfactometer experiment	166
A4: Prey capture experiment	168
A5: Behavioural categories	172

List of illustrations and diagrams:

Chapter 2: Spider senses and the predatory behaviour of theraphosids, a literature review.

Figure 2.1: Phlogiellus sp	. 19
Figure 2.2: "Top-view" drawing of the eyes of a subadult	
theraphosid spider (<i>Phlogiellus</i> sp.)	24

Chapter 3: General materials and methods.

Figure 3.1: "Spider housing unit"	64
Figure 3.2: "Top-view" diagram of big terrarium	70
Figure 3.3: Schematic drawing of set-up to test for responses to visual stimuli	71
Figure 3.4: Two-way labyrinth, top view	76
Figure 3.5: Two-choice olfactometer, top and side view drawing	77
Figure 3.6: Two-choice olfactometer, top and side view	. 78
Figure 3.7: "Hole in the ground set-up" side view drawing	. 81
Figure 3.8: "Hole in the ground set-up"	82
Figure 3.9: "Prey box", top view	83
Figure 3.10: Symmetry line and random angle	84
Figure 3.11: "Propeller set-up", top and side view drawing	87
Figure 3.12: Close up view of the propeller handles	88
Figure 3.13: Top/front view of the "test arena"	88
Figure 3.14: Vibration dampening "observation post"	90

 Table 3.1: Overview of spiders used in this study for field observations or experiment....63

Chapter 4: Locomotory behaviour.

Figure 4.1: Walking distances for individual spiders in their individual holding terraria 94
Figure 4.2: Temporal distribution between behavioural categories, as observed in
individual holding terraria
Figure 4.3: Walking distances for individual spiders in a large terrarium
Figure 4.4: Temporal distribution between behavioural categories, as observed in a large
terrarium
Table 4.1: Measures of tendencies from individual terrariums
Table 4.2: Measures of tendencies from large terrarium
Table 4.3: Results from observations of locomotory behaviour

Chapter 6: Importance of chemical senses, in prey detection.

Figure 6.1: Results, contact chemoreception	5
---	---

Chapter 7: Function of vibration detecting senses in prey detection.

Figure 7.1: Average detection distances for each response type. 125
Figure 7.2: Average detection angles for each response type
Figure 7.3: Overview of responses to crickets as vibratory stimulus
Figure 7.4: Remaining distance to prey position at time of detection, for various
detection distances
Figure 7.5: Remaining distance after the initial strike, to prey position at time of
detection, for various detection angles
Figure 7.6: Rest angle after the initial strike, from direct frontal alignment of the
spider, towards the position of prey at time of detection, for various detection angles127
Figure 7.7: "Scooping motion"
Figure 7.8: Angled chelicera. 128
Figure 7.9: Responses to various abiotic stimuli falling onto the ground 129
Table 7.1: Spider responses to cricket prey. 124

Chapter 8: 3D detection of prey stimulus position.

Figure 8.1: Results, predatory responses of $(n = 5)$ spiders to arhythmically turning	
propellers at various depths in substrate	138

Appendices:

Table 1.1: Results from observations in individual holding terraria.	162
Table 1.2: Results from observations in large terrarium.	163
Table 2.1: Results from visual experiment.	. 164
Table 3.1: Results from olfactometer experiment.	. 166
Table 4.1: Results for prey capture precission experiments in the	
"hole in the ground"set-up	. 168

STATEMENT ON SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

(Name)
