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Abstract 

Polyoxazolines of various architectures and chemical functionalities can be prepared 

in a living and therefore controlled manner via cationic ring-opening polymerisation. 

They have found widespread applications, ranging from coatings to pigment 

dispersants. Furthermore, several polyoxazolines are water-soluble or amphiphilic and 

relatively non-toxic, which makes them interesting as biomaterials. 

This paper reviews the development of polyoxazoline-based polymers in biological 

and biomedical application contexts since the beginning of the millennium. This 

includes nanoscalar systems such as membranes and nanoparticles, drug and gene 

delivery applications, as well as stimuli-responsive systems. 

 

Keywords: polyoxazoline, biomaterials, self-assembly, drug delivery, gene delivery, 

stimuli-responsive polymers 



 2 

Contents 

1. Introduction 

2. Poly(2-oxazolines) in biological application contexts 

2.1 Poly(2-oxazoline)-based lipopolymers 

2.2  Amphiphilic Polyoxazolines other than Lipopolymers 

2.2.1 Membrane Technology 

2.2.2 Multicompartment Systems 

2.3 Poly(oxazoline)-based Vectors 

2.4 Stimuli-responsive Systems 

2.5 Antimicrobial polymers 

3. Summary and Conclusion 

4. Acknowledgements 

 



 3 

Introduction 

Polyoxazolines have been the subject of a considerable amount of research since the 

1960ies,[1-7] with a significant number of papers focusing on the polymerisation of 

2-substituted oxazolines.[8-11] Monomers substituted in the 4- or 5- position are 

more difficult to polymerise, due to steric crowding.[11] Polymerisations are usually 

carried out via a living cationic ring opening mechanism (CROP), which yields well-

defined polymers of narrow average molecular weight distributions (Figure 1).[4, 6] 

Furthermore, a large property space can theoretically be accessed, as the synthesis of 

2-substituted monomers can be conveniently accomplished via condensation of a 

primary nitrile and 2-aminoethanol.[9, 12] Commercially, however, only 2-methyl, 2-

ethyl, 2-isopropyl and 2-phenyl oxazoline are currently available. 

Although the use of poly(2-oxazolines) in adhesive and coating formulations,[13-15] 

as pigment dispersants in inks,[16] and drug delivery applications[17] has been 

documented, the polymers have not found widespread commercial application, as the 

(batch) polymerisations times range from several hours to several days.[18-25] Recent 

advances in synthetic technology, notably the advent of microwave reactors, which 

allow easy access to high-temperature/high-pressure synthesis conditions, have 

allowed acceleration of polymerisations by factors of up to 350, when compared with 

conventional reflux conditions, while reducing the occurrence of side reactions and 

maintaining the living character of the reaction.[26]  

Another attractive feature of polyoxazolines is the ease of preparation of co-polymers, 

notably block copolymers,[27-30] but also of star-shaped[29, 31, 32] and 

hyperbranched[33, 34] motives as well as cross-linked networks.[35] Block 

copolymers generally provide easy access to amphiphiles, which, provided the blocks 
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are judiciously chosen, are capable of self-assembly to form a variety of complex 

structures, such as (multicompartment) micelles[36] and vesicles.[37, 38] 

Due to the versatility of this class of polymer and their ability to form functional 

materials and nanostructures, the interest in poly(2-acyl-2-oxazoline)-based materials 

is rising. Furthermore, this class of materials could be promising for use in biomedical 

applications, but is under-researched and under-utilized in this context at present. The 

aim of this paper is to provide a general overview over “the state of the art” in 

poly(oxazoline) research in biological and biomedical application areas, roughly 

covering the last decade of research. 

 

2. Poly(2-oxazolines) in biological application contexts 

One of the principal application areas for polymers in biological and medicinal 

contexts is drug and gene delivery.[39, 40] In the simplest case, a drug is enclosed in 

a polymeric matrix and released over time through diffusion.[41] Alternatively, 

complex multifunctional polymers with covalently attached drug moieties are 

constructed.[42] The combination of a polymer with a drug molecule has several main 

advantages over the use of a pure drug molecule: (1) potentially increased solubility 

of insoluble drugs or drugs of low aqueous solubility, (2) improved 

pharmacogenetics, (3) protection against deactivation and degradation during 

transport and circulation, (4) reduced antigenic activity and (5) the possibility to 

combine a drug with other functional components such as contrast agents etc..[43] 

The majority of polymers that have so far been investigated for use in drug and gene 

delivery applications have focused on linear polymers such as poly(ethylene oxide) 

(PEO),[44] poly(N-2-hydroxypropyl methacrylamide) (HPMA) and others.[45] 
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However, a significant amount of attention is now focusing on other structural 

(nanoscalar) motives such as micelles and vesicles formed by lipopolymers[46, 47] or 

amphiphilic block copolymers,[48, 49] as well as on dendrimers[50, 51] and star-

shaped polymers[52, 53] or microgels.[54] 

 

2.1 Poly(2-oxazoline)-based lipopolymers 

As discussed above, drugs are usually enclosed in a polymeric matrix or covalently 

attached to a polymer moiety for delivery purposes.  Enclosure in a matrix either 

entails compounding the drug molecule into an amorphous polymer (as used in 

stents[55] and polymeric implants) or encapsulating it in a vehicle formed using 

amphiphilic block copolymers. These vehicles can have different organizational 

shapes, but all rely on the principle that amphiphiles self-assemble in water to form 

nanostructures composed of a hydrophobic core and a hydrophilic shell. As such, 

lipopolymers have received considerable attention, with the most intensively 

investigated lipopolymers being poly(ethylene glycol) based moieties (PEG-

lipids).[56-59] However, a number of lipo-polyoxazolines have also been prepared. 

Woodle et al. reported the synthesis of poly(2-methyl-2-oxazoline) and poly(2-ethyl-

2-oxazoline)-based lipid conjugates as an alternatives to PEG-based materials.[60] 

The conjugates were prepared by linking the glutarate esters of the pre-formed 

polymers to disteaorylphosphatidyl ethanolamine (DSPE) or via termination of the 

polymerisation with this reagent (Figure 2). The lipopolymers were used to prepare 

67Ga-labelled liposomes, which were subsequently injected into the bloodstream of 

rats in order to monitor their progress and distribution via blood-level and tissue 

measurements. The experiments showed that the behavior of the poly(oxazoline)-
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based liposomes is similar to that of the corresponding PEG-based materials, both in 

terms of their circulation in the bloodstream (showing long circulation lifetimes) as 

well as in terms of uptake by liver and spleen. This behaviour can be attributed to 

factors similar to those responsible for the “PEG-effect”[61], i.e. the high mobility of 

chains and the water-binding ability, both of which contribute to the steric 

stabilization observed in polymer-lipid liposomes. Furthermore, the “stealth effect” 

may also be operational.[62] Similar results were obtained by Zalipsky et al. in 

another study.[63] Lipids can also be used as initiators rather than terminating agents: 

functional tosylates such as 1,2-di-dodecanoylpropyl-p-toluene sulfonate can be 

employed to initiate the polymerisation of either 2-methyl or 2-phenyl-1,3-

oxazoline.[64] Jordan et al. subsequently reported the preparation of poly(N-

propionyloxazolines), end functionalized with a number of different lipophilic 

moieties (methyl-, N-hexadecyl-, (C16-) and 1,2-O-dioctadecyl-sn-glyceryl-).[65] The 

polymerisations were initiated using the lipid trifluoromethane sulfonate derivatives 

and proceed via the usual cationic ring-opening mechanism. This method of preparing 

lipopolymers has subsequently been branded the “initiator method”. The polymers 

were end-capped with 4-aminobutyl dimethyl siloxane, which allows for the 

possibility of forming brush-type polymer layers by grafting onto a solid support. 

Another example of lipo-polyoxazoline was provided by Volet et al. who prepared 

telechelic PMOXA polymers containing one long-chain alkyl end-cap via cationic 

ring-opening polymerisation of 2-methyl-2-oxazoline, initiated by either 1-iodo 

dodecane or 1-iodo octadecane.[66] Critical micellar concentrations in these systems 

can be controlled via the hydrophilic/lipophilic balance. 

Infrared reflection absorption spectroscopy (IRRAS) studies on dioctadecyl-glyceryl-

substituted poly(2-methyl-2oxazoline) monolayers at the air/water interface were 
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carried out in order to elucidate the phase behavior of these polymers.[67] The results 

provided some first evidence, that at high lateral surface pressures, considerable 

ordering of the CH2 groups of the lipopolymer occurs. These findings were 

subsequently confirmed by investigating the rheological properties of Langmuir 

monolayers of both PEG-based and polyoxazoline-based lipopolymers at the air-water 

interface.[68] A high-film-pressure transition for mixtures containing between 40 % 

and 100 % of lipopolymers was observed, which is a requirement for the existence of 

a rheological transition. At this transition, both the PEG-based and the oxazoline-

based materials show dramatic increases in both their storage and loss moduli as the 

area per polymer is decreased. This observation can be interpreted in terms of the 

formation of a gel network: at zero surface pressure, the polymer molecules lie in the 

plain of the air-water interface without showing a significant amount of interaction. 

As the film is compressed, the polymers desorb into the water sub-phase. At very high 

pressures, the lipids move close together and an alkyl chain condensation occurs to 

form a lipid microdomain, which consists of alkyl chains from two to four 

lipopolymers, which do not cluster extensively. The hydrophilic part of the polymer is 

considered to be fully hydrated at low pressures; as the pressure is increased, the 

water is squeezed out from the polymer water complex, giving rise to hydrogen-

bonded bridges between the chains (Figure 3). 

Nuyken and others subsequently refined this picture even further by using X-ray and 

neutron reflectometry.[69] Experiments showed, that the phase transition observed at 

high surface pressures is indeed due to alkyl chain condensation, triggered by strain 

exerted by the poly(2-methyl-2-oxazoline) units on the lipid moieties. The strain 

originates from the confinement of the polyoxazoline to the interface, which, in turn, 

leads to a reduction of the conformational entropy of the chains below that of the free 
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chains. Passing the phase transition, the strain leads to partial immersion of the lipids 

in the aqueous phase. 

A number of groups have reported the formation of stripe-like micropatterns when 

transferring a Langmuir monolayer onto a solid substrate. Jordan et al. reported the 

use of mixed monolayers of lipids and lipopolyoxazolines to confine cell adhesion 

receptors in those micropatterns.[70] Micropattern formation is generally explained in 

terms of the periodic oscillations of the contact angle and the water meniscus height 

of the aqueous subphase during the transfer.[71] There are three physical parameters 

that seem to influence the stripe pattern formation, namely the transfer velocity, the 

interlayer viscosity and the “hydrophobic mismatch”. Experiments indicate that, as 

the transfer velocity is increased, the spacing between individual stripes decreases. 

Beyond a certain threshold, the stripe patterns start to branch and eventually disappear 

altogether to give rise to an optically homogeneous film. The viscosity of the film at 

the three-phase contact line is directly linked to the length of the polyoxazoline 

chains. Short chains could be shown to give rise to well-defined stripes, whereas 

longer chains give branched patterns (Figure 4). Further experiments suggest, that the 

possibility of pattern formation as a consequence of phase separation can be excluded. 

Furthermore, platelet integrin αbβ3 could be incorporated into the micropattern. 

Experiments showed, that the integrins are preferentially incorporated into the 

lipopolymer rich regions of the pattern. 

Building on this work, Jordan also reported the preparation of stable lipid membranes 

with controlled lipid membrane spacings, by using lipopolymers as a tether.[72] 

Using the systems described above, a monolayer was preorganized onto a substrate in 

a first step. Subsequently lipid vesicles were fused on top of the layer, thus generating 
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supported lipid membranes. Control over the substrate-membrane spacing was 

achieved via the degree of polymerisation (DP) of the polyoxazoline moiety. 

In a further study, Jordan and Nuyken reported the synthesis of novel 2-substituted 

lipopolyoxazolines capable of hydrogen bonding in a bid to gain further 

understanding of the gelation phenomena discussed above.[73] The lipopolymers 

were prepared using the initiator method. The oxazoline monomers (2-(2’-N-

pyrrolidonyl-ethyl-)2-oxazoline, 2-(3’-methoxymonoethyleneglycol)propyl-2-

oxazoline, and 2-(3’-methoxytriethyleneglycol)propyl-2-oxazoline) are capable of 

hydrogen bonding and if hydrogen bonds do have a stabilizing effect on 2D gel 

formation, the introduction of these side chains should have a marked effect on, for 

example, the surface rheology of the lipopolymers. However, when examining the 

storage moduli of lipo-PEGs, lipo-poly-2-methyl- and lipo-poly-2-ethyl oxazoline as 

well as those of the side chain-modified polyoxazolines as a function of film pressure, 

the authors observed that while the lipo-PEGs and lipo-polyoxazolines showed a 2D 

gel transition, the latter was absent for the side chain modified polymers and the 

storage modulus is completely unaffected by the compression of the monolayer. This 

indicates that lipopolymer gels are not stabilized by hydrogen bonding between the 

polymer units and that alkyl chain condensation is indeed necessary for gel formation. 

 

2.2 Amphiphilic Polyoxazolines other than Lipopolymers 

2.2.1 Membrane Technology 

Lipids, of course, are not the only co-monomers that can be used in combination with 

poly(oxazolines) to generate self-assembled systems; chitosan-derivatized systems 

have also been investigated. Next to cellulose, chitin is the most abundant biopolymer 
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and is essentially composed of N-actyl-D-glucosamine repeating units, which, similar 

to the bonding situation in cellulose, are linked by a 1,4-β bond.[74] Furthermore, 

chitin is of potential interest for its possible use in functional biomaterials, although 

its comparative insolubility in most organic solvents has so far limited its application. 

Chitin-derivatized polymers can be synthesized by reacting deacetylated chitin 

(chitosan) with living poly-(2-alkyl-oxazoline) chains, where the alkyl group is either 

a methyl or an ethyl group (Figure 5).[75] This results in the isolation of polymers in 

medium yields, which are soluble in both water as well as N,N-dimethylformamide 

and DMSO and partially soluble in methanol, acetonitrile and chloroform. Graft co-

polymer of this type therefore improves on some properties of both the pure oxazoline 

as well as pure chitin. 1H NMR studies on the chitin-grafted poly(2-ethyl-2-oxazoline) 

in both D2O and DMSO-d6 indicate highly restricted motion of the chitin skeleton, 

which can be interpreted to arise from a tightly coiled micellar conformation of this 

polymer in solution. This behavior is consistent with previous experimental 

observations on polysaccharide substituted polystyrenes.[76] 

Studies on block poly(2-oxazoline) co-polymers have already shown that the activity 

of several enzymes such as horseradish peroxidase, catalase and lipase in organic 

solvents can be significantly increased, when these enzymes are lyophilized in the 

presence of amphiphilic poly(2-oxazolines).[77-80] Studies using the chitin-graft-

poly(2-oxazoline) polymers described above gave similar results. Catalase, which has 

been lyophilized with chitin-graft-poly(2-methyl-2-oxazoline), showed rates of 

hydrogen peroxide consumption in chloroform, which were ten-fold higher than those 

observed in the absence of polymer.[81] 
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In another attempt to improve the usability of chitins, the miscibility of commodity 

polymers such as poly(vinyl alcohol) (PVA) with chitin derivatives using 

poly(oxazolines) as compatibilizers was investigated.[82] Series of thin films of 

PVA/chitin-graft-poly(2-ethyl-2-oxazoline) as well as poly(2-ethyl-2-

oxazoline)/chitin-graft-poly(2-ethyl-2-oxazoline) blends were prepared via solvent 

casting from aqueous solution, with the chitin-graft-poly(2-ethyl-2-oxazoline) content 

ranging from 10 to 90 wt. % for both types of blends. These showed a single glass 

transition temperature across the whole composition range, indicating that there is 

intimate mixing of the two components. IR analysis indicated hydrogen bonding 

interactions between the hydroxyl groups of the PVA and the carbonyl groups of the 

poly(2-ethyl-2-oxazoline). Thermogravimetric analysis showed, that the interaction of 

the two polymers as well as the good thermal stability both lead to an improved 

stability of the PVA blends. Subsequent work detailed the synthesis of chitin 

derivatives containing amphiphilic di-block copolymers, such as chitin-graft-[poly(2-

methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline)] as well as the corresponding 

[poly(2-methyl-2-oxazoline)-block-poly(2-butyl oxazoline)] and [poly(2-methyl 

oxazoline)-block-(tert-butyl oxazoline)] polymers using the reaction procedure 

outlined above.[83] Studies of the solution behavior of chitin-graft-[poly(2-methyl-2-

oxazoline)-block-poly(2-phenyl-2-oxazoline)] showed that the polymer forms 

micelles in aqueous solution above the critical micellar concentration (0.01 wt % to 

0.02 wt %). Cryogenic temperature transmission electron microscopy (Cryo-TEM) of 

0.5 wt % solutions of the polymer revealed globular structural units with diameters of 

about 40 nm as well as cylindrical aggregates of approximately the same diameter and 

a length of between 80 and 200 nm. The aggregates could furthermore be shown to 
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complex small molecules such as pyrene and magnesium 1-anilinonaphtalene-8-

sulfonate (ANS). 

The ease of synthesis of amphiphilic polyoxazoline-based block copolymers and their 

easy self-assembly into micelles[84] and other vesicles make them attractive objects 

for the formation of nanocontainers for a number of different applications. One such 

application is the polymer-assisted mineralization of calcium ions, which is used by 

nature to design biological composite materials. Giant containers prepared from 

[poly(2-methyl-2-oxazoline)-block-polydimethylsiloxane-block-poly(2-methyl-2-

oxazoline)] (PMOXA-PDMS-PMOXA) have been used as completely synthetic 

vesicles for the precipitation of calcium phosphate.[85] The vesicles were prepared by 

phoresing a thin film of the PMOXA-PDMS-PMOXA polymer, deposited on 

conductive glass or platinum electrodes in phosphate buffer, leading to vesicles with 

phosphate ions in the core. Subsequent incubation of the latter in a calcium chloride 

solution in the presence of an ionophore led to the precipitation of calcium phosphate 

inside the vesicle over a period of time (Figure 6). 

Work by Meier et al. demonstrated the feasibility of generating giant free-standing 

membranes, composed of the PMOXA-PDMS-PMOXA polymer.[86] Self-assembly 

of the polymer was used to generate membranes with an average thickness of 10 nm, 

which is significantly larger than most lipid membranes. Moreover, charge pulse 

experiments showed, that the polymeric membranes are significantly more cohesive 

than lipid membranes: the voltages required for membrane rupture are significantly 

larger than those usually needed for lipid membranes. If a telechelic PMOXA-PDMS-

PMOXA polymer, functionalized by methacrylate groups is used, this effect can be 

amplified even further by UV cross-linking of the methacrylate endgroups, which 

causes a covalent stabilization of the membrane.  
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Given the high stability of synthetic polymer membranes, channels need to be created 

in order to make them permeable for ions or small molecules. One possible strategy is 

the inclusion of porins, transmembrane proteins that allow passive diffusion of 

molecules into the membranes. Meier and colleagues studied the inclusion of OmpF 

and maltoporin in membranes of telechelic PMOXA-PDMS-PMOXA, functionalized 

with methacrylate end groups.[87] These porins form trimeric channels in the outer 

membranes of gram-negative bacteria. The proteins can be integrated into the 

membrane by depositing drops of a stock solution on top of a pre-formed membrane, 

followed by the application of a current. The successful incorporation of the protein 

into the synthetic polymer could be shown by conductance measurements across the 

membrane. These indicated, that although the synthetic polymer membrane is 

significantly thicker than the lipid membranes occurring in living cells, the porins can 

be functionally reconstituted and the conformation of the protein is not significantly 

influenced. When the methacrylate groups were photopolymerised to stabilize the 

membrane, the conductivity decreased, which was interpreted to indicate the closure 

or expulsion of some of the porins from the membrane due to a reorganization and 

tighter packing of the polymer. 

This work was subsequently expanded to nanocapsules, prepared from the same 

polymer (Figure 7).[88] The capsules were prepared by first casting a film of a 

methacrylate-capped PMOXA-PDMS-PMOXA polymer, followed by addition of a 

solution of the OmpF porin. Subsequently, the protein/polymer film was dispersed in 

buffer and unilamellar capsules of homogenous sizes were obtained via rapid 

extrusion through polycarbonate filters. The capsules were stabilized by 

photopolymerisation of the methacrylate end-groups. Consistent with the results for 

the membrane system, experiments showed, that the porins incorporated into the 
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capsules maintained their activity, despite a mismatch in the hydrophilic/hydrophobic 

balance of the copolymer membrane system. When enzymes are incorporated into the 

capsule, the rate and selectivity of substrate penetration into the capsule and thus 

enzyme reaction kinetics could be controlled. This was demonstrated by incorporating 

β-lactamase into the nanocapsules and monitoring the rate of hydrolysis of ampicilin, 

which is a β-lactam antibiotic. The results indicate, that the relative activity of the 

nanocapsules increases linearly with an increasing concentration of protein 

channels.[89] 

A closer examination of the interaction between PMOXA-PDMS-PMOXA triblocks 

and lipids shows, that the formation of hybrid polymer/lipid nanocapsules is 

possible.[90] The formation of the composites is independent of the method used to 

prepare the nanocapsules (film hydration, dispersion, detergent removal) and the lipid 

distribution in the membranes is homogeneous both at low as well as high 

lipid/polymer ratios. Furthermore, a monomer exchange between polymersomes and 

liposomes was observed, which, again can give rise to possible mixed structures and 

can be used to stabilize pre-formed and loaded liposomes. 

As already indicated in the discussion so far, the loading of polymeric nanocontainers 

with functional molecules is also of significant scientific interest. A recent study 

showed, that nanocontainers consisting of PMOXA-PDMS-PMOXA polymer can be 

charged with the small molecule fluorophore sulforhodamine B as well as a labeled 

avidin.[91] Fluorescence correlation and fluorescence cross-correlation spectroscopy 

subsequently revealed, that the containers have sizes ranging from 140 to 172 nm and 

that both the dye as well as the protein could be loaded into the containers. However, 

the determination of the loading of the containers with the small molecules is 
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challenging, as a significant difference between the experimentally determined and 

theoretically expected loadings, was observed. This could be ascribed to self-

quenching of the dye molecules inside the container. By contrast, there was a good 

agreement between experimental and theoretical loadings for the avidin complex, 

with approximately 13 avidin molecules per sphere of 70 nm radius. Furthermore, the 

researchers prepared biotinylated nanocapsules by mixing the PMOXA-PDMS-

PMOXA polymer with the biotin-substituted analogue. The intrinsic binding constant 

of streptavidin to the labeled nanocapsules was determined to be 1.7 ± 0.4 x 10-8 M, 

with approximately 1921 ± 357 streptavidin molecules bound to each nanocontainer. 

So far, all of the discussed vesicles were loaded during the preparation/assembly 

phase. However, the feasibility of “post-loading” pre-formed containers using 

bacteriophages has also been demonstrated.[92] Apart from facilitating the transport 

of maltose and maltodextrin across cell membranes, maltoporin (LamB) also serves as 

a receptor for the λ-phage. When incorporated into the walls of a PMOXA-PDMS-

PMOXA nanocontainer, the phages are clearly able to bind to the porin embedded in 

the vesicle walls (Figure 8). Furthermore, experiments using fluorescently labeled dye 

interacting with DNA have shown that the phage can translocate DNA across the 

synthetic membrane. The nanoparticles are stable and protect the encapsulated 

material from degradation by DNAse. 

One problem generally encountered when attempting to reconstitute membrane 

proteins in synthetic membranes by essentially random incorporation, is the question 

of their orientation. Most membrane proteins have distinct domains, depending on 

whether they are in contact with the extracellular medium or the cytoplasm. When 

reconstituting proteins in synthetic membranes through simple mixing of protein and 
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polymer (as discussed so far), the orientation of the membrane proteins is essentially 

random. This, in turn, means that only a fraction of the porins incorporated in such 

systems is functional and active.  

This problem has been addressed by preparing both a symmetric PMOXA-PDMS-

PMOXA as well as asymmetric poly(ethylene oxide)-block-poly(dimethyl siloxane)-

block-poly(2-methyl-2-oxazoline) (PEO-PDMS-PMOXA) polymers in an attempt to 

induce a directed insertion of proteins into a polymer membrane.[93, 94] The latter 

was prepared in two forms containing both a large (PEO25-PDMS40-PMOXA110) and 

a small (PEO67-PDMS40-PMOXA45) poly(2-methyl-2-oxazoline) block. Upon 

dissolution in water, the polymers form vesicles, with the hydrophobic block being 

covered by the hydrophilic blocks on both sides of the vesicle wall. The more 

voluminous hydrophilic block is usually located on the outside of the vesicle. The 

PEO25-PDMS40-PMOXA110 polymer, therefore, gives rise to an ABC motive, whereas 

the PEO67-PDMS40-PMOXA45 triblock results in a CBA orientation. Aquaporin 0, 

labeled with a histidine tag on its amino terminus, was subsequently embedded into 

all of the capsules.[94] To determine the amount of incorporated protein as well as the 

proteins’ orientation, antibodies targeting the histidine residue were used. This 

allowed the determination of the proteins’ orientation, as the amino residue would 

normally be located in the cytoplasm, i.e. on the inside of the cell, under physiological 

conditions. Incubation of the polymer/protein conjugates derived from the symmetric 

PMOXA-PDMS-PMOXA with antibodies reveals a statistical incorporation of the 

aquaporin into the vesicles, as an equal distribution of histidine tags at the outer and 

inner surface of the vesicle wall was observed. The ABC motif, by contrast, induces a 

“physiological” orientation of the aquaporins, with approximately 80% of the 

histidine labels on the inside of the vesicle (corresponding to the cytoplasm in real 
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cells). The CBA motif results in a “non-physiological” orientation of the protein, with 

approximately 70 % of the label being located on the outside of the vesicle. In this 

way, the authors have clearly demonstrated, that breaking the symmetry of the 

membrane system results in a directed orientation of the porin protein into the 

membrane, which is consistent with results obtained for natural membranes.[95] 

The behavior of Langmuir-Blodgett films of the PMOXA-PDMS-PMOXA polymer 

at two different lengths and with or without the inclusion of alamethicin was 

subsequently reported.[96] Experiments showed, that the block lengths play an 

important role in the organization of polymers in Langmuir-Blodgett films with the 

larger polymers having greater flexibility and therefore access to a larger number of 

conformations, which allow it to accommodate hosts such as the alamethicin peptide 

in the membrane with greater ease than would be the case for shorter polymers. 

Furthermore, it was observed that alamethicin promotes expanded phases of the co-

polymer membranes, giving rise to partial polymer/peptide miscibility. 

Further evidence for the observation that membrane proteins can be incorporated into 

synthetic structures without compromising their ability to self-assemble and maintain 

fluidity and function was provided by Schmidt and co-workers.[97] The researchers 

created artificial membranes of the PMOXA-PDMS-PMOXA triblock copolymer of 

defined thickness (5.7 nm) and subsequently incorporated α-haemolysin, OmpG and 

alamethicin. Conductance measurements revealed, that the polymer membranes have 

seal resistances of tens of giga-ohms (GΩ). Furthermore, the conductance of single 

channels is reduced for proteins in synthetic polymer membranes with respect to 

polymers in lipid membranes, which could be explained by the greater cohesion of the 
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polymer systems. The voltage gating ability as well as the thresholds of the voltage 

gated channels were similar for both lipid and polymer membranes. 

Recently, micellar systems composed of poly(2-ethyl-2-oxazoline)-block-poly(ε-

caprolactone) (PEOXA-PCL) or –poly(L-lactide) have become of interest. Jeong and 

colleagues reported the preparation of PEOXA-block-PCL micelles from a number of 

different organic solvents in an effort to determine the influence of the organic solvent 

on micelle formation.[98] The experiment established a correlation between the 

Hansen solubility parameter of the organic solvent and both the size of the micelle as 

well as the rigidity of its core. In particular, the polar contribution to the solubility 

parameter seemed to be the dominating factor. It was found that the higher the polar 

component, the lower the solubility of the amphiphilic polymer and the smaller the 

micelle sizes. Furthermore, an increasing polar contribution also led to increasing 

rigidity of the micellar core.  

 

2.2.2 Multi-compartment systems 

Although micelles and self-assembled nanocontainers are fascinating objects and the 

subject of much past and ongoing work,[99] they are intrinsically limited in the sense 

that they create only one core environment inside one surface. One of the reasons, 

biological systems are successful at carrying out complex tasks is the fact that they 

are essentially granular, i.e. they consist of separate but cooperative subdomains, 

which accomplish specialized tasks. To approximate this phenomenon in synthetic 

systems, Ringsdorf proposed the concept of “multicompartmentation” in the mid-

1990ies.[100]  However, only very little work has been carried out so far, with most 

of the reports focusing on either surfactants[101, 102] or polysoaps.[102] As far as 
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polyoxazolines are concerned, Nuyken et al. reported the synthesis of a two-

compartment micellar system based on the self-assembly of fluorocarbon and 

hydrocarbon endcapped polyoxazolines.[103] The authors produced ABC triblock 

copolymers, consisting of a well-defined perfluoro-octyl group, a poly(2-methyl-2-

oxazoline) block and a hydrocarbon end group of varying length, ranging from 6 to 18 

carbon atoms. Using a number of experimental techniques, it was demonstrated, that 

at low concentrations the polymers exist as unimers, which assemble into micelles 

above the critical micellar concentration. The micellar core of these systems consists 

of the hydrocarbon end-groups. At higher concentrations, the fluorocarbon endgroups 

start to associate into oligomers and ultimately into a network of star-like micelles, 

such that micelles containing a hydrocarbon and a fluorocarbon core are present 

(Figure 9). Furthermore, the degree of association increases linearly with the 

concentration of the polymer in solution. A further study expanded this work by 

investigating the size and shape of the micelles formed by this polymer system, using 

a combination of small-angle X-ray scattering (SAX), analytical ultracentrifugation, 

surface tension measurements and isothermal titration calorimetry.[103] Polymers of 

varying size (degree of polymerisation n = 35, 57, 72 w.r.t. poly(2-methyl-2-

oxazoline)) were investigated. The polymer was found to0 form cylindrical micelles 

of different radii (3.0 nm for n = 35, 3.8 nm for n = 57, 40 nm for n = 72) and of 

approximately 20 nm length. Micelles prepared from the two longer polymers can be 

doped with 1,4-diiodofluorobutane, which the authors interpret as evidence for the 

formation of distinct fluorocarbon domains.  
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2.3 Poly(oxazoline)-based Vectors 

The delivery of DNA and RNA into cells is a highly topical and non-trivial problem 

and has been the subject of ongoing research for the last 20 years. A number of 

attempts have been made to use polymers for the delivery of functional DNA.[104, 

105] While synthetic vectors generally have a much lower transfection efficiency 

than, for example,  a virus, their use is nevertheless attractive, given their usually 

well-defined chemistry, the significant amount of available molecular diversity and 

the absence of problems that are concomitant with the use of natural transfection 

agents. Polymer vectors are typically cationic and form polyplexes with anionically 

charged nucleic acids. Commonly used polymers are poly(L-lysine),[106] 

polyethylene imine,[107] polyamido amine dendrimers[108] and chitosan.[109] 

Amongst these, polyethylene imine (PEI) is by far the most popular, due to its high 

charge density – every third atom is a nitrogen atom, which can be protonated. While 

PEI is normally produced via the acid-catalyzed polymerisation of aziridine, which 

gives rise to highly branched species,[110] a number of papers have recently reported 

the preparation of the polymer starting from poly(oxazolines). An example of this is 

the synthesis of a linear poly(ethylene glycol)-block-poly(ethylene imine) via a 

polyoxazoline.[111] In a first step of the synthesis, a heterotelechelic poly(ethylene 

oxide) polymer, functionalized with an acetal group on one end and a sulphonate 

group on the other, was prepared. This polymer was subsequently used as a 

macroinitiator in the cationic ring-opening polymerisation of 2-methyl-2-oxazoline, to 

give an Acetal-PEG-PMOXA polymer (Figure 10), which, in a final step was 

hydrolyzed using strong aqueous base to give the desired Acetal-PEG-PEI species. 

NMR spectroscopy showed a complete disappearance of the methyl group of the 

poly-2-oxazoline side chain after hydrolysis, indicating that the reaction is in essence 
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complete or at least proceeds to high conversion. Soon after, Park et al. described the 

synthesis of random co-polymers of poly(2-ethyl-2-oxazoline)-co-poly(ethylene 

imine) through partial acid hydrolysis of poly(2-ethyl-2-oxazoline).[112] Varying the 

acid concentration afforded control over the degree of hydrolysis of the polymer and 

therefore the charge density on the backbone. It could be shown that the partially 

hydrolyzed poly(2-ethyl-2-oxazoline) formed very compact complexes with DNA and 

that the condensation capacity of the polymer was suitable for transfection. The cell 

cytotoxicity was found to depend on the charge density, the molecular weight and the 

degree of branching. Generally speaking, polymers with lower charge densities were 

less cytotoxic than those with higher ones and branched polymers were found to be 

significantly more cytotoxic than linear ones. High molecular weights, too, gave rise 

to high cytotoxicities, which is consistent with previous observations for PEI.[113]  

The transfection efficiency was highest for polymers with an 88 % degree of 

hydrolysis and was found to be comparable to that of commonly used PEI. The 

manufacture of polyethylene imines via the partial hydrolysis of polyoxazolines is 

therefore highly desirable, as it leads to well-defined and benign linear polymers as 

opposed to branched and cytotoxic species normally obtained from the aziridine 

synthesis route. 

Partial acid hydrolysis of poly(2-ethyl-2-oxazoline) was also used to prepare 

polymer/DNA nanoparticles based on folate-poly(ethylene imine)-block-poly(L-

lactide) copolymers.[114] Folate receptors are normally overexpressed on tumor cells 

and it was hoped that folic acid substitution on the polymer will lead to an increase in 

specific targeting. Poly(lactic acid) was added to the polymer for improved 

biocompatibility and availability. The block copolymer forms polyplexes with DNA 

at a polymer/DNA ratio (PD ratio) of about 10. AFM experiments showed, that the 
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complexes are spherical particles of approximately 100 nm size. In vitro transfection 

and cell viability studies indicated, that polymers containing high amounts of 

poly(lactic acid) showed low transfection efficiencies. However, it was also found, 

that folate-PEI-PLLA polymers are less cytotoxic than pure PEI. 

 

A further study by Kilbanov et al showed, that commercial PEI contained significant 

amounts of residual N-propionyl groups, which are only incompletely removed during 

the manufacturing process. Amide groups are generally non-basic; their presence 

should therefore reduce the condensation ability of DNA. This is supported by the 

results of titration experiments and fluorescence spectrometry using ethidium bromide 

displacement assays. When commercial products were fully deacetylated, a 

significant increase in both DNA binding ability and transfection efficiency were 

observed. PEIs produced via the hydrolysis of poly(2-ethyl-2-oxazoline) was found to 

give even better results  than the deacetylated commercial product, thus underlining 

the importance of the linearity of the polymer.  

Low molecular weight PEI-PEG-PEI triblock co-polymers were also synthesized 

from the corresponding PMOXA-PEG-PMOXA polymers, via acid hydrolysis.[115] 

The PEG block was introduced in a bid to reduce cytotoxicity of the PEI as well as to 

improve the colloidal stability of the polymer/DNA polyplexes, similar to the 

introduction of poly(lactic acid) in the example above. When screened w.r.t. 

transfection efficiency in vitro, the triblock showed transfection efficiencies similar to 

those of high-molecular weight commercial polyethylene imine together with a 

decreased cytotoxicity. 
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Guis et al. subsequently reported the synthesis of high molecular weight 

poly(ethylene glycol-block-2-ethyl-2-oxazoline-co-2-methyl-2-oxazoline).[116] The 

synthesis of this species was achieved by random polymerisation of 2-methyl-2-

oxazoline and 2-ethyl-2-oxazoline using a tosylated poly(ethylene glycol) 

macroinitiator. This gave rise to polymers with degrees of polymerisation of around 

500 in the PEOXA block. The material was subsequently hydrolyzed using alkaline 

hydrolysis to give large linear PEG-block-PEI polymers. Transfection essays showed 

that the polymer has good gene transfer efficiencies, which is consistent with the 

results discussed above. 

While all studies presented so far have only used poly(oxazolines) as a precursor 

material for the synthesis of linear poly(ethylene imine), only one paper has 

considered the use of unmodified poly(oxazolines) in gene transfer applications. 

Hsiue et al. describe the synthesis of poly(2-ethyl-2-oxazoline)-block-(polyethylene 

imine) using a convergent route (Figure 11).[117] The poly(2-ethyl-2-oxazoline) 

block was prepared via conventional cationic ring-opening polymerisation and linear 

poly(ethylene imine) via partial hydrolysis of PEOXA. The target polymer is then 

formed via a thiol-disulphide exchange reaction. A polymer/DNA weight ratio of 12 

is required to form stable polyplexes of a mean diameter of 190 nm. Furthermore, it 

was observed that the DNA binding ability of the PEI fragment increased with 

increasing  degrees of hydrolysis, which is consistent with previous results. The 

polyplexes are pH sensitive and transfection efficiency assays as well as cytotoxicity 

assays show that these polymers have low toxicity and high transfection efficiency in 

vitro. 
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2.4 Stimuli-responsive Systems 

By definition, stimuli responsive polymers show large changes in their properties in 

response to small changes in their environment and can be used for the development 

of smart drug delivery systems. Typical stimuli include temperature,[118] pH,[119] 

electric[120] and magnetic fields,[121] light[122, 123] and concentration. Polymers 

usually respond with changes in chemical, mechanical, electrical, optical, shape, 

surface and permeability properties as well as with phase separation effects. 

An early example of stimulus-responsive polyoxazolines are poly(2-ethyl-2-

oxazoline)-block-poly(ε-caprolactone) (PCL) or poly(2-ethyl-2-oxazoline)-block-

poly(L-lactide) copolymers.[124] When placed in water, the polymers form micelles 

with critical micellar concentrations in the range of 1.0 – 8.1 mg/L. The micelles have 

an outer shell of hydrophilic poly(2-ethyl-2-oxazoline) which, at pH values below 3.5, 

forms a hydrogen-bonded complex with poly(methacrylic acid), which precipitates 

out of solution. The complexes were found to be stable over several month. When the 

pH is raised above 3.8, the micelles can be redispersed. Similar behaviour was 

subsequently observed for analogous polymers containing poly(1,3-trimethylene 

carbonate) blocks.[125] Furthermore, PEOXA-block-PCL is water insoluble, but can 

be swollen in water and retains its shape, thus showing the typical characteristics of  a 

hydrogel.[126] Swollen gels show two phase transitions: the first transition takes 

place upon heating from room temperature to a temperature range from about 30 to 35 

°C, indicated by an increasing transmittance of the gel and a second one in the range 

between 36 to 45 °C, which causes a decrease in transmittance. Furthermore, the 

swelling behavior of the gels itself is temperature dependent, with gels showing 

reversible thermonegative swelling. At 15 °C, the observed swelling ratios were 
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higher than at 35 °C. These observations can be interpreted in terms of the relative 

hydrophilicities/hydrophobicities. At low temperatures, the swelling is entirely driven 

by hydration of the hydrophilic PEOXA block via hydrogen bonding with water. As 

the temperature increases, hydrogen bonding is weakened, while hydrophobic 

interactions within the gel (arising from the poly(caprolactone) moiety) increase. 

Furthermore, the block size of the PEOXA could be shown to have an effect on the 

swelling ratio: increasing the block size also led to an increase in swelling ratio. This 

affords control over the swelling behavior via the PEOXA block length. Dried gels 

and hydrogels of copolymers prepared from poly(caprolactone) blocks of Mn = 2500 

showed a maximum tensile strength in the range of 10.6 to 12.5 MPa in the dried state 

and 3.2 to 7.3 MPa in the swollen state and an ultimate elongation in the range of 880 

– 930 % (dried) and 320 – 1000 % (swollen). Hydrogels, which have experienced a 

temperature cycle, were found not to retain these materials properties, presumably due 

to a loss of crystallinity in the poly(caprolactone) domain. 

In order to investigate the micellization as well as the phase behavior of poly(2-ethyl-

2-oxazoline)-block-poly(caprolactone) in greater detail, a number of PEOXA-PCL 

diblock and PEOXA-PCL-PEOXA triblock copolymers were synthesized.[127] 

Critical micellar concentrations were found to be in the range of 4.6 to 35.5 mg/L for 

the diblocks and 4.7 to 9.0 mg/L for the triblocks, depending on the PCL block 

lengths. Aqueous solutions of the both the di- and triblocks exhibited thermally 

reversible sol-gel transitions. The temperature, at which the transition as well as the 

precipitation from sol occurred, is dependent on the PCL block length. Furthermore, 

the addition of inorganic salts was shown to have an effect on the transition 

temperatures. 
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The addition of sodium chloride to an aqueous solution of the polymer resulted in a 

shift of the phase transition temperature to a lower regime, which leads to a lower 

solubility. Addition of sodium thiocyanate was found to have the opposite effect: 

thiocyanate anions accumulate at the polymer/water interface,[128] which moves the 

stability region of the gel and the cloud point to a higher temperature, effectively 

leading to a solubility increase. Furthermore, the addition of saccharides also led to a 

depression of the transition temperature, as did the addition of carboxylic acids.  

The addition of (multifunctional) carboxylic acids was found to induce aggregation in 

aqueous solutions of PEOXA-PCL copolymers.[129] As the molar concentration 

ratios of COOH groups with respect to poly(2-ethyl-2-oxazoline) repeat units is 

increased, micelles formed by the PEOXA-PCL polymer in aqueous solution start to 

agglomerate, leading to large aggregates with sizes of between 96 and 146 nm. If the 

pH value of the system is subsequently increased, the agglomerations can be 

destroyed and the polymers redispersed as micelles. However, micelle release is not 

only dependent on the pH of the medium, but also on the molecular weight of the 

polycarboxylic acid (polycarboxylic acids with higher molecular weight show slower 

release than those of smaller molecular weight) as well as the chemical structure of 

the polycarboxylic acid. When taken together with the fact that the release of micelles 

from the complexes proceeds over the space of several hours, it is easy to imagine, 

that this has potentially interesting applications in drug delivery. 

Micelles formed by PEOXA-PCL have also been investigated as carriers for 

paclitaxel, an anti-cancer drug.[130] Micelles with paclitaxel loading contents of 

between 0.5 – 7.6 wt % could be prepared using a dialysis method,[131] with the 

loading being dependent on the block composition of the polymers, the organic 

solvent used in the dialysis experiment and the weight ratio of drug to polymer. In 
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experiments, the toxicity of the polymer was found to be insignificant when compared 

to other matrices such as Tween 80 and comparable to Cremophore EL 

(polyoxyethylated castor oil, CreEL). Paclitaxel containing micelles were shown to 

inhibit the growth of KB cells (cell line derived from a human carcinoma of the 

nasopharynx) to the same extent as comparable CreEL formulations (but with reduced 

toxicity of the carrier). 

Hsiue et al. reported the synthesis of a series of hydrogels based on poly(2-ethyl-2-

oxazoline) and three-armed poly(D,L-lactide).[132]  The polymers were prepared via 

photochemical cross-linking of three-arm poly(D,L-lactide-trimethacrylate) (3PLA-

TMA) and poly(2-ethyl-2-oxazoline) dimethacrylate (PEOXA-DMA) (Figure 12). All 

of the resulting hydrogels were sensitive to both pH as well as temperature stimuli 

and showed a high degree of water retention. Consistent with the corresponding linear 

systems (see above), gels derived from the crosslinked polymer show thermonegative 

swelling behavior and low swelling at low pH. Scanning electron micrographs 

showed, that the degree of cross-linking has a significant effect on the particle and 

pore size. Polymers consisting only of cross-linked polyoxazoline give rise to 

uniformly spherical particles and porous structures. Introduction of the 

poly(caprolactone) units lead to smaller particles in the case of low PCL content and 

to uniform surfaces without discernible pores at higher concentrations. 

The photochemical crosslinking of telechelic PEOXA bearing acrylate groups on both 

chain ends leads to networks, which have a highly soluble component.[133] The 

observed cloud point for the cross-linked species is, as expected, somewhat lower 

than that for a completely linear PEOXA of similar molecular weight. When 

attempting to reduce the amount of soluble fraction via the addition of an equimolar 

amount of ethyleneglycol dimethacrylate with respect to the macromonomer, a 
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hydrogel with a significantly decreased cloud point (when compared to the pure 

PEOXA gels) was obtained. Furthermore, significantly different swelling behaviors 

were observed. In a further attempt to control the LCST behavior, the researchers 

prepared segmented networks by free-radical copolymerisation of PEOXA 

macromonomer with hydroxyethyl methacrylate (HEMA), 2-hydroxypropyl acrylate 

(HPA) or methyl methacrylate (MMA). As a general rule, the LCST behavior of the 

resulting networks depends on the hydrophilicity/hydrophobicity of the co-monomer 

and the fraction of PEOXA present in the networks.  

Like the cross-linked systems described above, linear poly(L-lactide)-block-poly(2-

ethyl-2-oxazoline)-block-poly(L-lactide) polymers show thermonegative behavior in 

aqueous solution and even precipitate from solution in the temperature range between 

33 to 38 °C.[134] The latter is explained by a combination of dehydration of the 

PEOXA segments and the aggregation of the hydrophobic PLLA segments. 

Furthermore, acid-base titrations indicated, that the triblocks show considerable 

buffering capacity over the whole pH range. At room temperature, they are protonated 

and exist as polycations, which could make them potentially suitable candidates for 

gene delivery applications. 

PLLA-block-PEOXA-block-PLLA has also been shown to be a promising candidate 

for the delivery of the anti-cancer drug doxorubicin (DOX).[135] In aqueous solution 

the polymer forms flower-like micelles, which can be loaded with the DOX active 

ingredient. At physiological pH (7.4) and in vitro, the release of doxorubicin is 

essentially suppressed, while at pH 5 the drug is released from the micelles, due to 

micellar deformation: micelles are taken up by cells via endocytosis with the 

endocytosed particles usually being transported to the lysosome. V-ATPases 

subsequently pump protons into the particle, which lowers the pH to 5.[136]  As 
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PLLA-block-PEOXA-block-PLLA is pH sensitive, this leads to a deformation of the 

micellar structure and the release of DOX inside the cell, which causes apoptosis. 

PLLA-block-PEOXA-block-PLLA is both biocompatible and shows virtually no 

cytotoxicity even at high concentration, thus allowing for high doses of the polymer 

to be administered. The somewhat easier-to-prepare PLLA-block-PEOXA diblock 

copolymer showed very similar behavior, although it was found to be more cytotoxic 

than the corresponding triblock as well as showing a higher release of doxorubicin at 

physiological pH.[137] PLLA-block-PEOXA-block-PLLA has recently been shown 

to be degradable by proteinase K.[138] 

Poly(2-isopropyl-2-oxazoline) (PIOXA), whose repeat unit is isomeric to that of 

poly(N-isopropyl acrylamide), has also attracted attention as a smart material. Like 

the other polyoxazolines it shows a thermonegative behavior in aqueous solution and 

undergoes reversible phase separation in the temperature range from 45 to 63 °C, 

depending on the molecular weight of the polymer. Differential scanning calorimetry 

showed that the phase transition is endothermic, with the enthalpy of transition 

ranging from 1.51 kJ/mol to 5.64 kJ/mol depending on molecular weight.[139] 

Consistent with previous observations, the presence of sodium chloride ions lowers 

the phase transition temperature and increases the transition enthalpy. Pressure 

perturbation calorimetry demonstrates the extreme sensitivity of the solvation volume 

w.r.t. the polymer chain length, nearly doubling in value  for a polymer with a DP of 

50 compared with a poly(2-isopropyl-2-oxazoline) oligomer with a DP of 17. This, in 

turn, indicates that the number of hydrogen-bonding positions along the chain 

increases with increasing molecular weight. Further studies using telechelic and 

heterotelechelic poly(2-isopropyl-2-oxazolines) end-functionalized by hydroxy, 

amine or acetal groups furthermore show that the cloud points of these polymers are 
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highly concentration dependent.[140] However, when comparing the cloud point 

temperatures for 1.0 M solutions of acetal-PIOXA-OH (Mn = 9,600, Mn/Mw = 1.15) 

with that of Me-PIOXA-OH (Mn = 9,700, Mn/Mw = 1.02), nearly identical values are 

found, indicating that under these circumstances, the molecular weight is the 

determining factor for the thermal response of these polymer. 

Further work by Kataoka et al. showed, that the LCST of amphiphilic poly(2-

isopropyl-2-oxazoline) can be accurately tuned by copolymerisation with a 

hydrophilic 2-ethyl-2-oxazoline comonomer.[141] The researchers prepared simple 

gradient copolymers of the two components in such a way as to gradually decrease 

the ethyl oxazoline content along the chain, while increasing the isopropyl oxazoline 

content from the α-terminal to the ω-terminal chain end. Experiments investigating 

the thermosensitive behavior of the resulting gradient copolymers showed, that the 

LCST increases linearly with the mole percentage of ethyl oxazoline over a broad 

temperature range from 38.7 to 67.3 °C. Consistent with previous observations, the 

presence of sodium chloride lowers the LCST temperature. The tuning of LCST 

behavior via compositional variation has also been demonstrated for 

poly(chloromethylstyrene-co-N-isopropylacrylamide-graft-2-alkyl-2-oxazoline) 

polymers.[142] The materials were synthesized by cationic ring-opening 

polymerisation of 2-methyl or 2-ethyl-2-oxazoline initiated by random copolymers of 

chloromethylstyrene and N-isopropyl acrylamide, acting as macroinitiators. The 

polymers showed transition temperatures in the range of 28 to 40 °C, with the 

increase in the observed transition temperature being proportional to the amount of 

alkyl oxazoline units in the side chain, relative to the amount of NIPAAm units in the 

main chain, provided the same macroinitiator is used. The observed transition can be 

explained in terms of the initial intramolecular collapse of the polymer backbone, 
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followed by an intermolecular aggregation of the polymer as the solution approaches 

the transition temperature, ultimately leading to precipitation of the polymer. If the 

content of long polyoxazoline grafts is sufficiently high, stabilized aggregates with 

thermoresponsive cores are formed at the transition temperature and no precipitation 

is observed. 

Recently, Schlaad and Meyer reported the synthesis of poly(2-isopropyl-2-oxazoline)-

block-poly(L-glutamate) in an effort to combine the temperature sensitive properties 

of the poly(2-isopropyl-2-oxazoline) with the pH sensitivity of the poly(L-

glutamate).[143] Unfortunately, no data on the stimulus-sensitive behavior of these 

polymers is currently available. In a similar fashion, Winnik and colleagues report the 

synthesis of poly(2-ethyl-2-oxazoline)-block-hyaluronan copolymers and speculate 

that these should have temperature-sensitive properties. However, no actual data has 

been provided.[144] 

 

2.5 Antimicrobial polymers 

Antimicrobial polymers are becoming increasingly important materials in the face of 

spreading microbial infections and increasing microbial resistance to antibiotics[145] 

and research in this area has been conducted since the late 1970ies. Most systems tend 

to be based on quarternary ammonium salts[146] which are covalently attached to a 

polymer, although biguanide,[147] phosphonium[148] and sulphonium[149] salts 

have also been used. The proposed mode of action of all of these cationic species is a 

disruption of the cytoplasmic membrane, which leads to a release of potassium ions as 

well as constituents of the membrane and subsequent cell death. 
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Waschinski  et al. recently reported the synthesis of a series of PMOXA and PEOXA 

polymers, terminated with quarternary ammonium groups.[150] The polymers were 

prepared via standard cationic ring-opening polymerisation and terminated using a 

series of N-alkyl-N,N-dimethyl amines as well as pyridine. The materials were 

subsequently evaluated w.r.t. their antimicrobial properties by determining the 

minimal inhibitory concentration against Staphylococcus aureus. The screening 

showed, that only poly(2-methyl-2-oxazoline)-based polymers containing alkyl 

ammonium functions with alkyl chains of twelve carbon atoms or longer have any 

antimicrobial activity – hydroxy or pyridyl functions at the chain end were found to 

be inactive. Furthermore, the antimicrobial activity of the polymers appeared to be 

independent of the molecular weight of the materials. A pronounced effect of the head 

group on antibacterial properties was also observed: polymers containing a proton as 

the headgroup and a dodecyldimethyl ammonium end group were found to be less 

bactericidal than the analogous polymer with a methyl headgroup. Poly(2-methyl-2-

oxazoline) containing a BOC-protected NH2 headgroup, by contrast, showed very 

high antimicrobial activities, although this effect is not observed in poly(2-ethyl-2-

oxazoline)-based polymers. 

A closer investigation of the influence of the end-groups subsequently revealed, that 

headgroups consisting of simple alkyl chains of between 4 and 10 carbon atoms in 

length are most effective in increasing the antimicrobial properties of the ammonium-

functionalized polymers.[151] To explain this effect, the authors hypothesize that the 

polymers exist as unimolecular micelles in solution below the critical micellar 

concentration. If this is the case, the endgroups of the polymer would be aggregated 

and could collaboratively penetrate the cell wall at the same point, which could be 
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more disruptive than the insertion of a single ammonium group. However, more work 

is required to elucidate the observed effect. 

 

3. Summary and Conclusion 

Polyoxazoline-based or polyoxazoline-derived polymers clearly have a significant 

application potential in a large number of technological contexts, whether this be the 

formation of stealth liposomes, or of membrane structures and containers which allow 

the incorporation of functional proteins, thus mimicking natural systems, or whether it 

is the use of polyoxazoline-based polymers as carriers of drugs or as synthetic vectors 

and antimicrobial materials. When this broad application range is coupled with 

properties such as responsiveness to external stimuli, this class of polymers becomes a 

prime candidate for use in “smart” materials. Furthermore, the fact, that 

poly(oxazolines) can be prepared via living polymerisation processes, affords 

extraordinary control and definition, a factor that is tremendously important, 

particularly when dealing with regulatory authorities. 

However, while the research literature concerning the fundamental properties and 

applications of polymers such as poly(ethylene oxide) or poly(ethylene imine) in 

biological application contexts is vast, polyoxazolines are only now beginning to be 

explored by the scientific community. Furthermore, the structural variation 

encountered in the research literature so far is small and usually limited to polymers, 

which can be derived from commercially available 2-oxazolines (2-methyl, 2-ethyl, 2-

isopropyl, 2-phenyl). However, the synthesis of 2-substituted oxazoline monomers is 

comparatively straightforward. This should provide polymer chemists with 

tremendous opportunity, as the accessible chemical space should be significantly 
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larger than the one, which has been explored so far. The research presented in this 

review already indicates that poly(oxazolines) are in many cases equivalent to or even 

exceed more traditionally used polymers, in areas such as solubility control, toxicity 

etc.. One might therefore speculate that a further exploration of “poly(oxazoline) 

chemical space”, particularly in combination with other classes of polymers, might 

lead to interesting new materials and could hold a great deal of promise. 
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Figure Captions 

Figure 1: Schematic representation of the mechanism for the cationic ring opening 

polymerisation of 2-oxazolines. 

Figure 2: Schematic representation of the synthesis of poly(2-oxazoline)/DSPE 

conjugates (DSPE = di-stearoylphosphatidylethanolamin, TEA = triethanolamine, 

DCC = N,N’-dicyclohexylcarbodiimide, HOSu = N-hydroxysuccinimide).[60] 

Figure 3: Possible model to explain network formation in lipopolymers. (A) 

Hydrated chain with water molecules at locations where H-bonding sites are exposed 

to bulk water, (B) hydrated water molecules acting as intercalates.[68] (Reprinted 

with permission from ref [68]. Copyright 2007, American Chemical Society) 

Figure 4: Fluorescence images of mixed lipid/lipopolyoxazoline monolayers with 

different degrees of polymerisation (a) n = 14 (DS-PMOx14-Si), (b) n = 33 (DS-

PMOx33-Si), (c) n = 104 (DS-PMOx104-Si), where DS = distearoyl lipid moiety, 

PMOx = poly(2-methyl-2-oxazoline), Si = trimethyl silane).[70] (Reprinted with 

permission from ref [70]. Copyright 2005, American Chemical Society.) 

Figure 5: Synthesis of chitin derivatives containing poly(2-alkyl-2-oxazoline) side 

chains (R = Me, Et).[75] 

Figure 6: Transmission electron micrograph of phosphate loaded PMOXA-PDMS-

PMOXA vesicles after 1 h (left) and 24 h (right) incubation with calcium chloride in 

the presence of an ionophore.[85] (Reproduced by permission of the Royal Society of 

Chemistry from ref 85.) 
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Figure 7: Schematic representation of a polymer nanoreactor with porins 

incorporated in the membrane and enclosed enzymes (enzymes = boxes, substrate = 

small circle, reaction product = small triangles).[88]  

Figure 8: Electron micrograph of a complex between λ phage and maltoporin-bearing 

PMOXA-PDMS-PMOXA nanocontainers. (A) λ Phage attached to a single vesicle 

via its tail, (B) λ phage bound to an aggregate of vesicles.[92] (Reproduced with 

permission from ref [92]. Copyright National Academy of Sciences of the United 

States.) 

Figure 9: Aggregation of FPMOXA25L16 versus concentration in aqueous 

solution.[103] (Copyright Wiley-VCH Verlang GmbH & Co KG aA. Reproduced 

with permission from ref 103.) 

Figure 10: Synthesis of a poly(ethylene glycol)-block-poly(ethylene imine) 

copolymer via a poly(2-methyl-2-oxazoline) species.[111] 

Figure 11: Synthesis of poly(2-ethyl-2-oxazoline)-block-poly(ethylene imine).[117] 

Figure 12: Synthesis of (A) 3-arm poly(D,L-lactide) trimethacrylate and (B) poly(2-

ethyl-2-oxazoline) dimethacrylate.[132] 



 50 

Figure 1 

Ionic Type

R1X1 + O N

R2

O N

R2

R1 X HO N

R2

N

R1

R2

O

X

O N

R2

Propagation

R3X2 + O N

R2

O N

R2

R1X

O N

R2

Covalent Type

N
R3

OR2

X2

N N

O OR2
R2

X2

Propagation
Initiation

Initiation

 

 



 51 

Figure 2 

 

 



 52 

Figure 3 

 

 



 53 

Figure 4 

 

 



 54 

Figure 5 

 

 



 55 

Figure 6 

 

 

 



 56 

Figure 7 

 

 



 57 

Figure 8 

 

 



 58 

Figure 9 

 

 

 



 59 

Figure 10 

 

 

 



 60 

Figure 11 

 

 



 61 

Figure 12 

 

 

 
 

 

 

 


