

This is the author-created version of the following work:

Figueiredo, Joana, Thomas, Christopher J., Deleersnijder, Eric, Lambrechts, Jonathan, Baird, Andrew H., Connolly, Sean R., and Hanert, Emmanuel (2022) *Global warming decreases connectivity among coral populations*. Nature Climate Change, 12 (1) pp. 83-87.

Access to this file is available from: https://researchonline.jcu.edu.au/74796/

© The Author(s), under exclusive licence to Springer Nature Limited 2021.

Please refer to the original source for the final version of this work: <u>https://doi.org/10.1038/s41558%2D021%2D01248%2D7</u>

1	Global warming decreases connectivity among coral populations
2	
3	Authors: Joana Figueiredo ^{1,2†*} , Christopher J. Thomas ^{3,^,†} , Eric Deleersnijder ^{3,4} , Jonathan
4	Lambrechts ³ , Andrew H. Baird ² , Sean R. Connolly ^{5,6} , Emmanuel Hanert ^{3,4}
5	
6	Affiliations:
7	¹ Nova Southeastern University, Halmos College of Arts and Sciences, Dania Beach, Florida,
8	U.S.A.
9	² ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville,
10	Queensland, Australia.
11	³ Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering
12	(IMMC), Louvain-la-Neuve, Belgium.
13	⁴ Université catholique de Louvain, Earth and Life Institute (ELI), Louvain-la-Neuve, Belgium.
14	⁵ Naos Marine Laboratories, Smithsonian Tropical Research Institute (STRI), Ancón, Panamá,
15	Republic of Panama.
16	⁶ College of Science and Engineering, James Cook University, Townsville, Queensland,
17	Australia.
18	[^] Currently at: Risk Management Solutions, London, United Kingdom.
19	*Correspondence to: jfigueiredo@nova.edu
20	†equal contribution
21	

22 Abstract:

23	Global warming is killing corals; however, the effects of warming on population
24	connectivity, a process fundamental to reef recovery, are largely unexplored. Using a high-
25	resolution (as high as 200m), empirically-calibrated biophysical model of coral larval
26	dispersal for the southern Great Barrier Reef, we show that the increased larval mortality
27	and reduced competency duration under a 2°C warming alter dispersal patterns, whereas
28	projected changes in large-scale currents have limited effects. Overall, there was an
29	average 7% decrease in the distance larvae disperse (among-reef interquartile range
30	(IQR): -10% to -4%), 8% decrease in the number of connections into each reef (IQR: -11%
31	to -3%), and 20% increase in local retention (IQR: 0% to +49%). Collectively, these shifts
32	imply that 2°C of warming will reduce inter-reef connectivity, hampering recovery after
33	disturbances and reducing the spread of warm-adapted genes. Such changes make
34	protections more effective locally, but may require reducing spacing of protected areas.
35	
36	
37	
38	
39	
40	
41	
42	

Main text:

Coral reefs have been in decline for centuries due to local human impacts^{1,2}, with ocean 44 warming accelerating these declines in recent decades^{3,4}. Warmer temperatures cause corals to 45 bleach (i.e., lose their algal symbionts, and thus a major source of carbon), become less fertile 46 and more likely to die^{5,6}. The ability of coral populations to recover after disturbance is highly 47 dependent on patterns of reef connectivity⁷. The interchange of larvae among reefs allows and 48 accelerates the (re)colonization of distant habitats. Previous research demonstrates that warmer 49 temperatures increase early larval mortality and reduce the time it takes them to settle^{8,9}, causing 50 an increase in the proportion of larvae retained on their natal reef (i.e. local retention¹⁰). 51 However, the effect of higher temperatures on long-term larval survivorship and settlement, and 52 how such changes will affect connectivity remains unexplored. Additionally, projected changes 53 in ocean circulation in response to global warming have the potential to affect patterns of 54 connectivity worldwide^{11,12}. 55

Here, we combine experimental calibration of biological models of larval survival and 56 competency for the stony coral *Acropora millepora* with a high-resolution (as high as 200m) 57 hydrodynamic model of physical transport on the southern Great Barrier Reef to test for the 58 59 effects of a 2°C increase in temperature (estimated for 2080-2100 under Representative Concentration Pathway [RCP] 4.5 scenario or 2050 under RCP 8.5 scenario¹³) on patterns of 60 connectivity (Appendix 1). Specifically, we first measure long-term larval survival and 61 62 competency dynamics of the coral Acropora millepora under current and future temperature conditions in laboratory conditions. We use Acropora millepora as our model species because it 63 64 has a similar egg size and competence curve (ability to settle over time) as other Acropora species¹⁴⁻¹⁸, because it has qualitatively similar responses to temperature in survival and 65

66	competence to many other coral species ^{17,19-22} , and because <i>Acropora</i> is by far the most abundant
67	genus in the Great Barrier Reef and across much of the Indo-Pacific region. We then simulate
68	water currents through the Great Barrier Reef using the Second-generation Louvain-la-neuve
69	Ice-ocean Model (SLIM) during 3 recent successive spawning seasons for which good
70	observational data were available (2008-2010), and use biophysical particle tracking to estimate
71	the dispersal of Acropora millepora larvae and the resultant inter-reef connectivity network.
72	Averaging over all larvae released and over all 3 spawning seasons, we estimate that
73	temperature-induced changes in larval survival and settlement competence will reduce larval
74	dispersal distance by 6.6% (with an among-reef interquartile range [IQR] of -10.0% to -4.2%;
75	Fig 1a) and the number of outgoing connections by 8.1% (among-reef IQR of -10.8% to -3.0%;
76	Fig 1c), i.e. larvae will reach fewer reefs (Appendix 1, Table S9). We find that 75% of the reefs
77	in this region will experience a decrease in both connectivity metrics, with some experiencing a
78	very large decrease (>15%, Fig. 1a, c; Appendix 1). In addition, we estimate that a 2°C warming
79	will increase the proportion of larvae produced by a reef that settles back onto that reef (local
80	retention) by 19.5% (among-reef IQR of 0.0% to +49.2%). Similarly, the proportion of settlers
81	on a reef that originated from larvae released by that reef (self-recruitment) will increase on
82	average by 15.0% (among-reef IQR of -0.2% to $+43.5\%$). That is, recruitment back to the natal
83	reef increases both relative to the larval production by each reef, and relative to the number of
84	larvae arriving to that reef from the metapopulation as a whole ²³ . This means that reefs will
85	become more isolated and more dependent on locally-produced larvae for replenishment after
86	disturbances.
07	While an avanage warming decreases lawsel discovered distances and the number of inter

87 While on average warming decreases larval dispersal distances and the number of inter-88 reef connections, and increases local retention of larvae, there is substantial inter-reef variability

89	in these projected changes, as is evident in Fig 1. Some reefs are likely to see much larger swings
90	than the average in terms of how isolated or connected they will be to their neighbors, and a
91	small proportion are projected to experience changes opposite in direction to the average. This
92	high spatial heterogeneity is caused by the way that changes in the time taken by larvae to
93	acquire and lose the ability to settle, and changes to their mortality rate, interact with the strength
94	and direction of local currents (Fig 1f) and the geographic distribution of neighbouring reefs,
95	both of which are highly variable in space. In some areas weakening of inter-reef connectivity
96	occurs much more strongly than the average, for instance around the reef-dense Whitsunday
97	Islands (>15% decrease in dispersal distance and number of connections; Fig 1a, c). Conversely,
98	warmer waters can also lead to stronger inter-reef connections where the conditions are right,
99	though this is rare. For example, in areas where strong currents rapidly transport larvae away
100	from their natal reefs, over neighbouring reefs, and then out to reef-sparse areas of open sea,
101	hastening the onset of competence can allow more larvae to settle onto these neighbouring reefs
102	before being lost at sea; this may be the case for the small group of reefs off Cape Palmerston,
103	which see an increase in average dispersal distances (Fig 1a).
104	The net weakening of inter-reef connectivity is driven by changes to larval development
105	dynamics. Warmer temperatures increase larval mortality (Appendix 1, Tables S1, S2, Fig. S1A).
106	This effect was especially marked during embryogenesis, after which mortality rates were
107	similar between temperatures, consistent with accelerated rates of cell division during
108	embryogenesis at higher temperatures increasing the frequency of errors that lead to fatal

malformations²⁴. Warmer temperatures also alter competence dynamics: how quickly larvae
acquire the capacity to settle and metamorphose on reef habitat (i.e. become competent), and
how long they retain that capacity (Appendix 1). Specifically, under elevated temperatures, the

minimum time for larvae to settle is reduced from 4.89 to 3.87 days; however, larvae tend to lose
competence much more quickly, halving from peak competence after about 7 weeks at +2°C
compared to 14 weeks at current temperatures (Appendix 1, Tables S3, S4, Fig. S1B). One
potential explanation for this is the combination of higher rates of metabolism at warmer
temperatures²⁵ leads to faster depletion of energy reserves (coral larvae are non-feeding) and thus
a shorter time-window during which sufficient energy remains available for successful
settlement and metamorphosis.

In contrast to temperature effects on survival and development, projected changes in 119 120 large-scale water circulation in the Great Barrier Reef (Appendix 1, Fig. S8) have a small effect on connectivity patterns, with average changes to all connectivity indicators being < 2.2%121 (Appendix 1, Table S8). Changes in large-scale circulation through the Coral Sea predicted by 122 the Coupled Model Intercomparison Project 5 (CMIP5) global climate models may affect water 123 flow onto the Great Barrier Reef, with most CMIP5 models projecting increased flow towards 124 125 the Great Barrier Reef driven by an increase in the strength of the South Pacific sub-tropical gyre (Appendix 1, Fig S8). The effects of this change on the Great Barrier Reef itself are modelled by 126 modulating the large-scale currents entering the lagoon (Appendix 1, Part 3). However, this 127 128 change is found to have a small effect on current speeds through the Great Barrier Reef (average 129 changes of under 1cm/s over the vast majority of the domain, i.e. very low compared to typical 130 current speeds, Fig. 1f), and the effect on coral connectivity is roughly an order of magnitude 131 smaller than the biological changes caused by ocean warming that we document (Appendix 1, Table S9). Other changes to environmental conditions in the region are also possible, such as 132 133 modulation in the strength of local wind stress during coral spawning seasons, however we have

135

no strong evidence quantifying how they will evolve over the coming decades and hence they are not accounted for here.

136	Local retention is estimated to increase on average by 19.5% (among-reef IQR of 0.0% to
137	+49.2%) at higher temperature (+2°C) because a reduction in the time to settlement over-
138	compensates for an increase in mortality. Seventy four percent of the reefs in the region are
139	predicted to experience an increase in local retention, with 26% experiencing increases greater
140	than 50% (Fig. 1b). This spatial variability in projected changes in local retention reflects the
141	high degree of geographic variability in water currents (Fig. 1f) and thus residence times in the
142	Great Barrier Reef ²⁶ . The increased local retention will be more prevalent on reefs with mean
143	water residence times lower than 4 days, such as reefs offshore from Mackay and in the
144	Whitsundays (Fig. 1b), due to the decrease in the minimum time to acquire competence to under
145	4 days. Therefore, some coral populations are likely to become more vulnerable to local
146	disturbances, but also more responsive to local management, such as control of sedimentation or
147	prohibitions on anchoring ¹⁰ .
148	To determine the contribution of warming-driven changes in coral connectivity patterns
149	to recovery rates after disturbances, we developed a simple metapopulation model (Appendix 2).
150	The model projects the time taken for each reef to recover from localized and regional
151	disturbances in both the present day and under the 2°C warming scenario; the change in recovery
152	time was then calculated as the percent change between the two. Temperature-driven changes in
153	larval dispersal are projected to cause a marginal decrease in average recovery times across all
154	reefs (-1.8±5.9% SD for localized, single-reef disturbances, and -1.7±4.7% for regional,
155	multiple-reef disturbances), however, at the reef-scale there are some significant changes (Fig.

156 2a, b). For example, on isolated reefs, which already receive few larvae from other reefs, reduced

157	long-distance connectivity will further diminish recovery rate (ca. 10% increase in recovery
158	time). At the same time, increased local retention on other reefs, like those in reef-dense areas off
159	Mackay, will promote enhanced recovery (ca. 10% decrease in recovery time) primarily as this
160	increased local retention more than offsets the decrease in the strength and number of inter-reef
161	connections. These projected changes in recovery times due to the shifts in connectivity
162	indicated by our study are likely to be underestimates because the changes will be compounded
163	by warming-induced decreases in the spawning stock, including increased mortality, decreased
164	fertility and fecundity, and density-dependent reduction in fertilization rates.
165	This model is the first to project how coral larval dispersal patterns and connectivity will
166	be altered by climate change. In the process, the potential for each reef to act as a source of
167	larvae to the region and the extent to which warming would alter it were also projected. Previous
168	work on the Great Barrier Reef has focused on identifying 'robust source reefs' based on
169	present-day connectivity and history of disturbance ^{27,28} . Comparing the outputs of the various
170	models, it is evident that as resolution increases, from 4 Km 27 to 1.6 Km 28 to 200 m in our
171	model, the potential role of nearshore reefs as sources for the system becomes more evident ^{27,28}
172	(Fig. 1d). The high resolution around reefs (200m) of our model resolves hydrodynamics at the
173	reef scale more effectively, particularly nearshore, and therefore enhances our capacity to
174	anticipate the potential impacts of local-scale management interventions. We opted for a depth-
175	integrated model, without waves, to simulate flow through the mainly shallow, well-mixed
176	waters of the Great Barrier Reef, in order to achieve a combination of high spatial resolution
177	around reefs (needed to capture reef-scale retention processes such as lee reef eddies) and
178	relatively large model domain (needed to capture the inter-reef dispersal that drives
179	metapopulation dynamics).

180	From a management perspective, reduced connectivity and increased local retention
181	suggest that a greater number of reefs, particularly reefs contributing most to the overall supply
182	of larvae (source reefs), will require greater levels of protection, and protected areas will have to
183	be closer together, to increase the ability of the system to replenish itself following natural and
184	anthropogenic disturbances. Concomitantly, the stronger local retention might benefit persistence
185	as more larvae recruit to favourable habitats ^{32,33} , and a stronger stock-recruitment relationships
186	will enhance the potential impacts of local management interventions ^{10,32} . The recovery of
187	disturbed areas can be achieved by reducing local anthropogenic stressors (through
188	reduction/elimination of overfishing of herbivores, regulated sewage discharge or elimination of
189	mechanical damage such as dredging) or protecting surrounding undisturbed reefs to maximize
190	the supply of larvae to the disturbed reefs and thus facilitate colonization. In the southern Great
191	Barrier Reef, many of the best source reefs lie in the outer/eastern-most portion of the continental
192	shelf (Fig. 1d), due to the high reef density and strong currents facilitating inter-reef connections.
193	These reefs are projected to be weaker sources of larvae in the future (Fig. 1a, c). However, in
194	most cases, they are projected to remain the best sources in the system (Fig. 1e). While our
195	model projects that changes in connectivity would allow some reefs to recover more rapidly
196	following disturbance, this would only be true if the growth rates, post-settlement survival,
197	fertility and fecundity of corals was not compromised by warming, whereas prior work indicates
198	that such adverse effects are likely ²⁹⁻³¹ . Additionally, isolated reefs with very low mean water
199	residence times (i.e. high self-recruitment, but low local retention) will become more vulnerable
200	to local extinction and therefore need greater protection from localized disturbances, and would
201	have to be actively restored (larval seeding and/or outplanting) if disturbed.

202	The changes in inter-reef connectivity projected here for A. millepora in the southern
203	Great Barrier Reef could diminish the capacity of these coral populations to adapt and are likely
204	not to be exclusive to this species or region ^{8-10,34-37} . A reduction in long distance dispersal is
205	likely to reduce the migration of temperature tolerant genes from lower latitudes. Our results are
206	also likely to be robust for most reefs on a global scale because the great majority of reefs
207	worldwide have similar mean water residence times ³⁴⁻³⁶ , Acropora is the most abundant coral
208	genus in the Indo-Pacific (and was once the most abundant in the Atlantic), and the response to
209	warming of the early life history stages of all other coral species studied to date is similar to the
210	Acropora ^{8-10,37} . Most reefs of the future will be less connected and this reduction in connectivity
211	needs to be considered when choosing how best to respond to global warming, and in evaluating
212	the extent to which the dispersal of warm-adapted genotypes will be sufficient to allow coral
213	populations to cope with increasing temperatures.
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	

References:

226	1.	Cesar, H., Burke, L. & Pet-Soede L. The Economics of Worldwide Coral Reef
227		Degradation. Cesar Environmental Economics Consulting (2003).
228	2.	Pandolfi, J. M. et al., Global trajectories of the long-term decline of coral reef
229		ecosystems. Science 301, 955-958 (2003).
230	3.	Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems
231		under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
232	4.	Hughes, T. P. et al. Global warming transforms coral reef assemblages. Science 359, 80-
233		83 (2018).
234	5.	Grottoli, A. G., Rodrigues, L. J. & Juarez C. Lipids and stable carbon isotopes in two
235		species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a
236		bleaching event. Mar. Biol. 145, 621-631 (2004).
237	6.	Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn
238		some coral species winners into losers. Global Change Biol. 20, 3823-3833 (2014).
239	7.	Underwood, J. N., Smith, L. D., van Oppen, M. J. H. & Gilmour, J. P. Ecologically
240		relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol.
241		<i>Appl.</i> 19 , 18-29 (2009).
242	8.	Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement
243		and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites
244		chinensis. Mar. Biol. 152, 1181-1185 (2007).
245	9.	Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to
246		temperature: observations on multiple broadcast spawning coral species Coral Reefs 29,
247		631-636 (2010).

248	10. Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef
249	coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498-502 (2014).
250	11. Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379-395
251	(2009).
252	12. van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine
253	ecosystems under a changing climate. Global Change Biol. 23, 2602–2617 (2017).
254	13. Field C. B. et al. Summary for Policymakers, Climate Change 2014: Impacts, Adaptation,
255	and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group
256	II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
257	(Cambridge University Press, 2014).
258	14. Nishikawa, A. & Sakai, K. Settlement-competency Period of Planulae and Genetic
259	Differentiation of the Scleractinian Coral Acropora digitifera. Zool. Sci. 22(4), 391-399
260	(2005).
261	15. Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and
262	post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites
263	chinensis. Mar. Biol. 152, 1181-1185 (2007).
264	16. Connolly, S. R., Baird, A. H. Estimating dispersal potential for marine larvae: dynamic
265	models applied to scleractinian corals. Ecology 91, 3572-3583 (2010).
266	17. Heyward A. J. & Negri, A. P. Plasticity of larval pre-competency in response to
267	temperature: observations on multiple broadcast spawning coral species Coral Reefs 29,
268	631-636 (2010).

269	18. Figueiredo, J., Baird, A.H., Connolly, S.R. Synthesizing larval competence dynamics and
270	reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94(3),
271	650-659 (2013).
272	19. Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and
273	post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites
274	chinensis. Mar. Biol. 152, 1181–1185 (2007).
275	20. Randall, C.J. & Szmant, A.M. Elevated Temperature Affects Development, Survivorship,
276	and Settlement of the Elkhorn Coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217,
277	269–282 (2009a).
278	21. Randall, C.J. & Szmant, A.M. Elevated temperature reduces survivorship and settlement
279	of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28,
280	537–545 (2009b).
281	22. Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef
282	coral larvae as a result of ocean warming. Nature Climate Change 4, 498-502 (2014).
283	23. Burgess, S. C. et al. Beyond connectivity: how empirical methods can quantify
284	population persistence to improve marine protected-area design. Ecol. Appl. 24, 257-270
285	(2014).
286	24. Woolsey, E. S., Keith, S. A., Byrne, M., Schmidt-Roach, S. & Baird, A.H. Latitudinal
287	variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs 34,
288	471-478 (2015).
289	25. Rodriguez-Lanetty, M., Harii, S. & Hoegh-Guldberg, O. Early molecular responses of
290	coral larvae to hyperthermal stress Mol. Ecol. 18, 5101-5114 (2009).

291	26.	Andutta, F. P., Kingsford M. J. & Wolanski, E. 'Sticky water' enables the retention of
292		larvae in a reef mosaic. Estuarine Coastal Shelf Sci. 54, 655-668 (2012).
293	27.	Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol.
294		15 , e2003355 (2017).
295	28.	Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may
296		exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).
297	29.	Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine
298		populations. Bull. Mar. Sci. 70, 377-396. (2002).
299	30.	Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-
300		environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128-140 (2010).
301	31.	Szmant, A. M. & Gassman, N.J. The effects of prolonged "bleaching" on the tissue
302		biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217-224
303		(1990).
304	32.	Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals
305		following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133-141
306		(2002).
307	33.	Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492-
308		496 (2018).
309	34.	Leis, J. M. Nearshore distributional gradients of larval fish (15 taxa) and planktonic
310		crustaceans (6 Taxa) in Hawaii. Mar. Biol. 72 89-97 (1982).
311	35.	Kraines, S. B., Yanagi, T., Isobe, M. & Komiyama, H. Wind-wave driven circulation on
312		the coral reef at Bora Bay, Miyako Island. Coral Reefs 17, 133-143 (1998).

313	36. Paris, C. B. & Cowen, R. K. Direct evidence of a biophysical retention mechanism for
314	coral reef fish larvae. Limnol. Oceanogr. 49, 1964–1979 (2004).
315	37. Keshavmurthy, S., Fontana, S., Mezaki, T., Gonzalez, L. C., Chen, C. A. Doors are
316	closing on early development in corals facing climate change. Sci. Rep. 4, 5633. (2014).
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	

333 Methods

We first measured long-term larval survival and competency dynamics of the coral 334 Acropora millepora under current and future temperature conditions in laboratory conditions 335 (Appendix 1, Part 1). This species was used because Acropora species are the most abundant in 336 337 the Great Barrier Reef (GBR) and the rest of the Indo-Pacific, and have similar egg size and larval 338 development rates (~532-604µm mean egg diameter, and 4-6 days to larval competency). Eggs and sperm of six A. millepora colonies were mixed to allow fertilisation. To obtain the survival 339 curve, four replicates of fifty embryos per temperature treatment (ambient temperature [27°C], and 340 +2°C [29°C]) were stocked in 200ml glass jars. Every day for 134 days, embryos/larvae were 341 counted and water was renewed. The survival data was fit to alternative models to determine 342 343 whether mortality rates were constant over time (exponential model), increased or decreased monotonically over time (Weibull model), or whether they first decreased, then increased, or vice-344 versa (Generalized Weibull: see Appendix 1 for details). To obtain the competency curve, 345 embryos were reared at 27°C (ambient temperature) and 29°C (+2°C), and each day from days 3 346 to 9 post-fertilisation, and then on days 11, 13, 16, 23, 30, 37, 44, 58, 72 and 99, three replicates of 347 twenty larvae from each of the temperature treatments were placed in 200mL glass jars with a pre-348 349 conditioned settlement tile at the same temperature. A day later, the number of larvae that had settled and metamorphosed was recorded. As with survival, we considered exponential, Weibull, 350 351 and generalized Weibull functional forms for the loss of competence (see Appendix 1 for details). 352 We then integrated the estimated survival and competency parameters for each temperature into a stochastic model that estimates the probability that a larva is alive and competent at any given time 353 354 for each temperature.

The flow of ocean currents through the Great Barrier Reef was simulated using an 355 unstructured mesh, depth-integrated hydrodynamic model (SLIM) forced by tides, wind and 356 large-scale oceanographic currents³⁸ during 3 successive recent years' spawning seasons (2008-357 2010). The mesh resolution was very high around reefs (200m), and coarser in deeper areas with 358 more uniform bathymetry (up to 5km). The use of a depth-integrated model necessarily omits any 359 360 variation in flow with depth, which can be relevant for larval dispersal when flow changes markedly with depth, and depth distributions change due to swimming behaviour or shifts in 361 buoyancy with development³⁹. However, observational and modelling studies over the past 4 362 363 decades have consistently found Great Barrier Reef waters to be vertically well-mixed throughout most of the shelf for most of the year, with upwelling events and stratification being relatively 364 limited in space and time (Appendix 1, Part 2). In addition, coral larval swimming speeds are 365 orders of magnitude lower than measurements of water flow both on and off reefs (vertical and 366 horizontal currents), and thus cannot swim against currents⁴⁰. Whilst our model may therefore be 367 missing some relevant 3D effects, for example localised upwelling at the shelf break which may 368 affect flow near some outer barrier reefs, focusing finite computational resources on resolving 369 reef-scale horizontal flow allows us to better resolve flow features that are crucial to circulation 370 371 throughout the shelf, such as eddies that form behind reefs which can trap larvae in their vicinity, while still being able to characterize dynamics over a spatial scale appropriate to the inter-reef 372 373 connectivity patterns of corals. The present-day hydrodynamics were validated using local 374 measurements of current strength and direction from mooring locations on the shelf, and the model was found to reproduce realistic currents (Appendix 1, Part 2). 375

To obtain estimates of connectivity between reefs, an individual based model was then used to simulate particle transport using currents from 3 recent years (2008-2010) in the weeks

378	immediately following spawning in the Great Barrier Reef (November) and larval survival and
379	competency dynamics for present and future sea temperature scenarios. The model assumes that
380	when a larva is alive and competent, if it passes on top of a reef it will detect the presence of the
381	reef (through chemical and physical cues ⁴¹),, settle and metamorphose (see Appendix 1, General
382	Methods). Particle transport was modelled separately for each spawning season using currents
383	simulated for that specific period (Appendix 1, Part 2). To simulate the impact of changing large-
384	scale ocean circulation on larval connectivity, the biophysical model was also forced with
385	modified low-frequency currents at the model boundaries to mimic the changes predicted to ocean
386	circulation in the Coral Sea by CMIP5 climate models (see Appendix 1, Part 3). Connectivity
387	metrics for the 3 years were averaged to make the results more robust to annual variations
388	(Appendix 1, Part 4). The estimated connectivity matrices for each year are available ⁴² at
389	https://doi.org/10.5061/dryad.4f4qrfjbk.

To determine the contribution of warming-driven changes in coral connectivity patterns 390 to recovery rates after disturbances, we developed a simple metapopulation model of coral cover 391 accounting for density-dependent growth (budding) and recruitment, using the connectivity 392 matrices from the biophysical dispersal model (Appendix 2). Previously reported biological data 393 on fecundity and post-settlement survival of coral recruits is used to set realistic model 394 parameters, and all corals are assumed to have equal fecundity and post-settlement mortality. 395 Fecundity, initial abundance and growth and mortality rates were set to be equal at 27 °C and 29 396 °C, as the aim was to predict changes in recovery times following disturbances due exclusively to 397 the impact of changes in connectivity. We simulated 2 different types of disturbance: single-reef 398 disturbances, where initial coral cover was reduced by 85% over one reef at a time, mimicking 399 events such as crown-of-thorns outbreaks, and regional disturbances, where initial coral cover 400

401	was reduced by 75% over a 30-km wide cross-shore strip, and by 40% in 30-km wide strips to
402	either side, mimicking the passage of a severe tropical cyclone across the GBR. The model was
403	run, in turn, using the connectivity matrices obtained from the 27°C and 29°C biophysical model
404	runs. The model projects the time taken for each reef to recover from localized and regional
405	disturbances in both the present day and under the 2°C warming scenario, and the change in
406	recovery time was then calculated as the percent change between the two.
407	
408	
409	Method References:
410	38. Thomas, C.J. et al. Numerical modelling and graph theory tools to study ecological
411	connectivity in the Great Barrier Reef. Ecol. Model. 272, 160–174 (2014).
412	39. Holstein, D.M., Paris, C.B., Vaz, A.C. & Smith, T.B. Modeling vertical coral
413	connectivity and mesophotic refugia. Coral Reefs 35, 23-37(2016).
414	40. Hata, T., et al. Coral larvae are poor swimmers and require fine-scale reef structure to
415	settle. Sci. Rep. 7 (1), 2249 (2017).
416	41. Gleason, D.F. & Hofmann, D.K. Coral larvae: from gametes to recruits. J. Exp. Mar.
417	<i>Biol. Ecol.</i> 408 , 42-57 (2011).
418	42. Yearly estimated connectivity matrices are available at
419	https://doi.org/10.5061/dryad.4f4qrfjbk.
420	

421	Data Availability Statement: Yearly connectivity matrices and the processed data used to
422	construct Figs 1a-e and Fig 2 are available at https://doi.org/10.5061/dryad.4f4qrfjbk. Larval
423	survival and competency is provided in appendix (Figure S1) and by request to the authors.
424	
425	Code Availability Statement: The SLIM model source code can be found at
426	https://git.immc.ucl.ac.be/dg/dg. Larval dynamics modeling is provided in appendix, references
427	within, and by request to the authors.
428	
429	Acknowledgments: Major funding for this research was provided by the Australian Research
430	Council DP110101168 (J.F., A.B.), Queensland Government Smart Futures Fellowship (J.F.), the
431	Australian Research Council's Centre of Excellence for Coral Reef Studies (A.B., S.C.),
432	Federation Wallonie-Bruxelles ARC grant 10/15-028 (C.T.), the Belgian Fund for Scientific
433	Research (F.R.SFNRS) (J.L.), and Université catholique de Louvain, Belgium (E.H., E.D., J.L.).
434	High-performance computing resources were provided by the Université catholique de Louvain
435	(CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédération Wallonie-
436	Bruxelles (CÉCI) funded by the Belgian Fund for Scientific Research (F.R.SFNRS) under Grant
437	No. 2.5020.11 and by the Walloon Region.
438	
439	Author Contributions Statement: Conceptualization by JF, CT, SC and AB; data collection by
440	JF; JF and CT wrote original manuscript; SC, AB, EH and ED edited; model development by CT,
441	EH, ED and JL; and funding acquisition by all authors.

442	Competing interest Statement: Authors declare no competing interests.
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	

461 Figure legends

Fig. 1. Maps showing the effects of a 2°C increase in water temperature across the southern Great 462 Barrier Reef, Australia, by reef. (a) average source-to-destination reef distance (connection 463 length), (b) local retention (proportion of larvae produced on a reef that settle back on that reef), 464 (c) number of incoming connections from other reefs. (d) shows current best source reefs, as 465 measured by a source index defined as the number of outgoing connections multiplied by the 466 467 number of outgoing larvae per reef, and (e) the relative change in the source index for the 2°C increase scenario. Inset histograms for (a-c) & (e) show normalised distributions of the relative 468 changes shown in the maps; values outside range of x-axis are included in final bar for readability. 469 470 (f) shows average water current speeds from the hydrodynamic model for the present-day simulations. All quantities are averaged over the 3 spawning seasons (2008-2010) modelled. 471 472 473 Fig. 2. Relative change in recovery times in the 29°C scenario (2050-2100) compared to the 27°C 474 scenario (current) following disturbance. (a) single-reef disturbances and (b) multiple-reef disturbances. Inset histograms show normalised distributions for the changes in recovery times. 475 476 477 478 479 480 481

482 Figure 1

....

491 Figure 2

