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Estimating heritability based on individual phenotypic and genotypic measurements can be expensive and labour-intensive in
commercial aquaculture breeding. Here, the feasibility of estimating heritability using within-family means of phenotypes and
allelic frequencies was investigated. Different numbers of full-sib families and family sizes across ten generations with phenotypic
and genotypic information on 10 K SNPs were analysed in ten replicates. Three scenarios, representing differing numbers of pools
per family (one, two and five) were considered. The results showed that using one pool per family did not reliably estimate the
heritability of family means. Using simulation parameters appropriate for aquaculture, at least 200 families of 60 progeny per family
divided equally in two pools per family was required to estimate the heritability of family means effectively. Although application of
five pools generated more within- and between- family relationships, it reduced the number of individuals per pool and increased
within-family residual variation, hence, decreased the heritability of family means. Moreover, increasing the size of pools resulted in
increasing the heritability of family means towards one. In addition, heritability of family mean estimates were higher than family
heritabilities obtained from Falconer’s formula due to lower intraclass correlation estimate compared to the coefficient of
relationship.
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INTRODUCTION
Narrow-sense heritability determines the extent to which
additive genetic component is contributing to the phenotypic
variation among individuals or families (Viana 2002, Mathew
et al. 2012, Kruijer et al. 2015, Kumar et al. 2016, Speed et al.
2017). Accurate heritability estimates are the foundation in
estimating breeding values, selection of the superior brood-
stock to populate the next generation, and for calculating the
genetic gain (Viana 2002, Mathew et al. 2012, Gay et al. 2013,
Sun et al. 2015). Heritability can be estimated using informa-
tion obtained either from pedigree or genotypic data. In
traditional quantitative genetics, genetic parameters are
usually estimated using information on the pedigree and the
phenotypic values of individuals to estimate heritability
(Bérénos et al. 2014, de los Campos et al. 2015). One popular
approach for pedigree-based genetic analysis is Henderson’s
linear mixed model (Henderson 1950), which only estimates
the additive genetic component of the phenotypic variance. In
the context of mixed model, Henderson has also introduced
mixed model equation (MME), which can estimate additive
genetic variance using fixed and random effects. However,
MME can also estimate non-additive genetic components using
pedigree and/or genotypic information. Nevertheless, using
molecular markers to capture the relationship between
individuals via construction of a genomic relationship matrix
(GRM) can be more accurate compared to pedigree informa-
tion (Gay et al. 2013, Bérénos et al. 2014, de los Campos et al.

2015, Kim et al. 2015, Kruijer et al. 2015), hence, can be more
advantageous in estimating genetic components.
Using genotypic data and phenotypic measurements on

individuals is a straightforward methodology for estimating
genetic parameters, including heritability. However, this method
might not be cost-effective approach in large-scale commercial
breeding programs (Olson et al. 2006, Biscarini et al. 2010). For
example, collecting phenotypic measurements, genotyping, and
analysing data for body weight at harvest in a commercial fish
farm at an individual level can be time consuming, labour
intensive, expensive and difficult procedures, especially when the
population size is large (Simianer and Gjerde 1991, Peeters et al.
2013). Consequently, it can be an expensive approach to gather
genotypic or phenotypic data to estimate heritability for every
trait using individual measurements (Olson et al. 2006, Su et al.
2018). In addition, individual genotypic or phenotypic values
might not be available or recorded in every scenario. In some
scenarios, analysis of data inferred from groups or pools of
individuals can be a more feasible approach in estimating genetic
parameters.
Using the average of phenotypic data from pools or groups of

individuals is being practiced in breeding programs for estimating
(co-)variance components and has been studied using simulation
(Simianer and Gjerde 1991, Olson et al. 2006, Su et al. 2018) and
empirical studies (Biscarini et al. 2008, Biscarini et al. 2010). These
studies reported that the pooling strategy reduced the accuracy of
estimated breeding values (EBVs). For example, in a simulation
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design on feed intake in pigs, Olson et al. (2006) demonstrated
that when individuals were randomly assigned in pools of unequal
sizes (between 12 and 24) comprised of two, three or more
families, accuracy of EBVs inferred from fitting the linear mixed
model for the pooled phenotypic data decreased as compared to
individual EBV accuracies. In an empirical study on egg production
in chicken, Biscarini et al. (2010) have also shown that when
~15,200 chickens from two batches were assigned in cages
comprising of four individuals from either one or different families,
the resulting EBVs obtained from pools were smaller than those
inferred from individual measurements. However, heritability
estimates obtained from pooled data were similar to individual-
based estimations.
The above-mentioned studies have used only pedigree

information. However, in several scenarios in aquaculture, the
phenotype can only be recorded at the group or family level e.g.,
feed efficiency and survival traits. Moreover, the depth of the
pedigree, for computing relationship between families, may not
be available. In such scenarios, using genotypic and phenotypic
data pooled at family level provide an attractive avenue.
The only study which applied both phenotype and genotype at

pooled-data level, in a within-family context, to estimate herit-
ability was conducted on ryegrass (Ashraf et al. 2016), which
showed that construction of the GRM and estimation of family
heritability is feasible using pooled data. The application of pooled
data in aquaculture settings where often families are produced in
large groups is more relevant. In addition, breeding design for
several commercial species in aquaculture depends on family
selection. When family selection is being practised, family means
have a predictably smaller residual (environmental) variation.
Therefore, mean of phenotypic variation come closer to the mean
of genotypic variation (Falconer and Mackay 1996) and result in
high heritability estimates. In this study we extended the
approach used by Ashraf et al. (2016) for estimating the GRM
and heritability from mean family phenotypic values and family
mean allele frequencies in aquaculture using simulated data. We
investigated the effect of different number of families, family sizes,
number of pools per family and pooling size on estimation of
heritability of family means. In addition, changes in heritability of
family means across low, medium, and high trait heritability was
also measured.

MATERIALS AND METHODS
A number of scenarios and sub-scenarios were generated, representing
different number of families, family sizes and trait heritabilities used to
estimate the heritability of family means using both within-family pooled
phenotypic and genotypic values.

Simulation of populations
Simulation of pedigree and genotypic data was conducted using QMSim
software (Sargolzaei and Schenkel 2009). Firstly, 400 historical generations
with a constant population size of 2000 in each generation was used with
1000 males and 1000 females being generated in the last historical
generation. From the last historical generation, different number of sires
and dams were selected to form the base generation (G0) described in the
following scenarios:
Scenario 1 (S1) consisted of eight different sub-scenarios representing

50, 100, 200 and 400 full-sib families, which were randomly sampled from
the last historical generation. The generation of full-sib families was
considered with inclusion of equal number of sires and dams, e.g., 50 sires
and 50 dams in the 50 full-sib family sub-scenario. Each sub-scenario was
assumed to produce 20 progeny per family per generation for ten discrete
generations from generation 1 (G01) to generation 10 (G10). Selection of
sires and dams was based on highest EBVs from generation one onwards
whilst sires and dams were mated randomly.
Scenario 2 (S2) comprised four sub-scenarios with 100 and 200 full-sib

families sampled randomly from the last historical generation, and each
pair generated 40 or 60 progeny per family per generation from G01 to
G10. The structure of full-sib families, selection and mating was the same
as previously mentioned in S1.
Scenario 3 (S3) consisted of 50 full-sib families which were randomly

sampled to form the last historical generation, with 200 progeny per family
produced per generation from G01 to G10. Full-sib families were generated
the same way as described in S1 whilst selection was based on highest
EBVs and mating was at random as well.
Initially, each scenario and its associated sub-scenarios were generated

considering a trait with a moderate heritability (h2: 0.3) with standardised
mean of 0 and phenotypic variance of 1. In the absence of dominance and
epistasis effects, phenotypic values were obtained from summing the
random error, the polygenic effect, and the sum of QTL effects. To allow
both QTL and polygenic effects to contribute to variation of the trait, the
combined effect of all QTLs were sampled from normal distribution with
μ= 0 and σ²= 0.2, allowing a third of the variance (0.1) to be attributed to
the polygenic effect. Later, traits with low (0.05) and high (0.5) heritability
were also generated for the sub-scenario with 200 families of 60 progeny
each from S2 considering the same standardised mean and phenotypic
variance. To assign as close as possible to a third of variation of traits to
polygenic effect in the latter occasion, mean QTL effect (μ) was set to 0.03
and 0.3 for trait heritabilities of 0.05 and 0.5 respectively. Every scenario/
sub-scenario was simulated in ten independent replicates. The summary of
scenarios is provided in the Table 1.
The EBVs were calculated within QMSim software which uses

Henderson’s method for the best linear unbiased predictions (Henderson
1975) incorporating the numerator relationship matrix (NRM) in every
simulated generation.

Genome structure
The genome was simulated with a similar structure in all scenarios/sub-
scenarios consisting of 44 chromosomes of 50 cM each with 500 markers and
100 QTLs per chromosome. This generated 22,000 biallelic markers and 4400
biallelic QTLs per generation. Both markers and QTL were randomly

Table 1. The structure of main scenario and sub-scenarios generated for estimating genetic parameters from family-pooled phenotypic and
genotypic data.

Heritability (h²)

Scenario No. of families Family size 0.05 0.3 0.5 No. of replicates No. of datasets

S1 50 20 ✓ 10 40

100

200

400

S2 100 40 ✓ 10 10

60 ✓ 10

200 40 ✓ 10

60 ✓ ✓ ✓ 30

S3 50 200 ✓ 10 10

Total – – – – – 110
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positioned along the chromosome, sampled from a uniform distribution in
each replicate and equal allele frequencies in the first historical generation.
All loci in the first historical population had two alleles with a mutation rate of
10−8 per generation for markers and QTLs in the succeeding generations.
Although linkage disequilibrium (LD) is not defined in the parameter file, the
simulated mating design generated extensive LD across the genome across
generations using minor allelic frequency (MAF) of higher than 0.05.

Data preparation
The phenotypic means for each family were calculated by averaging the
phenotypic values of individuals in each family in S1 and S2. This was simply
considered as a single pool. In addition, in order to estimate the effect of
pooling on heritability of family means, within each sub-scenario in S2, two
and five pools per family were generated by randomly allocating family
members equally across the pools. This resulted in 30 individuals per family
per pool in two pools and 12 individuals per family per pool in the five-pool
system in the 60 progeny per family scheme. Then, the mean of phenotypes
was calculated for each pool. For example, in the 200-families scenario, there
were 400 phenotypic means in the two-pool strategy and 1000 pools in the
five-pool strategy. For S3, the same methodology was applied for generating
only two pools but using different pool sizes (12, 30, 60 and 100 per pool).
Consequently, in this scenario, totals of 24, 60, 120 and 200 progeny per
family were used, randomly split into two equal pools.
Quality control of genotypes was performed based on MAF of higher than

0.01. This has resulted in obtaining a range of 19,876 to 19,956 polymorphic
markers in generation 1 and 12,527–12,677 in generation 10 across different
sub-scenarios. Subsequently, 10,000 markers from remaining informative
markers in each generation were used for further analysis. To obtain means
of allelic frequency, the simulated biallelic polymorphic genotypes were
coded as 0, 1 and 2 for homozygote, heterozygote and homozygote
respectively, and then divided by two. Mean allele frequencies for each SNP
in each pool were calculated and arranged in a ‘design matrix’ with pool ID
per family in columns and SNPs in rows, capturing the family variation.

Statistical analysis
The matrix of mean family allelic frequency was used to construct the GRM
(G matrix) and to compute the (working) inverse of the G matrix (Ginv) as
described by Ashraf et al. (2016). In contrast to their research, this study
investigated scenarios where one, two and five pools were implemented
as outlined above. To construct the Gmatrix; the matrix of allelic frequency
estimates was first considered with SNPs in rows and samples in columns:

M ¼ Mij
� � ¼ Xij � Xi

� �
(1)

where Xij is the allele frequency at SNP i in family j, and M is the matrix of
SNP allele frequencies with elements Mij centred around the overall SNP i
mean frequency, Xi . Then, the GRM (G) was constructed:

G ¼ M0M
K

(2)

Here, K was estimated as
P

Xi 1� Xi
� �

. Since the G matrix was singular, it
was inverted by the eigen-decomposition after adding a small constant to
the zero eigenvalue:

Ginv ¼ E0vΛ
�1Ev (3)

where Ev is the matrix of eigenvectors of G and Λ is the diagonal matrix of
eigenvalues of G, modified as mentioned above.
Following this, the genetic parameters for all analyses were estimated

using a REML method in ASReml-R package (Butler et al. 2009). The
following model was fitted to the family pool data:

y ¼ μ1þ Zvþ e (4)

where y is the vector of family phenotypic mean values, μ represents the
constant term, Z defines the design matrix relating pools to families, v is
the vector of random effects capturing the genetic value of the family,
assumed v � N 0; σ2aG

� �
, and e is the vector of residual errors, assumed

e � N 0; σ2e I
� �

, with σ2a and σ2e being the additive genetic and residual
variances. The matrix G was provided as the GRM. Then, the heritability of

family means (pools) ðh2poolÞ in every scenario was estimated as h2pool ¼
σ2a

σ2aþσ2e
using the REML estimates of the variance components.

The repeatability of family estimates was also estimated to investigate
the accuracy of the family heritability estimates in S3 and S2 with 60-

progeny for three heritability values, by first fitting a model to pool mean
data similar to that in Eq. 4. However here, v is the vector of random family
effects, assumed v � N 0; σ2bI

� �
, and e is the vector of residual errors,

assumed e � N 0; σ2w I
� �

, with σ2b and σ2w being the between- and within-

family variances. Subsequently, the repeatability was estimated as
σ2b

σ2bþσ2w

REML was also used to estimate the heritability from pedigree data for 100
and 200 family scenarios with 20, 40 and 60-progeny from S1 and S2 and,
50 and 400 families from S1, by first fitting the following animal model:

y ¼ μ1þ Zvþ e (5)

where y is the vector of individual phenotypic values, μ represents the
constant term, Z defines the design matrix relating records to appropriate
random effects, v is the vector of animal random effects, assumed
v � N 0; σ2aA

� �
, and e is the vector of residual errors, assumed

e � N 0; σ2e I
� �

, with σ2a and σ2e being the additive genetic and residual
variances. The matrix A was provided as the NRM from the simulated
pedigree. Next, the pedigree heritability was calculated as h2ped ¼ σ2a

σ2aþσ2e
using the REML estimates of variance components.
The heritability of family means from S2 was compared with the family

heritability (h2f ) equation from Falconer and Mackay (1996):

h2f ¼
1þ n� 1ð Þr
1þ n� 1ð Þt h

2
ped (6)

where h2f is the family heritability, n is the number of progeny per family, r
is the relationship between families being simply considered as 0.5 among
full-sib family members e.g. in Falconer and Mackay (1996), and t is the
intraclass correlation (ICC). The t value was obtained by fitting a model to
individual animal data using a model of the form in Eq. 5, where y is the
vector of individual phenotypic values, μ represents the constant term, Z
defines the identity matrix (I) due to having one record per family, v is the
vector of family random effects, assumed v � N 0; σ2bI

� �
, and e is the vector

of residual errors, assumed e � N 0; σ2w I
� �

.
The heritability of family mean was averaged across replicates for

presentation in graphs. The standard error of the estimates was obtained
from their standard deviation:

SE ¼ s
ffiffiffi
n

p

where SE is standard error of heritability, s is equal to standard deviation of
estimates across ten replicates, and n is the number of replicates.
All the analysis was conducted in R programming language (R Core

Team 2020).

RESULTS
In this section, the results obtained from different factors affecting
the estimation of heritability of family means are presented. Then,
this is further expanded into the effect of the set (individual) trait
heritability on estimated heritability of family means. Finally, the
results of heritability of family means across different individual
heritabilities are compared with corresponding estimates from
Falconer’s family mean formula. Results are the average of estimates
over ten replicates, whilst standard errors of sampling presented as
error bars. However, in the supplementary file standard error
associated with the individual estimates are provided.

Parameters affecting the estimation of heritability of family
means
The following sections summarise the effects of number of families,
family size, number of pools and pooling size on heritability of family
means. The first two sections present the results of single-pool based
estimation of heritability of family means from S1 and S2 whilst the
next two sections summarise the two- and five-pool results from S2
and the last section presents only the two-pool results from S3.

Effect of the number of families on heritability of family
means
The estimates of heritability of family means for different numbers
of families (50–400) with 20 progeny per family (scenario S1),
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based on a single pool per family are presented in Fig. 1. Detailed
results of heritability of family mean are provided in Supplemen-
tary Table S1. The diagram demonstrates estimates in generations
1, 5 and 10. The figure shows that use of one pool resulted in
unreliable estimation of heritability of family means, regardless of
the number of families. This was indicated by the high variation of
results in all families across generations. In addition, detailed
results of heritability of family means presented in Supplementary
Table S1 shows that estimates across generations and replications
for all family numbers were not repeatable. Furthermore, standard
error of heritability of family means estimates in the Supplemen-
tary Table S1 were high, rendering the results for single pools
unreliable.

Effect of the size of families on heritability of family means
The heritability of family mean estimates over family sizes of 40
and 60 (scenario S2) in the 100- and 200-family scenarios is
depicted in Fig. 2. The estimates are provided for generations 1, 5
and 10 and are averaged over ten independent replicates using a
single pool. The results showed that increasing the size of families
in the 100- or 200-family scenarios did not estimate the heritability
of family means reliably whenever one pool is considered. This is
reflected by the large standard errors of samplings, resulting in the
unrepeatable patterns of changing the estimates over replicates
and generations as also demonstrated in Supplementary Table S1.

Effect of number of pools on heritability of family means
The effect of using two and five pools in estimating heritability of
family means with 100 families from S1 and S2 scenarios is shown
in Fig. 3. Using both two and five pools, heritability estimates
decreased from generation 1 to 10. However, this was not true of
the 20-progeny per family scenario from generation 5–10. The
detailed results of heritability of family means are provided in
Supplementary Table S2. Overall, the 20-progeny scenario
estimates did not show consistency over replicates. The standard
errors of estimates were generally high but much smaller as
compared to single pool, and the extent of change was not
consistent across replicates. Hence, estimates of heritability of
family means were not estimated with high precision using 100
families for S1 and S2 scenarios using two and five pools.
In the 200-families scenario from S1 and S2 which is depicted in

Fig. 4 and Supplementary Table S2, the family setting showed
more consistent estimates and less fluctuation between replicates
in comparison to the 100-families scheme as presented using error
bars. However, the estimate of heritability of family means using
20 progeny per family was less consistent across replicates in both
two- and five-pool strategies compared to 40 and 60 progeny per
family. Overall, 60 progeny per family using two pools showed
more consistency in pattern across replicates. Consequently, this
scenario has been chosen for further analysis.

Effect of the number of pools on the genetic relationship
matrix
The effect of pooling the genotypes on within- and between-
family relationships for scenario S2 is presented in Fig. 5, showing

Fig. 1 The estimates of heritability of family means of different
number of families (scenario S1) based on single pool strategy in
generations 1, 5 and 10. The results are averaged for ten replicates
and standard errors of sampling shown as error bars. The y-axis
represents the estimates of heritability of family means and the x-
axis is the generation number. The coloured bar shows 50, 100, 200
and 400 number of families in ‘red brick’, ‘green’, ‘blue’ and ‘purple’
colour bars, respectively.

Fig. 2 The estimates of heritability of family means for 100 and 200 families in conjunction with 40 and 60 progeny per family (scenario
S2) using a single pool scheme in generations 1, 5 and 10. The y-axis is the estimate of heritability of family means and the x-axis is the
generation number. The legend bar shows family sizes of 40 and 60 in ‘red brick’ and ‘green’ respectively. The results are averages over ten
replicates and error bars represent the standard error of samplings over ten replicates.
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only the first five out of 200 families from a 60-progeny per family
scenario for the purpose of illustration. Capital and small letters
are presenting different families and pools respectively. Using this
structure, from the one, two and five-pool schemes, there were 60,
30 and 12 progeny per pool, respectively. The graph indicates that
the application of two and five pools has generated not only a
larger number of between-family relationships but also within-
family relationships, e.g., five pools have generated a 5 × 5 GRM
within each family. Although within-family relationships were
high, the relationships across families changed from small to high
across different generations. For example, the extent of between-
family relationships for the sub-scenario used in this section was
ranging from −0.091 to 0.216 in G01, −0.742 to 0.928 in G05 and
−0.579 to 0.848 in G10.

Effect of pool size on heritability of family means
Estimates of family mean heritability for pool sizes of 12, 30, 60
and 100 for 50 families of 200 progeny each from scenario S3,
along with their associated repeatability values are presented in
Fig. 6. The results are provided for the two-pool scenario using
trait heritability of 0.3. The detailed results of heritability of family
means and their associated repeatabilities for ten replicates are
provided in Supplementary Table S3. Standard errors of sampling
are shown as error bars in the figure whilst standard errors of all
estimates are provided in the supplementary table. Using 12
progeny per pool in each family, large standard errors and
inconsistent trends were obtained whilst this was not the case
using a higher number of individuals per pool. In addition,
increasing the number of progeny per pool increased the
heritability estimates of family means towards one. However, the
standard errors were high even using 100 progeny per pool per
family. This can be due to the small number of families used in this
experiment.

Effect of trait heritability on estimate of heritability of family
means
The estimates of heritability of family means for the trait
heritabilities of 0.05, 0.3 and 0.5 implemented in G0 and their
associated repeatabilities are provided in Fig. 7 for ten replicates in
G01, G05 and G10. The diagram is presented for the scenario with
200 families of 60 progeny/family from S2 scenario split into two
pools. The detailed results of heritability of family means and

repeatabilities are provided in Supplementary Table S2. Using trait
heritabilities of 0.05, 0.3 and 0.5, estimates of heritability of family
means across replicates were consistent as shown by error bars.
Using all trait heritabilities, the heritability of family means was
always greater than their respective repeatability values.

Heritability of family means vs Falconer’s family heritability
estimates
The pedigree heritabilities (h2ped), ICCs, family heritabilities inferred
from Falconer’s formula (h2f ) and heritability of family means (h2pool)
with their standards error of sampling in the parentheses are
provided in Table 2. The results are presented for G01, G05 and
G10 averaged over ten independent replicates. Estimated
individual heritabilities were in expected range in generations
based on input heritabilities of the trait and selection method. The
intraclass correlations, on the other hand, were very small
resulting in infeasible values calculated with the Falconer formula,
including most of the values for moderate and high trait
heritabilities returning values greater than one.

DISCUSSION
This study illustrated the application of family-pooled phenotypic
and genotypic data for estimating the heritability of family means.
The effect of different parameters including the number of
families, size of family, number and size of pools and individual
heritability was explored. Finally, the estimates of heritability of
family means using pooled phenotypic and genotypic data,
together with pedigree information, were compared with family
heritability estimates obtained using Falconer’s formula, where the
family heritability is explained by the relationship between family
members, intraclass correlation of within-family phenotypic values
and individual heritability.
The results of this simulation study showed that using a single

pool did not result in accurate estimation of heritability of family
means, even after either increasing the number of families (Fig. 1)
or size of families (Fig. 2). The inaccuracy in estimating the
heritability of family means was reflected in high standard errors
and inconsistent patterns of estimates across replicates. In
contrast to a single pool, using two and five pools (Figs. 3 and
4) resulted in higher and more accurate estimates especially using
the 200-family scenario described under S2. This can be seen in

Fig. 3 The estimates of heritability of family means using two and five pools of 100 families from S1 and S2 scenarios in generations 1, 5
and 10. The y-axis is the estimate of heritability of family means and the x-axis is generation number. The legend colour bar shows family sizes
of 20, 40 and 60 in ‘red brick’, ‘green’ and ‘blue’ respectively. Results are averaged over ten replicates and standard error of sampling are
presented as error bars.
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Fig. 5 where application of two and five pools per family has
generated both within- and between-family relationships.
Although it was not investigated in this study, Ashraf et al.
(2016) highlighted that capturing within- and between-family
relationships accompanied by obtaining the non-additive and
genotype by environmental (G × E) component can result in more
accurate estimates of heritability of family means using a pooling
strategy.
As compared to the five-pool strategy, higher and more precise

estimates of heritability of family means were obtained using the
two-pool scenario. This can be explained by reduction of
individual residual variance (σ2e ). Let us assume that n is the pool
size and family size is constant, e.g., 60. When dividing the family
in two pools, the value of n would be 30 whilst for five-pool
scenario that would be 12. Consequently, an n of 30 can lower the
residual variance (σ2

e ) compared to a pool of sample size 12,
considering that approximately, σ2

e ¼ σ2i
n , where σ2i is the residual

variance at the individual level. In this study, using five as
compared to two pools resulted in smaller n from the same family
size and consequently lower estimates for heritability of
family means.

Among the scenarios with two pools, using 200 families of 60
progeny showed greater consistency across generations and
replicates. Although 40 progeny using the same number of
families was also consistent, considering σ2

e ¼ σ2i
n , one would

expect to obtain lower estimates using 40 progeny. However,
using 40 progeny resulted in higher heritability estimates
compared to 60 progeny in generation 5 (Fig. 4). Ashraf et al.
(2016) also presented results on family heritability using pooled
phenotypic and genotypic data. They used a maximum of three
individuals per family, two pools per family and 990 families,
whilst in our study the number of individuals per pool was 30. As
the individual heritability is not reported in their study, it is
difficult to make further comparisons.
As shown in Fig. 6, when the number of progeny per pool was

increased, the estimate of heritability of family means approached
unity, this occurs because the residual variance approaches zero
and hence the heritability approaches one. This change in
estimates is supported by e.g. Falconer and Mackay (1996), who
mentioned that the larger the family size, the closer the
phenotypic value of family mean to its genotypic value, i.e. its
true breeding value.

Fig. 4 The estimates of heritability of family means using two and five pools of 200 families from S1 and S2 scenarios in generations 1, 5
and 10. The y-axis is the estimate of heritability of family means and the x-axis is generation number. The legend colour bar shows family sizes
20, 40 and 60 in ‘red brick’, ‘green’ and ‘blue’ respectively. Results are averaged over ten replicates and standard error of sampling are
presented as error bars.

Fig. 5 The effect of genotype pooling on genetic relationship matrix shown for the first five of 200 families and 60 progeny per family
simulation in generation 5 of replicate 1. The diagonal blocks show within-pool genetic relationships and off-diagonal between pools. A:
family 1, B: family 2, C: family 3, D: family 4 and E: family 5. a: 1st pool, b: 2nd pool, c: 3rd pool, d: 4th pool and e: 5th pool in each family. One
pool has generated a 5 × 5 matrix, two pools a 10 × 10 matrix and five pools a 25 × 25 matrix.
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While Falconer’s formula was able to explain why increasing
pool size increased the heritability of family means, its estimates of
family mean heritability were out of bounds as shown in Table 2.
The inability of Falconer’s formula to estimate the family mean
heritability in this experiment was due to a much lower ICC as
compared to coefficient of relationship (the coefficient of
relationship in this study for full-sib families were considered as
0.5 as previously stated e.g. in Falconer and Mackay (1996)).
Consequently, lower t (with a small standard error) values as
compared to coefficient of relationship has resulted in Falconer’s
equation to estimate the family heritability inaccurately.
The estimates of heritability of family means and repeatability in

Figs. 6 and 7 showed that heritability of family mean estimates were
usually higher than repeatability measurements. These results
contradict Falconer and Mackay (1996) which mentions that

repeatability sets the upper limit of heritability. It should be noted
that Falconer and Mackay (1996) rule applies to heritability and
repeatability at individual/population level not on pools. In general,
two main condition should be fulfilled to have higher repeatability
than heritability, namely, high residual (environmental) variation and
substantial non-additive genetic variance (Boake 1989). The residual
variation using pooled-family data in this study was low (Supple-
mentary Table 2). In addition, both heritability of family means, and
repeatability were high as presented in Figs. 6 and 7 which
according to Boake (1989) should be the result of small environ-
mental variation and additive nature of genetic variance. Therefore,
two criteria for obtaining higher repeatability measurements
compared to heritability were not met here. Furthermore, genotypic
data was used to estimate heritability of family means in this study
whilst repeatability was obtained using pedigree. Therefore, using

Fig. 6 The heritability of family means and repeatability estimates using two pools for 50 families and 200 progeny per family and a pool
size of 12, 30, 60 and 100 in generations 1, 5 and 10. The y-axis is the heritability of family means and repeatability and, the x-axis is the
generation number. The legend bar shows pool sizes of 12, 30, 60 and 100 in ‘red brick’, ‘green’, ‘blue’ and ‘purple’ respectively.

Fig. 7 The estimates of heritability and repeatability of family means using two pools of 200-family and 60 progeny per family scenario
in generations 1, 5 and 10. The y-axis is the heritability of family means estimate and repeatability and the x-axis is generation number. The
legend bar shows trait heritabilities of 0.05, 0.3 and 0.5 in ‘red brick’, ‘green’ and ‘blue’ respectively. Standard error of samplings shown
represented as error bars.

N. Khalilisamani et al.

184

Heredity (2022) 128:178 – 186



different source of data may also be contributed to estimations of
repeatability and heritability of family means.
Overall, this study demonstrated that using pooled phenotypic

and genotypic data can be effectively used in constructing the
GRM and estimating the heritability of family means. However, this
requires having access to data from a large number of families,
e.g., 200, with at least 60 progeny per family within the boundary
of parameters tested in this study. Nevertheless, this can be
further investigated using a greater number of families, family
sizes, number of pools and varying pool size. In addition,
simulation studies may not necessarily mirror the specific
situations on commercial farms. For example, whilst in this study
we assumed that families are kept separately at least before
measuring their phenotypic values and genotyping, in commercial
aquaculture settings, families are kept in a large cohort of
communal progeny-rearing environment. Hence, parentage
assignment may be required to ensure that every family has
equal contribution to sampling. This might be problematic where
the genotyping budget is restricted. In addition, if more families
and progeny per family are available in commercial farming, even
a strategy without pooling might outperform pooling scenarios as
stated by Technow and Totir (2015). Therefore, it is essential to
extend the approach used in this study and explore it against data
and constraints imposed from commercial breeding farms.
Furthermore, the focus on the current study was on estimation
of heritability based on pooled genotypes and quantitative
phenotypes. The approach can be extended to the survival traits
in future studies. Future studies should also estimate the accuracy
of prediction and genetic gain for black tiger prawn as it has been
investigated for other species in several other studies e.g., Bell
et al. (2017), Alexandre et al. (2019), Alexandre et al. (2020) and
Baller et al. (2020), to compare the result of within-family pooling
with population-wise data.

REFERENCES
Alexandre PA, Porto-Neto LR, Karaman E, Lehnert SA, Reverter A (2019) Pooled

genotyping strategies for the rapid construction of genomic reference popu-
lations. J Anim Sci 97(12):4761–4769. https://doi.org/10.1093/jas/skz344

Alexandre PA, Reverter A, Lehnert SA, Porto-Neto LR, Dominik S (2020) In silico
validation of pooled genotyping strategies for genomic evaluation in Angus
cattle. J Anim Sci 98(6):skaa170. https://doi.org/10.1093/jas/skaa170

Ashraf BH, Byrne S, Fé D, Czaban A, Asp T, Pedersen MG et al. (2016) Estimating
genomic heritabilities at the level of family-pool samples of perennial ryegrass
using genotyping-by-sequencing. Tag Theor Appl Genet Theoretische Und
Angew Genetik 129:45–52

Baller JL, Kachman SD, Kuehn LA, Spangler ML (2020) Genomic prediction using
pooled data in a single-step genomic best linear unbiased prediction frame-
work. J Anim Sci 98. https://doi.org/10.1093/jas/skaa184

Bell AM, Henshall JM, Porto-Neto LR, Dominik S, McCulloch R et al. (2017) Estimating
the genetic merit of sires by using pooled DNA from progeny of undetermined
pedigree. Genet Selection Evolution: GSE 49:28. https://doi.org/10.1186/s12711-
017-0303-8

Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative
genetic parameters in wild populations: a comparison of pedigree and genomic
approaches. Mol Ecol 23(14):3434–3451

Biscarini F, Bovenhuis H, Ellen ED, Addo S, van Arendonk JAM (2010) Estimation of
heritability and breeding values for early egg production in laying hens from
pooled data. Poult Sci 89(9):1842–1849

Biscarini F, Bovenhuis H, van Arendonk JAM (2008) Estimation of variance compo-
nents and prediction of breeding values using pooled data. J Anim Sci 86
(11):2845–2852

Boake CRB (1989) Repeatability: Its role in evolutionary studies of mating behavior.
Evolut Ecol 3:173–182. https://doi.org/10.1007/BF02270919

Butler DG, Cullis BR, Gilmour AR, Gogel B (2009) ASReml-R Reference Manual. Tech-
nical Report, Queensland Department of Primary Industries and Fisheries, and
NSW Department of Primary Industries.

de los Campos G, Sorensen D, Gianola D (2015) Genomic Heritability: What Is It? PLOS
Genet 11(5):e1005048

Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics. 4th Edition,
Addison Wesley Longman, Harlow.Ta

bl
e
2.

Es
ti
m
at
e
o
f
p
ed

ig
re
e
an

d
fa
m
ily

h
er
it
ab

ili
ty
,a
n
d
in
tr
ac
la
ss

co
rr
el
at
io
n
fo
r
d
iff
er
en

t
in
it
ia
lt
ra
it
h
er
it
ab

ili
ty

va
lu
es

in
w
h
ic
h
ar
e
av
er
ag

ed
o
ve
r
te
n
re
p
lic
at
es

fo
r
th
re
e
g
en

er
at
io
n
s
(g
en

er
at
io
n

1,
5
an

d
10

)
u
si
n
g
20

0
fa
m
ili
es

o
f
60

p
ro
g
en

y
p
er

fa
m
ily
.

h²
:
0.
05

h²
:
0.
3

h²
:
0.
5

G
en

er
at
io
n

h2 pe
d

IC
C

h2 f
h2 po

ol
h
2 pe

d
IC
C

h2 f
h2 po

ol
IC
C

h2 f
h2 po

ol

1
0.
05

4
(0
.0
17

)
0.
03

1
(0
.0
08

)
0.
44

6
(0
.1
21

)
0.
28

1
(0
.0
21

)
0.
31

4
(0
.0
18

)
0.
15

9
(0
.0
18

)
0.
93

3
(0
.0
97

)
0.
87

5
(0
.0
82

)
0.
48

9
(0
.0
18

)
0.
22

8
(0
.0
17

)
1.
00

3
(0
.0
80

)
0.
93

2
(0
.0
27

)

5
0.
04

1
(0
.0
07

)
0.
01

6
(0
.0
04

)
0.
51

5
(0
.2
21

)
0.
22

4
(0
.0
45

)
0.
23

0
(0
.0
15

)
0.
06

6
(0
.0
05

)
1.
11

3
(0
.0
73

)
1.
11

3
(0
.0
79

)
0.
48

2
(0
.0
18

)
0.
12

3
(0
.0
12

)
1.
66

4
(0
.1
44

)
0.
77

6
(0
.1
06

)

10
0.
05

5
(0
.0
05

)
0.
01

5
(0
.0
02

)
0.
62

6
(0
.0
94

)
0.
18

1
(0
.0
13

)
0.
22

6
(0
.0
08

)
0.
06

1
(0
.0
04

)
1.
28

0
(0
.0
30

)
1.
27

8
(0
.0
30

)
0.
49

3
(0
.0
08

)
0.
10

4
(0
.0
05

)
1.
90

9
(0
.0
74

)
0.
90

4
(0
.0
30

)

*h
2 pe
d
th
e
p
ed

ig
re
e-
b
as
ed

h
er
it
ab

ili
ty
,
IC
C
th
e
in
tr
ac
la
ss

co
rr
el
at
io
n
,
h2 f

fa
m
ily

h
er
it
ab

ili
ty

re
su
lt
ed

fr
o
m

Fa
lc
o
n
er

fo
rm

u
la
,
h2 po

ol
h
er
it
ab

ili
ty

o
f
fa
m
ily

m
ea
n
s
an

d
n
u
m
b
er
s
in

p
ar
en

th
es
is

ar
e
st
an

d
ar
d
er
ro
rs

o
f

sa
m
p
lin

g
s.

h²
:0

.0
5,

0.
3
an

d
0.
5
ar
e
th
e
in
it
ia
l
tr
ai
t
h
er
it
ab

ili
ti
es

im
p
le
m
en

te
d
in

th
e
b
as
e
g
en

er
at
io
n
(G
0)

in
Q
M
Si
m
.

N. Khalilisamani et al.

185

Heredity (2022) 128:178 – 186

https://doi.org/10.1093/jas/skz344
https://doi.org/10.1093/jas/skaa170
https://doi.org/10.1093/jas/skaa184
https://doi.org/10.1186/s12711-017-0303-8
https://doi.org/10.1186/s12711-017-0303-8
https://doi.org/10.1007/BF02270919


Gay L, Siol M, Ronfort J (2013) Pedigree-Free Estimates of Heritability in the Wild:
Promising Prospects for Selfing Populations. PLOS ONE 8(6):e66983

Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310
Henderson CR (1975) Best Linear Unbiased Estimation and Prediction under a

Selection Model. Biometrics 31(2):423–447
Kim Y, Lee Y, Lee S, Kim NH, Lim J, Kim YJ et al. (2015) On the Estimation of Heritability

with Family-Based and Population-Based Samples. BioMed Res Int 2015:9
Kumar KS, Feldman MW, Rehkopf DH, Tuljapurkar S (2016) Limitations of GCTA as a

solution to the missing heritability problem. Proc Natl Acad Sci 113(1):E61
Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R et al. (2015) Marker-Based

Estimation of Heritability in Immortal Populations. Genetics 199(2):379
Mathew B, auer AM, Koistinen P, Reetz TC, Léon J, Sillanpää MJ (2012) Bayesian

adaptive Markov chain Monte Carlo estimation of genetic parameters. Heredity
109(4):235–245

Olson KM, Garrick DJ, Enns RM (2006) Predicting breeding values and accuracies from
group in comparison to individual observations. J Anim Sci 84(1):88–92

Peeters K, Ellen ED, Bijma P (2013) Using pooled data to estimate variance compo-
nents and breeding values for traits affected by social interactions. Genet,
Selection, Evolution: GSE 45(1):27–27

R Core Team (2020) R: A language and environment for statistical computing. Vienna,
Austria. https://www.R-project.org

Sargolzaei M, Schenkel FS (2009) QMSim: a large-scale genome simulator for live-
stock. Bioinformatics 25(5):680–681

Simianer H, Gjerde B (1991) Estimating variance components from fullsib group
means. J Anim Breed Genet 108:270–279

Speed D, Cai N, the UCLEB Consortium, Johnson MR, Nejentsev S, Balding DJ (2017)
Re-evaluation of SNP heritability in complex human traits. Nat Genet 49
(7):986–992

Su G, Madsen P, Nielsen B, Ostersen T, Shirali M, Jensen J et al. (2018) Estimation of
variance components and prediction of breeding values based on group
records from varying group sizes. Genet, Selection, Evolution: GSE 50(1):42–42

Sun MM, Huang JH, Jiang SG, Yang QB, Zhou FL, Zhu CY et al. (2015) Estimates of
heritability and genetic correlations for growth‐related traits in the tiger prawn
Penaeus monodon. Aquac Res 46(6):1363–1368

Technow F, Totir LR (2015) Using Bayesian Multilevel Whole Genome Regression
Models for Partial Pooling of Training Sets in Genomic Prediction. G3: Genes|
Genomes|Genet 5(8):1603

Viana JMS (2002) Heritability at family mean level. Rev Árvore 26:271–278

AUTHOR CONTRIBUTIONS
NK conducted review of literatures, simulation of breeding design and data analysis
with support from PCT and MSK. NK wrote the manuscript with the input from PCT,

MSK and HWR. All authors made substantial contributions to the interpretation of
results and preparation of the manuscript.

FUNDING
Open Access funding enabled and organized by CAUL and its Member Institutions

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41437-022-00502-8.

Correspondence and requests for materials should be addressed to Nima
Khalilisamani.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

N. Khalilisamani et al.

186

Heredity (2022) 128:178 – 186

https://www.R-project.org
https://doi.org/10.1038/s41437-022-00502-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Estimating heritability using family-pooled phenotypic and genotypic data: a simulation study applied to aquaculture
	Introduction
	Materials and methods
	Simulation of populations
	Genome structure
	Data preparation
	Statistical analysis

	Results
	Parameters affecting the estimation of heritability of family means
	Effect of the number of families on heritability of family means
	Effect of the size of families on heritability of family means
	Effect of number of pools on heritability of family means
	Effect of the number of pools on the genetic relationship matrix
	Effect of pool size on heritability of family means
	Effect of trait heritability on estimate of heritability of family means
	Heritability of family means vs Falconer&#x02019;s family heritability estimates

	Discussion
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




