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Abstract: With an increase in the number and types of network attacks, traditional firewalls and
data encryption methods can no longer meet the needs of current network security. As a result,
intrusion detection systems have been proposed to deal with network threats. The current mainstream
intrusion detection algorithms are aided with machine learning but have problems of low detection
rates and the need for extensive feature engineering. To address the issue of low detection accuracy,
this paper proposes a model for traffic anomaly detection named a deep learning model for network
intrusion detection (DLNID), which combines an attention mechanism and the bidirectional long
short-term memory (Bi-LSTM) network, first extracting sequence features of data traffic through a
convolutional neural network (CNN) network, then reassigning the weights of each channel through
the attention mechanism, and finally using Bi-LSTM to learn the network of sequence features. In
intrusion detection public data sets, there are serious imbalance data generally. To address data
imbalance issues, this paper employs the method of adaptive synthetic sampling (ADASYN) for
sample expansion of minority class samples, to eventually form a relatively symmetric dataset,
and uses a modified stacked autoencoder for data dimensionality reduction with the objective of
enhancing information fusion. DLNID is an end-to-end model, so it does not need to undergo the
process of manual feature extraction. After being tested on the public benchmark dataset on network
intrusion detection NSL-KDD, experimental results show that the accuracy and F1 score of this model
are better than those of other comparison methods, reaching 90.73% and 89.65%, respectively.

Keywords: intrusion detection; Bi-LSTM; attention mechanism; NSL-KDD

1. Introduction

With the rapid development of computer and communications networks, Internet
technology has provided more convenient services to people around the world than ever
before. However, the number and types of cyberattacks (such as network viruses, malicious
eavesdropping, malicious attacks, etc.), which increase year by year, are creating serious
threats to people’s information security and property safety. Therefore, information security
and communications security has become crucial to both individuals and society as a
whole [1,2]. Firewalls are widely deployed and used as basic means of security. However,
due to the difficulty of human configuration and the lag for new types of attacks, it is no
longer sufficient for units that need high security (e.g., government units, military bases,
etc.) [3]. Therefore, network security researchers have proposed a new means to quickly
identify and deal with anomalous networks intrusion detection systems (IDSs).

IDS is proven to be one of the efficient and promising approaches. It detects known
threats and malicious activities by monitoring traffic data in computer systems, and alerts are
issued when these threats are detected [4]. There are two types of monitoring for malicious
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activities. One is signature-based detection, similar to antivirus software that requires com-
parison with previously collected attack features, while the other is anomaly-based detection,
which requires comparison with normal traffic to make a judgment. In the KDD99 dataset,
Stolfo et al. classified network attacks into four categories—namely, the denial-of-service
attack (DoS), user-to-root attack (U2R), remote-to-local attack (R2L), and probe attack [5].

Nowadays, there are many researchers who advocate the combination of intrusion
detection and machine learning (ML) technologies for the detection of network attacks
by creating effective models. The authors in [6] propose the use of naive Bayes for the
identification of anomalous networks and compare it with decision trees (another clas-
sical machine learning algorithm). The authors in [7] combine support vector machine
(SVM) and the genetic algorithm to optimize the selection, parameters, and weights of
SVM features, thus improving the accuracy of network attack identification. The authors
in [8] improve the detection by constructing a multi-level random forest model to detect
network anomalous behavior. The authors in [9] improve the existing k-nearest neighbor
(KNN) classifier by combining K-MEANS clustering and KNN classifier with each other to
improve the accuracy of detection. The authors in [10] propose a novel intrusion detection
method that first decomposes the network data into smaller subsets by a C4.5 decision
tree algorithm and then creates multiple SVM models for the subsets, which reduces the
time complexity and improves the detection rate of unknown attacks. However, traditional
machine learning methods usually emphasize feature engineering, which consumes con-
siderable computational resources and usually only learns shallow features, leading to
less satisfactory detection results. Many scholars have turned their attention to the current
trend of deep learning, hoping to import network traffic data directly into the model to
skip the feature selection step. In one study [11], the authors propose a model structure
based on deep belief networks (DBNs) and probabilistic neural networks (PNNs) to reduce
the dimensionality of the data using deep belief networks and then classify the data using a
probabilistic neural network, which is superior to the traditional PNNs. The authors in [12]
propose a convolutional neural network-based detection method by processing traffic data
into image form, saving the process of designing features manually. In another study [13],
the authors use RNN networks for Botnet anomaly detection, and the effectiveness of RNN
networks on timing features is utilized to further improve the accuracy of classification.
Table 1 gives a summary and summary of the relevant research.

Table 1. Summary of relevant research.

Author(s) Year Algorithm Main Contribution Field

Amor et al. [6] 2004 Naive Bayes Proposed the use of naive Bayes for the identification of
anomalous networks.

Machine
Learning

Kim et al. [10] 2014 C4.5 decision tree and
SVM

Proposed a novel intrusion detection method that first
decomposes the network data into smaller subsets by C4.5
decision tree algorithm and then creates multiple SVM models
for the subsets.

Machine
Learning

Shapoorifard et al. [9] 2017 K-MEANS and KNN Proposed a classifier combining K-MEANS clustering and KNN
classifier to improve the accuracy of detection.

Machine
Learning

Tao et al. [7] 2018 SVM and genetic
algorithm

Proposed genetic algorithm to optimize the selection,
parameters, and weights of SVM features.

Machine
Learning

Jiadong et al. [8] 2019 Random forest Proposed a multilevel random forest model to detect abnormal
network behavior.

Machine
Learning

Torres et al. [13] 2016 RNN Proposed the use of RNN model to Botnet anomaly detection. Deep
Learning

Wang et al. [12] 2017 CNN Proposed to use CNN to detect the network traffic data.
Processed into the form of pictures.

Deep
Learning

Zhao et al. [11] 2017 DBN and PNN
Proposed a model structure based on DBN and PNN to reduce
the dimensionality of the data using DBN and then classify the
data using PNN.

Deep
Learning

Su et al. [14] 2020 CNN and LSTM Proposed a model based on CNN and LSTM to detect each
attack type.

Deep
Learning
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However, there is a problem of uneven distribution in network traffic data, and none
of the above networks exploits the correlation between traffic features. In this paper, a
DLNID model is proposed to solve the above remaining problems, using adaptive synthetic
sampling (ADASYN) for data augmentation of unbalanced samples and a modified stacked
autoencoder for data dimensionality reduction. To train and test the performance of
the DLNID model, we take the NSL-KDD dataset for simulation testing. The following
contributions are presented in this paper:

(1) A DLNID model combining attention mechanism and Bi-LSTM is proposed. This
DLNID model can classify network traffic data accurately;

(2) To address the issue of imbalanced network data, ADASYN is used for data augmenta-
tion of the minority class of samples eventually making the distribution of the number
of each sample type relatively symmetrical, allowing the model to learn adequately;

(3) An improved stacked autoencoder is proposed and used for data dimensionality
reduction with the objective of enhancing information fusion.

The rest of this paper follows: Section 2 details the techniques and innovations used in this
paper and presents a diagram of the model architecture of the DLNID model. Section 3 presents
information about the NSL-KDD dataset used in this paper. Section 4 provides experimental
results and analysis. In Section 5, we summarize our study and propose future research.

2. Technology
2.1. ADASYN

Adaptive synthetic sampling (ADASYN) [15] is an adaptive oversampling algorithm
based on the minority class samples. Compared with other data expansion algorithms,
it is characterized by the fact that it generates more instances in a special space with
lower density and fewer instances in feature space with higher density. This feature has
the advantage of adaptively shifting decision boundaries to difficult-to-learn samples, so
ADASYN is more suitable than other data augmentation algorithms to handle network
traffic with severe data imbalance. The algorithm is executed in the following steps:

Step 1: Calculate the number of samples to be synthesized as G, which can be expressed as

G = (nb − ns)× β (1)

where nb represents the majority sample, ns represents the minority samples, and β ∈ (0, 1).
Step 2: For each minority sample, calculate K neighbors by the Euclidean distance and

denote by ri the proportion of majority class samples contained in the neighbors, which
can be expressed as

ri = k/K (2)

where K represents the current number of neighbors, and k represents the majority class
sample in the current neighbor.

Step 3: Calculate the number of samples that need to be synthesized for each minority
sample according to G and synthesize the samples according to Equation (4), which can be
expressed as

g = G× ri (3)

Zi = Xi + (Xzi − Xi)× λ (4)

where g represents the quantity to be synthesized, Zi represents the synthesized new
sample, Xi represents the current minority sample, and XZi represents a random minority
sample among the k neighbors of Xi,λ ∈ (0, 1).

2.2. Autoencoder

An autoencoder [16] is an unsupervised learning network architecture, in which the
input and output dimensions are the same, and the number of nodes in the middle layer
is generally less than the number of nodes on the left and right sides. Figure 1 illustrates a
typical autoencoder consisting of two main components, i.e., the encoder and decoder. It
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works by using deep learning techniques to find an efficient representation of the input data
without losing information. In short, it compresses the original data by using the encoder
to obtain a lower-dimensional representation, which is then reconstructed into the original
data by the decoder. According to this working principle, we can use the trained encoder as a
tool for data dimensionality reduction. Compared with the traditional principal component
analysis (PCA) [17] data dimension reduction method, the autoencoder can achieve nonlinear
changes, which facilitates the learning of more deep projection data information.
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Figure 1. Autoencoder structure.

Although the autoencoder can achieve better data dimensionality reduction, compared
with other dimensionality reduction methods, we aimed to propose an autoencoder that is
able to perform dimensionality reduction and enhance data robustness to adapt to complex
network scenarios. Dropout [18] enables each neuron to have the probability p to be
discarded during network training iterations, and due to this mechanism, each neuron
is not overly dependent on other neurons, thus reducing the phenomenon of overfitting
and improving the generalization ability of the model to some extent. By combining
the two ideas, a low-latitude representation is obtained by using dropout and stacked
autoencoder after dimensionality reduction. Since each dimension has the probability
of being discarded, the information set of each dimension is more comprehensive than
that obtained by traditional autoencoder after dimensionality reduction, thus facilitating
model learning. Based on the above ideas, we proposed a stacked encoder structure with
increased dropout, as shown in Figure 2.
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2.3. Channel Attention

An attention mechanism was proposed based on the idea that people usually tend
to focus more on some local regions of the image rather than the image as a whole when
observing an image. At ImageNet 2017, the WMW team proposed a squeeze-and-excitation
(SE) network based on the channel attention mechanism [19] and won the Image Classifica-
tion challenge with a great advantage.

The convolutional block attention module (CBAM) [20] is improved on the basis of
SE by adding a channel of Maxpool, and through a large number of experiments, the
author of [20] proved that adding it can effectively improve the performance of the model
classification. Based on these ideas, in this paper, the CBAM used in 3D image processing
was applied to the intrusion detection model for 2D data, with modifications. As shown
in Figure 3, the flow of the CBAM for 2D data processing is composed of two important
phases, i.e., squeeze and excitation. In the squeeze phase, the traffic data are AvgPooling
or Maxpooling, from a (c, w)-dimensional form to a (c, 1)-dimensional form, to obtain
the global information of each channel. In the excitation phase, the compressed data are
adaptively recalibrated by a multilayer perceptron (MLP) to return a weight matrix for
each channel.
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2.4. Bidirectional LSTM

Long short-term memory (LSTM) [21,22] introduces storage cells and cell states to
overcome the long-term dependency problem that exists in recurrent neural networks
(RNNs) [23]. The long-term dependency problem is a gradient explosion or gradient
dispersion problem caused by multiple multiplications of matrices when RNNs compute
the relationship of distant nodes. The following shows how the LSTM network is updated
in one time step:

it = σ(W xixt + Whiht−1 + bi) (5)

ft = σ(W xfxt + Whfht−1 + bf) (6)

ot = σ(W xoxt + Whoht−1 + bo) (7)

c̃t = tan h(W xcxt + Whcht−1 + bc) (8)

ct = ftct−1 + itc̃t (9)

ht = ottan h(c t) (10)

where it, ft, and ot represent the input gate, the forget gate, and the output gate, respectively.
σ (sigmoid) and tanh represent two distinct activation functions, respectively. ct represents
the current cell state, ct−1 represents the previous cell state, and c̃t represents the candidate
memory cell. ht represents the hidden state of the current cell, and ht−1 represents the
hidden state of the previous cell.
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The bidirectional LSTM (Bi-LSTM) network [24] improves its LSTM predecessor by

adding backward hidden states
←
h t to the existing forward hidden states

→
h t, allowing it to

obtain a forward-looking capability similar to that of the hidden Markov model (HMM).
The following shows how the Bi-LSTM network updates itself in one time step:

→
h t = tan h

(
W

h
→
t
xt + W→

h
→
h

→
h t−1 + b→

h

)
(11)

←
h t = tan h

(
W

h
←
t
xt + W←

h
←
h

←
h t−1 + b←

h

)
(12)

ht =
→
h t +

←
h t (13)

where ht represents the hidden state of the current cell, ht−1 represents the hidden state

of the previous cell,
→
h t represents the forward hidden state of the current cell, and

←
h t

represents the reverse hidden state of the current cell.
For network traffic, Bi-LSTM can effectively utilize the temporal features present in

the contextual information to improve the model training, and its structure is shown in
Figure 4.
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2.5. Network Architecture

As shown in Figure 5, the overall architecture of the DLNID model consists of seven
parts, which are the input layer, encoder layer, multiple convolutional layer, attention layer,
Bi-LSTM layer, fully connected layer, and the output layer. In the first layer, the model
accepts the network traffic data from the dataset. In the encoder layer, the model uses
the encoder part of the improved stacked autoencoder that has been trained to perform
dimensionality reduction on the data. In the multiple convolutional layer, the model uses
multiple convolutional operations to extract features from the downscaled data. In the
attention layer, the model uses the CBAM to redistribute the weights of each channel and
assign more important channels with higher weights. In the Bi-LSTM layer, the model
extracts the feature information of each dimension and learns the relationship between the
dimensions. In the fully connected layer and the output layer, the model passes the learned
features onto the classifier and outputs the classification results. Algorithm 1 presents the
training process of the DLNID model.
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Algorithm 1: DLNID Training

Input: NSL-KDD dataset
Output: Accuracy, Precision, Recall, F1 score
1 For data in the training set or test set; do
2 One-hot encoding;
3 If training set,
4 ADASYN data augmentation;
5 Normalization;
6 End.
7 For data in the training set or test set; do
8 Use encoder for data dimensionality reduction;
9 Perform multilayer convolution operations;
10 Use CDAM to redistribute channel weights;
11 Use Bi-LSTM to learn sequence information;
12 Flatten the dimension;
13 Send to the Fully connected layer and classify;
14 End.
15 Test model on NSL-KDDTest+;
16 Obtain loss and update DLNID by Adam;
17 Return accuracy, precision, recall, F1 score.
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3. Datasets
3.1. Data Analysis

The experimental data in this paper adopt the NSL-KDD dataset [5], which is an
improved version of the KDD99 dataset [25] that addresses the data redundancy problem
present in the KDD99 dataset and is one of the benchmark datasets used to evaluate the
performance of IDS. It consists of a training set (KDDTrain+), containing 125,973 traffic
samples, and a test set (KDDTest+), containing 22,544 traffic samples. In order to restore
the complex network situation in reality to a greater extent, there are only 19 attack types
in the training set, and the other 17 attack types only exist in the testing set.

The NSL-KDD dataset has a total of 42 dimensional features, one of which is a clas-
sification label, and the rest are feature labels. For binary classification, the classification
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labels are divided into two categories, i.e., normal and anomaly. For multiclassification, the
classification labels are divided into five categories, i.e., normal, Dos, R2L, U2R, and probe.

3.2. Data Preprocessing
3.2.1. One-Hot Encoding

Since there are three non-numerical types of feature values, and the model can only
accept numerical types, one-hot encoding was adopted to convert the three non-numerical
features into numerical features. For example, the values of protocol_type are TCP, UDP
and ICMP, and after encoding, the values become [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively.
Finally, the dataset contains 122 dimensional data after encoding.

3.2.2. Data Augmentation

The number of U2R and R2L samples in the NSL-KDD test set is much higher than that in
the training set, and only a small percentage of these samples are in the training set; therefore,
the trained model has difficulty distinguishing these samples, so we used the aforementioned
ADASYN algorithm to expand the data and expand the samples (such as U2R and R2L) that
account for a smaller percentage of the original training set, balancing the percentage of the
majority and minority samples. This can solve the imbalance problem in the network data to
a certain extent and further boost the generalization ability of the model.

3.2.3. Normalization

A large gap between different dimensional feature data within the dataset can bring
about problems such as slow model training and insignificant accuracy improvement;
therefore, in order to tackle this issue, the MinMaxScaler [26] was adopted to map the data
into the range of (0,1) as follows:

x′ =
x− xmin

xmax − xmin
(14)

where xmax is the maximum value, and xmin is the minimum value.

4. Results

In the following section, we detail the experimental settings and appraise the per-
formance metrics of the model. In addition, we present two sets of ablation experiments
to verify the reliability of the data augmentation and improve dimensionality reduction
approaches proposed in Section 2. Finally, we compare the model with other papers.

4.1. Experimental Settings

In this study, all experiments were conducted in the hardware environment of Intel(R)
Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz, with the operating system of windows
10, using Python 3.7, PyTorch 1.10, and the sklearn library for writing and simulating the
model.

4.2. Performance Metrics

The confusion matrix was selected as the classification metric of the model predicted
data. Additionally, accuracy (Acc), precision (Pre), recall (Rec), and F1 score (F1) were
selected as the performance indicators for binary classification, while recall and false
positive rate (FPR) were used as the performance indicators for multiclassification. The
computation of each performance indicator is detailed as follows:

Acc =
TP + TN

TP + TN + FP + FN
(15)

Pre =
TP

TP + FP
(16)
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Rec =
TP

TP + FN
(17)

F1 =
2× Pre× Rec

Pre + Rec
(18)

FPR =
FP

FP + TN
(19)

4.3. Result Analysis

The experiment studied the performance of the proposed network on normal, Dos,
R2L, U2R, and probe for binary and multiclassification experiments, respectively. When the
network parameters were chosen as shown in Table 2, the high accuracy and F1 score could
be achieved on the KDDTest+ test set. Figures 6 and 7 show the experimental results using
the confusion matrix. The experimental results show that most samples were classified
correctly, which appear on the diagonal, indicating a better classification performance.
However, the comparison between the two figures shows that the performance of the
proposed model was somewhat degraded on the multiclassification experiments, compared
with the binary classification experiments. Table 3 provides the false-positive and recall
rates corresponding to different attacks under the multiclassification task; the aim was to
achieve a lower false-positive rate and a higher recall rate in intrusion detection. From the
analysis, it can be concluded that despite the data augmentation process, the U2R category
was more likely to be misclassified because the U2R category in the test set was much larger
than the others in the training set.

Table 2. Model parameters.

Type Parameter

Encoder -
Conv1d 5 × 5

BatchNorma1d -
Maxpool1d 3 × 3

Conv1d 1 × 1
ChannelAttention -

Bidirectional LSTM -
Dropout 0.3

Fully connected (LeakyRelu) 32
Dropout 0.2

Fully connected () 16

Loss function CrossEntropy
Optimizer Adam

Learning rate 0.0005
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Table 3. Rec and FAR on the KDDTest+ (5 classes).

Type Rec (%) FPR (%)

Normal 92.14 13.44
Dos 80.96 2.47

Probe 76.33 3.94
R2L 65.76 2.77
U2R 24.00 1.73

4.3.1. Comparison of Data Enhancement Methods

Table 4 shows the experimental results of the transverse comparison test by selecting
different data augmentation algorithms under the condition in which the network model
was the same, and the dimensionality reduction method remained unchanged. Compared
with the unprocessed data, each performance indicator of the proposed model underwent
a large improvement. Compared with the SMOTE data augmentation method, the data
augmentation method used in this paper also revealed a certain improvement in accuracy
and F1 score, with an increase of 2.09% and 2.61%, respectively.

Table 4. Comparison of data enhancement methods.

Type ACC (%) Pre (%) Rec (%) F1 (%)

Not processed 80.01 70.71 91.63 79.82
SMOTE [27] 88.64 85.32 88.83 87.04

ADASYN 90.73 86.38 93.17 89.65

4.3.2. Dimensionality Reduction Comparison

Table 5 shows the experimental results of selecting different dimensionality reduction
methods for horizontal comparison under the condition in which the model was the
same, and the data augmentation method remained unchanged. Compared with the
PCA, the performance of each model in this paper greatly improved. Compared with
the autoencoder, the improved stacked autoencoder used in this paper also had some
improvement in accuracy and F1 score, with an increase of 4.64% and 3.28%, respectively.

Table 5. Dimensionality reduction comparison.

Type ACC (%) Pre (%) Rec (%) F1 (%)

PCA 85.29 83.45 82.14 82.79
Autoencoder 86.09 85.08 82.12 83.57

Improved stacked autoencoder 90.73 86.38 93.17 89.65
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4.3.3. Model Comparison

Figure 8 compares the proposed DLNID model with other reference models in terms
of accuracy, and it can be seen that the accuracy of DLNID is higher than other models.
Table 6 compares the proposed model and other network models in terms of various per-
formance metrics, from which it can be seen that the proposed DLNID model outperforms
its comparison peers in terms of Accuracy and F1 score, reaching 90.73% and 89.65% on the
KDDTest+ dataset, respectively. Compared with the traditional machine learning methods
such as GAR-Forest or NB Tree, the proposed method required no manual feature extraction
and improves the accuracy rate. Compared with the autoencoder, the improved stacked au-
toencoder proposed in this paper enhanced the information set after dimensionality reduction
and achieved better classification results. Compared with the CNN, the proposed model used
CNN to first extract feature information and then reassign the weights of channels by using
the attention mechanism, and finally, learn the relationship between features in the network
traffic by Bi-LSTM, thereby achieving an improved classification performance.
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Table 6. Overall performance comparison.

Type ACC (%) Pre (%) Rec (%) F1 (%)

DLNID 90.73 86.38 93.17 89.65
DLHA [28] 87.55 88.16 90.14 89.19

BAT-MC [14] 84.25 - - -
Autoencoder [29] 84.24 87.00 80.37 81.98

CNN [30] 80.13 - - -
Adaptive Ensemble [31] 85.20 86.50 86.50 85.20

TES-IDS [32] 85.79 88.00 86.80 87.39
GAR-Forest [33] 85.06 87.50 85.10 85.10

CNN+BiLSTM [34] 83.58 85.82 84.49 85.14
NB Tree [5] 82.02 - - -

SVM-IDS [35] 82.37 - - -

5. Conclusions

To address the issue of data imbalance in network data and low detection accuracy,
we proposed an ADASYN oversampling algorithm as the data augmentation method to
tackle the network intrusion data imbalance problem, the stacked autoencoder with increased
dropout structure as the data downscaling method, to improve the generalization ability
of the model, and the network structure by combining the channel attention mechanism
with the bidirectional LSTM network. The accuracy and F1 score of the proposed network
model reached 90.73% and 89.65% on the KDDTest+ test set, respectively. Compared with
other reference network models, the proposed DLNID model offered a better classification
performance. The proposed network model is considered useful for the current development
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of network intrusion detection. In the future, we plan to apply the DLNID model to an actual,
combined network capture module to implement an online intrusion detection model.
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the manuscript.
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