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Abstract
In 2020, the Australian and New Zealand flux research and monitoring network, 
OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through 
two decades of ecosystem studies on global change biology. OzFlux is a network not 
only for ecosystem researchers, but also for those ‘next users’ of the knowledge, infor-
mation and data that such networks provide. Here, we focus on eight lessons across 
topics of climate change and variability, disturbance and resilience, drought and heat 
stress and synergies with remote sensing and modelling. In distilling the key lessons 
learned, we also identify where further research is needed to fill knowledge gaps and 
improve the utility and relevance of the outputs from OzFlux. Extreme climate vari-
ability across Australia and New Zealand (droughts and flooding rains) provides a nat-
ural laboratory for a global understanding of ecosystems in this time of accelerating 
climate change. As evidence of worsening global fire risk emerges, the natural ability 
of these ecosystems to recover from disturbances, such as fire and cyclones, provides 
lessons on adaptation and resilience to disturbance. Drought and heatwaves are com-
mon occurrences across large parts of the region and can tip an ecosystem's carbon 
budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, 
ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivot-
ing back to a strong carbon sink upon the return of favourable conditions. Located in 
under- represented areas, OzFlux data have the potential for reducing uncertainties 
in global remote sensing products, and these data provide several opportunities to 
develop new theories and improve our ecosystem models. The accumulated impacts 
of these lessons over the last 20 years highlights the value of long- term flux observa-
tions for natural and managed systems. A future vision for OzFlux includes ongoing 
and newly developed synergies with ecophysiologists, ecologists, geologists, remote 
sensors and modellers.

K E Y W O R D S
agroecosystem, disturbance, eddy covariance, flux network, global change, modelling, remote 
sensing, stress, TERN
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1  |  INTRODUC TION

Ecosystem flux networks are demonstrating their increased rele-
vance to society's most significant sustainability challenges, partic-
ularly those linked to global change (Baldocchi, 2019; Long, 2020). 
The need for better information and knowledge about energy, water 
and carbon budgets in natural and managed ecosystems, and the 
underlying processes that govern these budgets, is growing as the 
world looks to land- based carbon sequestration to help achieve net 
zero greenhouse gas emissions. Quality data and expert knowledge 
will be critical to building confidence in these options for managing 
net emissions in a changing climate.

OzFlux, the regional flux monitoring network covering Australia 
and New Zealand, began in the late 1990s in anticipation of these 
global challenges, especially climate change (see next section 
for more detail). Two decades on from its establishment in 2001, 
OzFlux has matured into a network that supports research about 
Australia's and New Zealand's unique ecosystems, provides key data 
for Southern Hemisphere terrestrial systems, and observations for 
some ecosystems subject to an extreme and highly variable climate. 
The OzFlux community has created an observing network and plat-
form to enable scientific discoveries by generations of researchers 
and to deliver relevant and robust data and information for research-
ers, resource managers and policymakers, now and into the future. 
Through OzFlux, this research community has also transformed its 
approach to data sharing, acknowledging the challenges this can in-
volve and developing solutions to address these, alongside demon-
strating the significant benefits that flow from ensuring that data 
complies with FAIR (Findable Accessible Interoperable Reusable) 
principles (Wilkinson et al., 2016). OzFlux provides an example to 
other flux networks and research communities of the importance 
of data sharing.

The combined research infrastructure of OzFlux and similar re-
gional networks around the world (Mizoguchi et al., 2009; Novick 
et al., 2018; Park et al., 2018; Rebmann et al., 2018) contribute to 
the globally coordinated FLUXNET network (Baldocchi et al., 2001). 
Like OzFlux, this global network of micrometeorological ‘flux tow-
ers’ that use the eddy covariance method, provide observations to 
advance the understanding and simulation of processes across the 
past, present and future for a wide array of the world's ecosystems. 
These continuous, long- term and standardised measurements are 
critical for detecting ecosystem stress, recovery from disturbance, 
and resilience to climate change, as well as exploring the causes and 
effects of longer- term climate trends and interannual variability— a 
goal unattainable with short- term records (Baldocchi et al., 2018). 
In- situ flux tower and remote sensing observations are being com-
bined to upscale from site to regional and global scales (e.g. Cleugh 
et al., 2007; Jung et al., 2020; Schimel & Schneider, 2019), contrib-
uting valuable data- driven diagnoses of how climate change affects 
terrestrial carbon and water cycles (e.g. Piao et al., 2020). Similarly, 
combining in situ flux tower measurements, manipulation experi-
ments and satellite remote sensing are advancing knowledge of how 
climate extremes affect the carbon cycle (Sippel et al., 2018). See TA
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Chapin et al. (2006) for definitions of carbon cycle terms used in this 
paper. FLUXNET’s global database of ecosystem- scale observations 
are being used to evaluate and improve the processes represented in 
many ecophysiological, hydrological and land surface models (LSMs), 
improving the regional and global Earth System models used around 
the world (e.g. Ziehn et al., 2020).

Vegetation of Australian and New Zealand ecosystems have 
evolved in geographic isolation, geological stability, long- term arid-
ity and fire- prone environments. In Australia, these conditions have 
resulted in a unique flora with scleromorphic properties enabling ex-
istence in arid climates on old, highly weathered, low- nutrient soils 
and frequent fire (Fox, 1999). As a result, endemism in Australian 
flowering plants and gymnosperms is extremely high at 93% and 
96% relative to global floras (Chapman, 2009). The Australian cli-
mate envelope differs from that of Europe, most of North America, 
Asia and South America, being, on average, warmer and drier (both 
in terms of rainfall and vapour pressure deficit; VPD) but also sub-
ject to larger interannual variations in rainfall and VPD than expe-
rienced across much of the globe. While much of Australia is arid 
or semi- arid, there are also regions that experience extremely large 
annual rainfall totals. The associated rainforests are also extensive 
in the tropical north- east. Unlike other continents, Australian veg-
etation is dominated by sclerophyllous, evergreen, woody species— 
species that are poorly represented in classifications of global plant 
functional types. Multiple interactions between these factors of 
low soil nutrient content, extreme interannual variability in rain-
fall, temperature and VPD across most of Australia, and systemic 
differences in vegetation attributes (for example, wood density, 
SLA, photosynthetic nitrogen- use efficiency— see Table 1) result in 
divergences of relationships among climate variables, carbon and 
water fluxes, resource- use efficiencies (for example Radiation Use 
Efficiency; Ponce- Campos et al., 2013) and vegetation attributes 
across the continents. Of the nine key ecophysiological attributes 
listed in Table 1, eight are statistically different from typical values 
of European, North American and global vegetation. Such reasoning 
underpins the rationale for, and importance of, the OzFlux network.

The aim of this paper is to describe the unique and most import-
ant insights, and new knowledge contributed by the OzFlux network 
over its 20- years of operation. Through a series of short ‘lessons’, we 
show how Australian and New Zealand ecosystems and landscapes 
interact with land management practices, climate variability and cli-
mate change, with a focus on the following: (1) ecosystem response, 
resistance and resilience to disturbance and stress; (2) ecosystem 
processes that modulate water availability, runoff and productivity 
and (3) net greenhouse gas emissions and the potential for these 
ecosystems to mitigate climate change and support ecosystem 
services and food production in the future. This aim reflects that 
our primary audience for these lessons is the ecosystem research 
community, however we anticipate that those ‘next users’ of the 
knowledge, information and data that networks such as OzFlux sup-
port may also find benefit from these insights. In distilling the key 
lessons learned, we also identify where further research is needed 
to fill knowledge gaps and improve the utility and relevance of the 
outputs from OzFlux.

2  |  THE GENESIS OF OzFlux

The OzFlux journey began in the early 1990s when Australian and 
New Zealand researchers embarked on longer- term micromete-
orological field campaigns and studies in agricultural, natural and 
modified forest, native grassland and wetland ecosystems. This re-
search revealed gaps in our knowledge of ecosystem dynamics and 
feedbacks with climate and hydrology at multiple timescales, across 
the diverse landscapes of New Zealand and Australia (Campbell 
& Williamson, 1997; Cleugh et al., 2007; Hollinger et al., 1994; 
Leuning et al., 2004). Through long- term international collabora-
tions, Australian and New Zealand researchers learned from the 
scientific advances of similar research programs developing over-
seas, which themselves benefitted from the history of pioneering 
micrometeorological research in Australia and New Zealand. This 
included major contributions to the theory and methods for making 

F I G U R E  1  OzFlux tower sites labelled 
with Fluxnet ID where available (blue 
square) and critical zone observatories 
(purple star) across Australia and New 
Zealand, including major biome types 
defined using the ‘Ecoregions2017’ data 
set from Dinerstein et al. (2017) licensed 
under CC- BY 4.0. For a current list of 
active sites and their specifications visit 
www.ozflux.org

http://www.ozflux.org
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eddy covariance (i.e. flux) measurements, data processing and analy-
sis, all of which were necessary for enabling long- term, autonomous 
flux monitoring (Finnigan et al., 2003; Leuning et al., 1982; Webb 
et al., 1980). High quality, in situ measurements of ecosystem fluxes 
and stores of water, carbon and nutrients were also being sought 
to calibrate and validate remotely sensed observations in these 
unique landscapes and ecosystems. Flux data were also being incor-
porated into biophysically realistic LSMs, such as the CABLE LSM 
within Australia's global climate and Earth system model (Australian 
Community Climate and Earth System Simulator, Ziehn et al., 2020).

The need for continuous ecosystem data led to the first es-
tablishment of flux towers in several ecosystems around Australia 
(Figure 1): (1) a managed wet temperate forest in south- eastern 
Australia (Tumbarumba, Bago State Forest, New South Wales); (2) a 
semi- arid subtropical savanna site in western Queensland (Virginia 
Park, Leuning et al., 2005); (3) a wet temperate forest in southeast 
Australia (Wallaby Creek in Victoria, Kilinc et al., 2012); (4) a tropi-
cal savanna woodland of the Northern Territory (Howard Springs, 
Eamus et al., 2001) and (5) a high- rainfall, tropical rainforest in Far 
North Queensland (Cape Tribulation). In New Zealand, the focus 
was on understanding the impacts of land management and hydro- 
climatic factors on ecosystem (especially soil) carbon stock changes 
(Hunt et al., 2004; Mudge et al., 2011; Nieveen et al., 2005), with 
longer- term tower sites established at both agricultural (Hunt et al., 
2016; Rutledge et al., 2017) and wetland (Goodrich et al., 2017) sites 
(Mudge et al., 2011; Nieveen et al., 2005; Owen et al., 2007).

These foundational flux tower sites sowed the seeds of 
OzFlux, which expanded to a continental network when TERN 
(Terrestrial Ecosystem Research Network) was funded in 2009. 
This funding provided the capital and institutional investment 
needed to support the ‘hard’ infrastructure of around a dozen 
flux towers and supersites across Australia (Beringer et al., 
2016; Karan et al., 2016). Equally important, it provided the ded-
icated and sustained support for ‘soft’ infrastructure needs such 
as training for early career researchers; the data management 
infrastructure to comply with FAIR data principles (Wilkinson 
et al., 2016); data curation and data processing to ensure con-
sistency across the network; data quality control and assurance; 
and data discoverability and data access (Beringer et al., 2017; 
Isaac et al., 2017).

With the addition of new flux towers in ca. 2010 and the devel-
opment of integrated data processing systems (Isaac et al., 2017), 
OzFlux has run as a truly regional network since 2010. Historically, 
Australian OzFlux researchers have largely focussed on natural and 
forested ecosystems, whereas New Zealand OzFlux research has 
concentrated on greenhouse gas budgets and emissions from agri-
cultural systems, including drained peatlands. The long- term invest-
ment in OzFlux has led to significant and diverse research outcomes 
and impacts as summarised in Figure 2. The following sections ex-
plore some of the key lessons and outcomes from OzFlux in more 
detail, and how they have contributed to global understanding in 
their respective scientific space.

F I G U R E  2  Summary of the significant 
scientific and technical outcomes from 
the OzFlux network after two decades: 
Blue relates to discovery, information 
and knowledge outcomes; grey outcomes 
relate to assessments across site, 
regional and global scales; yellow refers 
to the capacity building outcomes for 
researchers and green indicates technical 
outcomes for observations and modelling
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3  |  LESSON 1— OzFlux ECOSYSTEMS 
E X TEND OUR UNDERSTANDING OF THE 
CLIMATE SPACE

Terrestrial ecosystems measured in OzFlux span a vast bioclimatic 
space from alpine to tropical, coastal to central desert. OzFlux sites 
include some of the hottest sites within FLUXNET, while also cover-
ing a rainfall range from 260 to 3930 mm yr−1 on average (Beringer 
et al., 2016), ranging from water-  to energy- limited sites (De Kauwe 
et al., 2019; van der Horst et al., 2019). Many sites are subject to 
high temperatures, including frequent heatwaves, and high interan-
nual variability in rainfall. In fact, both the Northern and Southern 
Australian regions have distributions of mean annual precipitation 
(MAP) variability that are much higher than the rest of the world 
(Figure 3), and OzFlux sites measure across a very large range of MAP 
and in areas with higher MAP co- efficient of variation not captured 
by FLUXNET sites (Figure 3). Moreover, OzFlux includes sites with 
a very large spatial range in VPD, greater than 6 kPa (Renchon et al., 
2018), allowing exploration of vegetation responses to high VPD 
that goes well beyond the conditions currently experienced by most 
ecosystems in the Northern Hemisphere (Grossiord et al., 2020). It 
is sometimes argued that Australian and New Zealand vegetation 
and its management is unique, with the implication that it is difficult 
to use data from these ecosystems to inform our understanding of 
vegetation function on other continents (see also Table 1). However, 
in this time of accelerating climate change, the network becomes 
a natural laboratory to develop inform a global understanding of 
vegetation responses to increasingly extreme climate conditions, 
including to high temperatures not yet experienced in most parts of 
the world (Hutley et al., 2011; van der Horst et al., 2019).

Australia's and New Zealand's climate can vary greatly from 
one year to the next due to hemispheric- scale modes of variability 
(e.g. El Niño Southern Oscillation, Southern Annular Mode, Indian 
Ocean Dipole; Rogers & Beringer, 2017) and the influence of re-
gional weather phenomena (e.g. Tropical Cyclones, East Coast Lows 
or West Coast Troughs; Beringer & Tapper, 2000) with important 
impacts on the continent's terrestrial carbon balance (Teckentrup 
et al., 2021)— as illustrated for precipitation in Figure 3. Regional 
and continental weather events can trigger pronounced variations 
in rainfall distribution that result in large seasonal and interannual 
variations of leaf area index (LAI), gross primary productivity (GPP) 
and ecosystem respiration (ER) (Cleverly, Eamus, Luo, et al., 2016; 
Cleverly et al., 2019; Griebel et al., 2017; Haverd, Ahlström, et al., 
2016; Haverd, Smith, Trudinger, et al., 2016; Hinko- Najera et al., 
2017; Li et al., 2017; Renchon et al., 2018; Xie et al., 2019). They 
also result in seasonal fluctuations between mild and wet maritime 
winds and hot and dry continental winds from the Australian main-
land. These shifts not only affect plant productivity, but also provide 
methodological challenges for comparing annual budgets that have 
been constructed from flux tower observations (Griebel et al., 2016; 
Griebel, Metzen, Pendall, et al., 2020).

Recent heatwaves during a prolonged drought across south-
ern Australia have proven valuable to examine the individual and 

compounded effects of extreme temperature and water stress 
on the hourly and daily exchange of CO2 and H2O in temperate 
forests and woodlands. A synthesis across seven OzFlux sites 
during the record- breaking heatwave in the ‘Angry Summer’ of 
2012/2013 demonstrated that temperate woodlands became net 
sources of CO2 on a daily average during the most intense part 
of the heatwave. This response was attributed to increased ER 
during hotter days and nights and to a reduction in the magni-
tude and number of hours of carbon uptake (van Gorsel et al., 
2016). However, large reductions (up to 60%) in GPP were only 
observed in water- limited woodlands, while forests with access 
to deep soil water were able to sustain photosynthesis near to or 
beyond baseline levels at the cost of increased water loss through 
evapotranspiration (Griebel, Bennett, et al., 2020; van Gorsel 
et al., 2016). These results highlight that the potential for temper-
ate forests and woodlands to remain net carbon sinks will not only 
depend on the responses of photosynthesis to warmer tempera-
tures, but also on soil water availability and on the concomitant 
responses of ER.

High temperatures and associated deficits in atmospheric va-
pour pressure provide challenges for the ability of plants to regu-
late water loss and to maintain photosynthesis. A synthesis across 
17 OzFlux wooded ecosystems demonstrates strong alignment be-
tween the thermal optima of GPP and mean daytime air tempera-
tures, indicating ecosystem scale photosynthesis has adjusted to 
past thermal regimes (Bennett et al., 2021). Although it currently 
seems that GPP in Australian broadleaf evergreen forests is buffered 
against small increases in air temperature, the shape of this relation-
ship and the response of ER to rising temperatures will determine 
the sustainability of Australian carbon sinks into the future (Bennett 
et al., 2021; Duffy et al., 2021; Griebel, Bennett, et al., 2020; van 
Gorsel et al., 2016).

The cooling effect of transpiration protects leaves from heat 
damage during extreme temperatures, and decoupling of photosyn-
thesis from transpiration has been demonstrated in experimental 
manipulations of young eucalypt trees (Drake et al., 2018). However, 
a meta- analysis across OzFlux sites highlighted that the confounding 
role of increasing VPD on transpiration had blurred any conclusive 
evidence of decoupling between photosynthesis and transpiration 
at the ecosystem scale (De Kauwe et al., 2019).

Whether transpiration continues or is suppressed during 
heatwaves is crucial for coupled land- atmosphere processes and 
impacts on regional climate. If vegetation can sustain transpira-
tion during heatwaves, a negative feedback results in a cooling 
and moistening of the atmospheric boundary layer. Conversely 
if transpiration ceases, the resulting positive feedback leads to 
heating and drying of the boundary later and amplifies the heat-
wave regionally. Understanding these mechanisms is therefore 
critical in understanding how climate change will be expressed 
as heatwaves over vegetated surfaces. It also means that models 
representing the impact of global climate change regionally, and 
on terrestrial ecosystems, must represent these processes and 
mechanisms.
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4  |  LESSON 2 –  ECOSYSTEM RECOVERY 
FROM DISTURBANCE

Disturbances in Australia and New Zealand can include fire, cy-
clones and severe storms, pests, disease, agricultural management 
and land- use change, all of which have varying levels of impact on 
ecosystem carbon cycling. Baldocchi (2008) discussed how the ratio 
of GPP to ER (i.e. GPP/ER) of disturbed sites is lower than that of 
undisturbed sites. When plotting GPP and ER from OzFlux sites, 
Beringer et al. (2016) showed that only a few had a low GPP/ER ratio, 
despite several sites in the network with a history of disturbance. 
While much of the network was established in undisturbed sites, 
many have been subject to natural or managed disturbance over the 
past 20 years. The apparent resilience of these ecosystems to dis-
turbance is an important aspect of their longer- term carbon balance 
in response to global change, which is discussed further in lesson 4.

Bushfire is one of the most widespread causes of ecosystem dis-
turbance across Australia, having shaped adaptations in vegetation 
across the continent for over 80 million years, similar to southern 
Africa and in contrast to the more recent development of fire in 
the Mediterranean region and the Americas (Carpenter et al., 2015; 
Cleverly et al., 2019). In tropical Northern Australian mesic savan-
nas, bushfires are frequent, with 30% of the total savanna land area 
burned annually (Beringer et al., 2011, 2015). This fire regime di-
rectly affects carbon emissions and productivity due to canopy loss 
(Beringer et al., 2007). Global climate change is expected to further 
increase extreme fire weather, and thus greenhouse gas emissions, 
which will further reduce the savanna carbon sink (Beringer et al., 
2003; Duvert et al., 2020). By contrast, land management, which 
reduces fire frequency and intensity (e.g. by shifting fires from the 

late to the early dry season) is reducing greenhouse gas emissions at 
landscape scales in the tropical savanna (Edwards et al., 2021). Fire in 
Australia's tropical savannas has been shown to reduce the strength 
of the monsoon, and hence affect regional climate, by modifying the 
dynamics of the atmospheric boundary layer via changes in the par-
titioning of the surface energy budget (Beringer et al., 2003, 2015; 
Gorgen et al., 2006; Lynch et al., 2007; Richards et al., 2011; Wendt 
et al., 2007). Clearly, lessons learned about vegetation- climate- fire 
relations in the Australian tropical savanna are highly relevant for 
understanding global change (Lehmann et al., 2014) and are applica-
ble to fire- prone ecosystems in the United States, southern Europe 
and Africa.

Where fires in northern Australia are frequent and of low in-
tensity, fire in southern Australia tends to be infrequent and 
very destructive (Cleverly et al., 2019). Fire in temperate and 
Mediterranean- type ecosystems of southern Australia turns them 
initially into a CO2 source, with source strength depending on vege-
tation and climate (Sun et al., 2017; Wardlaw, 2021). This was illus-
trated by recent estimates that the bushfires burning in Australia 
between November 2019 and January 2020 emitted 715 million 
tonnes (range 517– 867) of CO2 into the atmosphere (about twice 
Australia's annual net anthropogenic CO2 emissions; van der Velde 
et al., 2021). Fire in a tall eucalypt forest in southwest Tasmania 
switched the ecosystem to a net CO2 source for the first year post- 
fire, despite the survival of canopy trees and prolific seedling regen-
eration (Wardlaw, 2021). In mallee ecosystems of South Australia, 
which consist of several species of multi- stemmed Eucalyptus, it 
can take over 3 years post- fire before net ecosystem productiv-
ity (NEP = GPP- ER) recovers to pre- fire levels, despite fires hav-
ing little effect on respiration or nutrient cycling (Sun et al., 2015, 

F I G U R E  3  The coefficient of variation of annual precipitation plotted against mean annual precipitation (global gridded data) for the 
period 1981– 2010 with probability distributions showing Northern Australia, Southern Australia, rest of the world (inset). Precipitation 
data were extracted from the TerraClimate dataset (Abatzoglou et al., 2018) at 0.09° resolution for regions between 60°S and 80°N. For 
visualisation regions where mean annual precipitation was less than 5 mm yr−1 are removed. Northern (red) and Southern Australia (blue) are 
differentiated by the 28°S Latitude parallel. The corresponding climates of FluxNet (grey triangle) and OzFlux sites (purple circles) are shown



3496  |    BERINGER Et al.

2020). By contrast, NEP in mesic tropical savanna ecosystems of 
northern Australia returns to pre- fire status in 3– 4 months post- fire 
(Beringer et al., 2007). The knowledge provided from this research 
into bushfires in Australia, including regional differences between 
the northern and southern parts of the continent, is important for 
understanding how these ecosystems adapt to changing climates. 
It is particularly useful for determining whether they remain carbon 
sinks in the long- term as fire frequency and intensity changes, and 
for informing and improving Earth system models, many of which are 
poor at simulating fire.

Tropical cyclones largely affect OzFlux sites in northern Australia 
and occur infrequently, but when they do, they often cause great 
destruction. For example, Cyclone Monica in April 2006 affected 
10,400 km2 of savanna across northern Australia, resulting in mor-
tality and severe structural damage to 140 million trees (Cook & 
Nicholls, 2009; Hutley et al., 2013). The current tree- stand structure 
at the long- term savanna flux site at Howard Springs is likely to have 
been affected by previous cyclones as shown by the age distribution 
of tree diameter (Figure 4) (Hutley & Beringer, 2011; O’Grady et al., 
2000). Recruitment and stand regrowth post- 1974 are likely to ex-
plain the high NEP typically measured at the site (2– 4 Mg C ha−1 y−1) 
(Beringer et al., 2016; Duvert et al., 2020; Eamus et al., 2001), which 
is indicative of this site's continued state of disequilibrium and un-
derscores the importance of understanding site history for inter-
preting NEP. The likely impacts of increased storm intensity include 
larger recruitment pulses, thus larger episodic CO2 emissions, po-
tentially with a smaller sequestration potential of these ecosystems.

Whereas the effects of fire and cyclones have been well char-
acterised in some sites across the OzFlux network, gaps remain in 
our knowledge about the consequences of changing fire intensity 
and regimes on ecosystem carbon and water budgets more broadly 
across New Zealand and Australia. There is the added challenge that 
some very intense fires can destroy the very infrastructure that 
measures the effects of fire on these fluxes, further limiting our un-
derstanding. Gaps also exist in our understanding of the impacts on 

ecosystems of very infrequent cyclones, particularly in the tropical 
rainforests of Far North Queensland. Additionally, few or no OzFlux 
measurements have provided a detailed carbon budget for distur-
bance by pests, disease, or land- use change. These knowledge gaps 
can be difficult to fill because many but not all disturbances require 
the serendipity of being in the right place at the right time. This rein-
forces the need for continuous measurements over many decades, 
to increase the chances of being in the right place at the right time.

5  |  LESSON 3— THE EFFEC T OF DROUGHT 
AND HE AT STRESS ON ECOSYSTEM 
C ARBON AND WATER BAL ANCES

The primary stress events in natural and managed ecosystems 
across Australia and New Zealand are related to water availability, 
usually in the form of short-  or long- term meteorological drought, 
and many ecosystems have adapted to withstand prolonged epi-
sodes of water limitation. The last 20 years has seen significant 
increases in temperature (the Australian continent has warmed 
by 1.44 ± 0.24°C since 1910) and a resultant increase in more fre-
quent and intense heatwaves (Australian Bureau of Meteorology 
& CSIRO, 2020). A shift towards drier conditions across Australia's 
southern regions, especially in the April to October ‘cool season’, 
has been shown to be the most sustained large- scale change since 
the late 19th century and are linked to the effects of anthropogenic 
climate change on the circulation systems that affect Australia's 
seasonal weather patterns. Lower rainfall, combined with warm-
ing and increased evaporative demand are exacerbating the reduc-
tions in water availability in rivers and in the soil (Australian Bureau 
of Meteorology & CSIRO, 2020). The drier conditions observed 
in southeast and southwest Australia over the last two decades 
have contributed to regional patterns of warming with a positive 
feedback effect on increased evaporative demand. Therefore, flux 
monitoring in Australia and New Zealand has been critically placed 

F I G U R E  4  Frequency distribution of 
the age of Eucalyptus and Corymbia trees 
at the Howard Springs flux site (number 
of trees) for trees >2 cm DBH (diameter 
at breast height) showing history of 
disturbance at the site. A relationship 
between age and tree size has been 
established for these ecosystems (Prior et 
al., 2004) and was used to convert DBH 
to age. Figure reproduced with permission 
from Hutley and Beringer (2011)
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to capture the response of native and managed ecosystems to the 
occurrence of these emerging trends in interannual and more fre-
quent stress events (Cleverly, Eamus, Luo, et al., 2016; Moore et al., 
2018) (see lessons 1, 4 and 8).

The impact of drought has been particularly evident in semi- 
arid Australia, where ecosystems have shifted from weak CO2 sinks 
into CO2 sources (Ma et al., 2016; Qiu et al., 2020). The pivot point 
at which an ecosystem switches from a CO2 sink to a CO2 source 
can depend on the vegetation properties; for example, the Acacia 
spp. dominated woodland near Alice Springs, in the arid centre of 
Australia, remain a net CO2 sink as long as the annual rainfall exceeds 
260 mm (site average is 300 mm yr−1), whereas the nearby hummock 
grasslands become a CO2 source if the annual rainfall falls below the 
pivot point of 506 mm yr−1 (Tarin, Nolan, Eamus, et al., 2020).

Ecosystems can also respond to drought stress by regulating their 
water use via phenotypic plasticity as observed in Eucalyptus obliqua 
at the Wombat State Forest in south- eastern Australia, where leaf 
water potential at the turgor loss point was lowered through osmotic 
adjustment during a short- term summer drought (Pritzkow et al., 
2020). Other drought response mechanisms include partial drought 
deciduousness, where LAI is reduced to minimise the surface area 
for water loss, which also increases the Huber value (ratio of sap-
wood area to leaf area) during extended drought (Meyer et al., 2015; 
Pritzkow et al., 2020). Individual species may also behave differently 
when subject to similar stresses, as shown at Cumberland Plain, 
where the melaleuca stand maintained higher canopy conductance 
and transpiration under VPD and moisture stress than the neigh-
bouring eucalypt stand (Griebel, Metzen, Boer, et al., 2020).

Drought events in New Zealand, although less intense than 
those typically experienced in Australia, can still reduce ecosystem 
carbon uptake. For example, a short- term meteorological drought 
turned an intensively grazed dairy pasture into a net CO2 source 
(Kim & Kirschbaum, 2015; Kirschbaum et al., 2015; Rutledge et al., 
2015). The intensive grazing that characterises these systems regu-
larly removes pasture dry matter. Pasture regrowth and carbon up-
take via photosynthesis following grazing is limited during drought 
conditions, leading to net carbon loss (Kirschbaum et al., 2017; Wall 
et al., 2019). In contrast to highly managed agroecosystems, native 
peatland bogs in New Zealand's Waikato region are able to main-
tain a strong carbon sink even during drought (Goodrich et al., 2017) 
likely due to ample soil moisture stores.

Temperate and semi- arid ecosystems in Australia display dif-
ferent mechanisms to tolerate prolonged water stress. For Mulga 
dominated semi- arid ecosystems, extensive expression of ecophysi-
ological adaptations allows survival through decadal scale droughts 
(Cleverly, Eamus, van Gorsel, et al., 2016; Eamus et al., 2013; Tarin 
et al., 2020b) and are usually reliant on single rainfall events to boost 
their CO2 uptake (Cleverly, Eamus, Restrepo Coupe, et al., 2016). 
Temperate ecosystems in non- water limited regions of Australia 
are able to tolerate several years of below average rainfall through 
access to greater soil moisture reserves (Griebel, Bennett, et al., 
2020; Keith et al., 2012; Kirschbaum et al., 2007). Access to soil 
moisture reserves helps buffer wet sclerophyll ecosystems against 

heatwaves, as illustrated by the combined drought and heatwave 
event in 2012/2013 that led to water- limited woodland ecosystems 
becoming CO2 sources due to a reduction in photosynthesis caused 
by elevated water stress (Cleverly, Eamus, van Gorsel, et al., 2016; 
van Gorsel et al., 2016), while wetter forest systems were much less 
affected (van Gorsel et al., 2016). Model analysis of the more recent 
2018/2019 heatwave showed reduced productivity for most eco-
systems across continental Australia (Qiu et al., 2020). Four sites in 
southeast Australia also show reduced CO2 sink strength during this 
period (Figure 5). Some of these OzFlux observations are leading to 
much- needed and rapid improvements in the CABLE LSM to better 
incorporate groundwater– vegetation interactions (Mu et al., 2021; 
Mu et al., 2021).

Drought can interact with disturbance (lesson 2) or other stress 
as was demonstrated at the temperate, wet sclerophyll, managed 
forest at Tumbarumba, where long- term drought coincided with an 
insect attack (Kirschbaum et al., 2007). The forest was impacted 
by this attack, but it became a CO2 sink again when the insect at-
tack had abated, despite continued and even intensifying drought 
conditions (van Gorsel et al., 2013). A future that consists of more 
frequent heatwaves in combination with drought could deplete soil 
moisture reserves beyond the tipping point for many ecosystems 
and result in greater ecosystem stress.

6  |  LESSON 4— ECOSYSTEM RESILIENCE , 
ADAPTATION AND VULNER ABILIT Y TO 
INTER ANNUAL CLIMATE VARIABILIT Y

Ecosystems can be resilient to climate variability by maintaining a 
stable carbon budget during and shortly following the imposition of 
stress (Holling, 1973) or through their capacity to rapidly recover 
to a pre- stress state after the return of favourable environmental 
conditions (Ponce Campos et al., 2013). Because of Australia and 
New Zealand's contrasting climate zones and large interannual fluc-
tuations in precipitation (Cleverly, Eamus, Luo, et al., 2016; Cleverly, 
Eamus, Restrepo Coupe, et al., 2016; Cleverly et al., 2019; Van 
Etten, 2009), measurements from across the OzFlux network are 
ideal to analyse and explore the effects of hydroclimatic variation 
(e.g. wet to dry seasons or years) on ecosystem carbon and water 
exchange (Karan et al., 2016). For example, while the strong interan-
nual variability in arid and semi- arid Australian ecosystems reduces 
productivity, its recovery does not appear to be limited by previ-
ous sequences of drought, swinging rapidly between states of net 
CO2 source and sink, sometimes from one year to the next (Cleverly, 
Eamus, Restrepo Coupe, et al., 2016; Cleverly, Eamus, van Gorsel, 
et al., 2016; Ma et al., 2016; Tarin, Nolan, Medlyn, et al., 2020). Due 
to the rapid recovery of Australian semi- arid ecosystems following 
a year of extreme drought in 2009 (Cleverly et al., 2013; Cleverly, 
Eamus, Restrepo Coupe, et al., 2016; Eamus et al., 2013), these eco-
systems contributed most to the observed global land carbon sink 
anomaly during the 2011 La Niña wet year (Poulter et al., 2014; 
Raupach et al., 2013).



3498  |    BERINGER Et al.

Australian ecosystems also show resilience to drought and fire 
in their leaf phenology. For example, in Australia's mesic savannas, 
fire usually only consumes the seasonal grassy understorey, whereas 
canopy trees mostly remain intact (Lehmann et al., 2014). By con-
trast, in Australia's tropical drylands, a highly resilient leaf phenol-
ogy allows strong growth during wet years despite the absence of 
a growing season in previous dry years (Ma et al., 2013). Similarly, 
Australian tropical rainforest trees are considered to be somewhat 
resilient to high- temperature stress and heatwaves due to the very 
high temperature at which leaf dark respiration reaches a peak (60°C) 
(Weerasinghe et al., 2014), although they may be instead vulnerable 
to high VPD stresses (Fu et al., 2018). However, a loss of resilience 
has been predicted for Australian drylands with the increased occur-
rence of future woody dieback and megadrought events (Ma et al., 
2013), and the continued resilience of many ecosystems in Australia 
and New Zealand is not assured with global change (van Gorsel et al., 
2016).

Other examples of carbon- function resilience to disturbance 
and drought are evident in managed and natural ecosystems of New 
Zealand. Here, dairy farm pastures have shown rapid recovery to 
a net positive carbon balance within one week following intensive 
grazing events. In these systems, grass is maintained in a continuously 
juvenile state through repeated grazing and defoliation by cattle 
(Hunt et al., 2016). In contrast, northern New Zealand's peat- forming 
wetland ecosystems display resilience through the continuous accu-
mulation of deep peat deposits over millennia, despite existing in a 
warm maritime climate zone with frequent seasonal water deficits. 
In the few remaining intact peat wetlands, resilience to drought is 
a product of the ecosystem's conservative evaporation regime and 
highly dynamic peat surface level (Campbell & Williamson, 1997; 
Fritz et al., 2008), both of which contribute to maintaining a stable 
and shallow water table, limiting respired CO2 losses (Goodrich et al., 
2017; Ratcliffe et al., 2019). However, imposing artificial drainage di-
minishes their ability to self- regulate, leading to a shift in ecosystem 
structure and function, resulting in larger component CO2 fluxes 

(Ratcliffe et al., 2019, 2020). Furthermore, resilience is completely 
lost when drained peatlands are used for dairy grazing, where annual 
CO2 losses can be extremely large, particularly during dry conditions 
(Campbell et al., 2015, 2021).

Despite these insights, there exist substantial gaps in our 
knowledge of the impacts of hydroclimatic variation on diverse 
natural and managed ecosystems that might yield clues about their 
resilience under the stresses imposed by changing climate. Some 
of these gaps result from the inadequate distribution of flux tower 
sites; for instance, the OzFlux network does not include sites within 
the indigenous native forests of New Zealand, and semi- arid eco-
systems are under- represented in Australia (Beringer et al., 2016). 
Whilst research using OzFlux data has demonstrated the resilience 
of Australasian ecosystems to the large climate variability experi-
enced in the past, much less is understood about their resilience to 
future global changes, especially larger and more frequent extreme 
weather events, warmer temperatures and changed rainfall regimes   
that result from anthropogenic climate change.

7  |  LESSON 5— CLIMATE IMPAC TS OF 
AGROECOSYSTEMS

Agriculture in New Zealand differs from many other countries in that 
since 1987, farmers have not been able to receive any government 
subsidies for production or environmental services associated with 
their ownership or stewardship of land. This forced farmers to rap-
idly become economically efficient and led to the growth of a com-
mercially successful export- oriented dairy industry (as well as other 
exporting agricultural and horticultural sectors). This dairy expan-
sion, which has to a large extent replaced extensive sheep farming in 
the lower and flatter regions of the country, is overwhelmingly based 
on rotational grazing practice, involves active nutrient and feed sup-
plement management and is in some drier regions supported with 
irrigation of pastures. Managing the land for food production has 

F I G U R E  5  Diurnal average (±standard 
error) net ecosystem exchange (NEE) 
measured at four southeast Australian 
forest OzFlux sites across three typical 
summer days (left) and three heatwave 
summer days (right) in 2019. Typical 
summer days were determined using 
historical summer climate data for 
southeast Australia, and the heatwave 
days were identified from Qiu et al. 
(2020). OzFlux sites include Tumbarumba 
(TUM, wet sclerophyll), Warra (WAR, 
wet sclerophyll), Whroo (WHR, dry 
sclerophyll) and Wombat State Forest 
(WOM, dry sclerophyll). Measurements 
are 30- min ensemble averages from the 
four flux tower sites
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thus accelerated and intensified carbon, nutrient and water cycles 
and increased the country's agricultural greenhouse gas emissions 
by 17% from 1990 to 2019 (Ministry for the Environment, 2021).

The carbon budgets of agroecosystems are characterised by 
large exports of carbon in products such as grain, milk, meat or wool, 
as well as imports in fertilisers and animal excreta, in addition to 
the net ecosystem exchange (NEE) of carbon. To assess whether an 
agroecosystem gains or loses carbon over time, these exports and 
imports need to be quantified together with NEE to obtain the net 
ecosystem carbon balance (NECB). A productive system is usually 
a net CO2 sink, but there are examples from the OzFlux network 
where agroecosystems were a net carbon source (Laubach et al., 
2019; Rutledge et al., 2017; Wall, Campbell, Morcom, et al., 2020; 
Wall, Campbell, Mudge, et al., 2020; Webb et al., 2018) due to net 
carbon exports exceeding NEE. These studies repeatedly suggest 
that the sign, strength and annual pattern of NECB are strongly im-
pacted by farm management (Giltrap et al., 2020; Hunt et al., 2016; 
Rutledge et al., 2015; Wall, Campbell, Morcom, et al., 2020; Wall, 
Campbell, Mudge, et al., 2020). Agroecosystems on peat soils were 
both a net CO2 source and a net carbon source (Campbell et al., 
2021; Goodrich et al., 2017).

Water fluxes are of critical concern in agroecosystems, where 
irrigation decisions are informed by balancing crop water use with 
yield- based revenue, irrigation costs and regulatory limits for nu-
trient leaching. There are concerns that the practice of irrigation, 
increasingly widespread in NZ, may lead to net carbon losses, and 
soil- core sampling studies point in this direction (Mudge et al., 2017). 
However, flux measurements over irrigated pasture did not find any 
carbon losses throughout the three years of measurements (Laubach 
& Hunt, 2018). In another study, capturing flux measurements over 
lucerne, it was found that total evaporation and drainage increased 
in response to irrigation, relative to a nearby non- irrigated lucerne 
crop, with the benefit of larger biomass production at the cost of 
greater net carbon losses (Laubach et al., 2019). Recent modelling 
efforts calibrated with flux measurements have provided some in-
sights into which combinations of livestock management and envi-
ronmental factors lead to carbon gains or losses (Kirschbaum et al., 
2017; Liáng et al., 2021). The degree and direction of coupling be-
tween evaporation and NEE can contribute to a greater understand-
ing of agroecosystem function (Cleverly et al., 2020).

A globally significant consequence of agricultural food produc-
tion is emissions of greenhouse gases, including CH4 (predominantly 
from ruminant animals and rice farming) and N2O (predominantly 
from microbial soil processes, stimulated by N addition with fertilisers 
and animal excreta). Technological challenges and instrumentation 
costs have limited the usage of the eddy covariance method for mea-
suring fluxes of these non- CO2 greenhouse gases; hence, other mi-
crometeorological methods have predominantly been applied within 
the OzFlux network. Laubach and Hunt (2018) used a flux- gradient 
technique to measure CH4 fluxes over three years at paired grazing 
sites in Canterbury, New Zealand, somewhat surprisingly finding that 
CH4 fluxes were consistently positive (i.e. the grazed pastures were 
a net source of methane) most of the time, even in the absence of 

cattle. Net emissions of similar magnitude have recently been found 
on farms in the north of NZ (J. P. Goodrich, pers. comm. 2021). The 
source of these CH4 emissions is unknown, and therefore it is not 
clear whether they are related to agricultural management. The flux 
gradient technique has also been applied to measure nitrous oxide 
emissions from dairy pasture (Laubach & Hunt, 2018). Wecking et al. 
(2020) compared N2O emissions, obtained with eddy covariance, 
to those calculated using locally determined emission factors, from 
small chamber plots treated with excreta and fertiliser. Both stud-
ies found that emission factors underestimated the N2O flux, since 
the chamber studies do not include N2O background emissions and 
possibly also due to a lack of seasonal variability in emissions factors 
(Laubach & Hunt, 2018; Wecking et al., 2020).

Studies of the fluxes from agroecosystems are gaining momentum 
as a robust approach to quantifying the efficacy of land management 
practices that aim to reduce or mitigate greenhouse gas emissions. 
To this end, paired sites approaches are promising (Laubach & Hunt, 
2018; Laubach et al., 2019). Recent studies have overcome the 
cost of employing duplicate flux measurement systems with a split- 
footprint approach (Goodrich et al., 2021; Wall, Campbell, Morcom, 
et al., 2020; Wall, Campbell, Mudge, et al., 2020), wherein an eddy 
covariance system is placed at the boundary between paired sites. 
Another possible approach lies in the development of low- cost mea-
surement systems (Hill et al., 2016). Communication between disci-
plines and with industry and policy makers will be central to OzFlux 
and the global flux community to help transition agricultural prac-
tices towards climate- smart food systems.

8  |  LESSON 6— ADVANCES MADE VIA 
SYNERGIES WITH REMOTE SENSING

The initiation of OzFlux was shortly preceded by NASA’s Earth 
Observing System (EOS) that introduced the first suite of satellite- 
based global ecology products for long- term monitoring of ecosys-
tem functioning, phenology, disturbance and plant stress (Xiao et al., 
2019). The validity and robustness of these first biophysical products 
from remote sensing were challenged by the diversity of landscapes 
and extreme environments of Australia (Hill et al., 2006; Kanniah 
et al., 2009; Sea et al., 2011). For example, Leuning et al. (2005) re-
ported that the moderate resolution imaging spectrometer (MODIS) 
LAI product overestimated in- situ LAI more than twofold over the 
moderately open, wet sclerophyll forest at the Tumbarumba OzFlux 
site. These native forests are known for their highly clumped crown 
architecture and vertical leaf inclination angle (Anderson, 1981). 
The MODIS GPP product estimated the annual amplitude of tower 
GPP fluxes quite well but performed less well in estimating the sea-
sonal phase of variation (Leuning et al., 2005). These assessments 
of remotely- sensed products ultimately resulted in more accurate 
satellite products and understanding in what the satellite actually 
measures.

On the other hand, Sea et al. (2011) and Eamus et al. (2013) re-
ported good agreement between MODIS LAI and hemispherical 
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photography derived LAI in open- canopied savanna ecosystems of 
the Northern Territory. MODIS vegetation indices (VIs) combined 
with meteorological data estimated GPP and latent heat flux (LE) 
with relatively high accuracy where ecosystem processes are phe-
nologically driven, such as in Australian wet to dry tropical savannas, 
grasslands and croplands (Cleugh et al., 2007; Glenn et al., 2011; Ma 
et al., 2013; Moore et al., 2017; Zhang et al., 2008). However, in tem-
perate and Mediterranean evergreen Australian forests/woodlands, 
the VI and LAI products were seasonally out of phase with GPP 
and found to be better proxies of photosynthetic ‘infrastructure’ 
capacity (Pc) than GPP (Restrepo- Coupe et al., 2016). Broich et al. 
(2014) found extensive retrieval failures of the MODIS phenology 
product over the arid and semi- arid regions of Australia, which led to 
the development of an Australian phenology product (https://por-
tal.tern.org.au/) to better understand arid vegetation responses to 
Australia's climate extremes (Ma et al., 2015, 2016, 2016). Annually 
integrated VIs are a remote sensing surrogate of ecosystem produc-
tivity and have revealed the large sensitivity of interannual varia-
tions in productivity to precipitation variability in Australia, relative 
to all other continents (Figure 6; Ma et al., 2016).

Synergies between OzFlux and remote sensing have been 
used in diagnosing broad- scale ecosystem responses to extreme 
events, including large scale, significant rainfall events that trig-
ger continental- scale green- up of arid and semi- arid ecosystems 
(see lesson 4). These continent- wide green flushes can contribute 
significantly to the global land carbon sink and induce sea- level 
anomalies, as occurred in 2010– 2011 (Detmers et al., 2015; Fasullo 
et al., 2013). Such information is important in attributing the driv-
ers of short term variability in the Earth system (e.g. are changes 
to the carbon sink due to human mitigation efforts or responses 
of the biosphere to prior events?). Ma et al. (2016) diagnosed this 
continental- scale event by integrating multiple satellite measures 
of atmospheric CO2 (GOSAT), gravitational total water storage 
(GRACE), VIs (MODIS) and solar- induced chlorophyll fluorescence 
(SIF, GOME- 2) with OzFlux tower derived NEP. They analysed the 
hydroclimate drivers and pulse response behaviour of carbon fluxes 
during the big wet and reported that semi- arid Australian net CO2 
uptake was highly transient and rapidly dissipated by subsequent 
drought. The accuracies of the remotely sensed CO2 retrievals 
and the atmospheric transport models are approaching the levels 
needed to constrain CO2 fluxes to estimate net biome productivity 

(NBP) from the natural biosphere (Buchwitz et al., 2017; Kondo 
et al., 2016).

The OzFlux network capitalises on skills and infrastructure 
through strong collaborations of people both at a national level 
and through international networks (Figure 2), including SpecNet 
(Gamon et al., 2006), https://specn et.info/tumba rumba/) and the 
Australian Phenocam Network (http://pheno cam.org.au/). SpecNet 
sites are equipped with hyperspectral instruments and play import-
ant roles in linking in situ optical measures (fPAR, VIs and SIF) from 
tower platforms with flux observations, to explore mechanistic and 
scaling relationships (Leuning et al., 2006; Woodgate et al., 2020). 
The phenocam network enables high temporal image- based recog-
nition of understory/overstory dynamics at species levels, and thus 
enables leaf level demography, ontogeny and phenology analyses 
(Moore, Brown, et al., 2016; Wu et al., 2016). These sub- daily, near- 
ground spectral and phenocam measurements bridge temporal, spa-
tial and spectral scales with airborne and satellite remotely sensed 
proxies of canopy and ecosystem function.

Capturing the range of global variability in ecosystems is criti-
cal for accurately calibrating, validating and upscaling satellite algo-
rithms and modelled outputs using high- quality ground- level data. 
In a global flux tower analysis using MODIS satellite products and 
meteorological drivers, Tramontana et al. (2016) found that carbon 
and water fluxes from extreme climates and Southern Hemisphere 
flux sites were less accurately simulated than Northern Hemisphere 
forested and temperate climate sites. The OzFlux sites, located in 
globally under- represented areas, have the potential to reduce these 
uncertainties in global carbon and water flux products. OzFlux sites 
account for a large proportion of global land surface FLUXNET ob-
servations in biomes located at high mean annual temperatures and 
with extreme climate variability, as shown in Figures 1 and 3) (Van 
Der Horst et al., 2019), making them crucial for the validation of 
new satellite sensors, novel algorithms and in the development of 
national and global products and models (Barraza Bernadas et al., 
2018; Barraza et al., 2015, 2017; Guerschman et al., 2009; Pham 
et al., 2019; Sanders et al., 2016; Verma et al., 2017; Zhang et al., 
2019).

While early remote sensing work was focussed primarily on VIs 
and LAI, an increasing number and diversity of observations can now 
target specific components of the terrestrial carbon cycle and water 
cycle at high temporal and spatial resolution (Schimel & Schneider, 

F I G U R E  6  Coefficient of variation 
(%) in annual precipitation and annual 
vegetation productivity across six 
continents showing that Australia 
has a significantly higher variability 
in precipitation and corresponding 
productivity, as measured with the 
MODIS annual integrated EVI over a 15- 
year reference period from 2000 to 2014. 
Reproduced with permission from Ma et 
al. (2016)

https://portal.tern.org.au/
https://portal.tern.org.au/
https://specnet.info/tumbarumba/
http://phenocam.org.au/
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2019). For example, the use of SIF and VIs together can be used to 
disentangle controls of canopy structure from physiology on GPP 
(Magney et al., 2019; Springer et al., 2017; Verma et al., 2017). 
This is particularly important for evergreen canopies (dominant in 
Australia and New Zealand) where GPP is often decoupled from VIs 
(Restrepo- Coupe et al., 2016).

The current generation geostationary satellites (e.g. Himawari- 8) 
provide sub- daily, 10- min image acquisition frequencies in near real- 
time across Australia, enabling integration with diurnal fluxes for re-
fined insights into ecosystem dynamics. A metric of canopy structure, 
canopy clumping index, was recently retrieved from sub daily mea-
sures from the Deep Space Climate Observatory (DSCOVR) satellite 
and evaluated at OzFlux sites (Pisek et al., 2021). The International 
Space Station (ISS) has three instruments that provide regional-  
diurnal measures of (1) Evapotranspiration from the ECOsystem 
Spaceborne Thermal Radiometer Experiment (ECOSTRESS) at 70 m 
resolution; (2) SIF from the Orbiting Carbon Observatory- 3 (OCO- 3), 
at 100 m resolution and (3) Biomass and canopy structure from the 
Ecosystem LiDAR Global Ecosystem Dynamics Investigation (GEDI) 
instrument, at 25 m to 1 km resolutions (Xiao et al., 2021). Together 
these instruments provide unprecedented opportunities to assess 
diurnal variations in GPP, ET (evapotranspiration, the mass equiv-
alent of LE) and thereby water use efficiency (WUE) at different 
times of day, with OzFlux sites being critical to validate these prod-
ucts (Fisher et al., 2020; Xiao et al., 2021). Other sensors include 
soil moisture mapping, vegetation optical depth, atmospheric trace 
gases (CO2, CH4, CO) for inversion studies and advanced hyperspec-
tral sensors for canopy traits. These new remote sensing advances 
will be vital to scale knowledge (Figure 2) of ecosystem processes 
from OzFlux sites to landscape and continental scales in the context 
of climate change.

9  |  LESSON 7— ADVANCES MADE VIA 
SYNERGIES WITH MODELLING

One of the most important outcomes from OzFlux has been the abil-
ity to constrain models used to quantify and predict terrestrial car-
bon and water fluxes, from site- scales (Kirschbaum et al., 2007, 2015) 
to the continent (Decker, 2015), using multi- annual, continuous data 
from around Australia and sampling a range of bioclimates. Foremost 
among these outcomes was the construction of a full continental 
carbon budget for Australia (Haverd, Raupach, Briggs, Canadell, 
Davis, et al., 2013). This work used multiple data sources, including 
OzFlux data, to constrain the CABLE LSM (Wang et al., 2011). The 
data- constrained estimate of Australia's NBP for 1990– 2011 was 
36 ± 29 Tg C yr−1 (Haverd, Raupach, Briggs, Canadell, Davis, 2013; 
Haverd, Raupach, Briggs, Canadell, Isaac, et al., 2013), with annual 
net primary productivity (NPP) quantified at 2.2 ± 0.4 Pg C yr−1.

Similarly, OzFlux data underpin operational water modelling in 
Australia. Although potential evaporation can be quantified from 
a spatial network of pan evaporation data dating back to 1975 
(Roderick & Farquhar, 2004; Stephens et al., 2018), OzFlux sites 

provide the only observations of actual evapotranspiration (AET). 
OzFlux AET data were used in the evaluation of modelled evapo-
transpiration in the operational AWRA model used for the Australian 
Bureau of Meteorology's water information services (van Dijk, 2010; 
Frost et al., 2015). OzFlux data have also been used to constrain 
large- scale AET estimates from process-  and satellite- based models, 
yielding a data- constrained estimate of mean Australian AET over 
the period 2000– 2010 of 360 ± 205 mm yr−1 (Hobeichi et al., 2021). 
The marked uncertainty in continental- scale estimates of Australia's 
terrestrial carbon and water fluxes not only stems in part from the 
inherent climate variability (lesson 1) but also underlines the chal-
lenges faced in advancing our understanding of Australia's terrestrial 
biogeochemical cycles and budgets.

OzFlux data have also been an important resource to benchmark, 
evaluate and improve model formulations at time scales ranging 
from sub- daily (Abramowitz, 2012; Haughton et al., 2016) to inter-
annual (Wang et al., 2011). The coverage of extreme events in the 
dataset has been of significant value (De Kauwe et al., 2019; Yang 
et al., 2019). The high interannual variability in rainfall has enabled 
the use of OzFlux data to uncover systematic biases in LSMs in sim-
ulating carbon and water fluxes during drought (Haverd, Ahlström, 
et al., 2016; Haverd, Smith, Raupach, et al., 2016; Haverd, Smith, 
Trudinger, et al., 2016; Li et al., 2012; Torre et al., 2019; Ukkola et al., 
2016), identifying priorities for model development to reduce un-
certainties in future projections of drought (De Kauwe et al., 2020; 
Stocker et al., 2018) and water resources.

The unique coverage of the savanna biome provided by the 
North Australian Tropical Transect component of OzFlux has helped 
identify limitations in terrestrial biosphere models in representing 
savanna ecosystems (Haverd, Smith, Raupach, et al., 2016; Whitley 
et al., 2016), providing directions for improving the modelling of sa-
vannas globally (Whitley et al., 2017). The phenology of leaf area, 
root water uptake and disturbance from fire were highlighted as key 
areas of uncertainty for future research.

The open- access availability of OzFlux data has enabled im-
mediate improvements to a diversity of models. For example, AET 
data were used to reformulate the representation of soil evapora-
tion during the wet season, resulting in significant improvements in 
AET predictions of the GRASP suite of models used operationally 
in Queensland for pasture and grazed woodland systems (Owens 
et al., 2019). However, OzFlux data have principally been used to 
evaluate models, rather than to drive theory development. This gap 
exists because ancillary site measurements needed to interpret the 
measured fluxes in the right (ecosystem- specific) context are often 
lacking (e.g. plant physiological and structural traits, phenology, 
biomass, LAI and soil moisture). To address this shortcoming, fu-
ture focus should lie on the provision of a standardised set of these 
ancillary measurements at regular time intervals. The founding of 
Australia's first Critical Zone Observatory— a monitoring network 
covering the top of the tree canopy to the groundwater— at five sites 
across Australia— aims to make a significant contribution towards re-
ducing scaling uncertainties over the next decade (De Kauwe et al., 
2017; Medlyn et al., 2017).
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There are several obvious opportunities to develop new model 
theory. Linking OzFlux data, particularly sites with concurrent mea-
surements of (deep) soil moisture (e.g. the wet sclerophyll forest site, 
Wombat, in southeast Australia) with satellite remote sensing, would 
enable the development of new theory to understand leaf growth 
dynamics under changing water availability. Measurements of hy-
draulic traits across the OzFlux network (Peters et al., 2021), cou-
pled with eddy covariance data, would facilitate the development 
and testing of new theories governing plant controls on transpira-
tion. A key question relates to how the carbon and water cycles will 
change in the future; answering this will require longevity across the 
OzFlux and the wider FLUXNET network.

10  |  LESSON 8— THE IMPORTANCE OF 
LONG - TERM ME A SUREMENTS TO DETEC T 
DEC ADAL SC ALE E VENTS AND CLIMATE 
CHANGE EFFEC TS

Given the geographical extent of the Australian and New Zealand 
regions and the associated large range of climate drivers, climatic 
variability is naturally high (King et al., 2020), and this variability 
is increasing due to changes in climate and land use (Head et al., 
2014; King et al., 2020). Regional climate variability is also driven by 
complex, large- scale ocean– atmosphere influences that operate at 
frequencies from weeks to decades and have a strong influence on 
rainfall (King et al., 2020; Rogers et al., 2017), and therefore drives 
variability of ecosystem dynamics (Cleverly, Eamus, Luo, et al., 
2016) (See also lesson 2). The net result is a climate system which 
operates in widely varying states spatially and temporally, driving 
periods of drought, flood and heatwaves (Freund et al., 2017; Kiem 
et al., 2016; Perkins- Kirkpatrick et al., 2016) that are increasing 
in severity with climate change (Cai et al., 2014, 2021). Extreme 
events have a disproportionate effect on annual carbon exchange 
at regional to continental scales (Zscheischler et al., 2017) and 
long- term monitoring of ecosystem carbon exchange, water use 
and resource use efficiency is required to understand and pre-
dict ecosystem responses to the changing climatic range. This is 
particularly important in Australia, which is a global hot spot for 
variability— especially in semi- arid ecosystems, which exhibit large 
and ‘asymmetrical’ responses of GPP to rainfall variability (Haverd, 
Ahlström, et al., 2016). This large interannual variability makes 
detecting long- term trends from short records extremely difficult 
(Baldocchi et al., 2018). On the other hand, Australia may also pro-
vide an example to inform other continents about how ecosystems 
will adapt to increased climate variability with resource availability 
hard to predict.

A comprehensive understanding of interannual and interdecadal 
variability of the carbon cycle and its drivers requires long- term 
data (>50 years) (Fu et al., 2019; He et al., 2019; Jung et al., 2017; 
von Buttlar et al., 2018; Zscheischler et al., 2016). Continued op-
eration of existing sites and the expansion of the global eddy co-
variance monitoring network (Baldocchi, 2019), together with the 

increasing length of the satellite record, will provide the observa-
tional constraints to gain this understanding. The two decades of 
observations in the OzFlux network span several significant ENSO 
events (Figure 7), and this length of record can be used to detect 
change in ecosystem properties as a function of short- term or high- 
frequency disturbances such as fire, insect attack, drought and cy-
clones (Beringer et al., 2007; Hutley et al., 2013; Keith et al., 2012). 
The network has captured fluxes during the ‘Millennial Drought’ 
from 1997 to 2009 that was followed by the globally significant 
southern hemisphere La Nina of 2010/2011, the severe El Niño 
event of 2015/2016, the unusually hot and dry spring of 2019, and 
flooding associated with the 2021 wet season across the southeast 
Australian seaboard. However, in terms of long- term climate trends, 
OzFlux has only a few sites with 20 years of data.

The responses and interannual variability of two long- term but 
contrasting OzFlux sites is shown in Figure 8, where we illustrate 
trends in water-  and radiation- use efficiencies (WUE=GPP/LE, 
RUE=GPP/APAR) for a managed, temperate mixed Eucalypt forest 
(AU- Tum) and a tropical savanna in the NT (AU- How). To estimate 
absorbed PAR (APAR) for each site, we used the MODIS 8- day, 
500 m resolution fractional absorbed photosynthetically active ra-
diation product (fPAR, MOD15A2) interpolated to provide a daily 
estimate of fPAR which was then used to scale daily measures of 
short- wave radiation after Garbulsky et al. (2010).

WUE is ~30% higher in the temperate, wet sclerophyll forest at 
Tumbarumba (AU- Tum) than the tropical savanna at AU- How, which 
is surprising given C4 grasses (high WUE) dominate the understory 
of the savanna ecosystem. However, these grasses are largely annual 
and are only active 4– 5 months of the wet season, whereas the ever-
green C3 woody species of Australia's temperate forests are active 
all year (Eamus et al., 2001; Moore, Beringer, et al., 2016). Frequent 
savanna fires (2 in 3 years) scorch the woody canopy and post- fire 
canopy reconstruction results in high respiratory losses (Cernusak 
et al., 2006) with the ecosystem a net source of CO2 for months after 
fire, whereas LE recovers within weeks (Beringer et al., 2007). This 
post- fire recovery phase is a period of lower WUE, and the savanna 
ecosystem has a lower- than- expected WUE because of these eco-
system characteristics.

Trends in WUE and RUE are highly statistically significant at AU- 
Tum (p < 0.01), and WUE increased by 16% over 18 years, whereas 
the tropical savanna site only increased by 6% (Figure 8). Over the 
period of observation, atmospheric CO2 concentrations increased 
by about 10%, and the trend in WUE at AU- How is consistent with 
theoretical expectations of increased photosynthesis and WUE 
(Kirschbaum & McMillan, 2018; Walker et al., 2021). However, the 
trend at AU- Tum (16% for WUE, 30% for RUE) exceeds what could 
be reasonably attributed to CO2 fertilisation alone, suggesting re-
covery from disturbance events (e.g. insect outbreaks, van Gorsel 
et al., 2013) plus increasing efficiency as the stand ages and grows in 
response to commercial forestry activities.

The spatial and temporal limitations of the OzFlux network 
highlight the importance of integrating long- term flux observa-
tions with remote sensing and modelling studies (lessons 6 and 7). 
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As climate variability increases, there is a clear imperative to main-
tain long- term monitoring sites and invest in modelling systems 
structured to the physiological properties of Australian and New 
Zealand vegetation to assess their response to increasing climatic 
variability and disturbance. Australian ecosystems have shown 
a degree of resilience to date (De Kauwe et al., 2020), but only 
long- term data will enable us to detect tipping points across the 
spectrum of Australian and New Zealand ecosystems and improve 
our ability to forecast potential systematic ecological changes 
(Bergstrom et al., 2021; Laurance et al., 2011). Assessing cumu-
lative long- term impacts on diverse ecosystems is critical for the 
management of both natural and food production systems. It is, 
therefore, crucial to maintain the existing network to ensure the 
continuity of flux data and increase the number of long- term sites 
into the future.

11  |  THE STRENGTH OF OzFlux AND OUR 
VISION FOR THE FUTURE

The IPCC’s Sixth Assessment Working Group I Report (IPCC, 2021) 
documents an increased rate and greater certainty of global warm-
ing relative to previous assessments. Australia's climate has already 
warmed by 1.44°C since national records began in 1910 (Australian 
Bureau of Meteorology & CSIRO, 2020) and although we have 

shown that Australian ecosystems currently have some resilience, 
the increased frequency and intensity of climate extremes, and an 
emerging drying trend in the southern part of the continent, have 
the potential to push some ecosystems (e.g. temperate forests) over 
tipping points (Perkins- Kirkpatrick et al., 2016). As such there is a 
growing imperative to use and build on our knowledge of ecosystem 
processes and emergent phenomena (Karan et al., 2016). These pro-
cesses must be studied across a range of temporal and spatial scales 
to be properly understood and integrated into modelling. Synergistic 
network science has allowed these emergent processes to be un-
derstood, as patterns in space and time are revealed by multiplying 
manifold observations across numerous individual researchers and 
sites.

The need to continue operating OzFlux and other ecosystem ob-
servatories is increasingly important to (1) inform the science and 
models needed for accurate ecological forecasts and longer- term 
projections of responses to climate extremes; (2) document recov-
ery from disturbances, and evaluate potential new land management 
strategies and longer- term trends in the effects of observed climate 
change and variability— this demands multi- decadal and continuous 
observations; (3) diagnose interannual variability in the carbon cycle 
and net greenhouse gas emissions, and verify carbon market prod-
ucts and greenhouse- gas mitigation approaches; (4) evaluate and im-
prove models of terrestrial ecosystem feedbacks to climate change, 
and (5) evaluate and improve simulations of the feedbacks between 

F I G U R E  7  Monthly SOI record from 1970 to 2021 with key El Niño (red bars) and La Niña (blue bars) events that led to severe flooding, 
drought and fire events in Australia. Bar colours represent event severity (strong, moderate or weak). Overlaying the SOI timeseries is the 
observation periods for all previous and current Australian OzFlux and Supersites plotted as coloured lines using site latitude. Site data 
durations were taken from the TERN OzFlux data portal (www.ozflux.org.au/monit oring sites/ index.html) and ENSO periods were taken 
from the Australian Bureau of Meteorology (www.bom.gov.au/clima te/enso/enlist)

http://www.ozflux.org.au/monitoringsites/index.html
http://www.bom.gov.au/climate/enso/enlist


3504  |    BERINGER Et al.

the land and atmosphere in the context of short- duration heatwaves 
and drought.

Ecosystems are expected to experience continued long- term cli-
mate change and greater variability along with increased disturbance 
leading to a loss of ecosystem services. To best maintain our ecosys-
tems and their services, we must anticipate and plan for these changes 
using predictive modelling and ecological forecasting. Developing this 
capability is crucial and will require forecasting (over the near term) 
and projections over multidecadal time scales) using real- time flux 
information (OzFlux), ecological observing infrastructure (e.g. TERN), 
new and emerging satellite information and a new iterative model 
forecasting paradigm (Dietze et al., 2018). Australia's 2016 National 
Research Infrastructure Roadmap also identified a need to establish a 
National Environmental Prediction System (https://scien ce.uq.edu.au/
neps). This could facilitate integration of environmental observations 
with predictive modelling, thus improving environmental risk man-
agement. New streams of earth observing satellite data are emerging 
from advanced sensors. However, the interpretation of their underly-
ing ecological signals requires continued validation with ground- based 
sensors and leaf- level measurements. Using spectral indices and more 
direct observations of vegetation productivity through SIF provide ex-
cellent prospects for better detection of ecosystem stress (e.g. NASA 
ECOSTRESS, ESA FLEX). OzFlux will continue to participate as a key 
provider of ground stations in the Southern Hemisphere and will pro-
vide opportunities for further synergies between remote sensing and 
ecosystem ecologists.

Ongoing collaboration between ecophysiologists and ecosystem 
flux researchers is leading to improved mechanistic understand-
ing of the role of the terrestrial vegetation in the annual and inter- 
decadal hydrologic cycle and the carbon balance across a wide range 
of ecosystems.

Of emerging interest is the connection of physiological/hydrau-
lic traits to the dynamic role of the subsurface in regulating surface 
ecosystem fluxes and vegetation health. For example, an increasing 
body of international evidence illustrates how groundwater, deep 
soil moisture (Mu, De Kauwe, Ukkola, Pitman, Guo, et al., 2021, Mu, 
De Kauwe, Ukkola, Pitman, Gimeno, et al., 2021) and rock mois-
ture (Hahm et al., 2019; McCormick et al., 2021) constrain the in-
terannual variability of plant water use and productivity, potentially 
buffering ecosystems from water stress imposed by climate change 
(McLaughlin et al., 2017). Similarly, plant hydraulic models are re-
vealing how the interaction of plant physiological traits with climate 
and soil at a given site, rather than these factors in isolation which 
control the risk of drought mortality (Feng et al., 2018, 2019). In the 
future, measurements of hydraulic traits across the OzFlux network 
(Peters et al., 2021), coupled with eddy covariance data, could facil-
itate the development and testing of new theories governing plant 
controls on transpiration.

A significant proportion of Australia's total ecosystem biomass 
(ca. 30%– 50%, Spawn et al., 2020) is found in the subsurface, yet 
our understanding of how the subsurface environment changes 
and influences ecosystems is lagging. Newly funded critical zone 

F I G U R E  8  Timeseries of observed ecosystem water use and radiation use efficiency from two OzFlux sites with 20- year records: tropical 
savanna at the Howard Springs site and temperate Eucalypt forest at the Tumbarumba site. Trend lines are given for significant time series 
(p < 0.05) using the non- parametric Mann Kendal test

https://science.uq.edu.au/neps
https://science.uq.edu.au/neps
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observatories (CZOs), co- located at several OzFlux sites, are now 
installing the equipment to monitor water, carbon and energy 
throughout deep soil profiles. By integrating observations of sub-
surface variation with the surface fluxes measured by OzFlux, these 
CZOs will offer better understanding of the interdependencies of 
carbon and water cycles across timescales and across the full verti-
cal span of Australian ecosystems.

Ecosystem observatories are moving beyond CO2 and water cy-
cles to monitoring other greenhouse gases, especially emissions of 
CH4 from wetlands and N2O from agricultural systems as highlighted 
in the lessons above. These potent greenhouse gases can now be 
measured at temporal and spatial scales that are relevant to land 
management and planning for mitigation of climate change.

There is currently a high demand for new researchers with skills 
in environmental monitoring, sensors and data analysis; however, it 
is a challenge to sustain training of postgraduate students and our 
capacity in the discipline of global change biology. Recruitment of 
new talent needs to start at the undergraduate level or earlier, to 
ensure a flow of quantitatively skilled researchers who are passion-
ate about ecosystem science. Educational collaborations among en-
gineers, atmospheric scientists, hydrologists, ecologists, physicists 
and others will set the stage for the next generation of environmen-
tal leadership and stewardship. OzFlux will continue to play a major 
role in training this next generation and in providing the ecosystem 
data which scientists, the public and managers/government can rely 
on in understanding our rapidly changing environment in Australia 
and New Zealand.
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