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Mathematical analysis 
of a two‑strain tuberculosis model 
in Bangladesh
Md Abdul Kuddus1,2,4*, Emma S. McBryde1,2, Adeshina I. Adekunle1,5, Lisa J. White3 & 
Michael T. Meehan1

Tuberculosis (TB) is an airborne infectious disease that causes millions of deaths worldwide each year 
(1.2 million people died in 2019). Alarmingly, several strains of the causative agent, Mycobacterium 
tuberculosis (MTB)—including drug‑susceptible (DS) and drug‑resistant (DR) variants—already 
circulate throughout most developing and developed countries, particularly in Bangladesh, with 
totally drug‑resistant strains starting to emerge. In this study we develop a two‑strain DS and DR TB 
transmission model and perform an analysis of the system properties and solutions. Both analytical 
and numerical results show that the prevalence of drug‑resistant infection increases with an increasing 
drug use through amplification. Both analytic results and numerical simulations suggest that if the 
basic reproduction numbers of both DS ( R0s ) and DR ( R0r ) TB are less than one, i.e. max

[

R0s, R0r

]

< 1, 
the disease‑free equilibrium is asymptotically stable, meaning that the disease naturally dies out. 
Furthermore, if R0r > max

[

R0s, 1

]

 , then DS TB dies out but DR TB persists in the population, and if 
R0s > max

[

R0r, 1

]

 both DS TB and DR TB persist in the population. Further, sensitivity analysis of 
the model parameters found that the transmission rate of both strains had the greatest influence on 
DS and DR TB prevalence. We also investigated the effect of treatment rates and amplification on 
both DS and DR TB prevalence; results indicate that inadequate or inappropriate treatment makes 
co‑existence more likely and increases the relative abundance of DR TB infections.

Tuberculosis (TB) is a bacterial infectious disease that causes millions of deaths worldwide each year. In 2019, 
the World Health Organization (WHO) estimated there were approximately 10.0 million new cases of TB, and 
1.2 million individuals died from TB  disease1. Most of the observed cases in 2019 happened in Asia (44%) and 
Africa (24%), and 87% of tuberculosis deaths occurred in low- and middle-income  countries1.

TB spreads from person to person through airborne particles that contain Mycobacterium tuberculosis 
(MTB)2. Healthy people become infected with TB through inhalation of the TB bacilli. Once infected, TB bac-
teria can live in the body without causing detectable clinical symptoms; this is called latent TB infection (LTBI)3. 
However, the latent MTB bacteria can activate, which may take weeks, months or the whole life of the infected 
 individual4. Around 5–15% of the people infected with TB bacilli progress to TB disease in their  lifetime4.

Currently, drug-resistant (DR) TB is emerging as the greatest threat to TB control  globally5. Drug-resistant 
(DR) TB is well-defined as TB that is resistant to isoniazid and rifampicin (the two most efficient and commonly 
used first line-drugs), with or without additional resistance to supplementary first line-drugs5. The higher costs, 
and the longer and more toxic regimens associated with DR TB treatment place substantial stress on health 
 systems6. Inadequate treatment of DR TB may create even more resistance to the drug used; this has been 
termed the amplification effect of short-course combination  therapy7. Ongoing transmission of DR TB strains 
in a population also generates new DR TB  cases8.

Mathematical modelling is an important tool to explore the dynamics of TB and can provide useful insights 
into the performance of various TB control  strategies9–12. In the last few decades, numerous mathematicians, 
statisticians and biologists have established different transmission dynamic models of TB. For instance, Murphy 
et al. (2002) used a modified Susceptible Exposed Infected (SEI) model to examine the special effects of genetic 
susceptibility and demographic features on TB epidemiology in a heterogeneous population, comparing the 
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prevalence and incidence in India and the United States of America (USA)13. Kim et al. (2014) developed a 
mathematical model for TB with exogenous reinfection, examining the present situation of active TB incidence 
in  Korea14. Liu et al. (2010) developed a TB model with seasonality to describe TB incidence rates with periodic 
properties in a mainland city of  China15. A 10-compartment TB model constructed by Trauer et al. (2014) mod-
elled limited vaccine effectiveness, reinfection, DR TB, and de novo resistance through  treatment16. This study 
showed that the model could not be calibrated to the projected incidence rate without allowing for reinfection, 
which was modelled as a reversion to early latency, which has a higher rate of progression to disease compared 
with late latency.

A theoretical framework for TB control strategies is developed by Blower et al. (1996) to assess the effect of 
chemoprophylaxis and treatment for eradication of TB epidemics. Results show that increasing chemoprophylaxis 
and treatment rates will decrease the severity of TB epidemics and reduce the probability that a latently infected 
individual will progress to active TB. This study recommended that in developing countries treatment failure rates 
must be lower than in developed countries in order to control TB  outbreaks17. Kuddus et al. (2020) developed a 
two-strain TB model to determine the optimal time-varying combination of distancing, latent case finding, case 
holding and active case finding control strategies that minimize tuberculosis incidence over a fixed timespan. 
The major finding of this study was that combining two or more intervention strategies is more cost-effective 
compared to single-intervention  strategies12. In 2010, Huo et al. developed a two-strain transmission dynamic 
model with susceptible, exposed and infected compartments that included drug-sensitive and drug-resistant 
 TB18. Dynamical system analysis was used to ascertain the global stability of the disease-free equilibrium and a 
mono-existent equilibrium. Results show that the drug-sensitive and drug-resistant TB will die out if the both 
basic reproduction numbers are less than one, otherwise an epidemic  occurs18.

TB is an ancient disease, which is still a major public health problem in Bangladesh. The problem is aggravated 
by the increasing drug-resistant mutations that arise through inadequate or poor quality treatment. To evaluate 
the threat of genetic variations of DS and DR TB strains, we present a two-strain (DS and DR TB) Susceptible-
Latent-Infectious-Removed-Susceptible (SLIRS) TB model and examine the development and transmission of 
DR TB. We acknowledge the possibility that an individual’s position swaps from DS TB at primary appearance 
to DR TB at follow-up. This is the manner by which DR TB typically emerges in a population and is intended to 
replicate the phenotypic phenomenon of acquired drug resistance, known as amplification. The model can be 
used to examine the co-existent or competitive phenomena between DS and DR TB strains.

In this study, we perform a rigorous analytical and numerical analysis of our novel two-strain TB model 
properties and solutions from both the mathematical and biological perspectives. For an individual, we apply 
the next generation matrix technique (which is effectively a table describing the number of new infections 
generated by each individual infected with a particular strain) to determine analytic expressions for the basic 
reproduction numbers of the DS TB and DR TB strains. We find that these are key determinates for regulating 
model dynamics. We also present the mandatory conditions for the stability of the infection-free state, as well 
as infection mono-existence and co-existence.

To enhance and verify the analytical analysis, we apply numerical procedures to solve the system equations 
and investigate the dynamic epidemic trajectory for a variety of initial conditions and plausible parameter values. 
From the analytical and numerical viewpoints, the local and global stability of the infection-free equilibrium and 
mono-existent equilibrium are examined through standard dynamical systems analysis  techniques19. The co-
existent endemic equilibrium is also examined numerically. Following this, we implement a sensitivity analysis 
to examine the model parameters that have the greatest effect on DS, DR and total TB prevalence.

Methods and materials
Model formulation. We developed a deterministic mathematical model of the transmission of DS and DR 
TB strains between the following mutually exclusive compartments: susceptible S(t) , uninfected individuals who 
are susceptible to TB infection; those exposed to TB that become latently infected Li(t) (where the subscript 
i = s, r refers to quantities associated with drug-susceptible, s , and drug-resistant, r , TB infection), representing 
those who are infected and have not yet developed active TB; infectives Ii(t) , comprising individuals with active 
TB that are capable of transmitting the infection; the recovered R(t) , who were previously infected and success-
fully treated and assumed to be temporarily immune to reinfection. We assume that DR TB is initially generated 
through inadequate and poor treatment of DS TB and could subsequently be transmitted to other individuals. 
Individuals may also return to the susceptible compartment following recovery at the constant per-capita rate γ 
due to loss of immunity. The total population size N(t) , is given by

Individuals in the different compartments suffer from natural death at the same constant rate µ and active TB 
cases in Ii(i = s, r) experience disease-related death at a rate φi(i = s, r) . To ensure the population size remains 
constant, we replace all deaths as newborns in the susceptible compartment. Individuals in the S compartment 
may be infected with a circulating MTB strain i (i = s, r) at a time dependent rate �i(t) = βiIi(t) where βi is the 
transmission rate between infected and susceptible individuals. Once infected with strain Ii(i = s, r) , individuals 
move to the latently infected compartment Li . A proportion of those with latent infections progress to active TB 
as a result of endogenous reactivation of the latent bacilli at rate αi . Individuals with drug sensitive and DR active 
TB, Ii , may eventually be detected and treated at rates τs and τr for DS and DR TB, respectively. A proportion 
(1− ρ) of the treated DS active TB recover to move into the recovered compartment R , and the complementary 
proportion ρ develop drug resistance due to incomplete treatment or lack of strict compliance in the use of first-
line drugs (drugs used to treat the DS forms of TB) to move into compartment Ir . Furthermore, individuals 

(1)N(t) = S(t)+ Ls(t)+ Is(t)+ Lr(t)+ Ir(t)+ R(t).
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Figure 1.  Flow chart of the TB compartmental mathematical model showing six states and the transitions 
in and out of each state in a closed population (no migration). Here, N = Total population, S = Susceptible 
population, L = Latent population, I = Infected population, R = Recovered population, µ = Birth rate / Death 
rate, β = Contact rate/Transmission rate, α = Progression rate, φ = Disease-related death rate, τ = Treatment 
rate, ω = Recovery rate, ρ = Proportion of amplification and γ = Rate of losing immunity. Subscripts s and r 
denote DS and DR quantities, respectively.

Table 1.  Depiction and estimation of parameters.

Parameters Description Estimated value

N Population in 2015 159,000,000 29

µ Birth/death rate 1
70

 per year 30

βs Transmission rate for DS TB 1.57× 10−8 Fitted

βr Transmission rate for DR TB 6.25× 10−9 Fitted

αs Progression rate from Ls to Is 0.129 per year 16

αr Progression rate from Lr to Ir 0.129 per year 16

ωs Recovery rate for DS TB 0.287 per year 12

ωr Recovery rate for DR TB 0.12 per year 12

ρ Proportion of treated patients who amplify 0.07 per year 11

φs Disease related death rate for DS TB 0.37 over 3 years 16

φr Disease related death rate for DR TB 0.37 over 3 years 16

τs Treatment rate for DS TB 0.94 per year 20

τr Treatment rate for DR TB 0.78 per year 20

γ Rate of losing immunity 0.10 per year 12
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recover naturally at a rate ωi , moving from Ii to R . The model flow diagram is presented in Fig. 1. The parameters 
and their values are given in Table 1.

The transmission of DS and DR TB is given by the following deterministic system of nonlinear ordinary dif-
ferential equations that describe the model:

with non-negative initial conditions for the system of differential equations above, it is easy to express that 
each of the state variables remain non-negative for all t > 0 . Moreover, from Eqs. (2)–(7), we find that the total 
population size, N(t) satisfies

Given the constant population size and positivity of solutions it generally follows that each of the compart-
ment states S, L, I, etc. are bounded. Therefore, based on the considerations, the feasible region for the system 
Eqs. (2)–(7) is given by

Estimation of model parameters. Most parameters were estimated from the global literature or taken 
from National TB Control Program (NTP) evaluation (Table 1). We determined the total population of Bangla-
desh in 2015 is about 159,000,000 based on the National TB Control Program (NTP) reports. The natural death 
rate (µ) was considered as the inverse of life expectancy (70 years) of Bangladesh. According to the data from 
the WHO  report20 the treatment success rates for DS (τs) and DR (τm) TB in Bangladesh were about 94% and 
78% respectively. We estimated two critical residual model parameters, βs and βm by fitting our model to the DS 
and DR TB incidence data in Bangladesh taken from the WHO and NTP report from 2000 to  20181,5,21. The 
best fitted (see Fig. 2) parameter values βs and βm were obtained, using the least-square optimization method to 

(2)
dS

dt
= µN − βsIsS− βrIrS− µS + γR + φsIs + φrIr,

(3)
dLs

dt
= βsIsS− αsLs − µLs,

(4)
dIs

dt
= αsLs − ωsIs − µIs − τsIs − φsIs,

(5)
dLr

dt
= βrIrS− αrLr − µLr,

(6)
dIr

dt
= αrLr − ωrIr − µIr + ρτ sIs − φrIr − τrIr,

(7)
dR

dt
= ωsIs + ωrIr − γR − µR + (1− ρ)τsIs + τrIr.

N(t) = constant.

(c)D =
{

(S, Ls, Is, Lr, Ir, R) ∈ R
6
+ : S+ Ls + Is + Lr + Ir + R = N

}

.

Figure 2.  WHO reported DS and DR TB annual incidence data (blue dot) and the corresponding best fit (green 
solid curve) of our proposed model: (left) DS TB and (right) DR TB.
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minimize the squared error between the modelled and actual number of DS and DR TB annual incident cases. 
Details are given in the supplementary materials.

Sensitivity analysis. We calculated the Partial Rank Correlation Coefficients (PRCCs) between each of 
the model parameters and several outcome measures of significance, a global sensitivity analysis method using 
Latin Hypercube Sampling (LHS). Explicitly, a uniform distribution is allocated from half to fourfold the base-
line value (see Table 1) for each model parameter (i.e.βs, αs,ωs,φs, τs, βr, αr,ωr,φr, τr, ρ and γ ) and a total of 
10,000,000 random draws are taken for each. The model is then simulated for each of the 10,000,000 parameter 
sets and relevant outputs such as disease prevalence and incidence are recorded. Here the model outputs we 
considered were DS TB (Is) , DR TB (Ir) and total TB (Is + Ir) prevalence at equilibrium.

From the analytical formula for R0s and R0r , the sensitivity indices (measuring the relative change in a vari-
able when a parameter changes) ϒ i

j  can be derived applying the technique  in22 to each of the model parameters. 
For example, for βs we have:

Here ϒR0s
βs

 is the sensitivity index for the basic reproduction number R0s , as we vary βs.

Ethical approval. The study was based on aggregated DS and DR TB surveillance data taken from the 
World Health Organization and the National TB Control Program in  Bangladesh1,5,21. No confidential informa-
tion was involved because analyses were performed at the aggregate level. All of the methods were conducted 
in accordance with the approved research protocol. The research protocol was approved by the James Cook 
University human ethics approval board, H7300.

Results
Basic reproduction number. The model has four infected states: Ls, Is, Lr, Ir , and two uninfected states: 
S and R. At the infection-free steady state, L∗s = I∗s = L∗r = I∗r = R∗ = 0, hence S∗ = N . To calculate the basic 
reproduction numbers of the DS and DR TB strains we  follow23 and focus on the linearized infection subsystem 
derived from Eqs. (2)-(7):

where χs = ωs + φs + τs + µ and χm = ωr + φr + τr + µ are the total removal rates from the DS and DR active 
TB infection states respectively.

Here, the ODEs (8)–(11) represent the changes in the infected states about the infection-free equilibrium (that 
is, when assuming the reduction in the susceptible population as a result of infection is negligible).

By setting XT = (Ls, Is, Lr, Ir)
T , where T denotes transpose, now we can write the infection subsystem in the 

following form

The matrix T corresponds to transmissions and the matrix � to transitions. They are acquired from system 
(8)− (11) by splitting the transmission events from other events. If we indicate to the infected states with indices 
i and j, with i, j ∈ 1, 2, 3, 4, then entry Tij is the rate per unit time at which persons in infected state j give rise to 
persons in infected state i in the system. Hence, for the subsystem (8)− (11) we obtain

The next generation matrix, K , is given  by24 (note the essential minus sign)

ϒ
R0s

βs
=

∂R0s

∂βs
×

βs

R0s

.

(8)
dLs

dt
= βsIsN− αsLs − µLs,

(9)
dIs

dt
= αsLs − χsIs,

(10)
dLr

dt
= βrIrN− αrLr − µLr,

(11)
dIr

dt
= αrLr − χrIr + ρτ sIs,

(12)Ẋ = (T +�)X.

T =







0 βsN 0 0

0 0 0 0

0

0

0

0

0

0

βrN
0






and � =







−(αs + µ) 0 0

αs −χs 0

0

0

0

ρτ s

−(αr + µ)
αr

0

0

0

−χr







K = −T�−1
= T

�

−�−1
�

=









Nαsβs
(αs+µ)χs

Nβs
χs

0 0

0 0 0 0
Nαsβrρτs

(αs+µ)χsχr

0

Nβrρτs
χsχr

0

Nαrβr
(αr+µ)χr

Nβr
χr

0 0









.
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The leading eigenvalues of the next generation matrix (K) are the basic reproduction numbers for DS and DR 
TB; they describe the average number of secondary infections generated by a single infected individual. Therefore 
the basic reproduction number for DS and DR TB are:

and

Here αs
(αs+µ)

 and αr
(αr+µ)

 are the probability of transitioning from the latent compartment to the infectious compart-
ment of the DS and DR strains respectively. Further, 1

χs
 and 1

χr
 represent the time spent by infectious individuals 

in states Is and Ir respectively.
The quantities R0s and R0m represents the expected number of secondary cases for DS and DR TB produced 

by the single infectious introduced into a completely susceptible population. Remarkably we identify that the 
basic reproduction numbers of DS TB (R0s) and DR TB (R0r) are completely independent of the proportion of 
amplification ρ 24.

We provide detailed analysis of the proposed TB model (2)–(7) for the existence and stability of disease-free 
(E∗) , mono-existent (E∧) and co-existent 

(

E†
)

 endemic equilibrium points in the supplementary materials: exist-
ence of equilibria section and stability analysis section.

In summary the disease-free equilibrium is globally asymptotically stable when max[R0s, R0r] < 1 . We dem-
onstrate that the mono-existent equilibrium is locally stable provided R0r > max[1, R0s] (see supplementary 
materials: stability analysis section).

To establish the nature of the co-existence equilibrium, we implemented numerical analysis using the Monte 
Carlo method  in25 to verify the conditions R0s > max[R0r, 1] by calculating the real part of the eigenvalues of 
the Jacobian matrix evaluated at the co-existent endemic equilibrium 

(

E†
)

 . According to E† the coordinates of 
the steady states can be expressed in terms of twelve of the model’s parameters (αs, αr, βs, βr,ωs,ωr,φs,φr, τs, τr, ρ, γ) 

whose baseline values are given in Table 1. The sampling pool Q =
12
∏

i=1
Mi ∈ R

12
+  was defined by a Cartesian 

product of twelve closed intervals of the form Mi = [mi − θmi, mi + θmi] where each mi, i = 1, . . . , 12 stands 
for the baseline value of one parameter (see Table 1) and θ > 0 defines the variation range. Our sampling com-
prised 10,000 confounding scenarios Q =

(

q1, . . . , q12
)

∈ Q where each qi ∈ Mi, i = 1, . . . , 12 was randomly 
chosen for θ = 0.20 (i.e. 20% deviation from the baseline values) under a uniform distribution with no correlation 
between parameters. The simulation results are presented in Fig. 3. Figure 3 showed that the co-existent endemic 
equilibrium is stable (yellow-coloured points) when R0s > max[R0r, 1] , otherwise unstable (blue-coloured 
points).

Figure 4 represents the existence and local stability regions for the disease-free (E∗) , mono-existent  (E^) 
and co-existent 

(

E†
)

 endemic equilibrium points corresponding to the drug-susceptible and drug-resistant TB 
basic reproduction numbers R0s and R0r . The magenta shaded region indicates the disease-free equilibrium 
which is bounded by max[R0s, R0r] < 1 . The green shaded area illustrates the mono-existent equilibrium where 
R0r > max[1, R0s] . Finally, the co-existent equilibrium in the yellow shaded region where R0s > max[R0r, 1].

Various numerical simulations were carried out using the Matlab programming language to support the 
analytic results and to observe the impact of amplification and the DS TB treatment rate on total and DR TB 
prevalence. We applied different initial conditions for both DS and DR TB of all populations and obtained the 
stability results for the model equilibria, finding TB disease will ultimately die out from the population when 
the condition max[R0s, R0r] < 1, holds. The condition R0r > max[R0s, 1] implies that DS TB dies out but DR TB 
persists in the population. Furthermore, the condition R0s > max[R0r, 1] suggests that both DS TB and DR TB 
persist in the population (see supplementary materials: stability analysis section, Figures S1, S2 and S3).

Simulating the impact of public health effects through changes in model parameters. Public health inter-
ventions can be modelled by changing key parameters. For example, reducing contact between people can be 
modelled by changing βs or βr , detecting and treating infectious people can be modelled by increasing τs or τr . 
The resulting reproduction number after a change in a public health intervention or after a substantial propor-
tion of the population is removed from the susceptible pool is often called the effective reproduction number.

Figure 5 shows the impact of amplification (ρ) on DS and DR TB prevalence in the first region ( ρ <
∼

0.6 ), 
DS TB initially dominates, but for ρ >

∼

0.6 the DR TB has higher prevalence due to the amplification pathway 
when R0s > max[R0r, 1] . These outcomes implicate the use of drug treatment in the context of DR TB and note 
that treatment of DS TB can provoke the emergence of DR TB, even if it has lower reproductive fitness than the 
susceptible strain, including when its reproduction number is less than one. Further, under these situations, our 
investigation reveals that this emergence of DR TB will be overcome if the treatment rate is adequate to eliminate 
DS TB from the population (i.e. is able to achieve an effective reproduction number of DS TB less than one).

Figures 6 and 7 display the impact of the DS TB treatment rate (τs) and amplification ( ρ ) on the total TB and 
DR TB prevalence, when both infectious rates (βs, βr) are fixed. When we increase the amplification, the total 
TB and DR TB prevalence also increases. Conversely, Fig. 7 shows that for high amplification, DR TB preva-
lence increased when the DS TB treatment rate increased from zero to around 0.8 to 0.9 and then dropped to a 
common point. For small amplification values, the DR TB proportion only raised up to the common point. This 
point is the DR TB-only equilibrium which becomes stable when the basic reproduction ratio of DR TB becomes 
higher than the effective reproduction number of DS TB and higher than one. Numerical analysis shows that 

(a)R0s =
Nαsβs

(αs + µ)χs

,

(b)R0r =
Nαrβr

(αr + µ)χr

.
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for adequately high amplification, the DR TB prevalence will exceed that of its inherent equilibrium value when 
the DS TB is in existence and is being treated. From the above numerical analysis, it is clear that proper treat-
ment is very important for DS TB patients otherwise it will lead to the creation of new cases of DR TB which 
can become the dominant strain.

We performed sensitivity analysis to explore the quantitative relationship between parameters and model 
outcomes including DS, DR and total TB prevalence. Figure 8 displays the association between the co-existent 
equilibrium value of DS TB prevalence ( Is ) and model parameters βs, αs,ωs,φs, τs, βr, αr,ωr,φr, τr, ρ and γ , 
when R0s > max[R0r, 1] . From Fig. 8 it is observed that DS TB prevalence ( Is ) has a positive association with 
βs, αs, βr, αr , and γ , indicating that a positive change in any of these parameters will increase the DS TB prevalence 
( Is ). We found that the association between the transmission rate βs and DS TB prevalence ( Is ) has the highest 
positive impact of all parameters, which is expected given the reproduction number is proportional to βs . The 
public health lesson is that reducing exposure between infected and uninfected individuals is the most important 
public health intervention, dominating the importance of good treatment, reduced relapse, and amplification. 
Public health services should concentrate on those who are in close and prolonged contact with an infectious 
individual (i.e. individuals who are living in the same household with infectious TB cases) who currently have 
extensive exposure.

In contrast, parameters ωs,φs, τs,ωr,φr, τr and ρ have a negative correlation with DS TB prevalence ( Is ), which 
means that increasing these parameters values will consequently decrease the Is prevalence. From the analysis, 
we also found that the treatment rate (τs) is the second most important parameter and its association with DS 
TB prevalence. Our finding is consistent with previous  studies12,14,26, and the WHO which recommended that 
early treatment and cure of infectious cases of TB to cut the chain of transmission of TB infection in the com-
munity. Therefore, quick identification of presumptive TB cases, rapid diagnosis, and early initiation of treatment 
and successful completion of treatment are the most effective ways of preventing TB. Further, amplification has 
a negative impact on DS TB prevalence because some of the DS TB-infected individuals move to the DR TB-
infected state due to incorrect treatment.

Figure 9 represents the correlation between the DR TB prevalence and corresponding model parameters 
βs, αs,ωs,φs, τs, βr, αr,ωr,φr, τr, ρ and γ when R0s > max[R0r, 1] . Parameters βs , αs, βr, αr , ρ and γ have positive 
PRCC values and parameters ωs,φs, τs,ωr, φr and τr have negative PRCC values. Our finding is in line with 
observations and shows that amplification (ρ) has a positive correlation with DR TB prevalence at the co-existent 
equilibrium because it is the pathway from DS TB to DR TB.

Figure 3.  Stability of the co-existent endemic equilibrium as a function of R0s/R0m (as determined by the 
eigenvalues of the system Jacobian matrix). Random parameter draws leading to eigenvalues with exclusively 
negative real parts (i.e. stable) are colored yellow, whilst those leading to eigenvalues with at least one positive 
real part (i.e. unstable) are colored blue. All stable points (yellow) lie above the line R0s = R0r , and all unstable 
points (blue) lie below.
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Figure 4.  Graph shows the existence and local stability regions for the disease-free (magenta shaded region), 
mono-existent (green shaded region) and co-existent (yellow shaded region) equilibrium points.

Figure 5.  The impact of amplification (ρ) on DS and DR TB prevalence. All remaining parameters consider 
their baseline values as reported in Table 1.
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We further performed sensitivity analysis for the total TB prevalence (Is + Ir) and DR TB prevalence accord-
ing to their corresponding model parameters when R0s > max[R0r, 1] and R0r > max[R0s, 1] respectively (see 
supplementary materials: sensitivity analysis section, Figure S4 and S5).

The sensitivity indices of R0s and R0r with respect to each parameter are given in Table 2. In the sensitivity 
indices of R0s and R0r , the most significant parameters are the transmission rates of DS TB,βs and DR TB,βr . Since 
ϒ

R0s
βs

= 1 , and ϒR0r
βr

= 1 , increasing (or decreasing) the transmission rates, βs and βr of DS TB and DR TB by a 
particular percentage, increases (or decreases) the reproduction numbers R0s and R0r by the same percentage.

Discussion and conclusion
In this paper, we formulated and analysed a novel two-strain TB model with amplification: one strain for DS 
TB; and another for DR TB. Here, we considered amplification as the process by which an individual infected 
with DS TB develops infection with a resistant strain of TB, reflecting treatment failure for individuals on first 
line drug therapy.

We found three equilibrium points of our proposed model; the disease-free equilibrium; the mono-existent 
equilibrium, when DR TB dominated in this system; and the co-existent equilibrium, when DS TB dominated 
in this system. The next generation matrix method was used to calculate the basic reproduction number of the 
different TB strains, denoted by R0s for DS TB and R0r for DR TB. The value of the basic reproduction numbers, 
namely R0s and R0r , and biological parameters of the model, were estimated on the basis of available data and 
are tabulated in Table 1. Furthermore, dynamical system analyses were also used to investigate the local stability 
of the disease-free equilibrium and mono-existent equilibrium. This analysis showed that stability depends on 
the threshold quantities, i.e. the basic reproduction numbers R0s and R0r . If max [R0s, R0r] < 1 , the disease-free 
equilibrium is globally asymptotically stable, which means that the disease naturally dies out. If R0r > max[R0s, 1] , 
DS TB dies out but DR TB persists in the population. If R0s > max[R0r, 1] , then DS TB and DR TB both persist in 
the population. This analysis can help us to identify regions in the parameter space where the various asymptotic 
states are stable or unstable, thus allowing us to predict the long-term behaviour of the DS and DR TB dynamics. 
This information can advise the Bangladesh National TB Control Program to reduce the period of infectiousness 
down until max [R0s, R0r] < 1.

The existence and stability of the transmission dynamics of sensitive and resistant TB bacteria within and 
between-hosts models were considered in previous modelling  studies27,28. Previous studies showed that if the 
basic reproduction numbers of sensitive bacteria and resistant bacteria is less than one then the bacteria are 
cleared. If the basic reproduction number of resistant bacteria is greater than one but that of the sensitive bacteria 
is less than one then only resistant bacteria persist. Finally, the previous studies also showed that both sensitive 

Figure 6.  Effect of DS TB treatment rate ( τs ) on total TB prevalence when βs and βr are fixed. All remaining 
parameters consider their baseline values as reported in Table 1.
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Figure 7.  Effect of DS TB treatment rate ( τs ) on DR TB prevalence when βs and βr are fixed. All remaining 
parameters consider their baseline values as reported in Table 1.

Figure 8.  PRCC values representing the association between model output Is and the model parameters β 
(transmission rate), α (progression rate), ω (recovery rate), φ (disease related death rate), τ (treatment rate) and ρ 
(amplification rate), when R0s > max[R0r, 1] . Subscripts s and r denote DS and DR quantities, respectively.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3634  | https://doi.org/10.1038/s41598-022-07536-2

www.nature.com/scientificreports/

and resistant bacteria persist if the sensitive bacteria’s basic reproduction number is greater than one and the 
resistant bacteria’s basic reproduction number bigger than certain threshold but less than  one27,28, which is not 
the same as our results, which do not require the basic reproduction number of the resistant bacteria to be above 
a threshold in order to achieve co-existance, owing to the amplification pathway.

Several TB modelling  studies14,17 explored the impact of single and combination intervention strategies. 
Results show that combination intervention strategies are the most effective for reducing the burden of TB. In 
this study, we considered a Bangladesh-specific six-compartmental two-strain SLIRS model with amplification. 
An important feature of this model is the coupling between the two strains representing the flow of infected 
individuals who acquire resistance during treatment. We assumed amplification develops mainly through the 
choice of naturally occurring mutations in the presence of inappropriate treatment. We also considered a natu-
ral recovery parameter and treatment parameter which are not considered in the earlier  analyses14,17. Here, we 
additionally allow recovered people to move to the susceptible class due to loss of immunity, a feature that is also 
not considered in previous  studies14,17,18.

Our model determined that from the explicit formulae for R0s and R0r , it is clear that these basic reproduction 
numbers depend on transmission rates βs(βr) , progression rates αs(αr) , recovery rates ωs(ωr) , disease related 
death rates φs(φr) , and treatment rates τs(τr) . From the sensitivity analysis it is also clear that the most important 
parameters are the transmission rates βs(βr) followed by the treatment rates τs(τr) . Therefore, to control and 
eradicate DS TB and DR TB infection, it is important to consider the following strategies: the first and most 
important strategy is to minimize the contact rates βs(βr) with infected individuals. There are many ways we can 
minimize the contact rates, such as personal respiratory protection; this includes wearing of masks by patients 
to minimise dispersal of TB bacilli when they talk, cough, yawn or sneeze. In addition, basic infection control 
measures have to be taught to patients such as covering the nose and mouth during coughing and sneezing and 

Figure 9.  PRCC values showing the association between model output Ir and the model parameters βs , αs ωs , 
φs, τs, βr, αr,ωr, φr, τrandρ , when R0s > R0r and R0s > 1.

Table 2.  Sensitivity indices for R0s and R0r.

Parameter Sensitivity index ( R0s) Parameter Sensitivity index ( R0r)

βs  + 1.000 βr  + 1.000

αs  + 0.100 αr  + 0.100

ωs  − 0.178 ωr  − 0.093

φs  − 0.229 φr  − 0.288

τs  − 0.583 τr  − 0.607
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to discard used tissues into covered bins. Environmental control measures maximise dilution and air exchange 
and decontaminate air when adequate ventilation cannot be reached in high-risk areas. Any ventilation system 
must be monitored and maintained on a regular schedule. Diagnosis campaigns are also needed to control 
transmission.

The second-most important strategy is to increase the treatment rates τs(τr) of infective individuals. Moreover, 
higher values of amplification (ρ) when combined with high τs , lead to higher prevalence of DR TB—simulat-
ing inadequate or poorly administered treatment resulting in the creation of new cases of DR TB. Therefore, we 
suggest that for problematic DR TB, measures of the reproduction numbers of the DS and DR TB be performed 
together with the risk of amplification, to assure optimal levels of treatment be utilized to reduce the risk of DR 
TB. Well-administered first-line treatment for DS TB is the best way to prevent acquisition of resistance. Timely 
identification of DR TB and adequate treatment regimens with second-line drugs administered are essential to 
prevent rises in DR TB prevalence. However, in developing countries (e.g. Bangladesh) it is very difficult to isolate 
infectious individuals due to the high cost of long-term treatment. Therefore, we propose the most feasible and 
optimal strategy to eliminate DS TB and DR TB in Bangladesh is to increase the treatment rates by decreasing 
the treatment cost allowing universal health care.

Data availability
The datasets produced during the study are available from the corresponding author on reasonable request.
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