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Abstract 

Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing 

memories, is a chronic debilitating condition in need of new treatment options. Current 

treatment guidelines recommend psychotherapy as first line management with only two 

drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for 

treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related 

to depression and anxiety without producing permanent remission. PTSD remains a 

significant public health problem with high morbidity and mortality requiring major advances 

in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics 

particularly in combination with psychotherapy for management of PTSD, including psilocybin, 

MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to 

therapy by increasing trust between therapist and patient, thus allowing for modification of 

trauma related memories. Furthermore, research into the memory reconsolidation 

mechanisms has allowed for identification of various pharmacological targets to disrupt 

abnormally persistent memories. A number of pre-clinical and clinical studies have 

investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD.  

Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive 

steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear 

memory in the pathophysiology of PTSD and propose that many of these new therapeutic 

strategies produce benefits through the effect on fear memory. Evaluation of recent research 

findings suggests that while a number of drugs have shown promising results in preclinical 

studies and pilot clinical trials, the evidence from large scale clinical trials would be needed 

for these drugs to be incorporated in clinical practice.  
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1. Introduction  

Post-traumatic stress disorder (PTSD) is an acquired mental health condition following 

exposure to trauma resulting in lasting changes to behaviour (Kirkpatrick & Heller, 2014).  

These changes include core symptoms of intrusive mental imagery, avoidance of reminders, 

negative mood and cognition, and hyperarousal of stress reactivity (Kirkpatrick & Heller, 

2014). Following trauma emotional memories are formed. In the short term the significant 

emotional competent can be extinguished, however, in some people this does not occur, and 

a diagnosis of PTSD may be made after one month of exposure to the trauma (Careaga, Girardi, 

& Suchecki, 2016). Unlike non-pathological traumatic memories, in patients with PTSD, 

memories are much more vivid, easily triggered by matching cues and more distressing 

(Ehlers, 2010). PTSD involves both remembering and reacting to a new traumatic event and a 

failure to extinguish and reacting to those events, it is a disorder of involving memory 

pathology.  

The initial association of traumatic events with previously neutral stimuli – for example, 

memory of a specific location or smell associated with a traumatic episode – has behavioural 

and neural properties predicted by classical (or Pavlovian) fear conditioning (L. Johnson, J. 

McGuire, R. Lazarus, & A. A. Palmer, 2012; Yehuda & LeDoux, 2007). Evidence suggests both 

classical fear conditioning and PTSD involve amygdala-based associative memory and 

prefrontal cortex mediation of extinction of associative fear memories (L. Johnson, et al., 2012; 

Nader, Schafe, & LeDoux, 2000). PTSD memory deficits include reduced extinction of fear 

memory or overgeneralization of fear response to safe context (Parsons & Ressler, 2013). 

Current mainstay treatments for PTSD are psychotherapy with cognitive behavioural therapy, 

cognitive processing therapy, prolonged exposure therapy and pharmacotherapy with 
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selective serotonin reuptake inhibitors (SSRI) (APA, 2017; Phoenix, 2020). Evidence is 

accumulating suggesting that alternative pharmacological treatments, most notably 

psychedelic drugs, and other non-conventional substances, especially when combined with 

psychotherapies, could offer new hope to better and long-term treatment success for PTSD 

(Mitchell, et al., 2021; Scheeringa & Weems, 2014; Sessa, 2017; Yatzkar & Klein, 2010). 

Current thinking and developments of new pharmacological and therapeutic approaches 

amount to a paradigm shift for modern psychiatry. 

 

2. Epidemiology 

Data indicates that the overall lifetime risk of exposure to trauma such as physical or sexual 

abuse, wars, accidents, torture, natural disaster at least once is high. In a large national survey 

of the US, Kessler and colleagues (Kessler, Sonnega, Bromet, Hughes, & Nelson, 1995) found 

that most people will be exposed to at least one traumatic event during their lifetime. The 

exposure rate to trauma in women is high with data from Resnick and colleagues (Resnick, 

Kilpatrick, Dansky, Saunders, & Best, 1993) indicating 70% of women will be exposed to 

trauma in their lifetime. Stemming from these high rates of trauma exposure is an overall 

PTSD incidence of around 1% in the population (Jacques, et al., 2019; Yehuda, et al., 2015). 

This places PTSD on a similar level with other major mental illnesses for example 

schizophrenia (1% of population) with different types of occupation, country of residence and 

types of trauma exposure affording increased risk (Yehuda, et al., 2015). In military 

populations where exposure to combat related trauma is higher, higher rates of PTSD are 

reported including chronic PTSD (Yehuda, et al., 2015). Higher rates of PTSD are also reported 

in health care workers and refugees. Moreover, PTSD is often associated with comorbidities 
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like substance abuse, major depressive disorder and other anxiety disorders (Brady, Killeen, 

Brewerton, & Lucerini, 2000). It presents a significant financial and emotional burden for 

patient, families, and health care systems (Sareen, 2014). In summary, PTSD is a major 

neuropsychiatric disorder affecting a large numbers of people.  

 

3. Pathophysiology 

Dysregulation of fear memory is central to the development of PTSD (fig 1) (Bergstrom, 

McDonald, Dey, Fernandez, & Johnson, 2013; Blechert, Michael, Vriends, Margraf, & Wilhelm, 

2007; Debiec & Ledoux, 2004). Most individuals who undergo a traumatic experience recover 

from it, while some develop significant psychopathology (Careaga, et al., 2016). Amongst the 

mechanisms underlying the development of PTSD are increased encoding, decreased 

extinction and overgeneralization of fear memory. Furthermore, alterations in brain circuitry 

and neurotransmitters contribute to memory dysfunction observed in PTSD. 

Structural and functional abnormalities in brain areas such as the hippocampus, amygdala 

and medial prefrontal cortex increase the individual’s vulnerability for developing PTSD 

(Bremner, Elzinga, Schmahl, & Vermetten, 2008; Milad, et al., 2009; Shin, Rauch, & Pitman, 

2006). Recent genetic studies highlight possible genetic contributions to hyperarousal among 

those with PTSD and the identification of chromosomal regions associated with basal ganglia 

medium spiny neurons (Gelernter, et al., 2019; Sheerin, Lind, Bountress, Nugent, & Amstadter, 

2017). The neural circuits formed by interconnection of neurons from these areas govern 

stress response and encode traumatic memories. Alteration in these circuits is postulated to 

be associated with higher risk of PTSD, with one area of focus being the hippocampus (Chaaya, 

Battle, & Johnson, 2018). Magnetic Resonance Imaging (MRI) studies in PTSD patients have 
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revealed reduced hippocampal volume when compared with control subjects (Bremner, et 

al., 1995; Gurvits, et al., 1996). Hippocampal volume reduction seen in these patients has 

been linked with increased glucocorticoid receptor sensitivity despite low glucocorticoid 

levels (Szeszko, Lehrner, & Yehuda, 2018). Additionally, a study has shown that there may be 

pre-existing hippocampal volume reduction before the development of PTSD (M. W. 

Gilbertson, et al., 2002). In a study with monozygotic twins, the severity of PTSD was inversely 

correlated with the hippocampal volume in PTSD patients and patients’ trauma-unexposed 

identical co-twins (M. W. Gilbertson, et al., 2002). This suggest that reduced hippocampal 

volume was present prior to trauma. When exposed to trauma, these individuals may have 

an increased risk for developing PTSD. The hippocampus is implicated in storage of declarative 

memory as well as contextual aspects of fear memory (Fuchs & Gould, 2000). Pre-existing 

volume reduction might be responsible for impaired extinction of fear memories which can 

account for the inability of these individuals to recover from traumatic experiences (M. W. 

Gilbertson, et al., 2002).  

Hyperreactivity of the amygdala is a prominent feature consistently shown to be associated 

of PTSD (Shin, et al., 2006). Functional MRI studies have shown that PTSD patients have a 

hyperresponsive amygdala compared to controls when presented with a stressful reminder 

(Shin, et al., 2006). The amygdala is also found to be hyperreactive during fear acquisition in 

PTSD patients, suggesting that it may be responsible for enhanced encoding of fear memories 

(Bremner, et al., 2005). The acquisition of conditioned fear, known as ‘fear load’, was shown 

to be facilitated in individuals with PTSD when compared with control subjects (Norrholm et 

al., 2011), supporting the notion of intrinsic enhancement of conditioned fear memory. This 

finding is linked to amygdala-dependent physiological processes and neuronal overactivity 

within the amygdala (Johnson et al., 2012b, McGuire et al., 2013).   
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The medial prefrontal cortex (mPFC) has a modulatory control over amygdala and 

hippocampus (Shin, et al., 2006). It inhibits fear acquisition and enhances extinction of fear 

memories. A reduction of mPFC volume has been reported in PTSD patients, but this 

reduction may be secondary to PTSD and not necessarily a pre-existing risk factor (Rauch, et 

al., 2003). Furthermore, alteration have been found in neural circuits between the mPFC and 

other brain regions, such as the amygdala and hippocampus, which may predispose 

individuals to increased encoding of traumatic memories leading to PTSD (Shin, et al., 2004). 

Moreover, changes in brain connectivity involving frontoparietal executive control circuits 

have recently been reported in PTSD and have been linked to behavioural treatment 

responsivity,  highlighting the importance of prefrontal cortex and its connectivity in PTSD 

(Korgaonkar, et al., 2020). Differences in the functional connectome have been found for 

PTSD compared to controls (Breukelaar, Bryant, & Korgaonkar, 2021), including reduced 

connectivity between regions part of the default mode and executive control network, 

whereas increased connectivity was found between regions involved in emotional and 

arousal response such as subcortical and limbic areas.  

The medial prefrontal cortex can be divided into a dorsal and ventral part. The dorsal anterior 

cingulate cortex (dACC) is involved in emotion processing, such as the appraisal of fearful 

situations and expressions of negative emotions. Prelimbic (PL) division of the mPFC in 

rodents, homologous to human dACC, was shown to be involved in expression of conditioned 

fear (Corcoran & Quirk, 2007). Microstimulation of PL cortex led to increase in conditioned 

response whereas its inactivation reduced fear response (Vidal-Gonzalez, Vidal-Gonzalez, 

Rauch, & Quirk, 2006).  PL cortex modulates expression of fear in rodents by sending 

excitatory signals to BLA (Brinley-Reed, Mascagni, & McDonald, 1995). In clinical studies, 

greater fMRI activation in the dACC during a cognitive interference task has been found for 



10 
 

veterans diagnosed with PTSD compared to veterans without PTSD (Lisa M. Shin, et al., 2011). 

This greater activity was related to worser symptom severity, which may be the result of 

interpreting more situations as fearful due to the overactivity in the dACC. However, in this 

twin study, the non-affected co-twin of veterans with PTSD also showed increased activity in 

this region, suggesting that this increased activity may be a familial risk factor. Similarly, 

alterations have been found during resting state fMRI. Chen et al. (Chen, et al., 2019) 

compared patients with PTSD to trauma-exposed controls and healthy controls. Patients with 

PTSD had higher functional connectivity between the dACC with regions in the sensorimotor 

network in comparison to trauma-exposed and healthy controls, which may be related to 

preparing for the fight or flight response. On the other hand, patients with PTSD showed 

decreased functional connectivity between the dACC with the bilateral middle frontal gyrus 

and inferior frontal gyrus – areas important for response inhibition (Dossi, Delvecchio, Prunas, 

Soares, & Brambilla, 2020) – compared to individuals who were also exposed to trauma but 

did not develop PTSD. In addition, decreased functional connectivity between the dACC with 

the right hippocampus was found for both trauma-exposed groups but was more severe in 

the PTSD group. This finding may be related to declarative memory, e.g., difficulties of 

remembering specifics about the traumatic event (Acheson, Gresack, & Risbrough, 2012).  

The ventral areas of the mPFC are involved in generating an emotional response as well as 

the inhibition of conditioned fear (Etkin, Egner, & Kalisch, 2011) and extinction of the fear 

response by moderating the response of the amygdala and hippocampus (Alexandra Kredlow, 

Fenster, Laurent, Ressler, & Phelps, 2022; Etkin, et al., 2011). The vmPFC regions including the 

rostral ACC and orbitofrontal cortex play a role in regulating emotions by inhibiting the 

amygdala (Andrewes & Jenkins, 2019), as well as other functions, such as processing 

information related to our self and evaluating rewards (Andrewes & Jenkins, 2019). In rodents, 
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infralimbic (IL) cortex, homologous to human (vmPFC), has been shown to inhibit conditioned 

fear expression (Thompson, et al., 2010). Microstimulation of IL cortex led to reduced fear 

response in rats (Vidal-Gonzalez, et al., 2006). IL cortex modulated the fear response by 

sending projections to GABAergic interneurons in intercalated cell masses (ITCs) surrounding 

BLA ultimately reducing the central amygdala (CeA) output (Ehrlich, et al., 2009). In PTSD 

patients, reduced volumes of the rACC in the vmPFC have been linked to more severe 

symptoms. Previous studies have shown hypoactivity of the vmPFC and hyperactivity of the 

salience network (including the amygdala) in people with PTSD (Koenigs & Grafman, 2009), 

together with reduced integrity of the white matter pathway between the vmPFC and 

amygdala. These findings have been thought to relate to excessive emotional reactivity to 

context associated with the traumatic events and persistence of the conditioned fear 

response, reinforcing fear memories. The reduced connectivity between the vmPFC with the 

hippocampus (Jin & Maren, 2015b) may relate to the failure of retrieving context-specific 

information about fear memories, important for generating a context-appropriate 

behavioural response.  

To conclude, alterations in brain circuitry involving the mPFC, amygdala and hippocampus, 

together with their changes in brain volume and activation may be related to increased 

encoding of fear memories in PTSD patients. These changes in brain function highlight the 

importance that overactive fear memory plays in the pathophysiology of PTSD. Therefore, 

disrupting maladaptive fear memories become a key strategy in the treatment of PTSD. 
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Fig. 1. Formation of post-traumatic stress disorder (PTSD) associated memories, typical 

outcomes and need for new treatments. PTSD can occur following exposure to a life-

threatening event and emotional memories are formed often including elements of the 

contextual location, specific sensory inputs (e.g. sounds, sights and smells) and the 

memory of threat to life. Most people exposed to a traumatic event do not develop PTSD 

(No PTSD) however after one month some people are diagnosed with PTSD. Current 

therapies include behavioural therapies (Behavioural Therapy) as well as 

pharmacotherapies (SSRIs/SNRIs). Despite these treatment options some people have 

ongoing PTSD and need new treatment options. In this review we focus on recent 

developments in pharmacotherapy for PTSD which target emotional memories.  
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4. Current treatment approaches 

Current treatment guidelines for PTSD list treatments ranging from strongly recommended 

to conditionally recommended (as listed by the American Psychological Association; APA, 

Phoenix Australia, and Department of Veteran Affairs (VA) USA) (fig 2). Treatment guidelines 

take into consideration the evidence for a treatment, the risks along with the potential 

benefits, as well as the application of the intervention across treatment settings of patient 

subgroups (APA) (Ursano, et al., 2004). Strongly recommended treatments listed are 

psychological interventions focused on the trauma, including trauma-focused cognitive 

processing therapy, cognitive therapy, cognitive-behavioral therapy (CBT), and prolonged 

exposure therapy (VA, APA, Phoenix) (APA, 2017; Card, 2017; Phoenix, 2020). The VA in 

addition also recommends Brief Eclectic Psychotherapy (APA, strongly recommended by VA), 

Eye movement Desensitization and Reprocessing (EMDR) therapy (APA, Phoenix, strongly 

recommended by VA), Narrative Exposure therapy (APA, Phoenix, strongly recommended by 

VA), and written narrative exposure. These therapies with components of exposure to 

trauma-related stimuli and cognitive restructuring (Watkins, Sprang, & Rothbaum, 2018) are 

seen as the first line of treatment for individuals diagnosed with PTSD (VA, Phoenix, APA). 

However, when trauma-focused psychotherapy is not readily available or not preferred by 

the patient, conditionally recommended treatments are suggested as first-line treatment (VA, 

Phoenix). Conditionally recommended treatment approaches are those with weaker evidence 

and/or potential for more severe side effects, such as present-centered therapy (Phoenix, 

evidence weak according to VA), stress inoculation training (Phoenix, VA) and 

pharmacological treatment (VA, APA, Phoenix). The four pharmacological treatments 

conditionally recommended for PTSD are selective serotonin reuptake inhibitors (SSRIs) 
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sertraline, paroxetine, and fluoxetine, as well as serotonin-norepinephrine reuptake inhibitor 

(SNRI) venlafaxine (APA, Phoenix, VA). 

 

Fig. 2. Treatment recommendations for PTSD by APA, Phoenix and VA. Psychotherapies 

like cognitive processing therapy, cognitive therapy, cognitive-behavioral therapy, and 

prolonged exposure therapy are strongly recommended by all the PTSD treatment 

guidelines, while present-centered therapy, stress inoculation training and 

pharmacological treatment are recommended as second line treatments.   
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With regard to treatment efficacy, several meta-analyses (Coventry, et al., 2020; Karatzias, et 

al., 2019; Lewis, Roberts, Andrew, Starling, & Bisson, 2020; Turrini, et al., 2019) have shown 

the effectiveness of trauma-focused cognitive therapies and EMDR for reducing PTSD 

symptoms, with sustained effects at several months post follow-up (Mavranezouli, et al., 

2020). In addition, Coventry et al. (2020) also found interpersonal therapy (based on two 

studies) to be as effective in reducing PTSD symptoms (related to emotional dysregulation) 

and depressive and anxiety symptoms and improving sleep quality. There is less agreement 

with regard to non-trauma focused interventions, however. Some have found non-trauma 

focused interventions to be not effective (small and non-significant effect) (Coventry, et al., 

2020) whereas others found some support for an effect (Lewis, et al., 2020), e.g., non-trauma 

focused CBT. In addition, several studies have examined the effectiveness of pharmacological 

interventions in comparison to usual care and/or psychological interventions. SSRIs sertraline, 

paroxetine, and fluoxetine as well as SNRI venlafaxine have been found to be effective in 

reducing PTSD symptoms (Friedman & Bernardy, 2017; Hoskins, et al., 2015; Huang, et al., 

2020). When compared to psychological interventions, pharmacological interventions with 

SSRIs (Mavranezouli, et al., 2020), antipsychotics (Coventry, et al., 2020) and prazosin 

(Coventry, et al., 2020) showed a smaller effect compared to psychological interventions in 

reducing PTSD symptoms (Coventry, et al., 2020; Mavranezouli, et al., 2020). In addition, SSRIs 

appear to be mostly effective for treating symptoms related to mood but not as much for 

specific PTSD symptoms (Alexander, 2012; Bryant, 2019). Nevertheless, despite a smaller 

effect, the clinical importance of pharmacological interventions should not be 

underestimated (Cipriani, et al., 2018), in particular for individuals who have no access to, are 

not willing to undertake or are not ready (yet) for psychological interventions.  
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Both psychological and pharmacological interventions come with several limitations. First, the 

efficacy rate for psychological and pharmacological interventions shows that not all 

individuals with PTSD benefit (as much) from a treatment. For example, 41-95% of individuals 

lost their PTSD diagnosis after prolonged exposure therapy (Watkins, et al., 2018), 30-97% 

after cognitive processing therapy (Watkins, et al., 2018), and 61-82.4% after CBT. As 

described by Berger et al. (2009), approximately 60% of individuals experience a reduction in 

PTSD symptoms after SSRI treatment and 20-30% lost their diagnosis. Likewise, 78% of those 

treated with venlafaxine showed reductions in symptoms, and 40.4% lost their diagnosis after 

treatment (Berger, et al., 2009). Also, the drop-out rate and risk of relapse are of concern. For 

example, drop-outs for sertraline and paroxetine were higher than placebo (Cipriani, et al., 

2018). Similarly, the more effective trauma-focused psychological interventions have also 

shown higher dropout rates in comparison to non-trauma focused interventions, with 

approximately one third of individuals dropping out of treatment, with a large proportion 

(16%) of patients dropping out prior to attending the first treatment session and the majority 

dropping out within their first half of treatment (Gutner, Gallagher, Baker, Sloan, & Resick, 

2016). In addition, not all patient groups benefit equally from the interventions. For example, 

it has been found that sertraline (SSRI) is not as effective in males than in females (John H. 

Krystal, et al., 2017), and appears to be not (or not as) effective in combat veterans (John H. 

Krystal, et al., 2017). Likewise, psychotherapy has found to be not as effective in military 

populations (Haagen, Smid, Knipscheer, & Kleber, 2015).  

Treatment guidelines may benefit from considering individual differences. On average, 

individuals with moderate levels of PTSD symptom severity showed better treatment 

response than those with low or high severity levels as examined in a military population 

(Haagen, et al., 2015). It has also been proposed that individuals with PTSD may benefit from 
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different treatments depending on their clinical profile (Friedman, 2016; Friedman & 

Bernardy, 2017). For example, Friedman proposes that individuals with PTSD dysphoria type 

may respond better to SSRIs and SNRIs in comparison to those with dissociative symptoms 

(Friedman & Bernardy, 2017). Further, individuals with PTSD often have comorbidities, 

including cardiovascular, respiratory, gastrointestinal, inflammatory and autoimmune disease 

(Neigh & Ali, 2016), as well as psychiatric conditions. Approximately 59% of men and 44% of 

women diagnosed with PTSD meet the criteria for three or more other psychiatric conditions, 

such as major depressive disorder, anxiety disorder and substance use disorder (Brady, et al., 

2000). These comorbidities along with their treatment may interfere with treatments for 

PTSD. Variability in treatment efficacy may also relate to the timing of the treatment since 

exposure to the trauma. Some studies have shown reduced treatment response for those 

with longer time between the trauma and treatment (cognitive therapy) (Ehlers, et al., 2013), 

whereas another study showed an increased treatment response (SSRI) for those with longer 

time since the trauma (Nøhr, et al., 2021). Understanding the factors contributing to 

treatment success is vital for the exploration of new treatments and more detailed guidelines 

for current approved treatments. 

Current treatment approaches have been expanded on with the aim to improve treatment 

success. For example, combining treatments such as SSRI and mirtazapine (Schneier, et al., 

2015) has shown better outcomes than SSRI combined with placebo, i.e., greater remission 

rate and reduced depressive symptoms. Likewise, combining pharmacological with 

psychological interventions has been explored. For example, combining SSRI with prolonged 

exposure therapy (Rauch, et al., 2019). However, no additional improvements were found for 

the group with the combined intervention, compared to SSRI or prolonged exposure therapy 

alone. The option of SSRI after non-responsiveness to CBT, or vice versa (Friedman & Bernardy, 
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2017) has also been explored, whereas others have examined whether pharmacological 

treatment before CBT intervention can enhance psychological interventions, but results have 

been mixed. These findings have confirmed the need for novel strategies, including better-

targeted pharmacological treatment.  

5. Psychedelics and substance assisted psychotherapy  

Fueling what could be considered as a paradigm shift for modern psychiatric, evidence is 

accumulating suggesting that alternative pharmacological treatments, most notably 

psychedelic drugs and other non-conventional substances, could hold significant therapeutic 

benefits in mental health disorders. A renaissance of research into compounds such as 

psilocybin, lysergic acid diethylamide (LSD), cannabinoids, ketamine and 3,4-

methylenedioxymethamphetamine (MDMA), most notably into their application to assist 

with psychotherapy for mental health conditions, including PTSD, has begun to unlock their 

distinct potential. However, their use is still limited by considerable legal obstacles and lack 

of social acceptance, problems that are exacerbated by near absent funding for research into 

their medical use. Despite these limitations, recent clinical trials support the application of 

psychedelic drugs for the treatment of anxiety (Griffiths, et al., 2016), depression (Davis, et 

al., 2021) and PTSD (Mithoefer, et al., 2019). There are different classes of drugs that share 

the ability to induce profounds alterations in consciousness as well as significant somatic, 

perceptual, cognitive and emotional changes, and do so via diverse neuropharmacological 

mechanisms of action that need to be considered (Garcia-Romeu, Kersgaard, & Addy, 2016). 

These include classic psychedelics, such as LSD, psilocybin and dimethyltryptamine (DMT), 

which are partial or full agonists at serotonergic 5-HT2A receptors, 

empathogens/entactogens, such as MDMA, whose main mechanism of action is to increase 
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release and/or block the reuptake of monoamines, and dissociative drugs, such as ketamine, 

which are mainly antagonists at the NMDA receptor (fig 3).  

  

 

5.1 Psilocybin   

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is a prodrug that is metabolized in the 

liver into the 5-HT2A, 5-HT1A and 5-HT2C receptor agonist, psilocin. As a classic tryptamine-

related drug, psilocybin induces strong perceptual alterations and a wide range of subjective 

Fig. 3. Schematic diagram depicting the main actions of Psilocybin, LSD, Ketamine, 

cannabis, Ayahuasca, and MDMA at different synaptic receptors. Psychedelics like 

psilocybin, ayahuasca and LSD act mainly by agonism at 5HT2A receptors. MDMA acts at 

both pre and post synaptic sites to stimulate monoaminergic neurotransmission. Ketamine 

mainly acts as NMDA antagonist but also stimulates synaptic plasticity by agonism at AMPA 

receptors. Cannabis mainly acts as agonist at CB1 receptors. Abbreviation: LSD, Lysergic 

acid diethylamide; MDMA, 3,4-methylenedioxymethamphetamine; DMT- 

Dimethyltryptamine); SERT, Serotonin transporter; NET, Norepinephrine transporter; DAT, 

Dopamine transporter; VMAT, Vesicular monoamine transporter; NMDA, N-methyl-D-
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and neurophysiological effects. Psilocybin seems to have the ability to modulate bottom-up 

emotional reactivity, with effects that include reduced sensitivity to aversive stimulation and 

positively modulation of affect (Carhart-Harris, et al., 2012; Kraehenmann, et al., 2015). 

Psilocybin has been shown to reduce avoidance and increase acceptance and connectedness 

(Watts, Day, Krzanowski, Nutt, & Carhart-Harris, 2017) which may reduce PTSD patient’s 

resistance to trauma focused psychological interventions. Other broader mental health 

benefits which may contribute the therapeutic actions of psilocybin include increase in 

emotional empathy (Pokorny, Preller, Kometer, Dziobek, & Vollenweider, 2017) and 

insightfulness (Kometer, Pokorny, Seifritz, & Volleinweider, 2015). Psilocybin induced a 

mystical-type experience (Griffiths, et al., 2011) which may mediate its improvement in 

patients with depression (Roseman, Nutt, & Carhart-Harris, 2017) and reduction of 

depression and anxiety in patients with life threatening cancer (Ross, et al., 2016). To what 

extent this would contribute to its therapeutic action in PTSD is not fully known. 

There is evidence that psilocybin elicits changes in default mode network (DMN) connectivity 

(Smigielski, Scheidegger, Kometer, & Vollenweider, 2019), disruption of which, through 

developmental trauma, has been linked to the pathogenesis of PTSD (Daniels, Frewen, 

McKinnon, & Lanius, 2011). DMN is composed of aspects of medial prefrontal cortex (mPFC), 

posterior cingulate cortex, precuneus, medial temporal lobe, and medial and lateral parietal 

cortices (Buckner, Andrews-Hanna, & Schacter, 2008). Research suggests that long term 

trauma is associated with disruption in DMN connectivity (Akiki, et al., 2018) and contributes 

to PTSD symptoms such as hyperarousal and depersonalization/derealization (Tursich, et al., 

2015). Moreover, whilst the amygdala is not normally linked with the DMN state, patients 

with PTSD experiencing hyperarousal and hypervigilance exhibit alterations in DMN 

functional connectivity that include the amygdala (Akiki, Averill, & Abdallah, 2017; Sripada, et 
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al., 2012). In a clinical study in 19 patients with depression, psilocybin administration was 

associated with reduced amygdala blood flow and increased connectivity in DMN network 

(Carhart-Harris, et al., 2017). In another study on 23 healthy human volunteer, psilocybin 

increased connectivity in sensory regions like bilateral occipital cortex, right superior 

temporal gyrus, precuneus and the left postcentral gyrus (Preller, et al., 2020). Thus, the 

ability of psilocybin to regulate DMN activity could provide a top-down mechanism for the 

modulation of negative affect in PTSD.  

Psilocybin has been shown to increase neural plasticity by increasing neurogenesis, 

spinogenesis, and synaptogenesis in both in vivo and vitro models (Ly, et al., 2018). The 

increase in synaptic plasticity may enhance memory extinction as low dose of psilocybin 

increased hippocampal neurogenesis and facilitated extinction of cued fear conditioning in 

mice (Catlow, Song, Paredes, Kirstein, & Sanchez-Ramos, 2013). Moreover, increase in 

synaptic plasticity may reverse the stress induced changes in prefrontal cortex and contribute 

to the antidepressant action of psilocybin in PTSD (Arnsten, 2009). Further, psilocybin 

decreased (Kraehenmann, et al., 2015) the amygdala hyperreactivity seen in patients with 

PTSD (Francati, Vermetten, & Bremner, 2007). Although current studies are very limited in 

scope, these preliminary observations support the potential application of psilocybin in the 

treatment of PTSD. 

 

5.2 LSD 

LSD is a semi-synthetic product of lysergic acid that exhibits complex pharmacology including 

agonism at serotonergic systems, particularly at 5-HT2A receptors, as well as actions at 

dopaminergic and adrenergic receptor sites (Halberstadt, 2015; Passie, Halpern, Stichtenoth, 
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Emrich, & Hintzen, 2008; Titeler, Lyon, & Glennon, 1988). LSD increased neuroplasticity in in 

vivo and in vitro preclinical models (Ly, et al., 2018) as well as increased blood plasma BDNF 

levels in humans (Hutten, et al., 2021). Whether this enhanced neuroplasticity contributes to 

increase fear extinction in LSD assisted psychotherapy need to be evaluated in PTSD patients. 

The predominant effects induced by LSD include visual hallucinations, audiovisual synesthesia, 

altered sensorimotor gating, positively experienced derealisation and MDMA-like 

empathogenic effects that could prove useful in clinical settings (Schmid, et al., 2015). Despite 

promising research in the 1950s and 1960s examining the efficacy of LSD in the treatment of 

a myriad of conditions, including addictive disorders (Smart, Storm, Baker, & Solursh, 1966) 

and cancer-related anxiety (Grof, Goodman, Richards, & Kurland, 1973), clinical research into 

the therapeutic applications of LSD virtually dried up in the ensuing years. In more recent 

times, however, additional studies have again yielded encouraging results, with a double-

blind, randomised, active placebo-controlled pilot study evaluating the effects of LSD-assisted 

psychotherapy in 12 patients with anxiety associated with life-threatening diseases. The 

results showed reductions in both state and trait anxiety at the 2-month follow-up (Gasser, 

et al., 2014). At the 12-month follow-up, these authors reported enhanced perceived quality 

of life in such patients and a persistent decrease in anxiety measures which may have been 

facilitated by better access to, and confrontation of, the patient’s emotions and 

understanding of their personal situation (Gasser, Kirchner, & Passie, 2015). Although no 

studies have investigated the potential of LSD for the treatment of PTSD, recent studies 

warrant further investigation into such potential. Mueller et al. (2017) used fMRI to measure 

the brain activity in response to fearful stimuli in 20 healthy individuals after taking 100 

micrograms of LSD. LSD administration led to reduced reactivity of the left amygdala and the 

right medial prefrontal cortex relative to placebo during the presentation of fearful faces 
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(Mueller, et al., 2017). Further, a recent study suggested that a low dose of LSD increased 

amygdala connectivity with the right angular gyrus, right middle frontal gyrus, and cerebellum, 

with this increase in amygdala-middle frontal gyrus connectivity strength being positively 

correlated with positive mood after taking the drug (Bershad, et al., 2020). These data suggest 

that LSD has the ability to dampen amygdala reactivity and alter corticolimbic connectivity, 

which could facilitate improved emotional regulation in PTSD. 

 

5.3 Ayahuasca 

Ayahuasca is a hallucinogenic decoction that has been used for millennia both socially and as 

ceremonial spiritual medicine in several Amazonian regions. Ayahuasca is traditionally 

prepared using two plants referred to as Banisteriopsis caapi, which contains monoamine 

oxidase inhibitors, and Psychotria viridis, which contains its main hallucinogenic-inducing 

ingredient, N,N-dimethyltryptamine (DMT). DMT is a high affinity serotonergic agonist, with 

actions at multiple 5-HT receptor sites including what appears to be its primary target, the 5-

HT2A receptor (Keiser, et al., 2009). However, DMT also exerts agonist effects at the trace 

amine-associated receptor 1 (TAAR1) (Burchett & Hicks, 2006) and the sigma-1 receptor 

(Carbonaro & Gatch, 2016). Experimental data in rats revealed that chronic, intermittent, low 

doses of DMT produced an antidepressant-like phenotype and enhanced fear extinction 

learning, whilst having no effect on cued or contextual fear memory (Cameron, Benson, 

DeFelice, Fiehn, & Olson, 2019). DMT has been shown to enhance plasticity by increasing 

dendritic arbor complexity, promote dendritic spine growth, and stimulate synapse formation 

(Ly, et al., 2018). This enhanced neuroplasticity in prefrontal cortex may reduce symptoms of 

depression in PTSD patients. Specific evidence supporting the beneficial effects ayahuasca 
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and DMT in the treatment of trauma-related conditions in humans has shown promise. A 

recent retrospective survey of a clinical population of U.S. Special Operations Forces Veterans 

who completed a specific psychedelic treatment program involving ibogaine (a psychoactive 

indole alkaloid which is extracted from the Tabernanthe iboga rainforest shrub)- and DMT-

assisted psychotherapy over three days, indicated large reductions in retrospective report of 

suicidal ideation, cognitive impairment, and symptoms of PTSD and anxiety (Davis, Averill, 

Sepeda, Barsuglia, & Amoroso, 2020). Although the study was based on self-reports and 

lacked randomisation and blinding and therefore the results can only be considered as 

preliminary, this research clearly warrants further investigation. Ayahuasca administration 

increased mindfulness-related capacities such as reduction in judgmental processing of 

experiences and in inner reactivity (Soler, et al., 2016). Further, ayahuasca increased 

psychological flexibility by enhancing creative divergent thinking and reducing convergent 

thinking, which may facilitate psychotherapeutic interventions in PTSD (Kuypers, et al., 2016). 

Ayahuasca consumption was associated with increased introspection, the ability to process 

unconscious psychological material, and emotional catharsis (Loizaga-Velder, 2013) which has 

been proposed to reduce avoidance to  psychotherapeutic interventions and increased 

extinction of conditioned fear memory (Luciano, et al., 2013). It has been argued that 

ayahuasca/DMT exposure may facilitate retrieval and destabilisation of traumatic memories 

that would otherwise be repressed. In turn, the reprocessing of such traumatic events 

through drug-induced mystical experiences may contribute to the update of the memory, 

which would be subsequently loaded and stored with new affective significance, thus 

triggering emotional stabilisation (Inserra, 2018). This hypothesis, which requires further 

investigation, suggests that ayahuasca/DMT, and potentially other psychedelic drugs, may 
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exert neuropharmacological actions that align with the principles of memory consolidation 

and reconsolidation theory (Yehuda and LeDoux, 2007; Johnson et al, 2009). 

 

5.4 Cannabis 

Another psychoactive substance of interest as a candidate for the treatment of PTSD is Δ9-

tetra-hydrocannabinol (THC), the cannabinoid primarily responsible for the effects of 

cannabis. Cannabis sativa (cannabis) is among the oldest of cultivated plants known to 

mankind for its medicinal properties and significant role in the religious and ceremonial 

activities of many cultures. The CB1 receptor, a G-protein coupled receptor, is the primary 

target of THC in the nervous system. Downregulation of the CB1 receptor has been associated 

with exposure to chronic stress (Morena, Patel, Bains, & Hill, 2016) and several lines of 

evidence suggest that activation of the CB1 receptor modulates fear memories in humans and 

experimental animals and could therefore provide relief for the symptoms of PTSD. Indeed, 

experimental models have shown that CB1 receptor activation modulates the reconsolidation 

of fear memory traces. THC, alone and combined with cannabidiol, disrupted the 

reconsolidation of a contextual fear memory in rats, resulting in reduced long-term 

conditioned freezing expression (Stern, et al., 2015). Moreover, infusions of the CB1 agonist, 

WIN55212-2, into the amygdala after memory reactivation blocked reconsolidation of fear 

memory, with this effect being blocked by AM251, a specific CB1 receptor antagonist (Lin, 

Mao, & Gean, 2006).  
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A possible additional role of the CB1 receptor is to facilitate fear extinction processes. 

Injections of WIN55212-2 into the nucleus accumbens (Korem, Lange, Hillard, & Akirav, 2017), 

of CP55940 into the retrospenial cortex (Sachser, Crestani, Quillfeldt, Mello, & de Oliveira 

Alvares, 2015), and of cannabidiol into the infralimbic cortex (Do Monte, Souza, Bitencourt, 

Kroon, & Takahashi, 2013), all facilitated fear extinction in rodents whereas administration of 

CB1 antagonist rimonabant disrupted extinction learning in mice (Niyuhire, et al., 2007). 

Similarly, in humans, exposure to THC and other related cannabinoids produced effects that 

are consistent with an effective modulation of fear and trauma-related memories. Rabinak et 

al. (2013) used a randomised, double-blind, placebo-controlled study involving a Pavlovian 

fear extinction paradigm to test the effects of oral dronabinol (synthetic THC), showing that 

dronabinol prevented the recovery of fear when tested 24 h after extinction (Rabinak, et al., 

2013). Similarly, administration of D9‐tetrahydrocannabinol (THC) in PTSD patients enhanced 

extinction of memories induced by Pavlovian fear learning paradigm. PTSD patients who 

received THC showed significantly lower skin conductance response when exposed to 

conditioned stimulus (Rabinak, et al., 2018). An open labelled study on 150 PTSD patients 

showed that patients using dispensary obtained cannabis were 2.57 times more likely to no 

longer meet DSM-5 criteria for PTSD at the end one year study period compared to patients 

who did not use cannabis (Bonn-Miller, et al., 2020).  

 

Further, fMRI studies have demonstrated reduced activation of the amygdala in response to 

social threats following treatment with THC (Phan, et al., 2008). It is important to note that 

neuroimaging studies have also revealed differences in the density of CB1 receptors and 

anandamide signalling in PTSD patients (Hauer, et al., 2013; Neumeister, et al., 2013) and, 
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critically, that cannabinoids can indeed reduce the symptomatology of PTSD, including overall 

symptom severity, sleep quality, treatment-resistant nightmares, and hyperarousal 

symptoms (Fraser, 2009; Greer, Grob, & Halberstadt, 2014; Roitman, Mechoulam, Cooper-

Kazaz, & Shalev, 2014). The subtype of cannabinoid receptors CB2 has been linked to 

neuroinflammation which is another mechanism interfering with fear memory extinction. 

This has been discussed in subsequent sections.  Taken together, data from both animal and 

human studies strongly support the candidacy of cannabinoids for the treatment of PTSD. 

 

5.5 Ketamine  

Ketamine, an N-methyl-D-aspartate-receptor receptor antagonist, is commonly used as 

anaesthetic. Recent evidence suggests that ketamine can have a rapid and robust 

antidepressant effect in patients with treatment-resistant depression (Fond, et al., 2014; 

Wilkinson, et al., 2018). Intranasal esketamine was recently (March 5, 2019) approved by the 

FDA for treatment-resistant depression.  

There has been a significant increase in effort globally on the development of ketamine for 

PTSD treatment. It has been studied as both monotherapy and in combination with 

psychotherapy. In a randomised double blind clinical trial, a single IV infusion of ketamine 

significantly reduced the symptoms of PTSD after 24 hours when compared with IV 

midazolam (Feder, et al., 2014). As with depression single dose administration of ketamine 

lead to short-term improvement. However, in an open label trial, repeated infusion of IV 

ketamine (six doses over 12 days) rapidly improved the symptoms of PTSD, and the effect was 

maintained up to 41 days (Albott, et al., 2018). When combined with a mindfulness-based 

cognitive therapy, single IV infusion of 0.5 mg/kg ketamine produced a significantly more 
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sustained response in reduction of CAPS-IV PTSD symptoms compared to therapy alone in 

patients with refractory PTSD (Pradhan, et al., 2017). Patients were asked to recall the 

traumatic memories which was followed by ketamine infusion. Mindfulness exercise was 

practiced during the infusion to enhance trauma memory extinction and incorporate calming 

memories through reconsolidation. 

The mechanisms by which ketamine benefits PTSD patients are still being explored. One 

possible explanation is the disruption of trauma associated memory. Like disorders of 

addiction (Lee, Milton, & Everitt, 2006a) PTSD could be thought of a disorder of memory. 

Experimental data in human subjects suggest that individuals with PTSD have an exaggerated 

acquisition of conditioned fear, known as ‘fear load’, compared to control subjects (S. D. 

Norrholm, et al., 2011), suggesting an intrinsic facilitation of conditioned fear memory. This 

increased fear encoding is linked to amygdala-dependent physiological processes and 

neuronal overactivity within the amygdala (L. R. Johnson, J. McGuire, R. Lazarus, & A. A. 

Palmer, 2012; McGuire, et al., 2013).  Ketamine was shown to rapidly increase synaptic and 

neuronal plasticity (Ly, et al., 2018) and increase extinction of fear memory by increasing 

mTORC1 signalling in rats (Girgenti, Ghosal, LoPresto, Taylor, & Duman, 2017). Ketamine 

rapidly reversed the decrease in synaptic proteins expression, spine number and excitatory 

postsynaptic currents in layer V pyramidal neurons in the prefrontal cortex caused by chronic 

unpredictable stress in rats (Li, et al., 2011). It has been proposed that PTSD might be a 

synaptic disconnection syndrome and ketamine may work in PTSD by restoring synaptic 

connectivity (J. H. Krystal, et al., 2017). Furthermore, evidence suggests retrieval of a long-

term memory can cause reactivation of memory trace and induce a state of instability 

requiring restabilization through reconsolidation (Nader, Schafe, & Le Doux, 2000; 

Przybyslawski, Roullet, & Sara, 1999). Research in our lab and others have shown that 
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pharmacological treatments can impair the reconsolidation of emotional memories when 

given in conjunction with the recall of events related to a trauma (Bergstrom, et al., 2013; 

Duclot, Perez-Taboada, Wright, & Kabbaj, 2016; Parsons & Ressler, 2013; Ratano, Everitt, & 

Milton, 2014). Moreover, fear memory reconsolidation has been shown to depend upon 

NMDA receptor activation. In preclinical studies, systemic injection of ketamine has been 

shown to disrupt contextual fear memory reconsolidation (Duclot, et al., 2016). Similarly in 

addiction models, intraperitoneal administration of ketamine, after re-exposure to a drug-

paired context, disrupted reconsolidation of appetitive memory (Zhai, et al., 2008). Thus, 

addition of ketamine in subanesthetic dosage to trauma-focused psychotherapy has been 

proposed to offer a long term solution for PTSD by virtue of its action on trauma related 

memories (Veen, Jacobs, Philippens, & Vermetten, 2018). 

At a behavioural level, psychoactive effects of ketamine especially when given in combination 

with psychotherapy may explain its benefits in PTSD patients. Ketamine can cause 

hallucinations and sensory distortions to change concept of self and attitude towards self and 

others (Krupitsky & Grinenko, 1997). This may lead to an increase in capacity to process 

emotions during therapy. The recall of traumatic experience during therapy sessions could be 

challenging for PTSD patients. The difficulty with reexperiencing of trauma may lead to 

reduced efficacy or treatment dropout for some PTSD patients. Addition of ketamine to 

psychotherapy may be able to increase the receptivity of patients to face these challenges.  

Dissociative symptoms are the most frequently observed side effects with ketamine; however, 

these may be contributing to the effect of ketamine particularly when ketamine is used in 

combination with psychotherapy (Krupitsky & Grinenko, 1997; Pradhan, et al., 2017). Other 

side effects like transient increase in anxiety and increase in blood pressure and heart rate 
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(Feder, et al., 2014) are short lived and can be managed with supportive treatment and 

therefore require ketamine to be administered strictly under clinical supervision.  

 

5.6 MDMA  

3-4 methylenedioxymethamphetamine (MDMA) is a methamphetamine like synthetic 

compound first developed as a haemostatic agent. It was used as an adjunct to therapy in 

1970s due to its psychoactive properties. However, after widespread abuse as a party drug, 

US DEA placed it under schedule 1 of controlled substance act and its therapeutic use declined. 

In the last two decades there has been a resurgence in interest to develop MDMA as aid to 

psychotherapy. A recent systematic review of clinical trials of MDMA assisted psychotherapy 

has shown moderate evidence for its use in treatment resistant PTSD (Varker, Watson, Gibson, 

Forbes, & O’Donnell, 2020). Due to such promising results, US FDA has given breakthrough 

therapy designation to MDMA-assisted psychotherapy. 

Unlike ketamine, MDMA has been exclusively studied in conjunction with therapy. The first 

study after 2000 was conducted in six women with chronic PTSD secondary to sexual assault 

(Bouso, Doblin, Farré, Alcázar, & Gómez-Jarabo, 2008). Although this study could not reach 

its desirable sample size, it showed that a low dose of MDMA (50 or 75 mg) combined with 

psychotherapy sessions was physically and psychologically safe in PTSD patients. A 

randomized placebo-controlled trial comparing two sessions of psychotherapy with MDMA 

(125 mg plus 62.5 mg optional booster) or placebo showed significant reduction in CAPS 

scores from baseline in MDMA group (Mithoefer, Wagner, Mithoefer, Jerome, & Doblin, 

2011).  In MDMA group 10 of 12(83%) responded to treatment compared to 2 of 8 (25%) in 

placebo group. A further analysis showed that this treatment effect was maintained over 3.5 
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years (Mithoefer, et al., 2013). In another RCT, 26 veterans and first-responders with PTSD 

underwent two sessions of psychotherapy with three different doses of MDMA [30 mg (7), 75 

mg (7) or 125 mg (12)] (Mithoefer, et al., 2018). Patients in the 75 mg and 125 mg groups 

showed significant reduction in PTSD symptom severity compared to patients in the 30 mg 

group. When patients in the 30 mg and 75 mg groups were administered 100-125 MG MDMA 

in combination with three therapy sessions, the group that received 30 mg MDMA showed 

significant reduction in PTSD symptom severity. These effects were maintained during the 12 

months follow-up period. A pooled analysis of six RCTs with 105 patients showed that patients 

in MDMA group had significant reduction in PTSD symptom severity compared to the control 

group (Mithoefer, et al., 2019). Recently, Mitchell and colleagues’ (2021) conducted a phase 

3 randomized clinical trial to test efficacy and safety of MDMA-assisted therapy (n=46) 

compared to placebo with therapy (n=44) in chronic PTSD patients. In MDMA-assisted 

therapy group, 67% patients no longer met the diagnostic criteria for PTSD whereas on 32% 

responded in placebo group at the end of treatment period. MDMA-assisted therapy also 

reduced symptoms of depression in PTSD patients (Mitchell, et al., 2021). 
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The neurobiological mechanisms of MDMA involve increase in the level of serotonin in 

synapse. Serotonin has been found to reduce fear response during the recall of traumatic 

memories and thus increase the effectiveness of psychotherapy by increasing patients’ 

openness to the intervention (Sessa, 2017) (fig 4). MDMA is also short acting compared to 

other psychedelics and does not interfere with cognitive and perceptual abilities of patients 

which helps in retaining the memories of therapy experience (Sessa, 2017). Apart from its 

indirect impact on trauma memory modification through increase in acceptance of therapy, 

MDMA also affects memory directly. MDMA has been shown to enhance fear memory 

extinction through activation of 5HT2A receptors in mice (Young, et al., 2017). Furthermore, 

it has been proposed that MDMA might be acting through modulation of memory 

Fig. 4. Therapeutic rationale for the use of psychedelics assisted psychotherapy in PTSD. 
This figure illustrates four mechanisms through which MDMA can enhance 
psychotherapy.  
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reconsolidation during the therapy session (Feduccia & Mithoefer, 2018). PTSD is associated 

with increased amygdala reactivity and reduced activation of prefrontal cortex (Dahlgren, et 

al., 2018; Francati, et al., 2007). MDMA administration attenuated the increased amygdala 

reactivity and enhanced the activation of frontal cortex (Carhart-Harris, et al., 2015; Gamma, 

Buck, Berthold, Liechti, & Vollenweider, 2000). A pooled analysis of eight studies in healthy 

human subjects showed that MDMA administration significantly increased plasma oxytocin 

levels (Vizeli & Liechti, 2018) which may mediate its prosocial effects (Thompson, Callaghan, 

Hunt, Cornish, & McGregor, 2007).    

The use of MDMA in psychotherapeutic settings has not been associated with serious adverse 

events. In phase 3 clinical trial, MDMA was associated mild to moderate side effects which 

included muscle tightness, decreased appetite, nausea, hyperhidrosis and feeling cold 

(Mitchell, et al., 2021). With respect to cardiovascular safety, MDMA caused a transient 

increase in blood pressure and heart rate. MDMA also cause a slight increase in anxiety in 

some patients however this could be managed by therapist support (Mithoefer, et al., 2018). 

 

6. Fear memory reconsolidation  

The reinvigoration of research into memory reconsolidation from the late 1990s and 2000s  

(Nader, Schafe, & Le Doux, 2000; Przybyslawski & Sara, 1997), which has identified theoretical 

and practical strategies for the modification memories, has raised hope for the development 

of new treatments that target pathological memories in PTSD. Memory reconsolidation 

hypothesis states that remembering an event can trigger the associated memory trace to 

transfer from a stable into a destabilized state. Once destabilized, the trace can be altered 

pharmacologically before its restabilization through memory reconsolidation (Przybyslawski, 
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et al., 1999). In the past couple of decades, a number of preclinical and clinical studies have 

demonstrated the potential of drugs to disrupt fear memory reconsolidation (Kelly, Laroche, 

& Davis, 2003; Ratano, et al., 2014; Walker, Brakefield, Hobson, & Stickgold, 2003; Walsh, Das, 

Saladin, & Kamboj, 2018).  

Recent evidence suggests that memory is a dynamic process, involving both increases in 

strength of memory and updating of its content with new experiences (Fig 5) (Nader, Schafe, 

& LeDoux, 2000; Przybyslawski & Sara, 1997). Retrieval of a long term memory can cause 

reactivation of the memory trace, and this reactivation involves destabilizing the memory 

whereby new protein synthesis is required in order to restabilize the memory through 

reconsolidation (Nader, Schafe, & Le Doux, 2000; Przybyslawski, et al., 1999). One explanation 

for memory reconsolidation is that it likely evolved to allow the incorporation of new 

information into long-term memory. The exploitation of the reconsolidation process could 

have enormous implications for treatment of anxiety associated disorders as it may allow for 

the disruption of the old, well-established maladaptive memories that contribute to the 

persistence of fear memory related disorders (Debiec & Ledoux, 2004).  
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Molecular mechanisms for fear memory reconsolidation involve protein synthesis through 

activation of receptors and intracellular signalling mechanisms (fig 6). Fear memory 

reconsolidation requires activation of various receptors followed by activation of protein 

kinases and transcription factors and ultimately protein synthesis. The two most studied 

receptors in this context are the beta-adrenergic (Debiec & Ledoux, 2004; Huang, Zhu, Zhou, 

Liu, & Ma, 2017; Przybyslawski, et al., 1999) and NMDA receptors (Lee, Milton, & Everitt, 

2006b), although other receptors such as glucocorticoids (Nikzad, Vafaei, Rashidy-Pour, & 

Haghighi, 2011), GABA (Espejo, Ortiz, Martijena, & Molina, 2017), cannabinoid CB1 (Ratano, 

et al., 2014) and serotonin (Schmidt, et al., 2017) receptors have also been implicated.  

Receptor activation leads to phosphorylation of various protein kinases such as extracellular 

signal-related kinase (ERK/MAPK) (Cestari, Costanzi, Castellano, & Rossi-Arnaud, 2006), 

protein kinase A (PKA) (Tronson, Wiseman, Olausson, & Taylor, 2006) and mammalian target 

of rapamycin (mTOR) (Blundell, Kouser, & Powell, 2008). In turn, protein kinases produce 

downstream activation of transcription factors such as cAMP response element binding (CREB) 

protein (Tronson, et al., 2012), NF-kB (de la Fuente, Freudenthal, & Romano, 2011), and Zinc 

 Fig. 5. Schematic model of memory re-storage and its inhibition by potential PTSD drugs 
during reconsolidation phase.       
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Finger Transcription Factor (Zif 268) (Lee & Hynds, 2013). Transcription of these genes leads 

to protein synthesis required for fear memory reconsolidation (Nader, Schafe, & Le Doux, 

2000). Delineation of molecular mechanisms has helped to identify various targets to disrupt 

the restabilization of fear memory and hence alter the reconsolidation process. Current 

evidence for drugs acting on these pharmacological targets to disrupt memory 

reconsolidation has been described below (Table 1 and 2). 

 

6.1 β Adrenergic Receptors (β-AR) 

Hyperactivity of sympathetic nervous system is one of the characteristic symptoms of PTSD 

(Strawn & Geracioti, 2008). PTSD patients have increased cerebrospinal fluid (CSF) 

Fig. 6. Molecular mechanisms of memory destabilization/reconsolidation and potential drug 

targets for PTSD. Molecular pathways (black arrows), pharmacological inhibition (red arrows), 

pharmacological stimulation (green arrow).  
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noradrenaline level compared with healthy subjects (Geracioti, et al., 2001).  Noradrenergic 

neurons in the locus coeruleus (LC) projecting to the amygdala, prefrontal cortex, 

hippocampus, hypothalamus and thalamus, mediate sympathetic response to stress 

(Berridge, Schmeichel, & Espana, 2012). Increased input from LC neurons to the amygdala 

appears to be responsible for enhanced encoding of traumatic memories in PTSD patients 

(Giustino & Maren, 2018). 

Noradrenaline is the main catecholamine neurotransmitter involved in autonomic nervous 

system response to stress and the beta sub-receptors (β-ARs) play a key role in increasing 

strength of memories caused by activation of sympathetic nervous system during traumatic 

event (J. L. McGaugh, 2013). The β-AR antagonist, propranolol, has been shown to 

consistently block fear memories in various animal models, including passive avoidance, 

contextual fear and auditory fear conditioning(Debiec & Ledoux, 2004; Przybyslawski, et al., 

1999; Taherian, et al., 2014). Propranolol disrupted both recent (1 day) and old memories (36 

days) as well as weak (2 foot shock) and relatively strong (5 foot shock) memories (Debiec & 

Ledoux, 2004; Taherian, et al., 2014). Moreover, amnesia caused by propranolol was 

maintained 16 days after the injection (Debiec & Ledoux, 2004).  However, in another study 

propranolol disrupted both cued and contextual fear conditioning but had no effect on 

reconsolidation of inhibitory avoidance memory (Muravieva & Alberini, 2010). To account for 

this differential effect, the researchers suggested that the amygdala could play a key role in 

storage of fear conditioning memories but only modulate the strength of avoidance memory. 

These findings suggest that propranolol might have a limited effect on the reconsolidation of 

certain types of fear memories, such as inhibitory avoidance.   
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Propranolol has been the most commonly used drug for clinical studies using memory 

reconsolidation protocols in both healthy human volunteers and PTSD patients (Brunet, et al., 

2008; Brunet, et al., 2018; Kindt, Soeter, & Vervliet, 2009; Schwabe, Nader, Wolf, Beaudry, & 

Pruessner, 2012). Because of its relative safety and extensive testing for cardiovascular 

indications, it was the first drug to be tested for memory reconsolidation therapy.  In healthy 

human volunteers, propranolol erased the expression of fear memory while leaving the 

declarative memory about the association of cue and aversive stimulus intact (Kindt, et al., 

2009) and this effect persisted even at one month follow up (Soeter & Kindt, 2010). Moreover, 

disruption of reconsolidation by propranolol prevented the generalization of fear, which is a 

key feature observed in PTSD (Soeter & Kindt, 2011). These results suggest that we can target 

a specific emotional memory while avoiding generalized amnestic effects on other important 

memories. 

Emotionally arousing stimuli activate the noradrenergic system and hence have a higher 

chance of being stored in long term memory. The enhance encoding of traumatic memories 

can often lead to psychopathologies like PTSD (James L. McGaugh, 2013). Propranolol was 

effective in disrupting reconsolidation of memories enhanced by noradrenergic stimulation 

(Soeter & Kindt, 2012). It disrupted emotional memory more than a neutral memory 

(Schwabe, Nader, & Pruessner, 2013) and was associated with significantly higher activity in 

the amygdala and hippocampus during recall (Schwabe, et al., 2012), suggesting that these 

brain areas are involved in its effect on reconsolidation.  

In a randomized double-blind study involving PTSD patients, propranolol reduced 

physiological responding monitored using heart rate, skin conductance, and left corrugator 

electromyogram during script driven recall compared to placebo (Brunet, et al., 2008). In 
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another randomized clinical trial, propranolol significantly reduced the PTSD symptoms when 

compared with placebo, evaluated using the Clinician-Administered PTSD Scale (CAPS) and 

the patient-rated PTSD Checklist-Specific (PCL-S) (Brunet, et al., 2018). In a pilot fMRI study 

on patients with PTSD, propranolol given prior to traumatic memory reactivation elicited 

decreased activation of amygdala and thalamus following the presentation of a threatening 

stimuli (Mahabir, Tucholka, Shin, Etienne, & Brunet, 2015). 

However, the efficacy of propranolol has not been straightforward in all the studies. 

Importantly, propranolol administered with memory reactivation did not improve symptoms 

in PTSD patients (Roullet, et al., 2021; Wood, et al., 2015). Propranolol did not prevent the 

return of the fear response after re-exposure to threatening stimuli in healthy female 

volunteers (Thome, et al., 2016). It failed to disrupt reconsolidation when the strength of the 

conditioned stimuli (CS) was enhanced (Spring, et al., 2015) or if the memory was reactivated 

seven days after the initial encoding (Tollenaar, Elzinga, Spinhoven, & Everaerd, 2009b). 

Propranolol was less effective in disrupting memories in individuals with high trait anxiety 

(Soeter & Kindt, 2013) and when no new information was presented during retrieval, and it 

only disrupted the memory when the outcome of the retrieval cue was not fully predictable 

(Sevenster, Beckers, & Kindt, 2012a). These data suggest that certain boundary conditions 

must be met before the memory can be disrupted using propranolol. Moreover, it has been 

proposed that memory may not enter a labile state if no new information is presented at the 

time of retrieval (Sevenster, et al., 2012a). More work is needed to elucidate how much 

influence the boundary conditions such as age and strength of memory and the predictability 

of the information during retrieval, have on the effects of propranolol on memory 

reconsolidation.  
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6.2 NMDA Receptors 

Exposure to trauma activates glutamatergic neurons (Chambers, et al., 1999; Hegoburu, 

Parrot, Ferreira, & Mouly, 2014). Glutamate mediates synaptic plasticity by stimulating NMDA 

receptors in the brain (Bailey, Cordell, Sobin, & Neumeister, 2013; Blair, Schafe, Bauer, 

Rodrigues, & LeDoux, 2001). Evidence has shown that increased glutamate input to the 

amygdala contributes to the enhanced encoding of traumatic memories seen in PTSD (Arco 

& Mora, 2009; Lee & Kim, 1998).  

Blockade of NMDAR has been consistently shown to disrupt fear memory reconsolidation. 

The NMDAR antagonist, MK-801, disrupted the reconsolidation of contextual fear, inhibitory 

avoidance, auditory fear memory and conditioned food aversion (Charlier & Tirelli, 2011; 

Einarsson & Nader, 2012; Flint, Noble, & Ulmen, 2013; Lee, et al., 2006b; Nikitin, Solntseva, 

Kozyrev, Nikitin, & Shevelkin, 2018). Moreover, post-reactivation inhalation of Xenon 

impaired both contextual and cued fear memory reconsolidation, which was ascribe to 

antagonism of NMDARs in the hippocampus and amygdala by Xenon (Meloni, Gillis, 

Manoukian, & Kaufman, 2014). Similarly, Duclot and collaborators showed that NMDAR 

antagonist, ketamine, disrupted contextual fear reconsolidation (Duclot, et al., 2016). In a 

pilot clinical study, ketamine was recently shown to reduce harmful drinking by disrupting the 

reconsolidation of appetitive memories (Das, et al., 2019). It would be interesting to see if 

ketamine has similar effects on fear memory reconsolidation in PTSD patients. Some 

researchers have proposed using subanaesthetic dose of ketamine to disrupt fear memories 

in PTSD patients (Veen, et al., 2018). However, it should be noted that ketamine is associated 
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with side effects such as hallucinations, psychosis, and delirium, which might limit its clinical 

application.  

Evidence suggests that NMDA N2A receptor subtype is required for restabilization of fear 

memory. Intra-BLA administration of NMDA N2A antagonist NVP-AAM077 before 

reactivation of memory reduced the freezing on test day while it did not affect the amnesia 

caused by anisomycin suggesting it did not have an effect on memory destabilization but 

disrupted the restabilization of reconsolidating memory (Milton, et al., 2013). Furthermore, 

administration of NMDA N2A antagonist TCN-201 in nucleus reuniens of thalamus after 

memory reactivation disrupted the reconsolidation of fear memory (Troyner & Bertoglio, 

2021). This suggests that nonselective NMDA receptor antagonists disrupt fear memory 

reconsolidation mainly through their action on NMDA N2A receptors.  

 

 

6.3 Glucocorticoid Receptors  

The hypothalamic-pituitary-adrenal (HPA) axis is a major component of neuroendocrine 

response to stress (Prager & Johnson, 2009). In patients with PTSD, some evidence suggests 

there may be dysregulation of the HPA axis in mediating the stress response (Aerni, et al., 

2004; Yehuda, 2006; Yehuda, McFarlane, & Shalev, 1998). Studies carried out in emergency 

room immediately after trauma exposure suggest that those who have low levels of cortisol 

in their blood at the time of the traumatic event are more likely to develop PTSD as compared 

to those who do not (Yehuda, et al., 1998). The downregulation of corticotropin-releasing 

hormone (CRH) receptor leading to decrease in adrenocorticotropin (ACTH) release from the 



42 
 

pituitary gland might contribute to hypocortisolism seen in PTSD patients (Yehuda, 2006). 

Indeed, administration of cortisol has been shown to reduce symptoms in patients with PTSD 

(Aerni, et al., 2004). However, the relationship between cortisol levels and PTSD is still poorly 

understood as other studies have found increased plasma and urinary cortisol in PTSD 

patients (Delahanty, Nugent, Christopher, & Walsh, 2005; Inslicht, et al., 2006). 

The uncertainty surrounding the underlying pathophysiology of PTSD is also reflected in 

different preclinical studies in which both an agonist and an antagonist at glucocorticoid 

receptor were shown to disrupt fear memory reconsolidation. Injection of GR antagonist, 

RU486, in the basolateral nucleus of amygdala impaired the reconsolidation of auditory fear 

memory (Jin, Lu, Yang, Ma, & Li, 2007) and the blockade of GR with systemic and intra-

hippocampal injections of RU38486 impaired reconsolidation of memory in an inhibitory 

avoidance task (Nikzad, et al., 2011). In contrast, other studies have shown that postretrieval 

activation of GR with corticosterone impairs contextual fear memory (Abrari, Rashidy-Pour, 

Semnanian, & Fathollahi, 2008; Cai, Blundell, Han, Greene, & Powell, 2006).  

In clinical studies, cortisol, but not propranolol, given before the memory reactivation 

impaired the subsequent recall of both emotional and neutral information (Tollenaar, Elzinga, 

Spinhoven, & Everaerd, 2009a). However, subsequent studies showed that cortisol did not 

have any effect on fear memory reconsolidation in women (Meir Drexler, Merz, Hamacher-

Dang, & Wolf, 2016) and even enhanced traumatic memories in men (Drexler, Merz, 

Hamacher-Dang, Tegenthoff, & Wolf, 2015). The conflicting findings of agonist and antagonist 

at glucocorticoid receptors seen in reconsolidation research are similar to previous research 

on memory consolidation (Conrad, et al., 2004; Roozendaal, 2002). Various explanations have 

been offered for these discrepancies. For example, in study by Cai et al., the amnesia caused 
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by corticosterone was not permanent, that is, it was amenable to reinstatement (Cai, et al., 

2006).  This suggests that corticosterone may increase extinction of fear memory rather than 

impair memory reconsolidation.  Another explanation is that stress caused by drug infusion 

might increase cortisol levels and act as a confounding factor (Meir Drexler & Wolf, 2017). 

Differences in treatment effects seen in clinical studies for men versus women have been 

related to alternating levels of sex hormones in women depending on different phases of the 

menstrual cycle or oral contraceptive use, both of which are known to affect fear memory 

(Meir Drexler & Wolf, 2017; Milad, et al., 2006).  

 

6.4 GABA Receptors 

GABAergic neurons form the main inhibitory pathways in the brain. γ-Aminobutyric acid 

(GABA) inhibits noradrenergic signalling involved in the stress response. SPECT and PET 

studies in patients with PTSD have shown decreased binding of ligands to GABAA receptors 

in hippocampus, thalamus and cortex (Bremner, et al., 2000; Geuze, et al., 2008). These 

findings suggests that decreased GABAA receptor affinity may be responsible for reduced 

inhibitory control in PTSD patients.  

In a series of studies, Bustos and colleagues explored the role of the GABA agonist, midazolam, 

on fear memory reconsolidation (Bustos, Giachero, Maldonado, & Molina, 2010; Bustos, 

Maldonado, & Molina, 2006, 2009). Midazolam was able to disrupt reconsolidation of fear 

memory (Bustos, et al., 2006), however, a higher dose of midazolam was needed to disrupt 

older memories characteristic in patients with PTSD (Bustos, et al., 2009). Researchers also 

found that combining D-cycloserine with midazolam labilized previously resistant memory in 

stressed animals making it susceptible to the effect of midazolam (Bustos, et al., 2010; Espejo, 
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Ortiz, Martijena, & Molina, 2016). A similar study exploring the role of D-cycloserine and 

midazolam on contextual fear memory reconsolidation in ethanol withdrawn rats did not 

yield positive results (Ortiz, Giachero, Espejo, Molina, & Martijena, 2015). However, this 

finding could have been due to decreased expression of the α1 GABAA-R subunit in 

basolateral amygdala following ethanol consumption/withdrawal (Ortiz, et al., 2015). Overall, 

these results suggest that GABA receptors could be important drug targets for future clinical 

studies.  

6.5 Serotonin Receptors 

Serotonin (5-Hydroxytriptamine, 5-HT) is recognized as an important neuromodulator of 

learning and memory processes (Ogren, et al., 2008) in addition to being a strong regulator 

of mood. The role of 5-HT in learning and memory is complex and depends on the receptor 

targeted. This complexity is linked to the large family of 5-HT receptors (Hoyer, Hannon, & 

Martin, 2002) and the interactions of 5-HT with other neurotransmitter systems. Acute 

tryptophan depletion, which reduces brain 5-HT, has been shown to impair memory 

consolidation (Mendelsohn, Riedel, & Sambeth, 2009).  

Recently, the role of 5-HT in memory reconsolidation has also been examined, with direction 

and effectiveness of modulation depending on the receptor subtype being targeted. 

Serotonin receptor modulators were shown to disrupt reconsolidation of contextual fear, 

object recognition and conditioned food aversion memories (Balaban, Vinarskaya, Zuzina, 

Ierusalimsky, & Malyshev, 2016; Deryabina, Muranova, Andrianov, & Gainutdinov, 2018; 

Morici, et al., 2018; Nikitin, et al., 2018; Schmidt, et al., 2017). A 5-HT5A antagonist and a 5-

HT6 agonist disrupted contextual fear memory reconsolidation while a 5-HT7 antagonist 

enhanced it (Schmidt, et al., 2017).  In another experiment, depletion of serotonergic neurons 
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with the neurotoxin, 5,7-DHT (5,7-dihydroxytryptamine), and nonselective serotonin receptor 

blockade with mianserin both prevented the reconsolidation of context memory (Balaban, et 

al., 2016). 5-HT2aR antagonist infusions into the mPFC disrupted object recognition memory 

(Morici, et al., 2018) whereas intrahippocampal administration of a 5-HT5A antagonist 

impaired contextual fear memory in Wistar rats (Schmidt, et al., 2017). Researchers used the 

terrestrial snail, Helix locorum, to study the effect of impairment of serotonergic transmission 

of memory reconsolidation. Intracoelomic injections of serotonin synthesis blocker, para-

chlorophenylalanine or the 5-HT receptor antagonist, methiothepin, blocked reconsolidation 

of contextual fear and conditioned food aversion memories, respectively (Deryabina, et al., 

2018; Nikitin, et al., 2018). These results suggest that although the effect on fear memory 

could be receptor specific, the generalised blockade of serotonergic transmission seems to 

disrupt memory reconsolidation. 

 

6.6 Endocannabinoid receptors 

The endocannabinoid signalling system plays a crucial role in the consolidation of fear 

memory (P. Campolongo, et al., 2009; Hauer, et al., 2011). Endocannabinoids increase 

glucocorticoid mediated consolidation of memory in rat basolateral amygdala (Patrizia 

Campolongo, et al., 2009). Moreover, increased CB1 receptor expression in amygdala was 

shown to potentiate fear conditioning in rats (P. Campolongo, et al., 2009).  

The involvement endocannabinoid system in fear memory reconsolidation is complex with 

both agonists and antagonists at endocannabinoid receptors (CB) disrupting fear memory (de 

Oliveira Alvares, Pasqualini Genro, Diehl, Molina, & Quillfeldt, 2008; Ratano, et al., 2014). Lin 

et al. showed that intra-amygdala administration of CB1 agonists blocked the reconsolidation 
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of fear-potentiated startle, while the CB1 antagonist, AM251, prevented this effect in a dose-

dependent manner (Lin, et al., 2006). Similarly, infusion of the CB1 agonist, anandamide, into 

the dorsal hippocampus blocked contextual fear memory while AM251 prevented it (de 

Oliveira Alvares, et al., 2008). In another study, intra-hippocampal administration of the 

cannabinoid agonist, CP55,940, disrupted the reconsolidation of contextual fear memory 

(Santana, et al., 2016). In contrast, oral administration of cannabidiol, a non-competitive 

antagonist CB1 and CB2 receptors, impaired reconsolidation of fear memory in rats whereas 

Δ9-Tetrahydrocannabinol, a CB1 receptor agonist, did not have any effect in the same study 

(Murkar, et al., 2019). In addition, AM251 impaired reconsolidation of auditory fear memory 

when administered in rat basolateral amygdala (Ratano, et al., 2014).  The difference in route 

of administration (Lin, et al., 2006; Murkar, et al., 2019) and dose of the antagonist, 

AM251(Lin, et al., 2006; Ratano, et al., 2014), might account for this variation, however more 

research is needed to establish the clear role for the endocannabinoid system in fear memory 

reconsolidation.  

In addition to the neurotransmitter receptor systems discussed above, various intracellular 

signalling systems, including various protein kinases and transcription factors, have been 

shown to modulate the reconsolidation of fear memories.  

 

6.7 ERK/MAP Kinase 

Pharmacological and molecular studies have shown the necessity of ERK/MAPK for 

consolidation of memory (Schafe, et al., 2000; Selcher, Atkins, Trzaskos, Paylor, & Sweatt, 

1999). Phosphorylation of MAPK following NMDA receptor stimulation leads to activation of 

transcription factors like CREB and subsequent protein synthesis essential for synaptic 
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plasticity and memory formation (Davis & Laroche, 2006). Previous research from our 

laboratory has shown that increased expression of pMAPK in lateral amygdala is associated 

with an increase in plasticity for fear memory (Coyner, et al., 2014). Moreover, mice which 

showed high fear behaviour had more pMAPK expressing neurons in the lateral amygdala as 

compared to mice with low fear behaviour (Coyner, et al., 2014). Using design-based 

stereology we showed identical number of neurons in lateral amygdala expressing pMAPK are 

involved in fear memory consolidation and reconsolidation which suggest that original fear 

memory underwent reconsolidation after reactivation by CS (Bergstrom, et al., 2013).   

Various studies have demonstrated the role of MAPK in the reconsolidation of fear memories 

(Cestari, et al., 2006; Duvarci, Nader, & LeDoux, 2005; Kelly, et al., 2003). Direct administration 

of MEK inhibitors in specific brain areas (intra-BLA, intra-hippocampal) disrupted the 

reconsolidation in a model of auditory fear conditioning and inhibitory avoidance (Duvarci, et 

al., 2005; Krawczyk, et al., 2015). Furthermore, systemic administration of the MEK inhibitor, 

SL327, dose-dependently reduced the reconsolidation of fear memories in C57BL/6 and ERK1 

mutant mice (Cestari, et al., 2006). However, despite the early preclinical success of MEK 

inhibitors, these compounds have not been tested clinically in PTSD patients. This could be 

due to low blood brain barrier penetration of currently approved MEK inhibitors 

(Vaidhyanathan, Mittapalli, Sarkaria, & Elmquist, 2014) or apprehension about risk versus 

benefit of using anticancer drugs for psychiatric indications (Heinzerling, et al., 2019).   

 

6.8 Protein Kinase A (PKA) 

PKA is an important molecular substrate of neuroplasticity. β-AR stimulation increases 

cAMP and further activates cAMP-dependent PKA (Lim, et al., 2018). Blockade of PKA 
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disrupted the consolidation of both context and cued fear memory (Schafe, Nadel, Sullivan, 

Harris, & LeDoux, 1999) whereas its activation enhanced the memory (Jentsch, Olausson, 

Nestler, & Taylor, 2002). Similarly, activation of PKA by intra-amygdala infusion of a PKA 

activator increased fear memory expression while PKA inhibitors disrupted the 

reconsolidation of fear memory (Tronson, et al., 2006). These findings suggest that both 

enhancement and impairment of fear memory reconsolidation can be achieved through 

modulation of PKA. 

 

6.9 Mammalian target of rapamycin (mTOR) 

The mammalian target of rapamycin (mTOR) kinase mediates synaptic plasticity and memory 

storage by regulating protein translation (Hoeffer & Klann, 2010). Modulation of mTOR 

pathway has been shown to regulate multiple elements of fear memory in preclinical studies 

and in addition has shown treatment efficacy for PTSD. Multiple studies have revealed that 

mTOR inhibitors disrupt the reconsolidation of inhibitory avoidance, contextual fear and 

auditory fear memory (Blundell, et al., 2008; Gafford, Parsons, & Helmstetter, 2011; Jobim, 

et al., 2012; Mac Callum, Hebert, Adamec, & Blundell, 2014). Rapamycin was most commonly 

administered as mTOR inhibitor either intracerebrally (Gafford, et al., 2011; Jobim, et al., 2012) 

or through systemic route (Blundell, et al., 2008; Mac Callum, et al., 2014). Infusion of 

rapamycin in the dorsal hippocampus immediately after reactivation disrupted 

reconsolidation of contextual fear memory (Gafford, et al., 2011) while infusions into the BLA 

and dorsal hippocampus inhibited reconsolidation of inhibitory avoidance memory (Jobim, et 

al., 2012). Systemic administration of rapamycin impaired auditory fear memory 

reconsolidation (Mac Callum, et al., 2014) and contextual fear memory (Blundell, et al., 2008). 
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However, systemic administration of rapamycin was only able to disrupt reconsolidation of 

contextual, but not auditory fear memory which might limit the clinical utility of mTOR 

inhibitors in PTSD (Glover, Ressler, & Davis, 2010). 

In a double-blind, placebo-controlled pilot study, rapamycin was tested in veterans with PTSD 

(Suris, Smith, Powell, & North, 2013). Although there was no overall difference between 

groups on PTSD symptoms, data showed that in veterans who had more recent combat 

trauma rapamycin significantly improved symptoms as compared to control group (Suris, et 

al., 2013). This suggest that recent traumatic memories may be more amenable to disruption 

by rapamycin.  

6.10 Transcription factors 

Amongst the transcription factors, cAMP response element-binding protein (CREB) and 

nuclear factor kappa B (NF-kB) inhibit fear memory reconsolidation. Most of the kinases 

discussed above act on these transcription factors to induce protein transcription. 

Phosphorylation of PKA leads to the activation of downstream CREB. While CREB levels are 

increased after reactivation of memory (Han, et al., 2008), its inhibition was shown to impair 

auditory fear memory reconsolidation (Tronson, et al., 2012). Intrahippocampal 

administration of NF-kB inhibitor disrupted the reconsolidation of inhibitory avoidance 

memory (Boccia, et al., 2007) and also contextual fear memory (de la Fuente, et al., 2011). Si 

and colleagues (2012) also explored the role of NF-kB in auditory fear memory reconsolidation. 

Intra-BLA administration of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB and 

SN50, a direct inhibitor of the NF-κB DNA-binding complex, impaired auditory fear memory 

reconsolidation (Si, et al., 2012). Researchers also found that sodium butyrate, a histone 

deacetylase inhibitor, given prior to NF-kB inhibition, prevented the disruption of auditory 
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fear memory reconsolidation, suggesting that the interaction between histone deacetylation 

and NF-κB in regulating transcription of protein is required for memory storage (Si, et al., 

2012).  

6.11 Protein synthesis and protein degradation 

Memory formation is associated with a change in synaptic strength which requires new 

protein synthesis (Huang, Martin, & Kandel, 2000; Mayford, Siegelbaum, & Kandel, 2012). 

Protein synthesis inhibitors have been known to disrupt the consolidation of memory 

(Barondes & Cohen, 1966; Flexner, Flexner, & Roberts, 1966; Schafe, et al., 1999). They were 

amongst the first class of drugs shown to disrupt fear memory reconsolidation. In a seminal 

paper, Nader and colleagues demonstrated that anisomycin, a protein synthesis inhibitor 

when given after reactivation of memory in rats was able to disrupt auditory fear memory 

(Nader, Schafe, & Le Doux, 2000). Since then protein synthesis inhibitors were shown to 

inhibit contextual fear memory and inhibitory avoidance memory reconsolidation (Debiec, 

LeDoux, & Nader, 2002; Einarsson & Nader, 2012; Pedroso, et al., 2013).  Moreover, even 

extinguished memories were susceptible to disruption by protein synthesis inhibitors (Duvarci, 

Mamou, & Nader, 2006). 

The disruption of fear memory reconsolidation with protein synthesis inhibitors is not always 

replicable. For example, anisomycin when injected into the hippocampus either failed to 

disrupt memory reconsolidation (Power, Berlau, McGaugh, & Steward, 2006) or the memory 

returned after 21 days (Lattal & Abel, 2004). These results highlight the role of boundary 

conditions such as adequate labilization of memory, and the dose and route of the drug 

administered. Anisomycin when administered into the hippocampus did not inhibit 

reconsolidation of inhibitory avoidance memory but in the same study the systemic injection 
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of anisomycin was able to (Taubenfeld, Milekic, Monti, & Alberini, 2001). Inhibition of protein 

synthesis is an ultimate step underlying the effect of all the previously mentioned drugs on 

memory reconsolidation. However, protein synthesis inhibitors like anisomycin are unlikely 

to be tested clinically in PTSD patients due to their toxicity.  

Recent evidence suggests that apart from protein synthesis, protein degradation which 

requires the ubiquitin-proteasome system is involved in fear memory reconsolidation. 

Administration of proteasome inhibitor (β lactacystin) which inhibits protein degradation in 

amygdala, impaired the consolidation of auditory and contextual fear memories (Jarome, 

Werner, Kwapis, & Helmstetter, 2011) and its administration in hippocampus was shown to 

inhibit reconsolidation of contextual fear memories (J. Lee, 2010). Furthermore, protein 

degradation increased following memory retrieval and administration of inhibitor of protein 

degradation with anisomycin after retrieval of auditory and contextual fear memories 

prevented the memory disruption caused by anisomycin (Jarome, et al., 2011; S.-H. Lee, et al., 

2008) which suggests the protein degradation controls destabilization of fear memories. 

Lastly, it was shown that protein degradation caused by memory retrieval is influenced by 

NMDA receptor activity as administration of NMDAR NR2B inhibitor, ifenprodil, following fear 

memory retrieval significantly reduced protein degradation in amygdala (Jarome, et al., 2011). 

This suggests that both protein synthesis and protein degradation mediate fear memory 

reconsolidation and are regulated upstream via NMDA receptor activity.   

 

Table 1: Summary of preclinical studies on pharmacological disruption of memory 

reconsolidation  
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Molecular 

Target 

Behavioural 

Paradigm 

Drug used Mech. of 

action 

Route of 

administrati

on 

Effect Reference 

NMDA 

Receptors 

Contextual 

fear memory  

 

MK801 Antagonist Systemic + (Charlier & 

Tirelli, 2011) 

Xenon Antagonist Inhalation + (Meloni, et 

al., 2014) 

Ketamine Antagonist Systemic + (Duclot, et 

al., 2016) 

Auditory fear 

memory 

MK801 Antagonist Systemic + (Lee, et al., 

2006b) 

Xenon Antagonist Inhalation + (Meloni, et 

al., 2014) 

Inhibitory 

avoidance 

MK801 Antagonist Systemic + (Flint, et al., 

2013) 

β 

Adrenergic 

Receptors 

Contextual 

fear memory  

 

 

Propranolol Antagonist Systemic + (Taherian, et 

al., 2014) 

Propranolol Antagonist Systemic + (Muravieva 

& Alberini, 

2010) 

Auditory fear 

memory 

 

Propranolol Antagonist Systemic + (Debiec & 

Ledoux, 

2004) 
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Propranolol Antagonist Systemic + (Muravieva 

& Alberini, 

2010) 

Inhibitory 

avoidance 

 

Propranolol Antagonist Systemic + (Przybyslaws

ki, et al., 

1999) 

Propranolol Antagonist Systemic ₋ (Muravieva 

& Alberini, 

2010) 

Glucocortic

oids 

Receptors 

Contextual 

fear memory 

Corticostero

ne 

 

Agonist Systemic + (Abrari, et 

al., 2008; 

Cai, et al., 

2006) 

Auditory fear 

memory 

 

RU486 

 

Antagonist Intra-BLA 

 

+ (Jin, et al., 

2007) 

 

Inhibitory 

avoidance 

 

RU38486 Antagonist Systemic and  

Inta-

hippocampal 

+ (Nikzad, et 

al., 2011) 

 

GABA 

Receptors 

Contextual 

fear memory  

 

 

 

Midazolam Antagonist Systemic + 

 

(Bustos, et 

al., 2006, 

2009) 

DCS+ 

Midazolam 

NR2B 

agonist + 

Systemic + 

 

(Bustos, et 

al., 2010) 
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DCS+ 

Midazolam 

GABA 

antagonist 

Systemic ₋ (Ortiz, et al., 

2015) 

Serotonin 

Receptors 

Contextual 

fear memory  

 

 

 

SB-699551 

 

 

WAY-208466 

 

5-HT5A 

receptor 

antagonist 

5-HT6 

receptor 

agonist 

Intra-

hippocampal 

 

Intra-

hippocampal 

+ 

 

 

+ 

(Schmidt, et 

al., 2017) 

 

 

Mianserin, 

Methioptin 

 

Nonselectiv

e 5HT 

receptor 

antagonist 

Intracoelomi

c injection in 

snail 

 

+ (Balaban, et 

al., 2016; 

Nikitin, et al., 

2018) 

 

P-

Chlorphenyla 

nine 

5HT 

synthesis 

blocker 

Intracoelomi

c injection in 

snail 

+ (Deryabina, 

et al., 2018) 

Endocanna

binoid 

receptors 

Contextual 

fear memory 

 

Anandamide CB1 agonist Intra-

hippocampal 

+ (de Oliveira 

Alvares, et 

al., 2008) 

CP55,940 CB1 agonist Intra-

hippocampal 

+ (Santana, et 

al., 2016) 

 

Auditory fear 

memory 

Anandamide CB1 agonist Intra-BLA + (Lin, et al., 

2006) 
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AM251 CB1 

antagonist 

Intra-BLA + (Ratano, et 

al., 2014) 

ERK/MAP 

Kinase 

Auditory fear 

memory 

SL327 MEK 

inhibitor 

Systemic + (Cestari, et 

al., 2006) 

U0126 MEK 

inhibitor 

Intra-BLA + (Duvarci, et 

al., 2005) 

Inhibitory 

avoidance 

 

PD098059 MEK 

inhibitor 

Intra-

hippocampal 

+ (Krawczyk, 

et al., 2015) 

Protein 

Kinase A 

Auditory fear 

memory 

Rp-cAMPS Inhibitor Intra-BLA + (Tronson, et 

al., 2006) 

mTOR 

 

 

 

Contextual 

fear memory 

Rapamycin Inhibitor Systemic + (Blundell, et 

al., 2008) 

Rapamycin Inhibitor Systemic + (Glover, et 

al., 2010) 

Rapamycin Inhibitor Intra-

hippocampal 

+ (Gafford, et 

al., 2011) 

Auditory fear 

memory 

Rapamycin Inhibitor Systemic + (Mac Callum, 

et al., 2014) 

Rapamycin Inhibitor Systemic ₋ (Glover, et 

al., 2010) 

Inhibitory 

avoidance 

 

Rapamycin Inhibitor Intra-BLA 

and 

Intra-

hippocampal 

+ (Jobim, et 

al., 2012) 
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Transcripti

on factor 

Contextual 

fear memory  

NF-κB decoy 

oligonucleoti

de 

NF-κB 

inhibitor 

 

Intra-

hippocampal 

+ (de la 

Fuente, et 

al., 2011) 

Auditory fear 

memory 

SN50 NF-κB 

inhibitor 

Intra-BLA + (Si, et al., 

2012) 

HSV-mCREB Viral vector 

to block 

CREB  

Intra-BLA + (Tronson, et 

al., 2012) 

 

Inhibitory 

avoidance 

 

NF-κB decoy 

oligonucleoti

de 

NF-κB 

inhibitor 

Intra-

hippocampal 

+ (Boccia, et 

al., 2007) 

Protein 

synthesis 

Contextual 

fear memory  

 

 

 

Anisomycin 

 

Inhibitor 

 

Intra-

hippocampal 

+ 

 

(Debiec, et 

al., 2002) 

Anisomycin Inhibitor Intra-ACC 

infusions 

+ (Einarsson & 

Nader, 2012) 

Auditory fear 

memory 

Anisomycin Inhibitor Intra-BLA + (Nader, 

Schafe, & Le 

Doux, 2000) 

Anisomycin Inhibitor Intra-BLA + (Duvarci, et 

al., 2006) 

Inhibitory 

avoidance 

Cycloheximid

e 

Inhibitor Intra-BLA + (Pedroso, et 

al., 2013) 

Anisomycin Inhibitor Intra-

hippocampal 

₋ 

 

(Power, et 

al., 2006) 
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Table 2: Summary of clinical studies on pharmacological disruption of memory 

reconsolidation  

Molecular 

Target 

Study 

Participants 

Sample 

Size 

(n) 

Treatment Effect Remarks Reference 

β 

Adrenergic 

Receptors 

Healthy 

volunteers 

20 Propranolol 

40 mg 

+ • Reduced eyeblink 

startle reflex 

following treatment 

(Kindt, et al., 

2009) 

Healthy male 

volunteers 

26 Propranolol 

80 mg 

    ₋ • No effect on of 

emotional and 

neutral memory 

(Tollenaar, et 

al., 2009a) 

Healthy 

volunteers 

20 Propranolol 

40 mg 

+ • Reduced eyeblink 

startle reflex 

following treatment 

• Effect maintained 

after 1 month 

• No change in 

declarative memory 

(Soeter & 

Kindt, 2010) 

Healthy 

volunteers 

20 Propranolol 

40 mg 

+ • Reduced eyeblink 

startle reflex 

following treatment 

• Reduced fear 

generalization 

(Soeter & 

Kindt, 2011) 
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Healthy 

volunteers 

20 Yohimibine 

20 mg 

before 

acquisition, 

Propranolol 

40 mg  

+ • Reduced eyeblink 

startle reflex 

following treatment 

(Soeter & 

Kindt, 2012) 

Healthy 

volunteers 

12 Propranolol 

40 mg 

+ • Reduced recall of 

emotional stimuli 

compared to neutral 

stimuli 

• Increased activity in 

amygdala and 

hippocampus 

(Schwabe, et 

al., 2012) 

Healthy 

volunteers 

18 Propranolol 

40 mg 

+ • No effect on 

memory without 

prediction error 

during retrieval 

• Reduced memory 

recall if prediction 

error during retrieval  

(Sevenster, 

et al., 2012a) 

Healthy 

volunteers 

12 Propranolol 

40 mg 

+ • Reduced recall of 

emotional stimuli 

compared to neutral 

stimuli 

(Schwabe, et 

al., 2013) 
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Healthy 

volunteers 

24 Propranolol 

40 mg 

₋ • No effect on skin 

conductance rate 

following recall of 

negative stimuli 

(Spring, et 

al., 2015) 

Healthy 

female 

volunteers 

20 Propranolol 

40 mg 

₋ • No effect on skin 

conductance rate 

following recall of 

negative stimuli 

(Thome, et 

al., 2016) 

Chronic PTSD 

patients 

9 Propranolol 

60 mg 

+ • Reduced physiologic 

responses during 

mental imagery of 

personal traumatic 

events 

(Brunet, et 

al., 2008) 

Chronic PTSD 

patients 

7 Propranolol  

1 mg/kg 

+ • Reduction in CAPS 

score and IES-R score 

pre vs. 

posttreatment 

• Reduced activation 

of amygdala and 

thalamus 

(Mahabir, et 

al., 2015) 

Chronic PTSD 

patients 

30 Propranolol  

1 mg/kg 

+ • Reduced CAPS and 

PCL-S score when 

compared with 

placebo 

(Brunet, et 

al., 2018) 
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Veterans 

with PTSD 

10 Propranolol  

1 mg/kg 

- • No effect on IES-R 

and CAPS score 

when compared 

with placebo 

(Wood, et al., 

2015) 

Chronic PTSD 

patients 

33 Propranolol  

1 mg/kg 

- • No effect PCL-S score 

when compared 

with placebo 

(Roullet, et 

al., 2021) 

Glucocortic

oid 

Receptors 

Healthy male 

volunteers 

26 Cortisol  

35 mg 

+ • Reduced recall of 

emotional and 

neutral memory 

(Tollenaar, et 

al., 2009a) 

Healthy male 

volunteers 

14 Cortisol  

30 mg 

₋ • Cortisol enhanced 

reconsolidation of 

the reactivated 

memory 

(Drexler, et 

al., 2015) 

Healthy 

female 

volunteers 

26 Cortisol  

30 mg 

₋ • No effect on 

reconsolidation of 

the reactivated 

memory 

(Meir 

Drexler, et 

al., 2016) 

mTOR Veterans 

with PTSD 

27 Rapamycin 

15 mg 

₋ • No effect on CAPS 

and PCL score when 

compared with 

placebo 

(Suris, et al., 

2013) 
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7. Fear memory destabilization following recall 

One of the important functions of fear memory is to help the animal avoid situations or 

behaviour that resulted in harm in the past (Dickinson, 2012; Zentall, 2013). However, long 

term memories need to be updated to maintain their significance in the face of changing 

environment. Memory reconsolidation is proposed to be an important mechanism 

responsible for integration of new information in the original memory trace (De Oliveira 

Alvares, et al., 2013; J. L. Lee, 2010). Recall of memory results in plastic labile state 

(destabilization) which allows for incorporation of new information in the long-term memory 

through reconsolidation (Lee, Nader, & Schiller, 2017).  However, in the absence of new 

information at the time of recall, memory does not enter in an active labile state (Bustos, et 

al., 2009; Exton-McGuinness, Lee, & Reichelt, 2015; Pedreira, Pérez-Cuesta, & Maldonado, 

2004; Sevenster, et al., 2012a; Sinclair & Barense, 2018).   

Recent research suggests that a mismatch between what happens at the time of recall from 

what is expected (prediction error) is required for memory destabilization (Popik, Amorim, 

Amaral, & De Oliveira Alvares, 2020; Sevenster, Beckers, & Kindt, 2013). Both preclinical and 

clinical studies have shown that the reconsolidation interventions failed in the absence of 

prediction error while the incorporation of prediction error at the time of memory retrieval 

resulted in successful disruption of memory by drugs inhibiting reconsolidation (Bustos, et al., 

2009; Exton-McGuinness, et al., 2015; Pedreira, et al., 2004; Sevenster, Beckers, & Kindt, 

2012b; Sinclair & Barense, 2018). Dopaminergic projection from ventral tegmental area (VTA) 

have been proposed to mediate prediction error signalling (Exton-McGuinness, et al., 2015). 

Dopaminergic system plays a key role in expectation of outcome (Schultz, Dayan, & Montague, 
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1997) and administration dopamine D2 receptor antagonist sulpiride in VTA prevents the 

appetitive memory destabilization (Reichelt, Exton-McGuinness, & Lee, 2013). However, the 

role dopamine in fear memory destabilization is still not clearly understood. Blockade of 

memory destabilization with intra-BLA administration of D1 receptor antagonist SCH-23390 

did not affect retrieval-extinction induced attenuation of cued fear memory in rats (Cahill, 

Wood, Everitt, & Milton, 2019). This suggests that D1 receptors signalling in amygdala is not 

sufficient condition for memory destabilization as D1 receptor agonist SKF38393 alone did 

not have an impact but mediated the effect of nootropic nefiracetam on memory 

destabilization (Flavell & Lee, 2019b). The role of dopaminergic system in fear memory 

destabilization needs to be explored further. 

Molecular mechanisms of memory destabilization involve activation of NMDA NR2B 

receptors (Milton, et al., 2013). Einarrson and Nader explored the role of NMDAR N2B in 

anterior cingulate cortex (ACC) on reconsolidation of contextual fear memory. NMDAR N2B 

antagonist RO25-6981 administration in ACC impaired contextual fear memory (Einarsson & 

Nader, 2012).  Similarly, administration of the NMDA N2B antagonist, ifenprodil, blocked the 

amnesia caused by the protein synthesis inhibitor, anisomycin, suggesting that ifenprodil 

prevented the destabilization of memory required for anisomycin to have an effect (Mamou, 

Gamache, & Nader, 2006). Conversely, administration of D-cycloserine, a partial agonist at 

the NMDA receptor, increased the labilization of old traumatic memories (Bustos, et al., 2010).  

Activation of L-type voltage-gated calcium channels and GluA1-containing AMPA receptor 

which results in increased entry of calcium intracellularly have also been shown to be involved 

in memory destabilization. Administration of nimodipine, a L-type voltage-gated calcium 

channel blocker, prior to reactivation of memory resulted in failure of memory updating 
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(Suzuki, Mukawa, Tsukagoshi, Frankland, & Kida, 2008). Similarly, blockade of GluA1-

containing AMPA receptor in hippocampus prevented the fear memory update (Torquatto, 

Menegolla, Popik, Casagrande, & de Oliveira Alvares, 2019). Increased calcium entry by 

activation of these receptors activate protein kinase CAMKII and ubiquitin-proteasome 

system (UPS) which results in synaptic scaffolding protein degradation and memory 

destabilization (Jarome, et al., 2011; S. H. Lee, et al., 2008). Inhibition of CAMKII by 

myristoylated autocamtide-2 related inhibitory peptide and UPS by β lactacystin prevents 

destabilization of memory and blocks the effect of protein synthesis inhibitor anisomycin on 

memory reconsolidation (Jarome, Ferrara, Kwapis, & Helmstetter, 2016; Jarome, et al., 2011; 

S. H. Lee, et al., 2008).  

The translational applicability of reconsolidation interventions is sometimes limited because 

traumatic memories that lead to PTSD may be too old or strong to be destabilized (Nader, 

Schafe, & LeDoux, 2000). These potential ‘boundary conditions’ interfere with labilization of 

memory. However, interventions that results in memory destabilization have shown promise 

to overcome these boundary conditions. D-cycloserine administered prior to reactivation 

rendered long-term fear memory vulnerable to post-reactivation reconsolidation blockade 

with the GABA agonist, midazolam (Bustos, et al., 2010). Similarly, D-cycloserine also 

attenuated the stress-induced resistance to the fear memory labilization and enabled the 

disruption of strong fear memory by midazolam (Espejo, et al., 2016). Old traumatic memories 

between three to forty years have shown resistance to reconsolidation intervention in 

previous clinical trials (Suris, et al., 2013). The incorporation of prediction error and NMDA 

N2B receptor agonists to destabilize the strong and old traumatic memory needs to be 

explored further in clinical studies in PTSD patients.  
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8. Fear memory extinction 

Pharmacological interventions targeting fear memory extinction have been primarily used as 

adjunct to psychotherapies like prolonged exposure therapy (Carpenter, Pinaire, & Hofmann, 

2019; Litz, et al., 2012; Singewald, Schmuckermair, Whittle, Holmes, & Ressler, 2015).  

Prolonged exposure therapy which works by enhancing extinction is one of the first line 

treatments for PTSD (APA, 2017; Card, 2017; Phoenix, 2020). However, it requires multiple 

sessions for full beneficial effect and is associated with significant dropout rates. Therefore, 

any drug which can reduce the duration of exposure therapy and enhance its efficacy will 

have significant impact on reduction of PTSD morbidity. We have discussed above how the 

pharmacological targeting of memory reconsolidation can disrupt fear memory; however, 

memory can also be modified by another means i.e. by enhancing extinction (Bouton, 1993). 

In this section we will briefly discuss key molecular mechanisms and neural circuits involved 

in fear memory extinction and recent landmark studies on pharmacological interventions to 

enhance memory extinction in PTSD patients. Effects of Cannabis, MDMA, ketamine, 

psilocybin, D-cycloserine, neuropeptide Y and oxytocin on fear memory extinction in PTSD 

have been described elsewhere in this review (see section 3 and 9). Some of the other key 

pharmacological interventions used to enhance fear memory extinction in PTSD include SSRIs, 

L-DOPA, yohimbine, cannabinoids, and glucocorticoids are discussed here. In this section we 

first discuss extinction mechanism and then pharmacological modulation of extinction. 

Fear memory undergoes extinction if multiple presentations of previously learned CS are not 

followed by similar outcome (Merlo, Milton, Goozée, Theobald, & Everitt, 2014). This leads to 

reduction in response to stimuli which previously reminded the person of trauma (Quirk & 

Mueller, 2008). Evidence suggests that extinction involves new learning that CS is not 
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followed by US and therefore it is more than just forgetting (Bouton, 2004; Dunsmoor, Niv, 

Daw, & Phelps, 2015; Maren & Quirk, 2004). This is supported by the fact that extinguished 

memories recover spontaneously with passage of time or after the reminder to the original 

traumatic incidence (Bouton, Westbrook, Corcoran, & Maren, 2006; Rescorla, 2004). 

The molecular mechanisms of fear memory extinction are similar in many ways to those 

involved in memory reconsolidation. Like reconsolidation, NMDA receptor activation is critical 

for memory extinction (Kwapis, Jarome, Lee, Gilmartin, & Helmstetter, 2014). Stimulation of 

β-adrenergic receptors by noradrenaline is known to potentiate fear memory extinction 

(Berlau & McGaugh, 2006; Mueller, Porter, & Quirk, 2008), while their inhibition by 

propranolol impairs it (Mueller, et al., 2008). In contrast to β-adrenergic receptors, 

administration of GABA-A agonist impairs fear memory extinction (Hart, Harris, & Westbrook, 

2009), while GABA-A antagonists facilitates it (Berlau & McGaugh, 2006). Endocannabinoid 

system also plays a key role in fear memory extinction where administration of CB1 receptor 

agonists facilitates memory extinction (de Oliveira Alvares, et al., 2008; Segev, et al., 2018), 

while injection of CB1 receptor antagonists or CB1 knockout mice show impairment in 

memory extinction (Marsicano, et al., 2002; Varvel, Anum, & Lichtman, 2005). Similar to fear 

memory reconsolidation, extinction also requires activation of intracellular signalling like 

ERK/MAPK (Herry, Trifilieff, Micheau, Lüthi, & Mons, 2006) and other intracellular pathways 

(Kritman & Maroun, 2013) leading to protein synthesis and further synaptic remodelling (Lai, 

Franke, & Gan, 2012).    

It is important to understand the neural circuits involved in fear memory extinction as this 

allows for better targeting of pharmacological interventions aimed to enhance fear memory 

extinction in PTSD patients. Rodent studies with brain lesion and pharmacological or 
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optogenetic manipulations has allowed us to understand the key role discrete brain regions 

like BLA, mPFC, hippocampus, nucleus reuniens and their interconnections play in fear 

memory extinctions. Due to its involvement in fear learning it is long known that BLA is 

involved in fear memory extinction (Maren, Aharonov, Stote, & Fanselow, 1996; Zimmerman 

& Maren, 2010); however, it has been shown recently that distinct population of BLA neurons 

mediate fear conditioning and fear extinction (Herry, et al., 2008).  While the neurons 

involved in fear conditioning project from BLA to prelimbic (PL) subregion of mPFC, the 

neurons mediating fear extinction project for BLA to infralimbic (IL) subregion of mPFC (Senn, 

et al., 2014). The optogenetic activation of BLA-IL pathway neurons has been shown to 

facilitate fear memory extinction (Senn, et al., 2014) while lesion to infralimbic cortex 

impaired extinction (Bravo-Rivera, Roman-Ortiz, Brignoni-Perez, Sotres-Bayon, & Quirk, 2014; 

Do-Monte, Manzano-Nieves, Quiñones-Laracuente, Ramos-Medina, & Quirk, 2015). Thus, a 

co-ordinated activity between BLA and mPFC is required for fear memory extinction.  

Recently, it was also shown that the role of prelimbic cortex is not restricted to fear learning 

but activation of intra-cortical glutamatergic projections from PL to IL subregion of mPFC 

facilitates fear memory extinction (Marek, Xu, Sullivan, & Sah, 2018). Future studies are 

needed to elucidate a more nuanced understanding of role of mPFC in fear memory extinction 

is required. Apart from their role in reward memories, projections from BLA to nucleus 

accumbens has also been demonstrated to be involved in fear memory extinction (Correia, 

McGrath, Lee, Graybiel, & Goosens, 2016). Furthermore, hippocampus plays a key role in 

extinction of context dependent fear memories (Kubie, Levy, & Fenton, 2020). Wang et al. 

(Wang, Yuan, Keinath, Álvarez, & Muzzio, 2015) have shown that there is a remapping of place 

cells in dorsal hippocampus during extinction of contextual fear memories. Recently, it was 

shown that fear memory extinction requires the suppression of a specific population of 
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neurons recruited during fear memory acquisition and activation of different subset of 

neurons in dorsal hippocampus (Lacagnina, et al., 2019). Furthermore, projections from 

ventral hippocampus to BLA and IL subregion of mPFC play a key role in extinction of fear 

memories (Jin & Maren, 2015a; Vasquez, et al., 2019). Lastly, nucleus reuniens in thalamus 

and its connections with hippocampus and mPFC are known to regulate the contextual 

information of fear memory extinction (Varela, Kumar, Yang, & Wilson, 2014). Thus, 

extinction of fear memory is often context dependent and therefore susceptible for recovery 

if the CS is presented in the different context from the extinction training and thus needs to 

be addressed to improve outcomes for treatments targeting extinction. 

Selective serotonin reuptake inhibitors (SSRIs) are the preferred pharmacological treatment 

in PTSD. Their mechanism of action in PTSD has traditionally been thought to be their 

antidepressant action; however, evidence suggests that SSRIs also have an effect on memory 

extinction. Chronic administration of fluoxetine before (Deschaux, Spennato, Moreau, & 

Garcia, 2011) and after (Deschaux, et al., 2013) extinction in rats prevented the return of 

extinguished fear memory when exposed to reminder of stressful event. Combination of 

fluoxetine administration and extinction training in mice produced a more enduring loss of 

conditioned fear memory compared to fluoxetine or extinction training alone (Karpova, et al., 

2011). Fluoxetine increases the synaptic plasticity and cause the memory to become more 

malleable to extinction induced synaptic remodelling (Karpova, et al., 2011).  This suggests 

that combining pharmacotherapy with exposure therapy can have synergistic effect mediated 

by their action on memory extinction. 

Yohimbine, an α-2 adrenergic receptor antagonist, acts by enhancing the release of 

norepinephrine in amygdala, hippocampus and prefrontal cortex (Cain, Blouin, & Barad, 2004).  
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Yohimbine has been demonstrated to enhance fear memory extinction in rodents (Cain, et 

al., 2004; Holmes & Quirk, 2010). Importantly, a recent randomized placebo-controlled trial 

in PTSD patients has shown that combining yohimbine with prolonged exposure therapy led 

significantly reduced trauma induced heart rate reactivity and rapid improvement in 

depression but not PTSD symptoms (Tuerk, et al., 2018).    

Recent research has highlighted the critical role of dopaminergic system in fear memory 

extinction. Dopamine neurons from ventral tegmental area (VTA) project to amygdala and 

mPFC mediate the effect of drugs acting on dopaminergic system on fear memory extinction 

(Lee, Lee, & Kim, 2017; Weele, Siciliano, & Tye, 2019). Systemic administration of L-DOPA, a 

dopamine precursor, after contextual fear memory extinction training enhanced the 

retention of fear extinction and made the memory context independent (Haaker, et al., 2013). 

Similarly, L-dopa administration rescued deficient fear extinction in 129S1/SvImJ mice, which 

show impaired fear extinction (Whittle, et al., 2016). Systemic administration of dopamine 

D1/5 receptors agonist SKF 81297 facilitated both cued and contextual fear memory 

extinction (Abraham et al., 2016) (Abraham, Neve, & Lattal, 2016). In a clinical study on 45 

male participants, enhancing dopaminergic activity by administration of L-DOPA during 

extinction consolidation increased the vmPFC activity and improved retrieval of extinction 

memory retrieval (Gerlicher, Tüscher, & Kalisch, 2018); however, further study showed that 

this extinction enhancement was dependant on successful extinction learning (Gerlicher, 

Tüscher, & Kalisch, 2019). Importantly, administration of L-DOPA in a randomized placebo 

controlled clinical trial boosted the reactivation of amygdala extinction encodings and 

reduced reinstatement of conditioned fear memory but did not improve extinction recall in 

women with PTSD (Cisler, et al., 2020). Future research could explore the effect of 

combination of L-DOPA with prolonged exposure therapy in patients with PTSD. 
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Glucocorticoids apart from their anti-inflammatory action have been shown to enhance fear 

memory. Corticosterone administration after extinction training was shown to facilitated 

extinction in BALB/C mice (Brinks, de Kloet, & Oitzl, 2009). In rats, administration 

dexamethasone, a glucocorticoid agonist enhanced while, metyrapone, glucocorticoid 

synthesis inhibitor disrupted the extinction of fear memory (Yang, Chao, Ro, Wo, & Lu, 2007). 

Combination of subthreshold dose of DCS and dexamethasone enhanced extinction 

synergistically (Yang, et al., 2007). Importantly, hydrocortisone, a synthetic form of cortisol, 

enhanced extinction learning in PTSD patients. Patients in hydrocortisone group showed 

significantly lower differential skin conductance response (SCR) compared to placebo (Inslicht, 

et al., 2021). This suggests that glucocorticoid could be acting in PTSD by facilitation of fear 

memory extinction. In summary, drugs like DCS, Yohimbine and L-DOPA could be used in 

combination with prolonged exposure therapy to facilitate fear memory extinction or 

enhancement of memory extinction could contribute to the effect of SSRIs, cannabinoids, and 

glucocorticoids in PTSD. 

 

9. Fear memory generalization 

Memory generalization occurs when experience of fear associated with a specific traumatic 

event is transferred to safe event resembling the original trauma (American Psychiatric 

Association & Association, 2013). Unlike healthy individuals who can discriminate between 

the current non-threatening situation from previous traumatic event and respond accordingly, 

patients with PTSD show hyperarousal to the situations resembling even remotely to the 

original traumatic event (Kaczkurkin, et al., 2017).  Recent evidence suggests that besides 

strong fear encoding (Orr, et al., 2000) and impaired fear memory extinction (Jovanovic & 
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Ressler, 2010), overgeneralization of fear is an important mechanism responsible for PTSD 

(Dymond, Dunsmoor, Vervliet, Roche, & Hermans, 2015). Fear overgeneralization increases 

the number of cues in the patient’s environment that remind them of initial trauma thus 

contribution to significantly to the morbidity of PTSD (Dunsmoor & Paz, 2015). 

Hippocampus plays a key role in discrimination between two different sensory stimuli by 

pattern separation (McTighe, Mar, Romberg, Bussey, & Saksida, 2009; Talpos, McTighe, Dias, 

Saksida, & Bussey, 2010), apart from its involvement in contextual fear memory consolidation 

and reconsolidation (Debiec, et al., 2002; Gafford, et al., 2011). Fear memory generalisation 

could be mediated by impairment in hippocampus mediated pattern separation to 

discriminate between two different contexts (Kheirbek, Klemenhagen, Sahay, & Hen, 2012).  

In a study by McHugh et al. (McHugh, et al., 2007), mice which lacked the essential subunit of 

the NMDAR NR1 in dentate gyrus granule cells of hippocampus could not discriminate 

between two similar contexts despite performing normally in contextual fear conditioning. It 

is suggested that reduction in hippocampal volume seen in PTSD patients may underlie their 

vulnerability to overgeneralization of fear response (Mark W Gilbertson, et al., 2002; Levy-

Gigi, Szabo, Richter-Levin, & Kéri, 2015).  

A reduction in mPFC inputs to BLA which is thought to be responsible for impaired fear 

memory extinction in PTSD (Seth D Norrholm, et al., 2011), has also been suggested to be 

responsible for fear memory generalization (Lopresto, Schipper, & Homberg, 2016). In a study 

by Likhtik et al. (Likhtik, Stujenske, Topiwala, Harris, & Gordon, 2014), mice which showed 

good discrimination between averseness and safety had increased number of theta 

oscillations between the mPFC and BLA. In another study by Sangha et al. (Sangha, et al., 

2009), mice which lacked 65 kDa isoform of glutamic acid decarboxylase responsible for 
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increase in GABA levels, showed increased theta frequency synchronicity between 

hippocampus and amygdala and increased fear generalization and impaired extinction. 

Increased theta frequency synchronization between hippocampus and amygdala has also 

been observed in fear memory consolidation (Seidenbecher, Laxmi, Stork, & Pape, 2003) and 

reconsolidation (Narayanan, Seidenbecher, Sangha, Stork, & Pape, 2007). This suggests that 

fear memory generalization share common neural mechanisms with fear memory 

consolidation, reconsolidation, and extinction.  

Fear memory generalization is susceptible to pharmacological interventions. Pedraza et.al. 

(Pedraza, et al., 2016)showed that strong footshock training (4 × 1.0 mA) in contextual fear 

conditioning led to more fear generalization compared to low intensity footshock training 

(4 × 0.4 mA) and this could be prevented by administration of metyrapone (cortisol 

steroidogenesis blocker) or propranolol (β-adrenergic antagonist). This suggests that highly 

stressful events can lead to fear memory generalization mediated by increased glucocorticoid 

and noradrenaline system activation caused by such situations. In another study, 

administration of α2-adrenoceptor antagonist yohimbine immediately after contextual fear 

conditioning led to more generalized fear memory which were also resistant to 

reconsolidation intervention by α2-adrenoceptor agonist clonidine or phytocannabinoid 

cannabidiol (Gazarini, Stern, Piornedo, Takahashi, & Bertoglio, 2015). However, this 

resistance to reconsolidation disruption by clonidine and cannabidiol in generalised fear 

memories was overcome by administration of NMDA agonist D-cycloserine before retrieval 

to increase memory labilization (Gazarini, et al., 2015). Further, chronic administration of SSRI 

fluoxetine was shown to reduce fear memory generalization and increase memory precision 

by remodelling of dendritic spines in hippocampus (Pedraza, et al., 2019). Subanaesthetic 

dose of ketamine reduced fear memory generalization mice (Asim, et al., 2020). 
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Administration of NMDA N2B antagonist ifenprodil or BDNF receptor TrkB antagonist ANA-12 

in infralimbic cortex reversed this effect which suggests that ketamine prevented fear 

memory generalization via the action on GluN2B-BDNF Signalling (Asim, et al., 2020). These 

studies suggest that fear memory overgeneralization could be targeted therapeutically in 

PTSD patients. Moreover, pharmacological intervention to prevent fear memory 

overgeneralization could increase the effectiveness of current PTSD treatment.  

 

10. Fear memory modification protocols 

Given that there is some overlap with respect to underlying neural mechanisms, procedures 

to test pharmacological interventions and interpretation of finding with respect to fear 

memory reconsolidation, extinction, and generalization, we have described below the typical 

protocols to evaluate the effect of pharmacological interventions on each of the memory 

processes. 

Pavlovian fear conditioning is the most commonly used behavioural paradigm study the effect 

of drugs on fear memory in PTSD (Bergstrom, et al., 2013; Blundell, et al., 2008; Bustos, et al., 

2006; Davis, 1992; Debiec & Ledoux, 2004; Jacques, et al., 2019; Nader, Schafe, & Le Doux, 

2000). In this model a neutral conditioned stimulus (CS) such as tone, light or context is paired 

with aversive unconditional stimulus (US) such as foot shock. This results in formation of 

associative fear memory so that presentation of CS leads to behaviour linked to memory of 

US. In contextual fear conditioning the memory storage requires hippocampus and amygdala 

whereas cued fear conditioning is mediated only by amygdala and do not involve 

hippocampal activity. The testing of retrieval of fear memory presenting CS without the US. 

Percentage freezing is the most commonly used behaviour response as a measure of fear.  
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10.1 Fear memory reconsolidation protocol 

To evaluate the effect of drugs on fear memory reconsolidation using cued fear conditioning 

paradigm, the experimental procedure is carried out in 2 different chambers. Rodents are 

trained in conditioning chamber A wherein a single conditioned stimulus (CS; tone) is paired 

with an unconditioned stimulus (US; footshock) (Bergstrom, et al., 2013; Nader, Schafe, & Le 

Doux, 2000). Twenty-four hours following training, rodents are re-exposed to CS in a different 

Chamber B. Chamber B has a different flooring, appearance, and scent to reactivate only the 

cued fear memory. Study drugs are administered immediately after the memory reactivation. 

Memory is tested 24 hrs later by presenting CS without the US in chamber B. Freezing 

behaviour (defined as complete lack of movement, except for respiration) is measured as a 

marker for fear and recorded with camera. Percentage of time mice spent freezing when 

presented with the CS is used as the dependent measure and can be analysed manually or 

with software.   

The test whether the fear memory disruption is specifically due to blockade of reconsolidation, 

in a separate group of animals, a similar protocol to that is described above is followed except 

study drugs are administered on day 2 without the reactivation of memory.   

Several factors affect when the study drug should be administered with memory reactivation. 

It has been observed that memory is most susceptible to disruption 1 – 2 hours after 

reactivation (Nader, Schafe, & Le Doux, 2000; Przybyslawski, et al., 1999). To achieve the peak 

concentration of the drug at this time several factors including route of administration, 

pharmacokinetics and drug site of action need to be considered. For example, it has been 

shown that propranolol which has the tmax (time required to reach maximum plasma 

concentration) of 1-2 hour disrupted the fear memory if given 1 hour after the memory 
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reactivation and but had no effect if given 2 hours after memory reactivation (Kindt & Soeter, 

2018). Similarly, agonists of NMDA receptors such as D-cycloserine needs to be given before 

memory reactivation to increase memory labilization as administration after reactivation will 

enhance extinction and interfere with amnestic effect of  drug on reconsolidation and NMDAR 

antagonists like MK801 should be adminstered after memory reactivation as administration 

before reactivation can lead to failure of memory labilization (Lee, et al., 2006b).  

10.2 Fear memory destabilization protocol 

Animals are trained wherein a single conditioned stimulus (CS; 30 sec tone) is paired with an 

unconditioned stimulus (US; foot shock) in chamber A. Twenty-four hours after the training, 

effect of study drugs on memory destabilization in the context of reconsolidation is tested by 

administration of the D cycloserine (NMDA NR2B agonist) before memory reactivation to 

destabilize the memory. One hour after the D-cycloserine injection rodents will undergo 

reactivation session wherein they are exposed to the CS without the US in chamber B (Bustos, 

et al., 2010). Alternatively, memory could be destabilized by introduction of temporal 

prediction error for example by re-exposing the animals to a 60 sec tone CS instead of 30 sec 

without the US (Flavell & Lee, 2019a) at the time of memory reactivation.  Immediately after 

memory reactivation, a blocker of memory reconsolidation like anisomycin, midazolam or 

another drug is administered. Animals could be divided in three groups (Group 1: Vehicle 

control, Group 2: memory reconsolidation blocker, Group 3: D-cycloserine + memory 

reconsolidation blocker). Twenty-four hours after the reactivation session memory is tested 

by presenting CS without the US in chamber B. Freezing time is recorded using camera and 

can be analyzed manually or with software. To test whether boundary conditions like strength 

and age of memory affect memory destabilization, memory strength could be increased 
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during conditioning by increasing the number of tone-foot shock pairings or memory 

reactivation could be done 28 days after initial training.  

10.3 Fear memory extinction protocol 

Fear condition in fear extinction experiments is done similar to training in fear memory 

reconsolidation. Animals are habituated to conditioning chamber A following which they are 

subjected to a mild shock paired with a tone. The tone is played for 30 seconds the shock is 

delivered during last second of the tone. Study drugs are administered 2.5 hours before the 

extinction session on day 2. Twenty-four hours after training, rodents are placed in different 

chamber B and exposed to 10 CS (tone) presentations without the US (foot shock) (Merlo, et 

al., 2014). On day 3, animals are placed in chamber B and a single CS is presented.  Freezing 

behaviour is recorded and percentage freezing time is taken as measure of fear memory.  

Evidence suggests that reconsolidation and extinction are two distinct processes in which fear 

memory transitions from maintenance to inhibition with increase in extent of retrieval (Suzuki, 

et al., 2004). To delineate the fate of memory from reconsolidation to extinction, Merlo et.al 

(Merlo, et al., 2014) tested the effect of 1, 4, 7 and 10 CS presentation during memory 

reactivation on day 2. Animals showed significantly increased freezing in groups which 

received 1 and 4 CS compared to 7 and 10 CS. This transition from reconsolidation to 

extinction was associated with increase in calcineurin levels in BLA from 1 to 10 CS group with 

significantly higher levels in 10 CS group compared to other groups while ERK/MAPK levels 

remained equal between groups. This suggests that gradually increasing extent of retrieval 

leads to transition from reconsolidation to extinction and the two distinct processes are 

mediated by change in concentration of calcineurin which regulates key proteins involved in 

synaptic transmission and neuronal excitability in BLA. This transition from reconsolidation to 
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extinction also changes the effect of pharmacological interventions on fear memory. NMDAR 

NR2B agonist D-cycloserine administered with 1 CS presentation resulted in increase in 

freezing while when given with 10 CS led to reduced freezing on test day. In contrast, NMDAR 

antagonist MK801 given with 1 CS presentation reduced freezing but when administered with 

10 CS increased freezing (Lee, et al., 2006b; Merlo, et al., 2014). Thus, modulation of NMDA 

receptors can have different effect on fear memory depending on extent of memory 

reactivation and whether they are affecting reconsolidation or extinction.  

10.4 Fear memory generalization protocol 

The experimental procedure to test the effect of drugs on fear memory generalization using 

cued fear conditioning paradigm is carried out in 2 different chambers. On day 1, animals are 

habituated to chamber A and 5 presentations of two different tones (eg. CS+ a continuous 

sound at 1 kHz; and CS- 5 kHz clicks) (Asim, et al., 2020). Immediately after habituation, fear 

conditioning is done in which one of the two sounds (CS+) is paired with strong foot shock 

(1.2 mA for 1 s). Study drugs are administered 22 hours after conditioning. Two hours after 

study drug administration, fear memory is tested by playing 5 presentations of CS+ and CS- 

each. Freezing levels for the 2 tones are recorded separately by measuring average freezing 

levels of all CS+ and CS- presentations. The ratio of average freezing response to CS– to the 

average freezing response to CS+ is taken as a measure of fear memory generalization. 

 

11. Other pharmacological interventions and drug targets 

11.1 D-cycloserine (DCS) 
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D-cycloserine (DCS) is an antibiotic and approved for use in tuberculosis. DCS and has been 

studied extensively as an adjunct with exposure therapy for treatment of generalised anxiety 

disorder, obsessive compulsive disorder, and phobia (Norberg, Krystal, & Tolin, 2008). DCS is 

a full agonist at NMDA GluN2C receptor and a partial agonist at NMDA GluN2A, GluN2B, and 

GluN2D receptors (Sheinin, Shavit, & Benveniste, 2001). NMDA receptors are critical for 

formation of memory and fear memory extinction. The distribution of the different NMDA 

receptor subtypes in the CNS contributes to formation of fear responses and results in fear 

extinction. Blockade of NMDA receptors in animal models impairs memory extinction, 

whereas their stimulation leads to enhancement of memory extinction (Dalton, Wu, Wang, 

Floresco, & Phillips, 2012; Ogden, Khatri, Traynelis, & Heldt, 2014). DCS has been shown to 

increase fear extinction consistently in number of animal studies (Ledgerwood, Richardson, 

& Cranney, 2003, 2004; Walker, Ressler, Lu, & Davis, 2002). Similarly, DCS has been shown to 

enhance fear extinction when combined with exposure therapy for in patients with phobia 

and panic disorder (Davis, 2011). Furthermore, stimulation of NMDA GluN2B receptors with 

DCS has been shown to increase labilization of memory during reconsolidation making it more 

prone to disruption. This raises the possibility of potential use of DCS in PTSD.  

The evidence for use of DCS assisted therapy in PTSD is variable. In a pilot randomized placebo 

controlled clinical trial conducted on 11 chronic PTSD patients, DCS was similar to placebo in 

reducing PTSD symptoms when used as an adjunct to psychotropic medications (Heresco-

Levy, et al., 2002). Similarly, in a clinical trial comparing DCS with placebo in 76 chronic 

combat-related PTSD patients, DCS did not influence the frequency or severity of PTSD 

symptoms (Attari, Rajabi, & Maracy, 2014). However, DCS decreased intensity of avoidance 

and numbing symptoms. De Kliene et al (2012) compared DCS augmented exposure therapy 

with placebo plus exposure therapy in PTSD patients. The effect of DCS on CAPS score was 



78 
 

comparable to placebo, but it did show stronger treatment response and a greater reduction 

on PTSD symptoms in patients with severe PTSD (de Kleine, Hendriks, Kusters, Broekman, & 

van Minnen, 2012). In contrast, in a randomized clinical trial (RCT) in veterans with combat 

related PTSD, there was significantly less reduction in PTSD symptoms in DCS plus exposure 

therapy group compared to placebo plus exposure therapy (Litz, et al., 2012). However, 

Difede et al (2014) showed DCS combined with virtual reality exposure therapy significantly 

reduced CAPS scores post treatment and at six months follow up compared to placebo (Difede, 

et al., 2014). These findings could not be replicated in Iraq and Afghanistan war veterans with 

PTSD where DCS with virtual reality exposure therapy showed similar effects compared to 

placebo with virtual reality exposure therapy (Rothbaum, et al., 2014). Similarly, in children 

with PTSD, DCS combined with CBT showed no benefit over placebo with CBT in reducing 

PTSD symptoms (Scheeringa & Weems, 2014). Peskin et al (2019) showed reduction in 

posttraumatic and depressive symptoms with virtual reality exposure therapy which was 

strengthened by DCS (Peskin, et al., 2019). Differences in the methodology with respect to 

amount and timing of DCS administration may have produced inconsistent results (de Kleine, 

et al., 2012; Litz, et al., 2012). 

In view of the mixed results observed in clinical trials, many factors in clinical trial design need 

to be addressed before DCS assisted therapy could be incorporated in PTSD treatment. The 

dose and the treatment regimen of DCS, type of psychotherapy, number of therapy sessions 

and pharmacokinetic parameters to optimize the level of DCS in CSF at the time of therapy 

need to be addressed in future clinical trials.  

 

11.2 Neuropeptide Y (NPY) 
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Neuropeptide Y (NPY), a 36 amino-acid neuropeptide, is the most abundant peptide in the 

human brain. It is highly expressed in amygdala, hippocampus, hypothalamus, and cortex and 

involved in regulation of many systems relevant to pathophysiology of PTSD including 

regulation of anxiety and stress, fear learning and memory, and control of sympathetic 

activity (Adrian, et al., 1983; Eaton, Sallee, & Sah, 2007; Redrobe, Dumont, St-Pierre, & 

Quirion, 1999; Zukowska-Grojec, 1995).  

Regulation of anxiety and stress is perhaps the most important mechanism through which 

NPY is beneficial in PTSD. NPY knockout mice show exaggerated anxiogenic response (Bannon, 

et al., 2000) while overexpression of NPY produce anxiolytic response in rodent models of 

anxiety (Primeaux, Wilson, Cusick, York, & Wilson, 2005). Similarly, administration of NPY or 

NPY receptor agonist produced an anti-anxiety effect in rodents (Kask, et al., 2002). NPY 

injection in amygdala increased long-term resilience to stress-induced reductions in social 

responses in rats (Sajdyk, et al., 2008). In humans, high levels of plasma NPY is shown to 

increase resilience to extreme psychological stress in military survival training soldiers 

(Morgan, et al., 2000) whereas low CSF NPY levels have been observed in patients with PTSD 

(Sah, Ekhator, Jefferson-Wilson, Horn, & Geracioti, 2014). 

In addition to its role in regulation of anxiety and stress, NPY is also involved in fear 

conditioning and extinction. Intracerebroventricular administration of NPY reduced context 

and cued freezing in mice (Karlsson, Holmes, Heilig, & Crawley, 2005) while administration of 

NPY in hippocampus attenuated trauma associated fear memory (Cohen, et al., 2012). 

Similarly, reduced level of NPY was associated with increased fear reinstatement in chronic 

variable stress in rats (McGuire, Herman, Horn, Sallee, & Sah, 2010). In humans, reduced CSF 
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NPY levels significantly correlated with increased PTSD symptoms and more specifically with 

presence of intrusive traumatic memory (Sah, et al., 2014).  

Only one clinical trial has examined the efficacy of NPY in individuals with PTSD till date. In a 

randomized and crossover dose-ranging study of NPY to evaluate its safety and anxiolytic 

efficacy in 26 PTSD patients, intranasal administration of NPY was well tolerated up to the 

highest dose of 9.6 mg (Sayed, et al., 2017). Moreover, higher doses of NPY showed more 

reduction in anxiety compared to placebo on Beck Anxiety Inventory score although the effect 

was not statistically significant. Results from the study show that NPY could be developed for 

treatment of PTSD however, clinical trials with larger sample size and incorporating specific 

measures for PTSD (CAPS, PCL) are needed. 

 

11.3 Oxytocin 

The neuropeptide oxytocin is a promising candidate albeit with modest evidence in the 

treatment of PTSD. Unlike its obstetrics use where it is administered intravenously to induce 

labour, intranasal oxytocin has been studied in psychiatry for anxiety, depression and PTSD 

(De Cagna, et al., 2019). Oxytocin is known to enhance the prosocial behaviour and reduce 

avoidance to recall of traumatic memories during psychotherapeutic session thus improving 

the therapeutic alliance and allowing for modification of those memories. It is postulated that 

prosocial effects of MDMA are mediated through release of oxytocin (Dumont, et al., 2009). 

Administration of single dose of oxytocin to PTSD patients reduced anxiety, irritability and 

intensity of intrusive thoughts while improving mood and  desire for social interaction 

(Yatzkar & Klein, 2010). Oxytocin has been shown to increase fear extinction by modulation 

of central amygdala output in rats (Roozendaal, et al., 1992; Viviani, et al., 2011). Furthermore, 
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intranasal oxytocin facilitated fear extinction in human volunteer (Acheson, et al., 2013; 

Eckstein, et al., 2015). Thus, intranasal oxytocin could also be developed as adjunctive 

treatment to psychotherapy such as prolonged exposure therapy which is based on fear 

extinction (Olff, Langeland, Witteveen, & Denys, 2010).  

In a RCT on 35 female PTSD patients, a single dose of oxytocin significantly reduced responses 

to Script-Driven Imagery and attenuated PTSD symptoms compared to placebo (Sack, et al., 

2017). In another study on 37 police personnel with PTSD, intranasal oxytocin reduced 

subjective anxiety and nervousness in PTSD patients (Koch, et al., 2016). Flanagan and 

colleagues conducted a RCT to evaluate eight sessions of prolonged exposure therapy with 

oxytocin or placebo in PTSD patients (Flanagan, Sippel, Wahlquist, Moran-Santa Maria, & Back, 

2018). Their results suggest that oxytocin lowered PTSD and depression symptoms and 

increased working alliance compared to placebo, however these differences did not reach 

statistical significance. These preliminary findings suggests that oxytocin could be potentially 

developed for treatment of PTSD, however, several issues with respect to sample size, dosing, 

psychotherapy selection, clinical assessment, and follow-up need to be addressed in 

scientifically designed RCTs. 

 

11.4 Neuroactive steroids 

Recent evidence suggests that neuroactive steroids could play an important role in 

pathophysiology and treatment of PTSD.  They are involved in stress adaptation through 

modulation of neuronal signalling. Stress leads to increased synthesis of neuroactive steroid 

like allopregnanolone which reduce neuronal excitability by acting on GABAA receptors (Purdy, 

Morrow, Moore, & Paul, 1991). However, severe stress and prolonged isolation were both 
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associated with reduction in allopregnanolone levels and increase in fear conditioning, 

resistance to extinction, anxiety and depression in rodents (Dong, et al., 2001; Zhang, et al., 

2014). Mice deficient in allopregnanolone showed slow extinction and spontaneous recovery 

of fear after extinction as compared to mice with normal allopregnanolone levels (Pibiri, 

Nelson, Guidotti, Costa, & Pinna, 2008). Whereas administration of allopregnanolone was 

shown to have anxiolytic, antidepressant, and neurotrophic properties and enhance fear 

memory extinction(Dong, et al., 2001; Eser, Baghai, Schüle, Nothdurfter, & Rupprecht, 2008; 

Pinna & Rasmusson, 2014).  

Studies have shown that serum allopregnanolone levels are significantly lower in PTSD 

patients compared to control population (Rasmusson, 2016; Rasmusson, et al., 2006). Low 

CSF allopregnanolone in women with PTSD was associated with PTSD re-experiencing and 

depressive symptoms (Rasmusson, 2016). Furthermore, exogenous administration of 

ganxolone, a synthetic form of allopregnanolone, facilitated fear extinction and prevented 

spontaneous recover of fear (Pinna & Rasmusson, 2014). In a clinical trial, administration of 

pregnanolone, a precursor of allopregnanolone, reduced PTSD symptoms in patients with 

mild traumatic brain injury (NCT00623506). Clinical trials to evaluate the efficacy of 

pregnanolone in individuals with PTSD are underway (NCT03799562). 

 

11.5 Neuroinflammation 

A growing body of evidence has demonstrated the critical role played by immune system in 

pathophysiology of PTSD. Several basic and clinical studies have explored the mechanisms by 

which increased inflammation contributes to the development of PTSD. Studies in animals 

have shown that chronic stress such as seen in many PTSD patients is associated with increase 
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in inflammation possibly through dysregulation of hypothalamic–pituitary–adrenal (HPA) axis 

and activation of sympathetic nervous system (Daskalakis, et al., 2016; Hendrickson & Raskind, 

2016). Increased secretion of corticotropin-releasing hormone (CRH) following stress leads to 

activation of sympathetic nervous system and release of norepinephrine which in turn may 

lead to increased production inflammatory cytokines such as IL-1 and IL-6 (Bierhaus, et al., 

2003). Activation of microglia in the brain following stress leads to increased IL-6, TNF-α, and 

IL-1β which modulate synaptic plasticity and learning and memory processes (Levin & 

Godukhin, 2017; Réus, et al., 2015). Increased neuroinflammation has been shown to impair 

fear memory extinction and thus leading to persistence of fear memory (Quiñones, 

Maldonado, Velazquez, & Porter, 2016; Young, et al., 2018; Yu, et al., 2017). In clinical studies, 

increased inflammation was associated with greater activation of amygdala when presented 

with threatening stimuli (Inagaki, Muscatell, Irwin, Cole, & Eisenberger, 2012; Swartz, Prather, 

& Hariri, 2017).  

Recent evidence suggests a link between inflammatory pathophysiology and miRNA 

deregulation (Gupta, Guleria, & Szabo, 2021). Increased blood levels of proinflammatory 

cytokines were associated with reduced expression of miRNAs in veteran with PTSD (Zhou, et 

al., 2014). Furthermore, preclinical and clinical evidence suggests increased levels of 

glucocorticoid receptors (GR) - FKBP5 proteins complex which prevents GR phosphorylation 

in PTSD (Li, et al., 2020). A peptide which blocks the glucocorticoid receptors (GR) - FKBP5 was 

shown to reduce freezing time and in GR phosphorylation in fear conditioned mice (Li, et al., 

2020).  

PTSD patients have significantly higher risk of being diagnosed with comorbidities which 

involve dysregulation of immune system like ischemic heart disease, autoimmune diseases, 
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and metabolic syndrome (Edmondson, Kronish, Shaffer, Falzon, & Burg, 2013; Mellon, 

Gautam, Hammamieh, Jett, & Wolkowitz, 2018; O'Donovan, et al., 2015). Multiple studies 

have shown that PTSD patients have significantly higher presence of proinflammatory 

markers like IL-6, IL-1β, TNF-α and C-reactive protein in their blood compared to healthy 

controls (de Oliveira, et al., 2018; Imai, et al., 2018; Lindqvist, et al., 2017; Passos, et al., 2015). 

In line with this, several studies have explored the therapeutic potential of targeting 

neuroinflammation as well as the possibility of proinflammatory markers as diagnostic and 

prognostic biomarkers for PTSD (Aerni, et al., 2004; Lee, et al., 2016; Quiñones, et al., 2016).  
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Several drugs with anti-inflammatory properties have been investigated for their therapeutic 

potential in PTSD (fig 7). Systemic administration of ibuprofen, a non-steroidal anti-

Fig. 7. Drugs targeting neuroinflammation mechanism in PTSD. PTSD is associated with 

dysregulation of HPA axis and activation of sympathetic nervous system leading to 

increased release of pro-inflammatory cytokines. Increased cytokines in the periphery 

cross the blood brain barrier and cause microglia activation and further 

neuroinflammation.  This may lead to greater activation of amygdala and impairment of 

fear memory extinction in PTSD. NSAID, candesartan and cortisol act by reducing immune 

cell activation and release of cytokines. Solid line indicates stimulation, dotted line 

indicates inhibition.  Abbreviations: CRH, Corticotrophin-releasing hormone; ACTH, 

adrenocorticotropic hormone; NE, norepinephrine; AM, Adrenal medulla; AC, Adrenal 

cortex; IL-1, Interleukin-1; IL-6, Interleukin-6; TNF-α, Tumour necrosis factor-α.   



86 
 

inflammatory drug (NSAID) which act by inhibiting cyclooxygenase 2 (COX-2), was shown to 

reduce cytokine levels and reduce anxiety in rat model of PTSD (Lee, et al., 2016). Candesartan, 

an angiotensin receptor blocker, attenuated impaired fear extinction caused by 

lipopolysaccharide induced immune activation (Quiñones, et al., 2016). Studies have shown 

that angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) 

have distinct anti-inflammatory properties apart from their antihypertensive action (Clancy, 

Koblar, & Golledge, 2014; Kortekaas, et al., 2014). In humans, a cross-sectional study has 

shown the correlation between the use of ACE inhibitors and ARBs and reduced PTSD 

symptoms in highly traumatized civilian medical population (Khoury, et al., 2012). SSRIs, 

which are the only approved drugs for PTSD, are postulated to have anti-inflammatory 

properties (Gałecki, Mossakowska-Wójcik, & Talarowska, 2018; Walker, 2013). However, the 

extent to which the anti-inflammatory action contributes to their therapeutic effect in PTSD 

is still unknown. Finally, the strong anti-inflammatory effect might contribute to the action of 

glucocorticoids in PTSD apart from their effect on memory reconsolidation discussed earlier. 

In a pilot study, low dose cortisol treatment orally for one month reduced PTSD symptom 

severity (Aerni, et al., 2004). A single dose of hydrocortisone in individuals with full or 

subsyndromal PTSD enhanced fear extinction learning (Inslicht, et al., 2021).  

Evidence suggests that beneficial effects of drugs acting on endocannabinoid signalling in 

PTSD (Cameron, Watson, & Robinson, 2014; Fraser, 2009; Jetly, Heber, Fraser, & Boisvert, 

2015) are partly mediated by their actions on neuroinflammation. Cannabinoid CB2 receptor 

is the target site for modulation of the neuroinflammatory responses (Turcotte, Blanchet, 

Laviolette, & Flamand, 2016). CB2 receptor stimulation leads to suppression of inflammatory 

processes by inhibiting release of pro-inflammatory cytokines (such as TNF-a, IL-1b, and IL-6), 

reduced expression of adhesion molecules inhibition of leukocyte migration, decreased 
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oxidative stress and suppressing NFkB-mediated gene transcription (Boorman, Zajkowska, 

Ahmed, Pariante, & Zunszain, 2016; Chiurchiù, Leuti, & Maccarrone, 2015; McCoy, 2016; Rom 

& Persidsky, 2013) and release cytokines on activation (Atwood & Mackie, 2010). Microglial 

CB2 receptor activation also promoted release of anti-inflammatory cytokines (Lin, et al., 

2017; Mecha, et al., 2015). Zoppi S et al (Zoppi, et al., 2014) have reported that 

endocannabinoid signalling at CB2 receptors limits the neuroinflammatory responses caused 

due to exposure to stress. CB2 receptor activation appears to be an additional mechanism by 

which cannabinoids offer protection in PTSD.  

 

 

12. Conclusion  

An extensive range of pharmacological targets and drugs affecting them have been explored 

to address the core pathophysiology of PTSD. These developments are a result of our 

continued struggle to find definitive solutions for PTSD given the limitations of current 

medical and behavioural approaches (Watts, et al., 2013). Considering the fact that the 

current pharmacological treatments like SSRIs and SNRIs focus mainly on elevation of 

patient’s mood rather than treating underlying pathophysiology, new treatments which 

target pathological recurrence of traumatic memories are needed.  

The renaissance in research on psychedelics and their combination with psychotherapy has 

shown much promise. Diverse mechanisms for their therapeutic benefits have been proposed 

from reducing the barriers to psychotherapy to direct impact on fear memory. MDMA and 

psilocybin were used mostly in combination with therapy while ketamine showed rapid 
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benefits as monotherapy.  It is important that more data is generated to evaluate the efficacy 

and safety of psychedelics and to develop standardized protocols for the therapeutic settings 

in which these drugs are administered.   

Identification of molecular mechanisms of reconsolidation led to development of 

pharmacological strategies to disrupt the fear memories. Despite robust evidence from 

animal studies, clinical trials for pharmacological intervention in PTSD have yielded mixed 

results. While receptor modulation with propranolol and cortisol have not unequivocally 

produced positive results, it would be of interest to see if inhibiting intracellular mechanisms 

using drugs such as MEK inhibitors can improve the treatment outcomes. Despite increasing 

interest in research targeting reconsolidation process in last two decades, no effective 

memory reconsolidation based pharmacological therapy is yet in use for PTSD patients. This 

suggests that more research is needed, to identify strategies to destabilize the memories and 

clinical studies on different molecular targets, before this approach is to be adopted broadly. 

New exciting strategies like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids 

seem to offer novel ways to reduce PTSD symptoms. Drugs targeting HPA axis and 

neuroinflammation have also shown promise for PTSD treatment. Major challenges still 

remain with respect to designing of clinical trials for psychedelics, recruitment of adequate 

PTSD patients to meet sample sizes for large scale RCTs, and patients’ reluctance to recall 

traumatic experiences in clinical trials.  However, notwithstanding these hurdles, the recent 

developments in the PTSD therapeutics suggest that the field is on the cusp of a revolution.   
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