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ABSTRACT

Solution thermodynamics and kinetic modelling applied to struvite crystallisation–precipitation were reviewed from diverse references to

determine proximity between predicted and cited experimental measurements. These simulations show the expected variability range of

struvite saturation calculation when only limited solution compositional information is given, showing acceptable agreement between pre-

dicted and experimental struvite mass. This work also compares results from struvite crystallisation kinetic studies on liquid phase species

depletion, crystallisation induction time, primary nucleation, secondary nucleation, crystal growth, and crystal aggregation. Large inconsis-

tencies between reported kinetics were observed in many scenarios. Variations in species depletion models highlighted that they are

only suitably applied to the specific system from which they were regressed. Spontaneous primary nucleation was predicted to occur in

the range of SI¼ 0.237–0.8. Predicted primary nucleation rates vary over at least 10 orders of magnitude (depending on supersaturation)

because of uncertainties in interfacial tension and maximum achievable nucleation rate. Secondary nucleation rates are more agreeable,

varying over approximately two orders of magnitude. Growth rates varied over five orders of magnitude due to variations in experimental

conditions. Aggregation rates are not thoroughly examined enough to make any inferences.
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HIGHLIGHTS

• Assessment of model structure and predictive capability for struvite thermodynamics in saturated systems.

• Applicability of simulations to design model validation using real effluent for struvite precipitation.

• Primary nucleation models are highly variable while secondary nucleation models are more consistent.

• Increased model complexity is required for improved struvite growth rate prediction accuracy

• Growth rate orders cannot be accurately used to infer crystal growth mechanism.

NOMENCLATURE

Symbol Variable
b nucleus volume shape factor
bi,j aggregation kernel between particles i and j [particles L min�1]
b0 size-independent aggregation kernel [particles L min�1]
gs interfacial tension/surface energy [mJ:m�2]
u wetting angle
n number of ions making up a salt
t mean residence time of a suspension in a crystalliser working volume [s]
tind induction time [min]
V supersaturation ratio
IAP ion activity product
a kinetic coefficient (size-dependent growth model) [m�1]
A induction time model constant
A0 growth rate constant (birth and spread model) [mm min�1]
A00 growth rate constant (screw dislocation model) [mm min�1]
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Aind induction time model constant
An nucleation pre-exponential factor/collision factor [cm�3s�1]
As specific crystal surface area [particles s�1]
B nucleation rate used by Mehta [particles L�1s�1]
B0 supersaturation constant (birth and spread model)
B00 supersaturation constant (screw dislocation/BCF model)
B1 induction time model constant
B2 induction time model constant
Bind induction time model constant
Bnuc nucleation rate [particles L�1 min�1]
C concentration [mol L�1]
Ceq concentration at saturation/equilibrium [mol L�1]
Ci concentration at the crystal interface [mol L�1]
C0 initial concentration [mol L�1]
G length-based particle growth rate e [mm min�1]
G0 nuclei growth rate [m s�1] (size-dependent growth model)
G1 large crystal growth rate [m s�1] (size-dependent growth model)
J nucleation rate [particles s�1]
k rate constant for species depletion model [time�1]
kA particle surface area shape factor
kB Boltzmann constant¼ 1:38 � 10�23 [J K�1]
kagg aggregation rate constant [particles L min�1]
kd general diffusion rate constant [length time�1]
kg growth rate constant [mm min�1]
kr general reaction rate constant [length time�1]
kR species depletion model rate constant [mmol m�2 s�1]
knuc nucleation rate constant [particles L�1 min�1]
kV particle volume shape factor
Kg general growth rate constant including diffusion and reaction [length time�1]
Ksp solubility product
L spherical equivalent particle diameter [mm]
m crystal mass [g]
m0 initial crystal mass [g]
nB nucleation rate order
nd diffusion rate constant
ng growth rate order
nr reaction rate order
nR rate order in species depletion model
nagg aggregation rate order
nnuc nucleation rate order
n0 nuclei population density [particles m�1 m�3]
n(L) particle population density [particles m�1 m�3]
N particle number [particles L�1]
p growth rate order in ‘birth and spread’ model
ragg Aggregation rate [particles L�1 s�1]
S general descriptor of supersaturation (specific measures are used in its place)
Sa (or s) absolute supersaturation
Sr supersaturation ratio of multi-component system
SI saturation index of multi-component system
SI� saturation index below which growth does not occur
t time [min]
T absolute temperature [K]
tind induction time [min]
vm molecular volume [cm3]

1. INTRODUCTION

Nutrient recovery processes are an alternative toclosing the loop of nutrients that could be eliminated in typical wastewater
treatment plants. It is estimated that phosphate production costs (from rock phosphate) will increase by a factor of 3- to 5-fold
in the coming century, as existing higher quality reserves are depleted (Van Vuuren et al. 2010). By 2100, 89% of existing
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global phosphate reserves will be located in Morocco, leaving many countries dependent on importation (Cooper et al. 2011).
Since phosphorus is a key fertiliser used in food production, efficiency in its use and reuse is of great importance for global
food security. Phosphate recovery from wastewater is one element of a more sustainable food production cycle, thus this topic
is being studied until recent years in real case nutrient recovery scenarios, such as urine (Volpin et al. 2018), livestock lea-

chate (Martín-Hernández et al. 2020), and even blackwater (Sun et al. 2020).
Recovery by struvite crystallisation ranks higher than other technologies because of its simplicity, cost effectiveness, and

safety (Mehta et al. 2014), and has therefore become increasingly popular. Simultaneously, there is a trend within the waste-
water industry of plantwide modelling, for incorporating novel technologies (like struvite crystallisation) and for plant design

and operation (Lizarralde et al. 2015). Therefore, precise struvite crystallisation modelling is necessary for continued
improvement of wastewater treatment processes. It has been reported that the addition of magnesium to wastewater streams
containing phosphorus and ammonium at alkaline conditions precipitates struvite, a mineral thatcan be used as a slow

release fertiliser (Kataki et al. 2016; Siciliano 2016; Talboys et al. 2016). Consequently, suitable operating conditions for stru-
vite precipitation have been extensively studied from empirical and thermodynamic approaches. In the first scenario,
constrained experimental conditions are used to obtain an empirical model by testing different molar ratios of Mg, N, and

P at different pH values (Demeestere et al. 2001; Capdevielle et al. 2013). In the second approach determination of thermo-
dynamic equilibrium provides the advantage of assessing diverse nutrient liquid composition at diverse pH. Several studies
had used this approach when diverse nutrient solutions were used such as synthetic urine (Liu et al. 2013); real urine
(Ronteltap et al. 2007); swine lagoon (Nelson et al. 2003); and anaerobic supernatant (Ohlinger et al. 2000; Mehta &
Batstone 2013).

Struvite crystallisation modelling was commonly split into thermodynamic and kinetic modelling approaches. Estimating
the saturation conditions in a system can determine whether struvite precipitates at specific conditions of pH and nutrient

composition. When solution thermodynamics is addressed, a set of ‘chosen’ equilibrium equations must be solved, alongside
solution chemical speciation (Ali & Schneider 2008) to determine a numerical variable representing struvite saturation,
undersaturation or oversaturation. One challenge is the selection of a suitable equilibrium dataset for reliable prediction,

for more simulation sophisticated approaches, such as struvite precipitation reactor design (Burns et al. 2021). Another chal-
lenge is selecting a suitable saturation model equation to be implemented in the kinetics approach since diverse models can
be found in the literature (Buchanan et al. 1994; Ohlinger et al. 1998). Previous struvite modelling studies expressed the

importance of assessing models with experimental data due to high ionic strength solution (Ronteltap et al. 2007), uncertainty
due to model parameters such as struvite constant solubility product (Ksp) (Barnes & Bowers 2017), and possible presence of
different solid phases (Tansel et al. 2018).

Solving a system of non-linear equations and thermodynamic predictions encouraged the application of specialised soft-

ware packages. Within this software, we have PHREEQC (Bhuiyan et al. 2008; Warmadewanthi & Liu 2009; Ronteltap
et al. 2010; Sakthivel et al. 2012; Ariyanto et al. 2014), MINTEQ (Jia et al. 2017), MINTEQA2 (Golubev et al. 2001;
Nelson et al. 2003; Pastor et al. 2008; Hanhoun et al. 2011), MINEQLþ (Kofina & Koutsoukos 2005; Bhuiyan et al.
2007), CHEMEQL V.2.0 (Bouropoulos & Koutsoukos 2000) and AQUASIM 2.0 (Udert et al. 2003a; Morales et al. 2013),
which were run at default software configuration. This means that a diversified set of equilibrium equations and predictions
could be found despite considering the same input data.

Further to constraints in the thermodynamic modelling, kinetic model limitations are examined. Kinetic models represent
either a decrease of reagent concentration in the liquid phase, or the evolution of crystal mass based on the particle number
and size over time. The latter approach introduces parallel mechanisms (nucleation, growth, and aggregation) which depend

on each other and on system conditions. The comparison of any kinetic models is difficult as experimental and theoretical
techniques and results often vary. Currently, no literature exists to provide an indication of the relative precision and accuracy
of existing kinetic modelling techniques. This work compares kinetic models using a common measure of supersaturation to
identify any consistent trends.

Modelling studies of thermodynamics and kinetics in struvite precipitation, however, they lacked an assessment of the
mathematical equations used by different authors and a detailed comparison between them and modelling validation with
cited experimental data. In this review, we compared diverse mathematical equations expressing saturation in struvite precipi-

tation with the inclusion of additional simulations and their comparison with observed laboratory data. The review on
struvite precipitation kinetics considered modelling in the liquid and solid phases, where particle nucleation, growth, and
aggregation were considered. This paper indirectly highlights insightful information for other model developers working
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on this topic, without introducing yet more advanced techniques such as population balance modelling (Galbraith &

Schneider 2014; Elduayen-Echave et al. 2021), or computational fluid dynamics (Mousavi et al. 2019).

2. COMPARISON OF THERMODYNAMIC MODELLING TECHNIQUES

This section introduces ideas related to thermodynamic modelling in struvite precipitation, while the second part compares
simulations with experimental data cited in previous research.

2.1. Solution thermodynamics modelling

2.1.1. Saturation prediction

There are different ways to express supersaturation. Supersaturation as a driving force for crystallisation/precipitation has
been considered depending on only one species in solution, the difference between the concentration (C) and the equilibrium
concentration (Ceq) described supersaturation (DC1) as shown in Equation (1):

DC ¼ C � Ceq (1)

This method has been applied to diverse struvite investigations, considering only the limiting reagent (P or Mg) and the
equilibrium concentration when this variable becomes constant (Ohlinger et al. 2000; Nelson et al. 2003; Quintana et al.
2005; Le Corre et al. 2007; Rahaman et al. 2008). However, this avoids chemical speciation, which is necessary for SI esti-
mation. Avoiding chemical speciation has commonly chosen because calculations of ionic concentrations and activity
coefficient to determine saturation index also implied solving a set of non-linear equations (equilibrium equations). Other

works only considered a conditional solubility product (Pcs) in Equation (2), which evaluates when solution is likely to pre-
cipitate (Snoeyink & Jenkins 1980; Ronteltap et al. 2007; Ali & Schneider 2008; Rahaman et al. 2008). This procedure
estimates the product of total elemental concentrations of Mg, N, and P (CT ,Mg, CT ,NH3 , CT,PO4 ) and compares it with a stan-

dard conditional solubility product (K0
s ) (Ronteltap et al. 2007). The K0

s is derived from the equilibrium solubility product2

(Ksp) including corrections based on the ionisation fraction and activity coefficient at a specific pH, ionic strength and temp-
erature (Snoeyink & Jenkins 1980). The supersaturation ratio (SSR) in Equation (3) was derived by representing the ratio
between these two variables (Fattah et al. 2008; Rahaman et al. 2008).

Pcs ¼ CT ,MgCT ,NH3CT ,PO4 (2)

SSR ¼ Pssample

Psequilibrium
¼ Pcs

K0
s

(3)

The ion activity product is preferrable and it is estimated with chemical speciation. Saturation level is the comparison of
IAP and the equilibrium solubility product (Ksp). However, the mathematical equation representing the saturation index is
different based on diverse authors. Additionally, the symbology of variables used in these equations also differs. Five main

models based on IAP can be found:

• Supersaturation ratio is represented as (V) in Equation (4) (Bhuiyan et al. 2008).

• Absolute supersaturation: Activity-based supersaturation ratio (Sa) with the inverse of the number of ions into which a mol-
ecule dissociates (1=n) as an exponent (n is 3 for struvite: Mg2þ, NHþ

4 , PO3�
4 ) in Equation (5) (Ohlinger et al. 1999; Mullin

2001).

• Relative supersaturation (Sr) in Equation (6), which is estimated by subtracting 1 from Equation (5) to make the saturated

state zero (Bhuiyan et al. 2008; Mehta & Batstone 2013).

• Reduced supersaturation in Equation (6).

• Saturation Index (SI) in Equation (7), which is derived from Equation (4), with the inclusion of the logarithmic expression.

1 The concentration difference ΔC is sometimes interchanged with the variable S (Mullin 2001)
2 Ksp can take different values from 12.60 (Stumm & Morgan, 1996) to 13.26 (Ohlinger et al., 1999). In this work the last value will be considered for later

simulations.
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• An alternative saturation index, termed SI� here for clarity in Equation (8), which is derived from Equation (5), also with the

inclusion of a logarithmic expression (Ali & Schneider 2008; Triger et al. 2012).

Another alternative description, only listed here due to its specific use in a struvite investigation (Hanhoun et al. 2013),
defines saturation as the difference between IAP and Ksp, including the inverse power of the number of ions in Equation
(9). This has been termed as Sh here for distinction between other saturation definitions.

For the purpose of comparing crystallisation rates, a number of supersaturation descriptors are necessary. Variables are

given in the nomenclature and detailed descriptions can be found in any number of struvite texts (Ohlinger et al. 1998;
Ronteltap et al. 2007; Bhuiyan et al. 2009; Galbraith & Schneider 2014).

V ¼ IAP
Ksp

(4)

Sa ¼ s ¼ V1=n ¼ IAP
Ksp

� �1=n

(5)

Sr ¼ Sa � 1 ¼ V1=v � 1 (6)

SI ¼ log10 (V) ¼ log10
IAP
Ksp

� �
(7)

SI� ¼ log10 (Sa) ¼ log10
IAP
Ksp

� �1=3
" #

¼ 1
3
log10

IAP
Ksp

� �
(8)

Sh ¼ IAP1=3 �K1=3
sp (9)

The saturation index (SI) in Equation (7) has been widely applied in struvite precipitation research (Wang et al. 2006; Iqbal
et al. 2008; Warmadewanthi & Liu 2009; Tilley et al. 2009; Ariyanto et al. 2014; Galbraith & Schneider 2014). Logarithm
scale in this expression provides the advantage of overcoming many numerical issues where species concentrations can

vary over many orders of magnitude between each other. The IAP represents the interactions of all ions driving precipitation.
The logarithm of IAP and Ksp becomes zero when saturation is reached, and this value can be incorporated into crystal
growth rate functions.

Equation (10) also introduces saturation as the potential for struvite recovery (Pstruvite). This equation is a function of ion
molar activities and Ksp to correlate the quantity of possible struvite (Tao et al. 2016). In this expression, HPO2�

4 was used
instead of PO3�

4 , and it was supposed to better represent the nutrient recovery potential instead of SI at pH 8.5–9.5 (Tao
et al. 2016).

Pstruvite ¼
(Minimum{Mg2þ}{NHþ

4 }{HPO2�
4 })

3

Ksp
(10)

However, this affirmation is incorrect because the maximum quantity of struvite that is possible to obtain depends on the
ionic chemical species from the limiting reagent quantity (Mg or P in most cases). Moreover, it is logical that prediction of SI
should include the ionic components in struvite. Thus, whatever the value of predicted SI, the quantity of struvite can only be

estimated when elemental mass balance and chemical speciation are considered.

2.1.2. Activity coefficients and ionic strength

The calculation of activity coefficients depends on valences (Zi) and ionic strength (m). Debye–Hückel limiting law in

Equation (11) is commonly used when m is less than 5� 10�3 M, and Guntelberg modification in Equation (12) when
m, 0.1 M (Sohnel & Garside 1992). Debye–Hückel modified by Davies model in Equation (13) (cited as ‘Davies’ from
now on) has been extensively used to estimate mean activity coefficients (Harada et al. 2006; Ali & Schneider 2008; Schnei-

der et al. 2013; Galbraith et al. 2014), where ‘a’ is 1 and ‘b’ can be �0.2 or �0.3 at 25 °C depending on the years (1938 or 1962)
(Sohnel & Garside 1992). The maximum m recommended for the use of this equation varies according to authors, with some
considering an appropriate m as up to 0.2 M (Mullin 2001), while another suggested 0.5 M (Ronteltap et al. 2007). Therefore,
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application to dilute wastewater treatment streams is usually accepted, while the application in high concentration nutrient

source should be carefully considered. For instance, the addition of magnesium to nutrient solutions could cause deviations in
the activity coefficient estimation since the resulting m after mixing can be 0.5 M or higher. In this scenario, Bromley Equation
for m up to 6 M (Sohnel & Garside 1992) has been suggested (Ali 2007); however, the ionic contribution parameters required

in the model, such as HCO�
3 , MgHCOþ

3 , MgPO�
4 , NaHPO�

4 , MgOHþ, CaPO�
4 and CaOHþ are not specified, and excess of

ammonium compounds made it inappropriate (Bromley 1974) and less suitable unless more parameters are found.

� log10 g ¼ 0:5Z2
i m

1=2 (11)

� log10 g ¼ 0:5Z2
i

m1=2

1þ m1=2

� �
(12)

� log10 g ¼ AZ2
i

m1=2

1þ a � m1=2
þ b � m

� �
(13)

An alternative to this dilemma is the application of a modified version of the Davies equation cited in Equation (14),
referred to here as Samson’s equation. This model has been used for solutions with ionic strength up to 1.2 M (Samson

et al. 1999). This expression depends on m, Zi and other parameters such as A0 (1:172), B0 (3:33� 109), and
a0 (3:0� 10�10). It was applied in crystallisation studies but not specifically in struvite precipitation (Barsanti et al. 2009;
Fevotte et al. 2013). One of the most likely situations where ionic strength could surpass 0.50 M is in the nutrient recovery

of undiluted urine nutrient source since previous studies have shown an ionic strength between 0.32 and 0.56 M using syn-
thetic and real solutions (Ronteltap et al. 2007).

ln g ¼ �A0Z2
i

m1=2

1þ a0 � B0 � m1=2

� �
þ [�4:17� 10�15 � mþ 0:2] �A0 � Z2

i �
m

1, 0001=2
(14)

Figure 1 shows the importance of selecting the correct model in the estimation of activity coefficients, depending on the
ionic strength magnitude. This plot shows the two versions of ‘Davies’ (1938 and 1962) and ‘Samson’ models at different
ionic strengths, which highlights a most coherent prediction of Samson’s model especially at higher ionic strength. All the

models achieved close predictions up to m¼ 0.10 M; from 0.10 to 0.30 M, deviations become visible, especially in the case
of ‘Samson’ model, showing a decreasing tendency. At m. 0.3 M, ‘Samson’ model continues decreasing, while the two

Figure 1 | Activity coefficients’ prediction with different models as a function of ionic strength. Note: This plot has been elaborated by the
authors of this paper with EES software using Equations (13) and (14).
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versions of ‘Davies’ showed an atypical increasing trend of the activity coefficients, indicating that the Samson model is more

appropriate for modelling higher concentration solutions. Comparison between ‘Davies’ model version shows that the 1962
model has a higher increment than its older 1938 version. The application of ‘Samson’ model as an alternative was also com-
pared with a more sophisticated model such as Pitzer, with similar prediction up to 1.4 M ionic strength solutions (Fevotte

et al. 2013). Selection of the suitable model will depend on the ionic strength of the nutrient; however, it remains unclear
whether choosing a ‘Davies’ model in the range close to 0.5 M provides logical predictions in struvite precipitation studies.

2.1.3. Predicting saturation in real effluents

Struvite precipitation simulations can determine the struvite saturation index (SI) at non-equilibrium conditions, or the maxi-

mum possible struvite mass after desaturation after a very long time (close to equilibrium conditions). These two scenarios are
calculated by resolving the model for one of two states: (1) prediction of SI when struvite mass is set as zero, and (2) predic-
tion of the maximum quantity of formed struvite when SI is set to zero (or close to zero). A numerical solver capable of

solving non-linear equations, such as Engineering Equation Solver (EES) (F-Chart Software, Madison, WI, USA) has been
previously used to include a set of equilibrium equations, activity coefficient model (Davies model), chemical speciation,
charge balance and liquid–solid mass balance to study the batch precipitation of struvite (Ali & Schneider 2008; Galbraith

2011). Thermodynamic equilibria and solubility constants of solid phases (Babic ́-Ivancić et al., 2006; Gadekar & Pullamma-
nappallil, 2009; Musvoto, 2000; Nordstrom et al., 1990; Ohlinger et al., 1998; Udert et al. 2003b; United States EPA, 1998; Xu
et al., 2015) cited in Supplementary material, Tables A1 and A2 are also included. Even though this approach is useful to

predict struvite precipitation in synthetic solution, its application in real effluents is even more challenging due to a more
complex liquid composition, because this type of composition could require a larger set of equilibrium relationships.

Simulations of struvite precipitation in real effluents require some considerations in the initial input given to the pro-
gramme. One way to solve the system is by introducing the pH of the system as an input variable and allowing the charge

balance to be calculated instead of being set as zero (Gadekar & Pullammanappallil 2009). Therefore, this approximation
introduces the inquiry if a struvite precipitation system with too little compositional information can be successfully predicted
with a small deviation from real measurements. In this scenario, simulations could be used to estimate an output variable (e.g.

pH, struvite quantity, total dissolved P concentration) range when a different quantity of elements is considered or when set
pH is changed assuming an error in the measurement. The influence of selected thermodynamic equations could be also
assessed since they are related to the quantity of elements considered in the system. As species concentration measurement

can be time consuming, evaluating the possibility of decreasing the quantity of input simulation data warrants consideration
while maintaining an acceptable level of accuracy.

2.2. Solution thermodynamic simulations

2.2.1. Thermodynamic software applications

In this work, simulations were run in PHREEQC Interactive 3.7.3 software to determine the struvite saturation index in satu-
rated solutions. This software offers several chemical speciation models (equilibrium constant databases). Each of these

calculations in several synthetic and real struvite precipitation scenarios were tested to determine variability in saturation
index predictions (especially struvite). PHREEQC is a thermodynamic simulation software that has been used in previous
studies, but few had reported the used database (Roncal-Herrero & Oelkers 2011; Sakthivel et al. 2012), arising the possibility
of answer diversification despite the same input data. To corroborate the previous comment, six struvite precipitation labora-
tory experiments previously cited were simulated (Table 1). In these simulations, total elemental concentration, pH, and
temperature were set as input data; and 7 of the 13 available databases in the software3 were tested. The struvite formation

chemical reaction and the constant solubility product of 13.26 (Ohlinger et al. 1998) were introduced in each simulation. In
the following, each experimental case is discussed targeting key information and the calculated saturation index.

• The first case (Nelson et al. 2003), where nutrient solution was exposed to pH¼ 8.4, 8.7 and 9.0, shows that only ‘minteq.v4’
and ‘sit’ databases predicted results accordingly to observations of solid formation. Databases: ‘minteq.v4’ and ‘sit’ data-
bases predict positive saturation index of other solids containing Mg and P with diverse quantities of water molecules.
This situation could suggest that experimental identification of the solid phase is needed. For instance, previous works

3 The reader should be aware that previous PHREEQC versions (∼ 2016) only had 9 available databases, and this quantity could keep changing in the future.
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Table 1 | Saturation index prediction of solid phases in nutrient recovery scenarios, using different databases provided by PHREEQC software package

Struvite precipitation cases and considered input data for
simulations

Prediction of Saturation Index using diverse databases within PHREEQC

Referencesminteq.v4 wateq4f phreeqC sit minteq llnl iso

1) Swine wastewater: 23 °C, units (mol=L): Mg
(1.92�10-3), N (1.01�10-2), P (1.63�10-3)

a) pH
=
8.4

0.77, (0.01)2 �27.97 �27.97 1.04, (1.94)1 0.68 �28.1 �27.97 (Nelson et al.
2003)

b) pH
=
8.7

�1, (0.61)2 �28.95 �28.95 1.27, (2.55)1, (0.38)2,
(0.45)3

�1.16 �29.08 �28.95

c) pH
=
9.0

�3.09, (1.21)2 �29.97 �29.97 �0.22, (3.13)1, (0.96)2,
(1.03)3

�3.37 �30.11 �29.97

2) a) Synthetic digested liquor: 25 °C, pH (8.4), units
(mol/L): Mg (2.62�10-3), N (4.50�10-2), P (1.74�10-3),
Cl (4.64�10-2)

0.84 �27.82 � 27.82 1.56 (1.77)1 0.79 �27.87 �27.83 (Quintana et al.
2005)

b) Real digested liquour: 25 °C, pH (8.81), units
(mol=L): Mg (2.62�10-3), N (4.50�10-2), P (1.74�10-3),
Ca (1.22�10-3), C (2.11�10-2)

�2.02 (*) �29.24
(*)

�29.24
(*)

1 (*) �2.18
(*)

�29.29
(*)

�29.24
(*)

3) Synthetic nutrient solution: 25 °C, pH (9.0), units
(mol=L): Mg (3.5�10-3), N (7�10-3), P (7�10-3), Cl
(7�10-3)

�3.38, (2.4)2,
(0.25)4

�29.75 �29.75 �0.70, (4.21)1, (2.29)2,
(2.10)3, (0.18)4

�3.78 �29.81 �29.75 (Le Corre et al.
2007)

4) Raw wastewater adjusted with chemical reagents: 37 °
C, pH (8.5), units (mol=L): Mg (1.00�10-1), N (1.00�10-
1), P (1.00�10-1), Ca (5.29�10-4), K (5.50�10-2)

�1.30, (5.61)2,
(1.83)4 (*)

�26.86
(*)

�26.86
(*)

1.36, (7.09)1, (6.64)2,
(4.96)3, (1.61)4 (*)

�1.56
(*)

�26.45
(*)

�26.86
(*)

(Türker &
Celen, 2007)

5) Synthetic supernatant: 20 °C, pH (8.51), units (mol=L):
Mg (1.28�10-3), N (4.28�10-2), P (9.85�10-4)

1.12 �28.06 �28.06 1.35 (1.18)1 1.07 �28.31 �28.06 (Rahaman et al.
2008)

6) Synthetic nutrient: 25 °C, pH 8.0, units (mol=L): Mg
(8.27�10-3), N (4.78�10-2), P (6.52�10-3)

2.09, (1.23)2,
(0.44)4

�25.74 �25.74 2.07, (3.08)1, (1.16)2,
(0.97)3, (0.38)4

2.04 �25.80 �25.75 (M. Iqbal et al.
2008)

Notes: Struvite SI are the unparenthesis values; and parenthesis values with superscripts indicate: (1) Bobierite Mg3(PO4)2 :8H2O, (2) Magnesium Phosphate Mg3(PO4)2, (3) Cattite Mg3(PO4)2:22H2O, (4) Newberyite MgHPO4:3H2O.

Additionally: (*) Positive saturation index in solid phases containing Calcium.
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have experimentally shown the presence of newberyite and possible bobbierite when the molar ratio Mg:N:P are 1.5:1:1

using X-ray diffraction (Burns et al. 2016). Moreover, experimental data were collected from 2-L samples of anaerobic
swine lagoon liquid, and elemental analysis was performed with Inductively Coupled Plasma spectrometry (Nelson et al.
2003).

• The second case (Quintana et al. 2005) simulated two sub-cases for struvite precipitation: synthetic liquor and real digested
liquor. In the simulations, the total elemental carbon concentration was assumed to be equivalent to the molar concen-
tration of CaCO3 (akalinity). Similarly to the first case in the paragraph above, ‘wateq4f’, ‘phreeqC’, ‘llnl’ and
‘iso’ databases provide a very negative struvite saturation index, and a positive saturation index for N2(g) which can be

explained by the selected database, such as the presence of N2 as a species in ‘phreeqC’ database and its absence in
‘minteq’ database, which leads to different chemical speciation of nitrogen. By not considering the presence of molecular
N2(g), the chemical speciation of total nitrogen to their ionic species can predict higher NHþ

4 , and therefore struvite pres-

ence making the ‘phreeqC’ and ‘minteq’ the suitable ones for this case. Moreover, experimental data were collected from
1 L beaker solutions, using plasma emission spectrometry to measure elemental concentration in the liquid phase (Quin-
tana et al. 2005).

• The third case (Le Corre et al. 2007) predicted SI from a synthetic solution in the higher Mg concentration added to the
reactor (3.5 mM in MgCl2:6H2O) and a Mg:N:P equivalent to 1:2:2. The temperature was set as 25 °C since it was not men-
tioned in this research, while the pH was 9.0 after adjustment with NaOH. This research also claimed struvite identification

with scanning electron microscopy although no results were shown. Simulations predicted a negative saturation index for
struvite with a wide result range, in which four databases predicted a very negative struvite saturation index (��30) similar
as the previous two cases, two databases (minteq.v4, minteq) in the range of �3, and one database with a value close to zero
(sit). It is obvious that the latter provides the prediction of more solid phases within the database. These results suggest that

addition ofMg in a lower molar ratio compared to P could not trigger precipitation of struvite, but other similar solid phases
such as magnesium phosphates with different quantities of water molecules. However, it is not possible to suggest the
absence of struvite unless solid phase characterisation is developed. Moreover, experimental data were developed in

600 mL volumetric flask.

• The forth case (Türker & Celen 2007) predicted SI during precipitation with anaerobic digester effluent as a nutrient
source. This study provided an approximate wastewater composition, citing ionic concentrations of NHþ

4 , Mg2þ, and
PO3�

4 in mg=L. This research considered that previous data were being expressed as the main elemental concentration
(e.g. NHþ

4 -N ‘ammonium expressed as nitrogen’, PO3�
4 -P ‘phosphate expressed as phosphorus’) as it is commonly

described in analytical methodologies (APHA 1999). A temperature of 37 °C was entered in PHREEQC, since laboratory
experiments were developed at typical anaerobic digester effluent temperature. Working at a different temperature than

25 °C required the adjustment of struvite solubility product to 13.269 (at 37 °C) (Babic ́-Ivančic ́ et al. 2002) in the entry
data. No variation in the final concentration of Ca2þ and Kþ after adding H3PO4 was considered since the volumetric
information was not given. All the previous notes also highlight the importance of clear and explicit information for mod-

elling research. Moreover, the experimental study was developed using 200 mL effluent with standard elemental analysis
(APHA 1999).

• The fifth case (Rahaman et al. 2008) predicted SI in struvite precipitation with a synthetic solution. This study comprised

nine experiments with a focus on struvite production kinetic in 2-L jars, and only the first case was simulated with
PHREEQC. This experiment was accomplished by adding Mg to the nutrient solution (Mg=P molar ratio¼ 1.3). Due to
compositional simplicity of this case, not many positive saturation indexes of other solids were computed. Positive struvite

SI was observed in ‘minteq.v4’, ‘sit’ and ‘minteq’ databases, adding the possibility of bobierite in the latter. Moreover, the
analysis of ortho-phosphate and ammonia was obtained with the flow injection method (LaChatChem 8000 instrument),
while magnesium concentration was measured with atomic absorption spectrophotometry (Varian Inc. SpectrAA220
Fast Sequential Atomic Absorption Spectrophotometer) (Rahaman et al. 2008).

• The sixth case (Bhuiyan et al. 2008) discussed the solid formation with anaerobic digester effluent. This research explores
kinetics of struvite precipitation, including the metastable zone for struvite and struvite saturation index prediction with
PHREEQC. Simulation developed in this work only used the second metastable experiment at pH¼ 8.0, when PO4 � P,
NH4 �N, and Mg were set as 202, 669, and 201 mg/L, respectively. The second condition was selected because the
Mg/P molar ratio was closer and above the unit (1.3), while the others had excessive Mg addition or a Mg=P molar ratio
lower than one. The original source reported an estimated struvite SI¼ 2.14, which is very close to the one found in this
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work when ‘minteq.v4’ (2.09), ‘sit’ (2.07), and ‘minteq’ (2.04) databases were explored. Deviation between this work and the

original source can be explained by the assumed struvite constant solubility product (13.36) in the original source. With this
entry data, other positive saturation indexes can be found, especially with ‘sit’ database. Moreover, laboratory measure-
ments were obtained with the flow injection method for elements different than magnesium, and fame atomic

absorption spectrophotometry for magnesium (Bhuiyan et al. 2008).

Based on previous estimations, it is clear that ‘sit’ database estimates higher SI for struvite and predicts the presence of
other solid phases. This outcome makes this database the most reliable among the others for quick solution thermodynamic
predictions. The high variability of SI estimations also means that equilibrium database selection should be informed when
PHREEQC (or similar software) is applied. It is recommended that a suitable database is selected by assessing all possible

options to find the one that represents experimental observations and measurements. It is also recommended that thebest
fit to purpose model would be constructed manually. These results highlight the importance of understanding model archi-
tecture, which is the subject of the subsequent sections.

2.2.2. Data entry and model predictions

One key enquiry when modelling struvite precipitation from the real rich-nutrient waste stream is the quantity of compo-

sitional data needed to achieve close to reality predictions. Predictions could be further from experimental measurements
if insufficient elemental composition is given to the simulator. To explore this idea the case 2.b in Table 1 (Quintana et al.
2005) was simulated infour scenarios by this authors’ paper, considering the different quantities of chemical elements and
combinations: (1) Mg, N, P, C, Ca; (2) Mg, N, P, C; (3) Mg, N, P, Ca; and (4) Mg, N, P.

In this paper, the authors solved equilibrium equations, mass balance, charge balance and chemical speciation in a set of
the linear and non-linear equations, considering previous modelling and simulation approaches (Harada et al. 2006; Ali &
Schneider 2008; Schneider et al. 2013; Galbraith et al. 2014). Simulation results are shown in Figure 2, which was split

based on key variables for further model implementation in Figure 2(a) (non-equilibrium), and model validation (equilibrium)
in Figure 2(b) and C4. In addition, struvite was considered as the only solid phase present to facilitate the estimation of stru-
vite mass at equilibrium. These simulations were performed with the model developed in EES described in section 2.1.3 and

PHREEQC using ‘sit’ database.
In Figure 2, experimental data from previous work (Quintana et al. 2005) was compared with simulations developed by the

authors of this paper.

Figure 2(a) shows an increasing struvite SI trend (� 0.10 to 0.20) when fewer elements are considered. This can be
explained by the presence of higher concentrations of Mg2þ, NHþ

4 , and PO3�
4 when other ions are not present and

therefore cannot capture part of the ions to precipitate other solid phases (e.g. Ca3(PO4)2). This plot also presents larger
differences between each applied model suggesting that the set of equilibrium equations provide more variability compared

to the compositional data. Even though the inclusion of additional elements in the estimation can slightly change the SI, this
variation can be significant if it is included in other more complex modelling studies (such as kinetics). It is an important
reminder that struvite SI cannot be measured directly, and therefore other measurable variables must be assessed in similar

studies.
Predictions and measurements of total phosphorus concentration and the struvite mass are shown in Figure 2(b) and 2(c),

respectively. While it is logical that variations are expected, the observed variations are notably large. Figure 2(b) shows a

predicted dissolved P concentration in PHREEQC almost ten times the concentration predicted in EES. This result is logical
if it is compared with the predicted struvite SI in Figure 2(a), recalling that SI is a logarithmic variable (Equation (7)). The
molar concentration of the measured dissolved P in the liquid phase after precipitation was taken from the cited work
(5.07 mg=L), and it is within the prediction range. A larger measured P concentration compared to the prediction by EES

means an overprediction of the struvite SI in Figure 2(a). Previous logic could be applied in the PHREEQC predictions, show-
ing again the importance of collecting reliable experimental concentration measurements in the liquid phase to adjust
models.

4 This work considers the term ‘equilibrium condition’ to the one in which a variable achieves a constant value. In the original source: 240 min for P

concentration to get a minimum after struvite precipitation started.
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Figure 2 | Struvite precipitation from real digested liquour (case 2.b in Table 1) by discussing struvite SI at non-equilibrium (a), dissolved P (b),
and struvite (c) at equilibrium conditions.
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The experimental struvite mass in Figure 2(c) was estimated by subtracting the initial P concentration in the nutrient

(before precipitation) and the remaining P concentration after desaturation (in the liquid phase at equilibrium). It was also
assumed 1 L of nutrient solution with negligible volume change after precipitation. In the EES simulation, the volume was
introduced to estimate the struvite mass, while PHREEQC considers a default value of 1 kg when no value is introduced.

Figure 2(c) is clearly related to the other two plots by suggesting an over precipitation of struvite with EES and an under pre-
cipitation with PHREEQC. However, percental deviations in struvite mass (predicted vs. measured) are small in Figure 2(c) if
we compare them to the P dissolved concentration in Figure 2(b). Therefore, assessing model validation in struvite precipi-
tation becomes a more rigorous task if the liquid concentration is chosen over struvite mass in the validation since the range

of P in the liquid is much smaller than P in the solid phase.

2.2.3. Model validation in a batch reactor

The model developed by this research group in EES (Harada et al. 2006; Ali & Schneider 2008; Schneider et al. 2013;
Galbraith et al. 2014), which was previously explained in this paper, was tested against published data of struvite
precipitated from real urine source in a set of 21 batch experiments (Ronteltap et al. 2007). The original work (Rontel-
tap et al. 2007) applied PHREEQC combined AQUASIM software packages to estimate struvite solubility product and

equilibrium molar concentration of P and Mg. The EES programme, which was previous cited, was applied by introdu-
cing the measured total concentrations of Mg, N and P, pH¼ 9, and setting equilibrium (i.e. SI¼ 0) held after leaving
the solution to reach a minimum concentration in the liquid phase. These simulations were performed with both
Debye–Hückel modified by Davies and Samson’s version models to observe differences at high ionic strength (close

to 0.50 M).
Figures 3 and 4 compared measurements (Ronteltap et al. 2007) and predictions from the original source (Ronteltap

et al. 2007) and this paper’s predictions, providing strong similarities, and showing that the thermodynamic model

used in this work was suitable to describe nutrient recovery from urine source, and ‘Davies’ model still provides logical
predictions. This information also suggested that the main solid phase in the precipitated product was struvite because
simulations were developed with this assumption and agreement was found. Predicted and experimental data of elemen-

tal P and Mg concentrations at different Mg=P feed molar ratios in Figures 3 and 4 can also suggest which of them
should be measured in model validation. For instance, choosing lower Mg=P (,1) can be suitable for
P measurements, while much larger Mg=P could relate P concentration lower than the detection limit. The same

logic applies to model validation when Mg should be selected at Mg=P. 1. The selection of the chemical element to
measure during model validation depends on the compositional data, which is related to the instrumental detection
limit.

Figure 3 | Model validation at equilibrium using P concentrations. Error bars are +1 standard deviation.
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3. COMPARISON OF KINETIC MODELLING TECHNIQUES

Once a description of the driving force for crystal formation has been developed, the rate of crystal formation can be examined.

3.1. Induction time

The beginning of crystallisation is described by a reducing time interval between reaching a given super-saturation (SI. 0)
and achieving measurable crystal formation. This time interval is known as the induction time (tind). Induction time

models are based on the classic primary homogeneous nucleation theory that induction time is inversely proportional to
nucleation rate, which is only valid at high saturation levels (Mullin 2001) and while nucleation is approximately steady
state (Jones 2002). The molecular process of nuclei formation remains contested (Laxson & Finke 2014), making a true defi-

nition of induction time difficult. Ions must coagulate, resist the tendency to re-dissolve, and become oriented into a fixed
crystalline lattice (Mullin 2001).

Most struvite induction time studies (Table 2) assume that nucleation time is much greater than growth time, causing induc-
tion time to be defined as the time needed to form a critical nucleus. This time cannot be measured, and the induction time

becomes the time taken for a particle to grow to a detectable size. Table 2 shows that differences in particle detection methods
influence induction time estimations.

While two forms of the induction time model have been applied to struvite, they differ only in their representation of super-

saturation, but are equivalent. Bouropoulos & Koutsoukos (Bouropoulos & Koutsoukos 2000) and Bhuiyan (Bhuiyan &
Mavinic 2008; Iqbal et al. 2008) both used the first form of this equation (A and B1) given by Mullin (Mullin 2001), which
uses Ω, given by Equation (4), as the measure of saturation.

log tind ¼ logAþ B1

(logV)2
¼ logAþ B2

(log Sa)
2 (15)

where A is constant and B1 is givens by:

B1 ¼ by2mg
2
s

(2:303kBT)
3 (16)

where b is a nucleus volume shape factor (32 for cubes and 16p=3 for spheres), ym is the molecular volume of struvite
(¼molecular weight/(Avogadro’s number� density� number of ions in a formula unit)¼ 7.95� 10�23 cm3 for struvite), gs
is the interfacial tension (i.e. surface energy) of the solid which is forming, kB is the Boltzmann constant

Figure 4 | Model validation at equilibrium using Mg concentrations. Error bars are +1 standard deviation.
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Table 2 | Reported induction time model conditions and homogeneous nucleation saturation level

Author

pH range
(max pH
reached)

Experimental
saturation range
(SI)

Phosphate
conc. [mM]

Molar ratio
Mg:N:P Reactor type Mixing speed [rpm]

Method of
nucleation
detection

Induction time
range [min]

Lowest saturation for
homogeneous
nucleation (SI)

Bouropoulos &
Koutsoukos
(2000)

8.5 0.05–0.52 2.75–4.00 1:1:1 250-mL double-
walled vessel

N/A pH change
(0.005)

6–125 0.30

Bhuiyan &
Mavinic (2008)

8.2–8.51 1.38–1.83 1.81–3.39 1:22.1:1.3 2-L square beaker 120 pH change 0.2–8.33 N/A

Mehta &
Batstone
(2013)

N/A ∼0.42 to ∼0.85 100 1:1:1 200-mL glass bottles 300 pH change
(0.05)

0.167–60.79 0.69

Ohlinger et al.
(1999)

6.3–7.9 0.61–1.47 4–20 1:1:1 Pyrex beaker, no
specified capacity

570 Light
scintillations

0.22–38 N/A

Galbraith &
Schneider
(2009)

7.8–9.2 0.04–0.31 1.0–2.5 1:1:1 250-mL beaker Quiescent Light
scintillations

16.65–438.15 0.237

Le Corre et al.
(2007)

9 0.88–1.52 2.4–4.6 1:2:2 250-mL beaker and
10-L FBR

Quiescent/
unknown

pH change ∼0.5–5
(beakers)
6–12
(reactor)

N/A

Kabdasli et al.
(2006)

8.438–
9.228

0.371–1.135 2.45 1:1:1 1,500-mL
cylindrical glass
reactor

300 Absorbance ∼1–46 N/A

Saidou et al.
(2009)

8.2 Calculated 3.8 1:1:1 1-L aerated FBR N/A P and Mg
concentration

5–17 N/A

Kofina &
Koutsoukos
(2005)

8.5 0.318–0.633 2.2–3.0 1:1:1 250-mL double-
walled Pyrex
vessel
thermostated

Teflon-cotated
stirring bar (no
speed specified)

pH change
(0.005)

∼0 to ∼67 0.502–0.643
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(1:38� 10�23 [J K�1]) and T is the absolute temperature. Others used the second induction time equation form (A and B2)

which uses Sa, described by Equation (5), as the measure of saturation (Ohlinger et al. 1999; Galbraith & Schneider 2009;
Mehta & Batstone 2013). Again A is constant, while B2 is identical to B1 except in this instance includes the number of
ions into which a molecule of the crystal dissociates, n, which accounts for the different measures of saturation:

B2 ¼ bv2mg
3
Sf(u)

(2:3kBT )
3
n2

(17)

where f(u) is a correction factor to account for heterogeneous nucleation, where u is the wetting angle of the solid phase by the
liquid. f(u) ¼ 1 for homogeneous nucleation. This model has been applied successfully to heterogeneous nucleation

(Randolph & Larson 1988; Ohlinger et al. 1999).
Although homogeneous nucleation is asserted during measurements of induction time, heterogeneous primary nucleation

(induced by suspended particles) is much more likely, both in lab environments and in real solutions. This is especially true at

low supersaturation levels. Many authors have identified a supersaturation level where homogeneous nucleation ceases to
occur (summarised in Table 2). The transition between homogeneous and heterogeneous nucleation is commonly defined
as the intersection of two linear regressions made on a (log (V))�2 vs. log (tind) plot. However, applying the homogeneous

induction time model at low saturations has been identified as a questionable technique (Mullin 2001).
Many investigations have been made into struvite induction time, the results of which vary depending on experimental

methods and analysis techniques. Table 2 provides a consolidation of struvite induction time investigations, showing that

the lower saturation bound for struvite homogeneous nucleation has been predicted to occur anywhere in the range of
SI ¼ 0:237� 0:69. Figure 5 provides a comparison of model predictions of induction times over a range of SI values. As
nucleation is defined by the identification of crystallisation, it is dependent on the method of crystal detection. Light scintil-
lation detected nucleation at the lowest saturation (SI¼ 0.237) although a change in pH also detected nucleation at a similar

saturation index (SI¼ 0.3). Higher saturation level, mixing speed, and the ratio of P to other constituents generally results in a
lower identified induction time.

Figure 5 shows that induction time increases exponentially below SI¼ 0.8, irrespective of the model parameters adopted.

However, it has also been shown that scaling can occur in the continuous flow where induction time models predicted that it
should not (Burns et al. 2016). This was attributed to larger residence times in the slow moving viscous sub-layer. Variations
in induction time parameters within the literature have been attributed to many effects, including variations in detection

methods, mixing speeds and reagent ion ratios (Galbraith & Schneider 2009). In any instance, it must be assumed that induc-
tion time models carry significant uncertainty.

When induction time is reached and crystal formation begins, the formation rate can be represented with various math-

ematical descriptions, each with its benefits and trade-offs. Generally, the struvite mass formation rate is calculated using

Figure 5 | Induction time model comparison was created using methods described by Galbraith & Schneider (2009) and incorporating more
recent data (Le Corre et al. 2007; Mehta & Batstone 2013). Results from Mehta & Batstone (2013) were calculated using induction time model
parameters rather than thermodynamic modelling, as raw data were not provided. The model from Bhuiyan, Mavinic & Beckie (2008) was not
considered accurate as pH change was used to identify the end of induction time in a solution which likely had significant ammonia buffering
(N:P ratio of 17:1).
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two different kinetic models: rates of liquid phase species depletion and rates of individual crystal formation mechanisms.

These categories are discussed in more detail in the following sections.

3.2. Liquid phase species depletion rate

Most commonly, struvite kinetics have been modelled using a first order power law model (Equation (18)) where the limiting
reagent concentration is used to describe the driving force for crystallisation. Stoichiometry is then used to infer concen-
tration depletion and crystal mass.

dC
dt

¼ kSn (18)

where C is the concentration of the species in question, t is some measure of time, S is some measure of supersaturation and k
and n are the rate constant and order. A first order kinetic model (n ¼ 1) has been extensively applied, which when inte-
grated, using individual species concentration as the supersaturation measure, gives Equation (19), where C, Ceq and C0

are the concentrations of the reactant at time t, at equilibrium and at time 0 respectively (Ohlinger et al. 2000; Nelson

et al. 2003; Quintana et al. 2005; Le Corre et al. 2007; Rahaman et al. 2008; Ariyanto et al. 2014).5

ln (C � Ceq) ¼ �ktþ ln (C � C0) (19)

Several experimental factors have been shown to influence the regressed rate constant. Primarily pH and Mg:P ratio, both

of which are factors that affect struvite ionic species concentration. Increasing Mg:P ratio significantly increased rate con-
stants under a variety of conditions (Quintana et al. 2005; Rahaman et al. 2008). Additionally, increasing the starting pH
from 8.4 to 9.0 increased the rate 3x with the same caustic dosing rate (Nelson et al. 2003). Other factors including tempera-

ture, ionic strength, and mixing speed have a smaller but still noticeable effect on regressed rate constants (Rahaman et al.
2008; Ariyanto et al. 2014).

Each of these studies suggests that a more detailed kinetic model is necessary to represent the struvite system over a range

of conditions. The correlation of rate with ion ratio suggests that the use of a single species in a reaction equation is flawed.
Struvite kinetics are likely better described using a measure of saturation incorporating the ion activity product so that all
struvite constituent concentrations contribute to the rate description. Other physical properties of a system like a temperature
may also warrant consideration in kinetic model formulations if they are likely to change significantly.

Substituting n ¼ 2 into Equation (18) and integrating gives Equation (20), a second order model. Some struvite research, in
which faster growth rates have been observed, has found that a second order kinetic model provides a reasonable fit
(Bouropoulos & Koutsoukos 2000; Türker & Celen 2007; Bhuiyan et al. 2008).6 While this approach fits each dataset, the

methods and results of each of these studies are not comparable.

1
C

¼ 1
C0

þ kt (20)

A more detailed approach to species depletion was used by Mehta, who applied a power law model to describe struvite
molar deposition rate, using reduced supersaturation ratio (Sr) as the driving force (Equation (21)). Change in crystal surface
area was accounted for using the initial and final mass of the crystal, assuming size-independent growth (SIG) and no nuclea-

tion (Mehta & Batstone 2013).

dCMAP

dt
¼ kRAs

m
m0

� �2
3SnR

r (21)

5 Quintana used MgO to determine kinetics, although this was not the limiting reagent according to molar ratios Mg:P.1 in plots, making their results

questionable.
6 Bhuiyan converted the diffusion-reaction model from a mass deposition to a particle linear growth rate with the knowledge of total particle mass, average

particle diameter and solution volume.
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where CMAP is the struvite concentration [mM], kR is the rate constant (0.09+ 0.04 mM·m�2.s�1), As is the specific surface

area of the seed crystals before growth occurs [m2/L], m0 and m represent the crystal mass initially and at any time and nR is
the growth rate order. The struvite particle growth rate exhibited a higher dependence on SI in real wastewater than in syn-
thetic wastewater, highlighting that results are not transferrable between the two systems. The growth order was regressed to

be 3.52+ 0.1, significantly higher than first and second order models discussed above.
Each species depletion model may be accurate within the conditions under which they were derived, but this is not useful

for application to varying conditions. The alternative approach to using a liquid phase species depletion rate is to model indi-
vidual crystallisation mechanisms. Crystal growth can be broken down into nucleation, growth and agglomeration. In all of

the above examples, these mechanisms have been neglected or merged. The following sections introduce mechanisms of crys-
tallisation and identify deficiencies in the struvite crystallisation literature.

3.3. Nucleation

3.3.1. Primary nucleation

The thermodynamic approach to representing primary nucleation utilises the Arrhenius reaction velocity equation used to

represent thermally activated processes. The derivation, which can be found in Mullin (Mullin 2001), assumes spherical
nuclei and uses the Gibbs–Thompson relationship between particle size and solubility. The Gibbs–Thompson relationship
only applies for particles ,1 μm but not for extremely small particles, meaning that nuclei are assumed to lie in this bracket.

The resulting expression of nucleation rate (J [s�1]) is given by:

J ¼ An exp � 16pg3v2

3k3
BT

3(lnV)2

 !
(22)

where An is a kinetic factor (/pre-exponential factor/collision factor) with units [cm�3s�1], kB is the Boltzmann constant
(1:38� 10�23J=K), V is the saturation ratio, g is the interfacial tension between the crystal and the solution [mJ=m2] , v is

the molecular volume [cm3] (described by Equation (16)), and T is the absolute temperature. If this expression is generalised
to include the particle volume shape factor (kV ¼ V=L3) and surface area shape factor (kA ¼ SA=L2) it can be written as:

J ¼ A exp � 192k2
Vg

3v2

kAk3
BT

3(lnV)2

 !
(23)

The kinetic factor A has been assumed to be 1017 nuclei·cm3� for struvite (Abbona & Boistelle 1985; Bouropoulos &
Koutsoukos 2000) although according to the Gibbs–Volmer theory, sparingly soluble salts should have a kinetic factor in
the range of ≈1025 nuclei·cm�3. In contrast to these high rates, one study found the value of A to be between 104:47 and

106:6 nuclei·cm�3 by manually varying it to achieve the best fit between experimental and modelled supersaturation
(Hanhoun et al. 2013). Computation of A based on nucleation studies is possible but would still rely on an assumed value
for interfacial tension, which would itself relies on previous kinetic factor estimates.

The interfacial tension g has been found to be 15, 48, and 50 mJ/m2 (Abbona & Boistelle 1985; Bouropoulos & Koutsoukos
2000; Kofina & Koutsoukos 2005; Bhuiyan et al. 2008). The variation of Kofina’s result (15 mJ=m2) was attributed to inter-
ference by excess SO2�

4 ions, which is logical as g is inversely proportional to a salt’s solubility (Mullin 2001). Results from
induction time experiments conducted by Ohlinger assumed that struvite interfacial tension would be similar to that of silica

(78mJ=m2), making predictions in the range of observed results (Ohlinger et al. 1999). Nucleation rate predicted using this
parameter value does not become significant until SI . 1:8 (Figure 6). Comparing this interfacial tension assumption to
others calculated for struvite above, and to Figure 5, which indicates that significant nucleation occurs for SI . 0:8, it appears

that this value is too large. In any case, the determined surface tension is only an estimation due to variations in experimental
conditions.

3.3.2. Secondary nucleation

Secondary nucleation is said to occur when a crystal is born via any process in which an existing crystal is involved. Many
classifications can be made of physical processes leading to secondary nucleation: fracture, needle-breeding, attrition, fluid
sheer, and contact nucleation. These are discussed in detail in (Randolph & Larson 1988). Relatively little account is
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given to modelling secondary nucleation of struvite, which may play a significant role in crystallisation once a particle popu-
lation is established. The degree to which each secondary nucleation mechanism occurs (if at all) can depend on particle size,

number density, fluid shear, saturation and temperature (Mullin 2001). One study has measured secondary struvite nucleation
by measuring particle size distribution (PSD) in batch experiments, seeded with 35+ 3mm struvite particles to ensure that no
primary nucleation was possible. The nucleation rate was represented using a power law model (Equation (24)) (Mehta &

Batstone 2013).

B ¼ dN
dt

¼ kB(s� si)
nB (24)

where kB and nB are the rate coefficient and exponent, estimated as 8:3+ 2:3� 106 [particles � L�1s�1] and 1:75+ 0:13,
respectivley, si is the threshold saturation for secondary nucleation, regressed as si ¼ 0:55+ 0:1, which is equivalent to

SI ¼ 0:57+ 0:12. De-supersaturation due to crystal growth was assumed negligible based on an observed 3% reduction in
total phosphorus. However, our simulations show that this is equivalent to a 44.18% reduction in supersaturation at the
lower supersaturation range, meaning growth likely influenced results. Contact nucleation was proposed as the most likely

model, which suggests that particles , 100mm do play a significant role in secondary nucleation, contrary to results from pre-
vious studies (Larson & Bendig 1976). A similar study operated a seeded laboratory scale crystallizer in the supersaturation
range of SI ¼ 0:25� 0:79, assuming mixed suspension mixed product removal (MSMPR) and implemented a general power

law model, as shown in Equation (25) (Galbraith et al. 2014).

Bnuc ¼ knucSInnuc (25)

where the nucleation rate constant knuc ¼ 8:5(+0:076)� 107 [particles L�1 min�1] and the nucleation rate order
nnuc ¼ 1:68(+0:014). Kinetic parameters were regressed by applying a hybrid population balance technique, incorporating
nucleation, growth and agglomeration (Galbraith et al. 2014).

Figure 6 | Nucleation rate model comparison including classic primary nucleation rate models (Kofina & Koutsoukos 2005; Bouropoulos &
Koutsoukos 2000; Abbona & Boistelle 1985; Ohlinger et al.1999), and power law models for primary (Galbraith 2011) and secondary (Mehta &
Batstone 2013) nucleation.
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3.3.3. Struvite nucleation rate model comparison

Figure 6 compares the results of nucleation models applied to struvite crystallisation. Primary nucleation rate is described as a
function of SI, using multiple estimates of interfacial tension and Equation (22). Equations (24) and (25) are used to describe

secondary nucleation.
The primary nucleation rate curves are described over a broad range of saturation index because the interfacial tension is a

property which, so far as fundamental theory goes, does not change with supersaturation. Secondary nucleation rate relation-
ships on the other hand are only shown for the saturation range at which their kinetic parameters were calculated since these

are empirical relationships. The significant differences in primary nucleation rates resulting from changes in the interfacial
tension illustrate how sensitive the model is to this parameter, which is notoriously difficult to estimate.

The asymptotic nature of Equation (22) means that each instance of this model shown in Figure 6 approaches the assumed

nucleation rate ofAn ¼ 1� 1017[cm�3s�1], although, as shown above, a great deal of uncertainty is also found in this parameter.
Secondary nucleation rates are less sensitive to SI than primary nucleation rates. Compared to the large variability in primary
nucleation rates, results fromMehta and Galbraith are reasonably close, indicating that they are likely a reasonable description

of struvite secondary nucleation in that supersaturation range. These results are in the range of 104–107, which align with rates
suggested by Mullin (Mullin 2001), but are significantly different from the assumed primary nucleation pre-exponential factor
(1017) and the maximum nucleation rate estimated by Koralewska (in the range of 1012–1014). Unless the transition between
primary and secondary nucleation is estimated, and both key parameters in the primary nucleation model are found with a

greater degree of certainty, applying a general power law model to nucleation is just as effective as any other method.

3.4. Crystal growth rate

3.4.1. Two-step growth

Particle growth is often described as a two-step process: transport of the solute to the crystal surface and integration from
liquid to solid phase on the crystal surface. As these steps must operate in series, the slower of the two is always rate limiting.
The dominant mechanism may change depending on the hydrodynamic properties of the system (as investigated by Tai

(1999) for sparingly soluble salts), temperature and solution composition (Sohnel & Garside 1992). The two-step model is
usually posed as a mass deposition rate but can be converted to a particle linear growth rate with the knowledge of total par-
ticle mass, average particle diameter and solution volume (Bhuiyan et al. 2008). The diffusion rate can be written as:

dL
dt

¼ kd(C � Ci)
nd (26)

where L is particle length/diameter, kd is the diffusion rate constant, C � Ci is the concentration difference between the bulk

solution and the interface, and nd is the diffusion order, which is almost always assumed to be 1, but may not necessarily be
(Mullin 2001). Struvite has been described by the diffusion model when Equation (18) was found to be first order (Ariyanto
et al. 2014). The surface integration rate, detailed further in the next section, is given as:

dL
dt

¼ kr(Ci � Ceq)
nr (27)

where kr is the reaction rate constant, Ci � Ceq is the concentration difference between the interface and saturation and nr is

the reaction rate order. If nr ¼ 1, the diffusion and reaction steps can be combined to give:

dL
dt

¼ Kg(C � Ceq) ¼ KgS (28)

For struvite application, the term (C � Cs) should be replaced here by one of the more appropriate descriptions of super-

saturation for sparingly soluble salts (generally termed S). In Equation (28), Kg ¼ kdkr=(kd þ kr). Alternatively, if nr ¼ 2, the
reaction can be written as:

G ¼ dL
dt

¼ kdS 1þ kd

2krS

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kd

2krS

� �2

� 1

( )vuut
2
4

3
5 (29)
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Struvite has been modelled using Equation (29), using Sr in place of S, assuming a point distribution of particles and neg-

ligible change in seed size (Bhuiyan et al. 2008). The number of data points and fit of the model to the data were unclear,
shedding some doubt on this work. Both diffusion and growth were considered, and the relative orders of coefficients are
used to infer diffusion as the rate controlling mechanism.

3.4.2. Integration controlled growth

After the solute has diffused to the crystal surface, it must be integrated into the crystal lattice. An absorbed layer of solute
exists on the surface of a growing crystal. This third phase consists of partially ordered solute in a partially de-solvated lattice.

It is not yet crystalline, but it is more ordered and concentrated than the bulk solution. It is the ordering of this layer into a
crystalline structure which the integration rate describes.

In many struvite systems (presented later in Table 3), mixing is sufficient to ensure negligible diffusion effects, reducing the

growth rate to a surface integration controlled step (Table 3). This step has been described by a number of models. Firstly, a
power law model can be used for parameter regression when the form of the growth rate model is unknown. Changes in the
growth rate constant and order are then used to infer a more complex model.

dL
dt

¼ kgSng (30)

where L is the particle length/diameter, kg is a growth rate constant, S is a general descriptor of supersaturation and ng is an
empirical particle growth rate order. Various works have implemented a form of Equation (30) to describe struvite crystal-
lisation, as detailed in Table 3. Hanhoun regressed nucleation and growth kinetics with a least squares regression, which
was predicted by pH measurements and a method of moments population balance (Hanhoun et al. 2013). Triger investigated
struvite growth rate with a least squares regression using measured and predicted turbidity, which accurately predicted PSD
properties but not PSD shape (Triger et al. 2012). Ali regressed the struvite crystal growth rate, assuming an initial point dis-
tribution of particles and performing a least squares regression comparing measured and estimated ammonia, magnesium and

phosphorus concentrations and mean crystal size (Ali & Schneider 2008).7 Galbraith investigated seeded struvite growth rate
using a hybrid population balance technique, incorporating nucleation, growth and agglomeration (Galbraith et al. 2014). The
growth rate regressed exhibited a higher order than the 1–2 traditionally observed for crystallisation (ng ¼ 5:062+ 0:005) in

the SI range of 0.37–0.54. They suggested that the high order could also be represented by a second order model with a dead-
zone, where growth rate becomes insignificant below a given supersaturation, SI�.

G ¼ dL
dt

¼ kg(SI � SI�)2 (31)

where SI� ¼ 0:3. This outcome reinforces the null supersaturation concept used to describe secondary nucleation (Mehta &

Batstone 2013) and the surface nucleation model described in the following (Equation (32).
Two surface integration-based growth mechanisms which have not yet been applied to struvite are the surface nucleation

model and the screw dislocation model. The surface nucleation (i.e. birth and spread model) describes nuclei forming on a
smooth crystal surface and spreading to sites of lowest energy. In this model, nucleation is the rate controlling step as the

spread of nuclei is much faster due to lower energy requirements (Ohara & Reid 1973).

G ¼ A0Sp exp �B0

S

� �
(32)

where A0, B0, and p are constants and p ¼ 1� 2. In this equation, B0 represents a value of S at which growth becomes signifi-

cant. When S is significantly larger than B0, the exponential term in Equation (32) tends to 1, reducing the equation to the
same form as Equation (30). When S is significantly smaller than B0, the exponential term (therefore the growth rate)
tends to 0. Another alternative is the continuous step growth model, which describes a self-perpetuating kink/dislocation,

7 Investigations by Ali occurred over a significant time period (36 h), making the operating SI lower than that achieved by the non-equilibrium state of mixing

feed streams.
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Table 3 | Struvite particle growth rate comparison

Source
pH
rangea

Experimental
saturation range
as (SI)

Phosphate
conc. [mM]

Molar
ratio Mg:
N:P

Reactor type
(seeded/
continuous/
batch)

Mixing
speed
[rpm]

Residence
time [min]

Final
particle
size [μm]

Model
equation

Saturation
measure

Rate Constant(s)
[μm/min]

Rate order
presented

Linear growth rate
[μm/min]

(Ali &
Schneider,
2008)

7.22�7.51 0.053b0.32�0.57c 6 1:1:1 Seeded fed batch
recirculating
(16�16.8L)

N/P 439.2, 480 &
2160

∼ 170�195 Power law SIa

SIa
0.784 ± 0.14

0.819 ± 0.14
1.64 ± 0.19

1.68 ±
0.18

0.011�0.083(calculated)
Power law (Seed size
estimated)
0.011�0.07 (calculated)

(Galbraith
et al. 2014)

7.46�7.62 0.25�0.74 5 1:1:1 Stirred, seeded,
draft tube,
baffled, batch
(1L)

N/P 120 < 30 Power law SI 12.49 ± 0.06 5.062 ± 0.005 0.011�2.74 (calculated)

(Hanhoun
et al. 2013)

8.5�9.5 0.26�0.54 3�4 1:1:1 Stirred batch (3L) 500 60 D[50] =
70�89

Power law IAP1=3 �K1=3
sp 280.64 1.34 2� 10�4 � 1:3� 10�3

(calculated)

(Ariyanto et al.
2014)

8.0�9.5 0.31�1.00 2 1:1:1 Stirred, seeded
batch (1 L)

50�120 120 24.3�84.8
(seed
size)

Power law V 0.5�10.0 1.05�1.47 0.07�14.39 (calculated)

(Triger et al.
2012)

9.31 ∼ 3.7b,d 14.08 (synth) 1.3:33:1 Stirred batch (2 L) 300 0.33 D[50] =
54.1�52.5

Power law SIa 1.75�2 1.15�2 2.72�3.56 (calculated)

9.29 ∼ 3.7b,d 14.40 (real) 1.3:19:1 Stirred batch (2 L) 150 0.33 D[50] = 45.7 Power law SIa 1.5 1.8 1.98�2.52 (calculated)
9.29 ∼ 3.7b,d 13.95 (real) 1.3:16:1 Stirred batch (2 L) 300 0.33 N/P Power law SIa 1.8 2 2.45�3.20 (calculated) 9.35

(Bhuiyan et al.
2008)

8.07 < 1.38 ∼ 0.7 (read
from plot)

N/P Seeded continuous
FBR (5.56 L)

N/P 420 500�2000 Two-step Sr kd ¼ 1:11� 10�8

kr ¼ 7:99� 10�5

[m/s]

2 0.51�16.02 (calculated)

(Mehta &
Batstone,
2013)

8.0�9.0 0.12�1.47 3.67 5.14:4.88:1 Stirred, seeded,
baffled batch

N/P 120 D[50]∼ 100 Power law
(including
surface
area)

Sr N/P N/P 0.02�8.55 (calculated)

(Koralewska
et al. 2009)

9 4.53�6.59 100�820 1:1:1 Draft tube MSMPR
(1.2 L)

6.6 15 < 90 SD RHG N/P N/P N/P 0.03�1.99

(Mazienczuk
et al. 2012)

9�11 N/P 105 1:1:1 Draft tube MSMPR
(1.2 L)

0.25 [W/
kg]

15, 30 & 60 < 90 D[50]
=
4.1�19.1

SIG NCG N/P N/P N/P 0.07�0.43

(Kozik et al.
2014)

8.5�10 N/P 65 1.2:1:1 DT MSMPR
(0.6 L)

4 15, 30 & 60 SIG NCG N/P N/P N/P 0.2�1.0

(Harrison et al.
2011)

7.5�8.5 N/P N/P N/P Stirred, seeded
batch (1 L)

N/P N/P N/P Power law DCPO4 N/P 1.9�2.1 10�24

8.5 N/P N/P N/P Stirred, seeded
pilot scale at
abattoir (200 L)

N/P N/P N/P Power law DCPO4 kg ¼ 1:5� 10�5 to 1.0
�10�4 [μm/min/
(mg/L)2]

2 0.45�0.8

Note: N/P = not provided.
aMaximum pH/SI for batch reactors and steady state SI for continuous.
bCalculated using thermodynamic model and conditions given.
cSI given in PhD thesis document.
dHigh ammonia concentration introduces uncertainty to SI prediction via thermodynamic model.
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which forms a screw dislocation. This form of growth has been observed by crystal etching and reflective microscopy

(Randolph & Larson 1988). The screw dislocation model is also referred to as Burton Cabrera Frank (BCF) model
(Burton et al. 1951) and is the most widely applied model.

G ¼ A00S2 tanh
B00

S

� �
(33)

where A0 and B0 are constants. At low supersaturations (S � B00), the hyperbolic term tends towards 1 and the model reduces
to a power law with ng ¼ 2. At high supersaturations (S � B00), the model can be approximated with the power law model
with ng ¼ 1. After the proposition of these three model types, it must still be noted that there are scenarios which cannot

be explained by any of them (Randolph & Larson 1988).

3.4.3. Growth rate dispersion

Growth rate dispersion (GRD) is an alternative method of describing growth which has been observed in many crystal sys-

tems (Randolph & White 1977; Zekic et al. 2011; Ochsenbein et al. 2015). This phenomenon has been discussed extensively
yet remains to be properly understood (Randolph & Larson 1988; Mullin 2001; Mitrović et al. 2008; Singh & Ramkrishna
2014). Struvite GRD has been described by the Rojkowski Hyperbolic size-dependent growth model for a MSMPR (Equation

(24)), achieving the best fit out of a range of empirical and semi-empirical size-dependent growth models (Matynia et al. 2006;
Koralewska et al. 2009; Lobanov 2009). While this model may provide the best fit to some data, it was not compared to size-
independent growth models and there is no physical evidence that size-dependent growth is occurring, making it as good as

any other that could be fit to the same data.

n(L) ¼ n0 exp � G1 �G0

taG21
ln

aG1LþG0

G0

� �
þ L
tG1

þ ln
aG1LþG0

(1þ aL)G0

� �� �� �
(34)

where n(L) is the population density [particles m�1 m�3], n0 is the nuclei population density [particles m�1 m�3], a is a kinetic

coefficient [m�1], t is the mean residence time of a crystalliser working volume [s�1] and G0 [m s�1] and G1 [m s�1] are the
growth rates of the nuclei and the largest crystals, respectively.

3.4.4. Struvite growth rate model comparison

In this section, struvite research is evaluated to identify struvite growth rate trends and assess which practices should and

should not be adopted.8 Table 3 summarises struvite crystallisation investigations and Figure 7 provides a visual comparison
of crystal growth rates on a common supersaturation scale. Table 3 shows that the measured struvite crystal growth rate is
reported from 0.03 to 24 μm/min, while regressions based on Figure 7 showed growth rates of 0.01–12.86 μm/min in the

SI range of 0.25–1.4. Unfortunately, such a large range in growth rate does not offer much confidence for accurate design
purposes. The impact of uncertainty on process design should be examined by conducting sensitivity analysis on struvite crys-
tallisation kinetic parameters.

Comparison of growth rates predicted by kinetic models at differing experimental conditions shows no major trends
(Figure 7). This figure shows that growth rates predicted by different models vary over five orders of magnitude. It appears
that seeded system’s growth rates are much higher than unseeded ones, although further unseeded investigations are necess-

ary to validate this trend. All authors reported increasing crystal growth rate with SI except Kozik and Mazienczuk, who
observed a decrease in growth rate with increasing pH9, which can be attributed to a greater initial nucleation rate and associ-
ated decrease in SI. Large variation in Figure 7 can be explained by assumptions, experimental techniques and regression
techniques, all of which are detailed in the following.

A key assumption in many growth rate models is negligible nucleation and agglomeration. This is supported by the assump-
tion of a fixed distribution of particles (Ali & Schneider 2008; Bhuiyan et al. 2008). This fixed distribution has been assumed
to be a point distribution which does not change in size (Bhuiyan), or a measured mean particle size which does

8 Species depletion models are not considered adequate for struvite modelling because of the relationship observed between rate constant and ion

concentrations (section 3.2)
9 SI is proportional to under the conditions tested
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(Ali & Schneider 2008). Alternatively, researchers have assumed constant PSD shape and calculated growth rate using PSD
translation (Harrison et al. 2011; Ariyanto et al. 2014). Harrison’s results must be taken cautiously though as they showed that

PSD shape did vary and represented supersaturation using phosphorus concentration difference, neglecting ion speciation. A
final technique used to assume negligible struvite nucleation and aggregation has been to incorporate a specific surface area
term (measured) rather than assuming a point distribution (Mehta & Batstone 2013). By converting from the molar growth

rate, they estimated crystal linear growth rate to be 0.06–0.3 μm/min/unit of Sr in the SI range of 0.12–1.47, although PSD
assumptions necessary to make this conversion were unclear. The corresponding maximum and minimum crystal growth
rates span a significant range but are within the region of growth rates predicted by another research (Figure 7). Although
each of the abovementioned growth only models were able to produce a good fit to their individual datasets, the growth

rate predictions vary by two orders of magnitude (Figure 7). The next steps in model complexity are to use full PSD measure-
ments for regressions and include the nucleation mechanism.

Multiple works have modelled simultaneous struvite nucleation and growth using population balance techniques. Investi-

gations by Triger incorporate nucleation and growth but regressed parameters using only turbidity (Triger et al. 2012). Their
experiments were conducted at a very high SI, but growth rates regressed were in line with other works at lower SI values, indi-
cating a diffusion limitation. The authors attribute errors to non-ideal mixing and attrition, although agglomeration and operation

at a very high SImay also play a role. Hanhoun also applied a nucleation and crystal growthmodel, but manually selected nuclea-
tion parameters, and while a least squares regression was used, it was only applied to saturation data predicted from pH rather
than concentration or PSD data (Hanhoun et al. 2013). This resulted in a growth rate prediction significantly lower than those

of other struvite investigations (Figure 7), which suggests that a single variable is insufficient for parameter estimation. Koralewska
incorporated nucleation and growth mechanisms and used a highly controlled procedure, giving reasonable confidence to the
range of particle growth rates they measured, although the growth rate dispersion model they applied is theoretically unlikely,
as discussed earlier (Koralewska et al. 2009). Work by Mazienczuk and Kozic regressed nucleation and growth parameters

using the PSD only (Mazienczuk et al. 2012; Kozik et al. 2014).While their work was experimentally sound, the model proposed
should be applied cautiously as it did not match the data in lower particle size ranges, indicating that the nucleation and growth
model alone could not accurately represent the entire dataset. Improvements in theseworks include: (1) making regressions using

multiple variables, (2) not operating at a high SI and (3) examining agglomeration (discussed in the following).
Many authors suggest that since the order of reaction regressed is .1, crystallisation is likely reaction controlled. The texts

often cited to justify this conclusion measure supersaturation in the diffusion-reaction model using a difference in solute

Figure 7 | Crystal linear growth rate comparison. Dashed and solid lines represent batch and continuous reactors, respectively. Circles
indicate CPO4 , 5mM, squares indicate 5 mM � CPO4 , 10 mM and triangles indicate CPO4 	 10mM. Filled and unfilled markers represent
seeded and unseeded scenarios, respectively. Uncertainties in kinetic parameters were incorporated where available and significant enough
to be visible.
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concentration (Randolph & Larson 1988; Mullin 2001). Most investigations of struvite use one of various more complex

descriptions of supersaturation, the selection of which will result in a variation in regressed model order. In addition to
this, Mullin notes that diffusion and integration are difficult to distinguish considering that likely more steps are involved
(i.e. boundary layer, adsorption layer and surface diffusion, ion dehydration, surface integration and counter diffusion of dehy-

drated water) and that diffusion term may exhibit a higher order than 1.
To examine the effect of supersaturation measure on regressed growth rate order, a power law model using SI was fit to

each trend shown in Figure 7. All models gave an R2 value .0.97 and the indices varied from 1.64 to 2 for all models
except that by Galbraith et al., which has an order of 5.062. By repeating this process using reduced saturation, it was

found that growth rate orders mostly fell in the range of 0.9–1.34, while results from Triger et al. and Galbraith et al. gave
orders of 0.21–0.23 and 3.14, respectively. In this case, all R2 values were .0.99. This illustrates that great care must be
taken to ensure consistency between the selection of supersaturation measures and that conclusions about reaction or diffu-

sion mechanisms must be taken cautiously.

3.5. Aggregation

3.5.1. Aggregation theory

Smoluchowski originally described the collision frequency of dispersed particles due to Brownian motion (Smoluchowski
1917). A general expression of aggregation describes the rate of aggregation (ragg) of particles of size i with those of size j
as proportional to the product of the number of particles in each size range (Ni and Nj) and includes a rate constant
known as the aggregation kernel, bi,j.

ragg ¼ bi,jNiNj (35)

The aggregation kernel can be broken down into two terms: b0, representing system properties (supersaturation, and fluid
velocity), and a particle size-dependent function, f(i, j), representing the aggregation frequency. The size dependence term can

take various forms depending on the mechanism(s) causing aggregation (perikinetic and orthokinetic). Aggregation investi-
gations are notoriously difficult because of the many concurrent influencing factors. In the century since Smoluchowski’s
formulation, many investigations have been made into the agglomeration kernel and now more than 50 variants of the

agglomeration kernel can be found in the literature (Hounslow 1990; Bramley 1994; Mersmann et al. 2002).
Although many aggregation investigations have been made, fewer investigations have been made into the struvite system.

Therefore, before presenting investigations into struvite, a similar sparingly salt system is used here to discuss the relevant

theory: calcium oxalate monohydrate (COM). For COM aggregation has been investigated for dependency on a number of fac-
tors including: hydrodynamics (Bramley et al. 1997;Hounslow et al. 1998); solution composition (Hounslow et al. 1998); Thiele
modulus (a term describing the ratio of reaction rate to diffusion rate) (Hounslow et al. 1998); and solution ionic ratio (Bramley
et al. 1997; Liew et al. 2003). It was found that a maximum aggregation rate exists with varying shear rates, due to a trade-off

between increasing collision rate and increasing tensile stress between crystals (Mumtaz et al. 1997). All of the abovementioned
factors were able to be correlated by comparing particle collision efficiency with a number representing the ratio of aggregate
bond strength of an aggregate to the force exerted on it in a collision (Hounslow et al. 2001). Similar theoretical collision effi-

ciency models have been developed incorporating hydrodynamic and colloidal interactions, accounting for particle mass,
fractal dimension and a non-dimensional Hamaker constant (Babler 2008)10. Babler’s work concluded that collisions between
particles of similar size are preferential to thosewith different sizes. This outcome is of importance in crystallisation applications

as often it is assumed that particle surface area is not conserved during aggregation events, and that the effect of this assumption
is relatively low because the majority of collisions occur between particles of significantly different sizes.

While it is physically accurate that aggregation mechanisms depend on particle size, the overall aggregation kernel can

often be approximated by a size-independent kernel (Jones 2002). In a number of investigations, a size-independent kernel
has provided a better fit to data than size-dependent kernels (Hounslow 1990; Ilievski 1991; Bramley 1994). This outcome
has been attributed to a decrease in collision efficiency and increased particle disruption with particle size (Jones 2002).
In this scenario, the aggregation rate becomes a function of hydrodynamics and supersaturation only. For a size-independent

10 Application to crystallisation systems would likely also require a description of the growth rate of a bridging bond.

Water Science & Technology Vol 87 No 6, 1416

Downloaded from http://iwaponline.com/wst/article-pdf/87/6/1393/1198832/wst087061393.pdf
by guest
on 26 April 2023



system where hydrodynamics remain constant, the aggregation kernel can be modelled using a simple power law model

(Equation (36)), where the saturation index (SI) is the driving force, kagg and nagg are the rate constant and order, respectively.

bi,j ¼ b0 ¼ kagg(SI)
nagg (36)

3.5.2. Struvite aggregation

Early work on struvite crystallisation showed that for equimolar solutions of magnesium, ammonium and phosphate, twin-
ning and aggregation occurs above a concentration of approximately 0.004 M, where the supersaturation necessary for
aggregation is approximately SI¼ 1.51, but progressively decreases with increasing concentration (Abbona & Boistelle

1985). Struvite aggregation is evident in microscopy from multiple scenarios (Battistoni et al. 2005; Huang et al. 2006),
and other fluidised bed reactors (FBR) have generated particle sizes of 0.41–1.43 mm (Shimamura et al. 2003) and 2.2–
3.5 mm (Adnan et al. 2003), which are likely only achieved by aggregation. Another FBR investigation observed pellets
with a tightly bound inner core and a thick outside coating of fines (Bhuiyan & Mavinic 2008).

In addition to struvite crystallisation, one group observed 2–3 μm hydroxyapatite agglomerates forming both alone and on
the surface of struvite crystals (Hutnik et al. 2011). While struvite aggregation is commonly observed, it is not yet thoroughly
investigated. Only one work which experimentally determined kinetics of struvite nucleation, growth and aggregation

(Galbraith et al. 2014). Discretised population balance methods were used to analyse data from a stirred batch vessel fed
with equimolar 0.005 M feed operating at SI¼ 0.37–0.74. Galbraith used Equation (22) to find an aggregation kernel in
the range of 10�8 to 10�10, which was within a reasonable range when compared to studies of other sparingly soluble

salts. While that work regresses kinetic parameters using extensive PSD and concentration data, it does find a high corre-
lation between kinetic parameters and makes assumptions about the PSD below 2 μm. Future publications by our
research group will detail nucleation, growth and aggregation kinetic parameter optimisations using experimental data

from a Poiseuille flow reactor (Burns et al. 2016).

4. CONCLUSIONS AND RECOMMENDATIONS

Modelling of thermodynamics to simulate saturation and other relevant variables, such as elemental concentration in the
liquid phase and struvite mass, showed close agreement with collected data only when specific equilibrium databases
were used. Assessing Davies and Samson activity models show an atypical trend in the activity coefficients to be aware of,
but the application of either of them at ionic strength below 0.5 M can still provide reliable information. Selection of different

equilibrium equations in PHREEQC databases can provide high variability in the predicted struvite SI, suggesting that equili-
brium simulations are only comparable when detail of the equilibrium datasets are provided. Simulations developed with
several equilibrium databases show that ‘sit’ is most suitable for rapid estimations in struvite precipitation. However, the

development of a targeted thermodynamic model produces the most reliable results.
The author’s own model in EES was tested in struvite precipitation experiments to discuss an expected variability in a real

digested liquor solution, showing that equilibrium and non-equilibrium calculations can predict laboratory measurements. In

this context, prediction variability will depend on the quantity of entry data and thermodynamic parameters. Additionally, the
same model was tested against several struvite batch precipitation, showing high proximity when the elemental concentration
of P and Mg in the desaturated solution were compared.

Comparison of studies showed that struvite induction time increases exponentially below SI¼ 0.8 and that the lower saturation
limit for homogeneous nucleation occurs in the range of SI ¼ 0:237–0:69. Struvite primary nucleation rate is highly sensitive to
interfacial tension and due to the high uncertainty in primary and secondary nucleation kinetic model and in the transition
between primary and secondary nucleation, a power law model may be equally as effective at describing nucleation.

Estimated struvite growth rates vary over five orders of magnitude, limiting inferences which could be drawn. However,
growth rates were consistently higher under conditions using seed particles. Exponentially decaying growth rates at low
supersaturation indicated that a surface nucleation model might be suitable for future struvite growth investigations. Compari-

son of struvite growth models highlighted the influence of saturation description on estimated rate order, showing that rate
order cannot be accurately used to infer crystal growth mechanism. Overall, more consistent results are required to develop a
functional predictive kinetic model for struvite crystallisation. Uncertainty in results can be reduced by (1) applying kinetic
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models which fully describe crystallisation mechanisms (nucleation, growth, aggregation); (2) using large datasets including

full PSD measurements; and (3) performing model regressions using multiple variables.
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