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Abstract
The sensitivity of ecosystem gross primary production (GPP) to availability of water and
photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations
of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/
evapotranspiration) among seven Australian eddy covariance sites with differing annual
precipitation, species composition and temperature. Changes to both eLUE and eWUE were
primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales
across biomes, with minor additional correlations observed with soil moisture and temperature.
The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD,
indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and
eWUE were statistically different for biomes between summer and winter, except eWUE for
savannas and the grassland. These findings will improve our understanding of how light- and
water-use traits in Australian ecosystems may respond to climate change.
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1. Introduction

Climate imposes important but often contrasting limitations
on productivity in most vegetated biomes (Churkina and
Running 1998). Among climate factors, solar radiation

provides the energy source for photosynthesis, while water
availability alters leaf-scale photosynthesis via modulations of
plant stomatal conductance (Beer et al 2009) and canopy-
scale photosynthesis via changes in leaf area index (Eamus
et al 2001). Ecosystem light-use-efficiency (eLUE) and
water-use-efficiency (eWUE) are two critical traits of terres-
trial ecosystems that characterize the sensitivity of biomass
production to solar irradiance and water supply (Beer
et al 2007, Hu et al 2008, Ponton et al 2006, Turner
et al 2003). eLUE and eWUE differ substantially in range and
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vary with environmental stress and vegetation structure
within and across biomes (Farquhar et al 1989, Law
et al 2002, Schwalm et al 2006). The values of both eLUE
and eWUE exhibit time-scale dependence in the sense that
their primary environmental controls vary temporally (Cam-
pos et al 2013, Schwalm et al 2006, Turner et al 2003).

Historically, eLUE (ε) has been defined as the ratio of net
primary production (NPP, aboveground or total, εn) or gross
primary production (GPP, εg) to incident photosynthetically
active radiation (PAR) or absorbed PAR (APAR) (Gower
et al 1999). Based upon evolutionary and physiological the-
ory, εn and εg are expected to converge across biomes (Goetz
and Prince 1999). However, values of each are dependent on
plant function type (Gower et al 1999, Schwalm et al 2006,
Turner et al 2003). The biophysical, biochemical and
meteorological controls of eLUE among biomes at multiple
temporal time-scales are not well understood, resulting in
imprecise estimates of NPP and GPP and uncertainties in the
responses of eLUE to climate change (Kanniah et al 2011).
For example, daily εg decreased with increasing APAR but
was poorly correlated with vapor pressure deficit (VPD) or air
temperature (Ta), while the relative values of εg across biomes
were influenced by relative nitrogen availability (Turner
et al 2003). In contrast, Schwalm et al (2006) observed that
changes in daily εg were driven by variation in light and
temperature with no correlation to water availability or foliar
nitrogen, while annual εg varied across biomes as a function
of mean annual temperature (MAT) and leaf area index (LAI).
Additionally, annual εg can increase with increasing total
annual precipitation and decreasing potential evapotranspira-
tion (Polley et al 2011) or MAT (Lafont et al 2002).

eWUE reflects a trade-off between carbon gain and water
loss from leaves and ecosystems (Baldocchi 1994), and is
important for ecosystem productivity and resilience (Campos
et al 2013, Huxman et al 2004). At the leaf-scale, eWUE is
expressed as the ratio of net photosynthesis to transpiration
but at the ecosystem-scale, eWUE is defined as the ratio of
either NEE or GPP to ET or canopy transpiration (Beer
et al 2009, Niu et al 2011). To quantify the role of water
limitation on above-ground NPP, rain-use-efficiency (RUE,
the ratio of above-ground NPP to rainfall) is widely used
(Huxman et al 2004). Alternatively, inherent water-use-effi-
ciency (IWUE, GPP*VPD/ET) can be used to normalize the
effect of VPD on ET (Beer et al 2009, Eamus et al 2013).
Daily eWUE is negatively correlated with VPD during the
time of peak GPP activity (Ponton et al 2006) and so is
monthly eWUE across a large range of biomes (Law
et al 2002). In contrast, annual eWUE tends to be similar
across biomes except for tundra vegetation (Law et al 2002).
Across a grassland transect in China, LAI is considered as the
primary determinant of seasonal eWUE (Hu et al 2008).
Annual eWUE of grasslands may decrease (Li et al 2008) or
increase (Niu et al 2011) with increasing annual precipitation
whilst eWUE may differ between wet and dry years (Campos
et al 2013, Huxman et al 2004) or wet and dry seasons
(Eamus et al 2013), and varies with soil moisture and LAI
(Beer et al 2009).

The lack of consensus on the relative importance of
different controlling factors of eLUE and eWUE across
biomes at multiple temporal scales reflects the complexity of
interactions between terrestrial ecosystems and climate.
Therefore, a key issue to resolve is the relationships of eLUE
and eWUE to climatic drivers. The eddy covariance (EC)
technique provides an opportunity to examine the potential
relationships due to simultaneous measurements of solar
radiation, carbon and water fluxes, VPD and soil water con-
tent (SWC), thereby generating an extensive time series of
eLUE and eWUE from hourly to multi-annual time-scales.
Concurrent measurement of meteorological variables with
fluxes can be used to quantify limitations on eLUE and
eWUE and the interaction of climate variables as determi-
nants of eLUE and eWUE. Thus, the current study used EC
data from seven contrasting ecosystems in Australia for
examining the magnitude, spatial patterns, and environmental
regulation of eLUE and eWUE at multiple time-scales
(hourly, daily, eight-day, monthly, and yearly). These seven
EC sites encompass a range of biomes along a large pre-
cipitation, species compositional and temperature gradient,
thereby providing further insights into coupling between
ecosystems and climate. We aimed to identify variations in
eLUE and eWUE of Australian major ecosystems over dif-
ferent time-scales and their key climatic drivers among
biomes. This will allow for a better understanding of the
coupling of carbon and water cycles and the effects of climate
change on ecosystem carbon budgets and water use.

2. Methods

2.1. Sites and data processing

Seven sites were selected for this study in Australia. Indivi-
dual site names, details, statistics and plots are given in the
supplementary information (see supplementary information
available at stacks.iop.org/ERL/9/104002/mmedia). These
sites include four contrasting savannas (Savn, AU-Ade, AU-
Asm, AU-Dry and AU-How sites), two different evergreen
broadleaf forests (EBF, AU-Tum and AU-Wac sites), and one
grassland (Grass, AU-Stp site) (supplementary table S1;
supplementary figure S1). Bioclimatic classifications of these
sites range from tropical wet-dry in northern Australia,
through tropical semi-arid in central Australia to cool tem-
perate mesic in southeastern. Mean annual precipitation is
smallest in central Australia and largest in far northern
monsoonal Australia. All sites show seasonal patterns in
precipitation, temperature and VPD that interact with large
fluctuations in water availability. Seasonal variability in
temperature and PAR was larger at the two forests in south-
eastern Australia than at the grassland and savanna sites.
Conversely, seasonal variability in VPD and rainfall was
larger in the northern and central sites, where a distinct dry
season occurs during Australian winter (supplementary
figure S1).

At each site, LAI data were derived from the space-borne
MODIS (Moderate Resolution Imaging Spectroradiometer)
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sensor (500 m spatial resolution and eight day temporal
resolution). The MODIS images are spatially similar to the
footprint size of the EC data used. A central 3 × 3 window
was used to extract the flux tower LAI time series. This
sampling strategy can effectively reduce the error due to the
scale mismatch between the tower footprint and MODIS
pixels (Rahman et al 2005, Xiao et al 2005). Then the LAI
data series were smoothed using the TIMESAT tool (Jönsson
and Eklundh 2004). Mean maximum LAI (LAImax) for each
site were aggregated at eight-day, monthly and yearly scales.
Half-hourly meteorological data, water and CO2 fluxes were
measured using an EC system and associated meteorological
sensors installed at each site. All data were processed through
OzFlux standard methods (see supplementary information).

2.2. Wavelet aggregation method

Half-hourly eLUE and eWUE were defined as ratios of GPP
to PAR and GPP to ET, respectively. For eLUE, using inci-
dent PAR as the denominator instead of APAR can couple
carbon and energy budgets directly at the ecosystem level
rather than merely focusing on the biological mechanisms that
drive photosynthesis (Schwalm et al 2006). When large dis-
turbances occurred (for example, fire or extensive insect-
induced defoliation), flux and LAI data were excluded from
all analyses to minimize the introduction of bias arising from
the inclusion of short-term episodic large-scale fluctuations in
these data. To analyze multi-scale interactions between
eLUE/eWUE and forcing variables, measured carbon and
water fluxes, meteorological variables, SWC and LAI were
resolved using the wavelet transformation (Ding et al 2013,
Stoy et al 2005, Torrence and Compo 1998). The wavelet
transformation can be used to analyze time series such as EC
fluxes (Scanlon and Albertson 2001) that contain non-sta-
tionary power at different frequencies (Daubechies 1990).
Here a continuous wavelet transformation with the Morlet
basis was employed. Half-hourly carbon and water fluxes and
environmental factors were transformed, reconstructed and
then aggregated at hourly, daily, eight-day, monthly, seasonal
and yearly time-scales, respectively. eLUE and eWUE were
concurrently calculated at each time-scale. The detailed
description of the Morlet wavelet transformation and an
example of the reconstruction at the Howard Springs site were
given in supplementary material (supplementary figure S2).

3. Results

3.1. GPP responses to PAR and ET

Figure 1 shows the multi-temporal (i.e. at daily to yearly time-
scales) responses of GPP to variations in PAR and ET across
the various ecosystems. GPP and PAR were significantly
correlated only at the two temperate forest sites
(R2 = 0.88–0.97, p < 0.001 and R2 = 0.67–0.98, p< 0.001 at
AU-Tum and AU-Wac, respectively) (figure 1). Generally,
GPP exhibited a significant linear correlation with ET (R2

from 0.48 to 0.96, p< 0.001) at all sites across daily to

monthly time-scales. Across the three biomes, average eLUE
and eWUE were largest in forests, intermediate in savannas,
and smallest in the grassland. Among the savannas, eLUE and
eWUE were largest at AU-How and AU-Ade (tropical
savannas) and smallest at AU-Asm (semi-arid savanna).

3.2. Relationships of eLUE and eWUE with climate

eLUE was significantly correlated with air temperature and
PAR, and eWUE was significantly correlated with PAR.
However, these correlations across biomes became much
weaker at shorter time-scales, especially at the hourly time-
scale and in the summer when light is less limiting (table 1).
PAR explained less variation in eLUE than VPD at all time-
scales, and air temperature was less correlated with eWUE
than VPD at all time-scales except the hourly time-scale.
Henceforth, of climate factors we mainly focus on the rela-
tionships between eLUE/eWUE and VPD, but this does not
mean the effects of PAR on eLUE and air temperature on
eWUE were not important. Across all sites, eLUE and eWUE
followed a negative logarithmic relationship with VPD
(table 1; figure 2). The goodness-of-fit increased as the time-
scale increased. However, within a given ecosystem, a sig-
nificant relationship between eLUE or eWUE and meteorol-
ogy was, on occasion, absent. For example, at the AU-How
site, eWUE was very weakly or not correlated with VPD
(figure 2). Likewise at the AU-Asm site, eLUE was very
weakly or not correlated with VPD (figure 2). This suggests
that the factors driving eLUE and eWUE can differ within and
across biomes.

3.3. Relationships of eLUE and eWUE to SWC and LAI

Significant positive correlations between eLUE/eWUE and
SWC were observed across all time-scales (table 1; figure 3).
The strength of these correlations increased with increasing
time-scale. SWC showed a slightly better relationship with
eLUE at hourly time-scale than VPD (table 1), while at other
time-scales, the influence of SWC was consistently and
slightly weaker than VPD. Across all time-scales, SWC was
less correlated with eWUE than VPD. Specifically, SWC
explained much less compared to VPD in variation of eLUE
in summer. Considering the seven ecosystems together, a
spatial pattern emerged whereby ecosystems with high annual
average SWC also had large eLUE and eWUE. This was
consistent with the response of eLUE/eWUE to VPD because
of the inverse relationship between SWC and VPD. However,
the relationships between eLUE/eWUE and SWC varied from
site to site. Notably, at the AU-How site, eLUE increased
with SWC whereas eWUE appeared to decrease as SWC
increased (figure 3).

There were significant positive correlations between
eLUE or eWUE and LAImax at eight-day, monthly and annual
time-scales (table 1; supplementary figure S3). These rela-
tionships were much weaker than those between eLUE/
eWUE and VPD. Specifically, in winter, eLUE and eWUE
were moderately or weakly correlated with LAImax. In
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Figure 1. Relationships between (left) daily (GPPd), eight day (GPP8d), monthly (GPPm) GPP and PAR and between (right) GPP and ET for
seven sites. Ellipses (left) indicate 95% confidence boundaries of GPP. Bars indicate annual standard deviations of eLUE or eWUE at each
site. Also shown is the linear fit between GPP and ET (right). Annual eLUE(eLUEyr) and eWUE(eWUEyr) were calculated from annual GPP,
PAR and ET.
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Table 1. Coefficients of determination (R2) between LUE, WUE and Ta, PAR, VPD, SWC or LAImax by logarithmic/exponential (Log/exp) and linear (Lin) fitting, respectively. ***, **, *, and
NULL indicates significant relationship at p< 0.001, 0.01, 0.05 and not significant, respectively. Monthly(S) and Monthly(W) indicate monthly variables in summer (December, January, and
February) and winter (June, January, and August).

Scale Hourly Daily Eight-day Monthly Monthly(S) Monthly(W) Annual

Model Log/exp Lin Log/exp Lin Log/exp Lin Log/exp Lin Log/exp Lin Log/exp Lin Log/exp Lin

Ta 0.34*** 0.35*** 0.41*** 0.41*** 0.43*** 0.43*** 0.44*** 0.44*** 0.38** 0.39** 0.52*** 0.51** 0.59* 0.56
PAR 0.20*** 0.21*** 0.52*** 0.43*** 0.46*** 0.39*** 0.46*** 0.41*** 0.40** 0.35** 0.77*** 0.70*** 0.82** 0.84**

eLUE VPD 0.43*** 0.34*** 0.71*** 0.62*** 0.76*** 0.71*** 0.78*** 0.75*** 0.90*** 0.83*** 0.76*** 0.74*** 0.89** 0.94***
SWC 0.59*** 0.49*** 0.63*** 0.67*** 0.63*** 0.74*** 0.64*** 0.76*** 0.63*** 0.61*** 0.65*** 0.84*** 0.70* 0.84**
LAImax 0.48*** 0.33*** 0.53*** 0.38*** 0.81*** 0.58*** 0.36** 0.20* 0.83** 0.68*
Ta 0.52*** 0.52*** 0.62*** 0.63*** 0.62*** 0.65*** 0.64*** 0.67*** 0.65*** 0.67*** 0.63*** 0.59*** 0.75* 0.71*
PAR 0.05*** 0.11*** 0.51*** 0.46*** 0.44*** 0.41*** 0.46*** 0.44*** 0.22* 0.19* 0.73*** 0.69*** 0.82** 0.85**

eWUE VPD 0.49*** 0.34*** 0.71*** 0.57*** 0.74*** 0.65*** 0.78*** 0.72*** 0.83*** 0.69*** 0.79*** 0.78*** 0.95*** 0.96***
SWC 0.44*** 0.45*** 0.50*** 0.56*** 0.53*** 0.62*** 0.55*** 0.66*** 0.51*** 0.60*** 0.60*** 0.77*** 0.70* 0.81**
LAImax 0.50*** 0.47*** 0.55*** 0.52*** 0.82*** 0.73*** 0.49*** 0.36** 0.84** 0.80**
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Figure 2. Relationships between (left) daily (eLUEd), eight day (eLUE8d), monthly (eLUEm) eLUE and VPD and between (right) daily
(eWUEd), eight day (eWUE8d), monthly (eWUEm) eWUE and VPD for seven sites. Ellipses indicate 95% confidence boundaries of eLUE
and eWUE. Bars indicate annual standard deviations of eLUE, eWUE or VPD at each site. Also shown are logarithmically fitted functions,
coefficients of determination (R2) and p values.
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Figure 3. Relationships between (left) daily (eLUEd), eight day (eLUE8d), monthly (eLUEm) eLUE and SWC and between (right) daily
(eWUEd), eight day (eWUE8d), monthly (eWUEm) eWUE and SWC for seven sites. Ellipses indicate 95% confidence boundaries of eLUE
and eWUE. Bars indicate annual standard deviations of eLUE, eWUE or SWC at each site. Also shown are logarithmically fitted functions,
coefficients of determination (R2) and p values.
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contrast, eLUE and eWUE in summer showed strong corre-
lation with LAImax.

3.4. Behavior of eLUE and eWUE in summer and winter

Monthly eLUE and eWUE in summer and winter showed
responses to climate variables consistent with the daily/eight-
day to annual time-scales (table 1; figure 4) but the correlation
between eLUE/eWUE versus SWC in summer became rela-
tively weak compared with VPD and LAI (table 1). During
summer, the VPD dependence of eLUE and eWUE were
more apparent than dependence on other climate variables
and SWC (table 1). By contrast in winter, variations in eLUE
and eWUE were less sensitive to VPD (i.e. the fitted slopes in
figure 4). Notably, SWC explained slightly more variability in
eLUE during winter, than climatic variables in summer,
suggesting different controlling factors and/or mechanisms
regulating eLUE in contrary hydrothermal conditions.

Seasonal eLUE differed between summer and winter at
all sites except three savannas sites (figure 4). Notably, dif-
ference of eLUE between summer and winter was sig-
nificantly large (p< 0.001) at the AU-How savannas site.
Contrary to AU-How and the grassland, the two EBF sites
showed higher eLUE in winter. There was no significant
difference of seasonal eWUE at biome scale except EBF.
Similar to eLUE, eWUE at the two EBF sites was lower in
summer than that in winter.

4. Discussion

4.1. Relationships between GPP, PAR and ET

Canopy photosynthesis can be linearly related with PAR
(McMurtrie and Wang 1993) or show a hyperbolic response
function (Ramier et al 2009). Hyperbolic responses of canopy
photosynthesis to PAR are expected in biomes with low
photosynthetic capacity or low LAI (Baldocchi and
Amthor 2001), where self-shading within canopies is rela-
tively small, in contrast to biomes with large LAI where light
saturation of photosynthesis does not occur so frequently in
the lower canopy. Thus, the significant linear correlation of
GPP with PAR at EBF sites can be explained by their rela-
tively large LAI (supplementary table S1; figure 1). Thus,
these sites are primarily light limited and were not light
saturated during the period of measurement. In savannas and
the grassland, GPP was not correlated with variations in PAR
at these northern tropical sites (figure 1) due to relatively
small intra-annual variations in daily average PAR (lower
latitude) (supplementary figure S1; figure 1). Seasonal var-
iation in GPP primarily responded to large changes in LAI
arising from senescence of the grassy understory as driven by
seasonal monsoonal rainfall (Whitley et al 2011). Thus it is
light interception rather than light supply that limits GPP at
these sites.

Coupling of GPP to ET has been observed in many
studies (Baldocchi 1994, Beer et al 2009), and stems from the
intrinsic link between carbon and water fluxes via stomatal

conductance at the leaf level (Beer et al 2009). In contrast to
reported convergence of annual eWUE across multiple
biomes (except for tundra vegetation) (Law et al 2002), we
only observed similar eWUE values (that is, functional con-
vergence of eWUE) within the savannas (figure 1). Similarly,
Ponton et al (2006) identified differing eWUE among Dou-
glas-fir forest, aspen forest and grassland within a growing
season. However, it is worth noting that the regression slope
of GPP against ET in savannas during the dry season (when
ET is minimal) was similar to that of forests (figure 1). This is
likely to be because ET is driven by C3 trees in the dry season
following senescence of the annual grasses. At larger rates of
ET during the wet season, C4 grasses dominate the understory
and have a larger WUE than C3 plants. Thus, there is some
evidence that the eucalypt species examined across tempera-
ture and tropical biomes in the current study converged to a
common WUE. This result is consistent with the results of
O’Grady et al (2009), who observed convergence of rates of
tree water use within an arid-zone woodland in Australia.
Apparent divergence of eWUE between seasons in wet-dry
tropical biomes is therefore driven by changes in the relative
contributions of upper (C3) and lower (C4) canopies to ET
and GPP, rather than changes in functional behavior of the
biomes per se.

4.2. Climate dependence of eLUE and eWUE among biomes

Variations of eLUE were best explained by VPD and SWC
while variations of eWUE were best explained by VPD across
all time-scales but also well correlated with SWC (table 1).
This suggested that VPD co-varied with SWC and water
availability was the most influential factor for eLUE/eWUE.
Rapid ecosystem transitions that include changes in ecosys-
tem productivity, structure and water cycling can result from
long-term climate variations, such as variability in inter-
annual precipitation and seasonality of precipitation (Grimm
et al 2013). Over northern savannas and the grassland, rainfall
is the primary environmental controlling factor such that
vegetation structure (i.e. tree height and LAI) has adapted to
the available resources (Cook et al 2002). In contrast, PAR,
VPD and air temperature which usually strongly co-vary,
were the major drivers of variation in ecosystem productivity
in the two temperate forests (Cleverly et al 2013, Kanniah
et al 2011, van Gorsel et al 2013). Therefore, climate vari-
ables are critical factors that essentially regulate eLUE and
eWUE through their long-term influence on ecosystem
structure and functioning. Consequently, our results showed a
robust intrinsic dependence of eLUE and eWUE on climate
across all time-scales.

Several explanations exist for the strong link between
eLUE/eWUE and climate. Generally, climatic control of ET
and GPP lies somewhere along a continuum between either
severe water or energy limitation (Budyko 1974, Whitley
et al 2011), although temperature also limits productivity in
many ecosystems (Churkina and Running 1998). Deficits of
radiation, temperature or water that cause a decrease in GPP
will lead to lower canopy conductance and ET (Beer
et al 2009). Most sites in the present study, and particularly
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Figure 4. Logarithmical relationships between (top two) monthly LUE (eLUEm) and VPD and between monthly WUE (eWUEm) and VPD in
summer and winter, respectively. Comparisons of (bottom two) average seasonal eLUE (eLUEseason) and eWUE (eWUEseason) for seven sites
are also shown in summer and winter, respectively. Error bars indicate the standard deviations of seasonal eLUE or eWUE at each site. ‘***’,
‘**’, and ‘*’ above the error bars of each site indicate significance at 0.001, 0.01, and 0.05 levels, while ‘ns’ represents not significant, based
on t-test statistics, and these symbols above the horizontal lines represent significance at biome level.
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the tropical ones that experience a distinct dry season, did
not show evidence of energy supply limitation (as inferred
from PAR) at any temporal scales because the range in daily
PAR was too small (figure 1). VPD can represent atmo-
spheric evaporative demand and is responsive to patterns of
water availability. Increasing VPD leads to reduced GPP
through smaller stomatal conductance (Beer et al 2009),
hence eLUE and eWUE decline with increasing VPD
because at low and moderate values of VPD, increasing
VPD causes increased ET (Eamus et al 2008, Thomas and
Eamus 1999, Wharton et al 2009) but reduced GPP (table 1;
figure 4).

4.3. Seasonal patterns of eLUE and eWUE across biomes

eLUE and eWUE showed significant difference between
summer and winter at several sites (figure 4). Seasonal
changes in climate variables, SWC and vegetation structure
(e.g. LAImax) can explain these seasonal similarity or differ-
ence. At the EBF sites during winter, GPP increased with
PAR. During winter neither temperature nor VPD were supra-
optimal for GPP. In contrast, in the summer, increasing PAR
was accompanied by either temperature or VPD attaining
supra-optimal values, thereby limiting the response of GPP to
increased PAR and leading to a smaller eLUE in summer. A
similar phenomenon was also found in eWUE. At the EBF
sites, both GPP and ET decreased in winter. However, in
summer, high VPD and temperature imposed larger limiting
effects on GPP than ET, which caused a smaller eWUE in
summer. This limiting effect was especially obvious at the
AU-Wac site because VPD became increasingly important for
GPP during summer compared to winter (Kilinc et al 2013).
Meanwhile, since both GPP and LAImax at AU-Wac were
larger in summer whereas the corresponding eLUE was
relatively smaller (p< 0.01), eLUE was negatively correlated
with LAImax (supplementary figure S3) as with VPD. At the
grassland site, dry winter (supplementary figure S1) caused
SWC and LAI to decline significantly compared to summer
(data not shown), which decreased canopy photosynthesis and
transpiration and further decreased eLUE substantially but not
significantly affected eWUE. At AU-How, as a combination
of trees and seasonal grass, savannas have larger LAI in
summer resulting in a larger GPP. Meanwhile, PAR in winter
at AU-How was comparable to that in summer. Conse-
quently, eLUE in summer at this site was larger than that in
winter (p< 0.001). Similarly, both GPP and ET in winter
significantly decreased resulting from senescence of C4 grass
and effects of meteorological variables, but the decrease in
GPP was stronger than the decrease in ET at AU-How,
leading to a smaller eWUE. Contrarily, at AU-Dry the
decrease in ET exceeded the decrease in GPP resulting in a
larger eWUE in winter. This asynchronous response of GPP
and ET to climatic variables or LAI and thus variations of
eWUE are in good agreement with previous findings in China
(Yu et al 2008).

5. Conclusions

Climate drivers are critical in regulating water cycling (and
consequently SWC) and LAI through their long term influ-
ences on ecosystem structure and functioning (Kanniah
et al 2011). Understanding the spatial patterns of eLUE and
eWUE at multiple time-scales and their underlying environ-
mental control mechanisms is of great significance for esti-
mating ecosystem carbon budgets and water carrying capacity
under changing hydrothermal conditions (i.e., climate change)
(Yu et al 2008). In this study, we investigated the relation-
ships between eLUE and eWUE versus climate factors, SWC
and vegetation dynamics across diverse climatic regimes with
environmental gradients. Across biomes, eLUE and eWUE
were tightly and coherently correlated with climate drivers,
particularly VPD (and consequently SWC), at multiple time-
scales. For any specific biome, eLUE and eWUE were sig-
nificantly different between summer and winter except eWUE
for savannas and the grassland. LAI played an important role
in influencing eLUE and eWUE in summer season. Our
results provide valuable information for predicting the spatial
pattern of eLUE and eWUE at multiple time-scales across
Australian biomes. Also this study improves understanding of
the responses of ecosystem functional traits to gradients in
water availability and temperature, which in turn enables
improvements of estimating carbon and water fluxes on a
large spatial scale.
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Supplementary Information 

1. Eddy Covariance Flux Sites 

The dominant woody species differ among the sites. The AU-How and AU-Dry sites are 

Eucalyptus tetrodonta/Eucalyptus miniata dominated savannas (tree height 12 m), which are 

widely distributed across tropical Australia (Hutley et al., 2011). The AU-Ade site is 

dominated by Eucalyptus tectifica and Corymbia latifolia (tree height 16 m) as a result of the 

finer textured and poorly drained soils. The canopy dominant tree species at the AU-Asm site 

is the N2 fixing species Acacia aneura, which is 6.5 m tall on average.  Each of these sites 

(AU-How, AU-Dry, AU-Ade and AU-Asm) are classified as savanna, a biome defined by a 

discontinuous tree canopy with a grassy understory (Eamus &  Prior, 2001) experiencing 

seasonality in rainfall. The grassland AU-Stp is dominated by Mitchell grass within an 

extensive tussock grassland ecosystem that occurs on heavily cracking clay soils. The AU-

Tum site is classified as a wet sclerophyllous forest and is dominated by Eucalyptus 

delegatensis (tree height 40 m). The AU-Wac site is an 300-year-old growth stand dominated 

by Eucalyptus regnans (tree height 75 m) with a temperate rainforest understory consisting of 

Pomaderris aspera and Olearia argophylla (tree height 10-18 m) (Kilinc et al., 2013).  

 

2. Flux Gap Filling and Partitioning method 

Half-hourly carbon and water fluxes, rainfall, air and soil temperature, soil water content, 

absolute humidity, downward shortwave radiation and net radiation were measured using an 

eddy covariance system and associated meteorological and soil moisture sensors installed at 

each site. PAR and ET were calculated as downward shortwave radiation (unit: W m
-2

) times 

0.5 and latent heat flux (unit: W m
-2

) divided by the latent heat of vaporization (2450 J g 

H2O
-1

), respectively. Water and CO2 fluxes were processed through OzFlux level 2 (i.e., 

QA/QC) and level 3 (e.g. rotation, correction for frequency attenuation, and density-flux 
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(WPL) corrections) using standardized methodology (Eamus et al., 2013). The post 

processing of the quality controlled data to fill gaps in meteorology, soil moisture and fluxes 

as well as partitioning NEE into GPP and ecosystem respiration was performed using the 

Dynamic INtegrated Gap filling and partitioning for Ozflux (DINGO) system. The system 

was coded in Python and consisted of modules to gap fill meteorological variables (air 

temperature, specific humidity, wind speed and barometric pressure) using nearby Bureau of 

meteorology (www.bom.gov.au) automatic weather stations that were correlated and 

corrected to tower observations. All radiation streams were gap-filled using a combination of 

MODIS albedo products (MCD43 BRDF-Albedo suite) and Bureau of Meteorology (BoM) 

gridded global solar radiation and gridded daily meteorology from the Australian Water 

Availability Project data set (BoM AWAP) (Jones et al., 2009). Precipitation was gap-filled 

using either nearby BoM stations or BoM AWAP. Soil temperature and moisture were filled 

using the BIOS2 land surface model (Haverd et al., 2013) run for each site forced with BoM 

AWAP data.  Gap filling of fluxes were performed using an Artificial Neural Network (ANN) 

model using a multilayer network of full connectivity following Beringer et al. (2007). 

Training was done using gradient information in a truncated Newton algorithm. NEE and the 

fluxes of sensible, latent and ground heat fluxes were modelled using the ANN with 

incoming solar radiation, VPD, soil moisture content, soil temperature, wind speed and 

MODIS EVI as inputs. The Ustar threshold for each site was determined following 

(Reichstein et al., 2005) and night time observations below the Ustar threshold were replaced 

with ANN modelled values of ecosystem respiration using soil moisture content, soil 

temperature, air temperature and MODIS EVI as inputs. The ANN model for ecosystem 

respiration was applied to daylight periods to estimate daytime respiration and GPP was 

calculated as the difference between net ecosystem exchange and ecosystem respiration. 
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Table S1. La Thuile code, site name, latitude (Lat), longitude (Long), year of observations, altitude (Alt), biomes (Evergreen Broadleaf Forests, 

EBF; Savannas, Savn; Grasslands, Grass), mean maximum annual temperature (Tmax), mean minimum annual temperature (Tmin), mean annual 

precipitation (MAP), mean annual minimum leaf area index (LAImin) and mean annual maximum LAI (LAImax) during observation intervals for 

the study sites.  

La Thuile code Site name Lon Lat Year Alt  

(m) 

Biomes Tmax 

(℃) 

Tmin 

(℃) 

MAP  

(mm) 

LAImin-LAImax 

(m
2
/m

2
) 

AU-How Howard 

Springs 

131.15 E 12.50 S 2004-2008 64 Savn 39.3 12.2 1201 1.23-2.16 

AU-Ade Adelaide River 131.12 E 13.08 S 2007-

2009.05 

90 Savn 38.0 11.7 1852 0.73-2. 04 

AU-Dry Dry River 132.37 E 15.26 S 2009-

2012.09 

175 Savn 40.6 8.9 995 1.03-1.66 

AU-Stp Sturt Plains 133.35 E 17.15 S 2008-2012 250 Grass 42.7 6.2 695 0.38-1.03 

AU-Asm Alice Springs 133.25 E 22.28 S 2010.09-

2013.09 

606 Savn 40.8 0.2 335 0.27-0.47 

AU-Tum Tumbarumba 148.15 E 35.66 S 

 

2008-2012 1200 EBF 29.3 -2.9 1000 4.06-5.58 

AU-Wac Wallaby Creek 145.19 E 37.43 S 

 

2006-2008 720 EBF 33.1 -0.1 1595 0.98-5.01 
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Figure S1. Average annual precipitation contour map of Australia in 30 years from 1976 to 

2005 (statistics by Bereau of Meteorology, Australia), spatial distribution of selected sites and 

average monthly climate over the respective observation periods for each site (Table 1). T 

indicates temperature, Prcp indicates precipitation, PAR indicates photosynthetically active 

radiation, and VPD indicates the vapor pressure deficit. 
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3. Wavelet transform example 

The Morlet mother wavelet function can be represented as: 

  
2

01/4 /2

0

i
e e
         (1)  

where 0  is the frequency and is taken as 6 to make above function have zero mean and be 

localized in both time and frequency space. To ensure the wavelet transform at different 

scales are comparable to each other and the transforms of other time series, the  0   

wavelet function at each scale s  is normalized as: 

    
1/2

0

t

s


   

 
  
 

  (2) 

where t  is the time step of the time series. Then the continuous wavelet transform of a 

discrete time series nx  is the convolution of nx  with a scaled and translated Morlet mother 

wavelet: 

  
 1

0

*
N

n t

t

t n t
W s x

s








 
  

 
   (3) 

where n  indicates the localized time index, N is the number of nx  and  * indicates the 

complex conjugate. The scale s  is usually given as fractional powers of two: 

 0 2 , 0,1,...,j j

js s j J    (4) 

where 0s is the smallest resolvable scale and generally taken to be 2 t , j indicates the scale 

sampling step and given to be 1/12 here and  1

0log 2, /J j N t s  indicates the number of 

scales. Then the reconstructed time series at scale k is the sum of the real part of the wavelet 

transform over k  to J  scales: 

 
 

  1/2

, 1/2

0 0

J
n j

n k

j k j

R W sj t
x

C s

 

 

    (5) 

where R  indicates the real part of complex and C  is a constant of 0.776.      
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Figure S2. eWUE reconstruction at hourly, daily, monthly, seasonal and yearly scales using 

the wavelet transform at the Howard Springs site from 2004 to 2008. The reconstructed time 

series removes the higher frequency information in lower scales. 

 

4. Relationships of eLUE and eWUE to LAImax 

Correlations between LAImax with eLUE and eWUE among biomes were not found within all 

sites. In contrast, for example, there was a significant decrease in eLUE and eWUE with 

LAImax increasing at AU-Wac site. Similar to climate variables, the correlation among biomes 

became stronger as time-scale increased.  
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Figure S3. Relationships between (left) eight day (eLUE8d), monthly (eLUEm) and yearly 

(eLUEyr) eLUE and mean maximum LAI (LAImax) and between (right) eight day (eWUE8d), 

monthly (eWUEm) and yearly (eWUEyr) eWUE and LAImax for seven sites. Bars indicate 

standard annual deviations of eLUE, eWUE or LAImax. Also shown are logarithmically or 

linearly fitted functions, coefficients of determination (R
2
) and p values. 
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