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Diabetic foot ulcers (DFUs) are one of the most common complications of diabetes.
Identifying the presence of infection and ischemia in DFU is important for ulcer examination
and treatment planning. Recently, the computerized classification of infection and
ischaemia of DFU based on deep learning methods has shown promising
performance. Most state-of-the-art DFU image classification methods employ deep
neural networks, especially convolutional neural networks, to extract discriminative
features, and predict class probabilities from the extracted features by fully connected
neural networks. In the testing, the prediction depends on an individual input image and
trained parameters, where knowledge in the training data is not explicitly utilized. To better
utilize the knowledge in the training data, we propose class knowledge banks (CKBs)
consisting of trainable units that can effectively extract and represent class knowledge.
Each unit in a CKB is used to compute similarity with a representation extracted from an
input image. The averaged similarity between units in the CKB and the representation can
be regarded as the logit of the considered input. In this way, the prediction depends not
only on input images and trained parameters in networks but the class knowledge
extracted from the training data and stored in the CKBs. Experimental results show
that the proposed method can effectively improve the performance of DFU infection and
ischaemia classifications.
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1 INTRODUCTION

The diabetic foot ulcer (DFU) is a complication of diabetes with high incidence Armstrong et al.
(2017). According to the estimation of the International Diabetes Federation Atlas et al. (2015), 9.1
million to 26.1 million people with diabetes develop foot ulcers each year in the world. For people
with diabetes, the presence of DFU can result in amputation and even increase the risk of death
Walsh et al. (2016). Identifying whether the DFU is infection and ischaemia is important for its
assessment, treatment, and management Jeffcoate and Harding (2003), where the infection is defined
as bacterial soft tissue or bone infection in the DFU and ischaemia means inadequate blood supply
Goyal et al. (2020). Classification of DFU infection and ischaemia by computerized methods is thus a
critical research problem for automatic DFU assessment.

Traditional methods for diagnosis of DFU employ hand-crafted features followed by a classifier
Veredas et al. (2009); Wannous et al. (2010); Wang et al. (2016). However, research in literature has
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shown that learned features by deep neural networks are more
effective than traditional hand-crafted features LeCun et al.
(2015). Extensive research has been done to increase the
performance of computerized automatic medical image
classification Litjens et al. (2017), where methods based on
deep learning LeCun et al. (2015) are very popular in this field
because they perform significantly better than other techniques Li
et al. (2014); Kumar et al. (2016); Goyal et al. (2020); Wang et al.
(2020); Cao et al. (2021).

The most widely used deep learning method in medical image
classification is the convolutional neural network (CNN) Gulshan
et al. (2016); Albawi et al. (2017). CNNs can effectively extract
useful features for image classification He et al. (2016); Tan and
Le (2019), object detection Redmon et al. (2016); Zhao et al.
(2019), image segmentation Chen et al. (2018); Hesamian et al.
(2019); Xiao et al. (2021) and many other vision tasks LeCun et al.
(2015). With the availability of large-scale training data and high-
performance modern GPUs and ASICs, methods based on CNNs
have greatly improved the accuracy of image classification.
Popular CNNs for general image classification tasks include
AlexNet Krizhevsky et al. (2012), VGG Simonyan and
Zisserman (2014), ResNet He et al. (2016), and EfficientNet
Tan and Le (2019). These networks usually serve as the
backbone of a medical image classification network, or directly
apply to medical image classification by transfer learning with
pre-trained parameters on large-scale datasets, e.g., ImageNet
Deng et al. (2009). In practice, collecting and labeling medical
images are costly. Transfer learning is thus an effective way to
solve the problem of the lack of medical training data Shie et al.
(2015); Shin et al. (2016); Cheplygina et al. (2019); Chen et al.
(2020a).

Other emerging techniques for image classification include
vision transformer Dosovitskiy et al. (2020); Touvron et al.
(2020); Liu et al. (2021) and contrastive learning Wang et al.
(2020); Jaiswal et al. (2021). Vision transformer methods are
based on the attention mechanism, where an input image is split
into small patches and the vision transformer can learn to focus
on the most important regions for classification. Contrastive
learning usually performs in an unsupervised way, where the
network learns to minimize intra-class distance and maximize
inter-class distance. The networks trained by contrastive learning
perform well on the subsequent tasks like image segmentation but
their classification accuracies are still inferior to those of state-of-
the-art supervised methods.

However, existing medical image classification networks do
not explicitly consider class knowledge in the training data when
performing prediction. The training of existing networks involves
the optimization of network parameters, where the class
knowledge in the training data is extracted implicitly. In the
testing, the trained networks process an input image into a high
dimensional representation through trained parameters, where
the class knowledge in the training data is not explicitly involved
in the pipeline. To better utilize the class knowledge in the
training data, we propose class knowledge banks (CKBs) that
can effectively extract class knowledge from the training data, and
the extracted class knowledge can directly participate in the
prediction process. A CKB consists of many trainable units

that can represent class knowledge from different perspectives.
The average similarity between a representation extracted from
an input image and knowledge units in the CKB can be used as a
class probability. In this way, the class knowledge in the training
data is explicitly utilized. Besides, the proposed CKB method can
handle class imbalance as each class is given the same importance
in CKBs. As a result, the network with the CKB is able to achieve
state-of-the-art classification performance in the DFU image
dataset (Goyal et al. (2020)). In summary, we make the
following contributions:

• We propose a class knowledge bank (CKB) method that can
explicitly and efficiently extract and utilize class knowledge
in the training data.

• We show that the proposed CKB is good at handling class
imbalance in the DFU image classification dataset.

The remainder of the paper is organized as follows. We first
briefly review the related work in Section 2. Then we describe the
proposed method in detail in Section 3. Sections 4, 5 present
experimental results and discussions. We conclude the paper in
Section 6.

2 RELATED WORK

In this section, we briefly review the related work on image
classification, including convolutional neural networks, vision
transformers, and contrastive learning.

2.1 Convolutional Neural Networks
Convolutional neural networks (CNNs) are the most widely used
technique for image classification LeCun et al. (2015). CNNs
utilize multiple convolutional kernels in each layer and multiple
layers to extract and process features from low levels to high
levels. Since the success of AlexNet Krizhevsky et al. (2012) in
image classification in 2012, a lot of methods based on CNN have
been proposed to tackle this problem, and the performance of
image classification on large datasets, e.g., ImageNet Deng et al.
(2009), has been significantly improved. Many medical image
classification methods are based on CNNs Li et al. (2014); Kumar
et al. (2016); Anwar et al. (2018); Yadav and Jadhav (2019); Feng
et al. (2020). Typical networks for image classification include
VGG Simonyan and Zisserman (2014), ResNet He et al. (2016),
Densenet Huang et al. (2017), Efficientnet Tan and Le (2019), and
RegNet Radosavovic et al. (2020). These networks follow the
structure of deep CNNs (to extract feature) and fully-connected
(FC) layers (to predict classes). After training, the prediction
depends on the input image and parameters in CNNs and FC
layers, without explicit use of the class knowledge in the
training data.

2.2 Vision Transformers
The transformer model was firstly proposed for natural language
processing Vaswani et al. (2017). The model uses an attention
mechanism Gao et al. (2021); Wang et al. (2017) to capture the
correlation within tokens and learns to focus on important
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tokens. Dosovitskiy et al. (2020) first applied the transformer to
image classification and achieved an even better performance
than CNNs on the ImageNet dataset. Such a model is called vision
transformer, where an input image is divided into patches and
these patches are regarded as tokens to feed into the network. The
vision transformer can learn to focus on important regions by the
attention mechanism to predict class labels. Vision transformers
have also been applied in medical image classification Dai et al.
(2021). Furthermore, knowledge distillation Hinton et al. (2015);
Wei et al. (2020) from the model based on CNN is shown to be
effective in improving the performance of the vision transformer
Touvron et al. (2020). Instead of simply regarding image patches
as tokens, Yuan et al. proposed a tokens-to-token (T2T) method
to better tokenize patches with the consideration of image
structure Yuan et al. (2021). The T2T method achieves better
accuracy using fewer parameters compared with the vanilla vision
transformer Dosovitskiy et al. (2020).

2.3 Contrastive Learning
Contrastive learning aims at learning effective representations by
maximizing the similarity between positive pairs and minimizing
the similarity between negative pairs Jaiswal et al. (2021). It
usually performs in a self-supervised manner, where positive
pairs are from different augmentations of the same sample
and negative pairs are simply different samples. SimCLR
constructs contrastive loss by a large batch size, e.g., 4,096, to
fully explore the similarity in negative pairs Chen et al. (2020b).
Followed by SimCLR, SimCLRv2 achieves a better performance
than SimCLR by leveraging bigger models and deeper projection
head Chen et al. (2020c). Since contrastive learning requires a
large number of representations of negative pairs, He et al.
utilized a queue to store the representations of samples and
updated the queue via a momentum mechanism He et al.
(2020), which is shown to be more effective than sampling
representations from the last epoch Wu et al. (2018).
Although these contrastive learning methods achieve good
performance on image classification by fine-tuning with few
labeled samples, their performances are still inferior to those
of state-of-the-art supervised methods.

Existing image classification networks do not explicitly take
the class knowledge in the training data into account when
performing prediction. To explicitly leverage class knowledge
in the training data, we propose the so-called class knowledge
bank method that is able to extract class knowledge from the
training data, and the extracted class knowledge can directly
participate in the prediction process.

3 METHODS

3.1 Proposed Network Structure
Given an input medical image x, the goal of image classification is
to produce its class y ∈ {0, 1, . . . , N − 1}, where N is the number
of classes. Existing deep neural networks for image classification
usually extract discriminative features (representations) through
a layer-by-layer structure, and directly yield the class from
extracted features by multilayer perceptrons (MLPs). We

introduce the class knowledge bank into the traditional
pipeline to enable explicit utilization of class knowledge in the
training data. As shown in Figure 1, the input image x is first fed
to an encoder and then a projection head to extract a high-level
representation r ∈ RD

r0 � Encoder(x)
r � Projection(r0) (1)

where D is the dimension of the extracted representation. The
projection head is introduced for two main purposes. Firstly, it
can transfer the representation extracted by the encoder to a space
that is suitable for contrastive learning, and thus improves the
quality of the representation. Secondly, the representation from
the encoder does not contain information specific to diabetic foot
images as the encoder is pre-trained on a large-scale natural
image dataset and froze when training the proposed network. The
projection head can learn specific useful information from the
diabetic foot dataset to improve classification performance. The
extracted representation r is then used to compute the similarity
with units in CKBs. The computed similarity can be regarded as
the logits and used to build a contrastive loss to train the network.

3.2 Class Knowledge Bank
Each class of images has its properties, such as color and
structure, which can be used to distinguish them from other
classes of images. The knowledge of a class should contain these
properties from different perspectives to comprehensively
describe the class. The CKB method is proposed to achieve
this goal and one CKB is designed to represent the knowledge
of one class. A CKB consists of a number of units that can
represent class knowledge from different perspectives. Each unit
in the CKB is of the same size as the extracted representation r
and there are M units in a CKB. The size of a CKB is thus
M ×D. For image classification with N classes, we need N CKBs
to store all the class knowledge. A CKB for class i can be
represented as Ci

Ci � {u1
i , u

2
i , u

3
i , . . . , u

M
i } (2)

where u denotes the unit in the CKB. The average similarity si
between the Ci and the extracted representation r can be
measured by the mean similarity across units

si � 1
M

∑
j

cos(uj
i , r) (3)

where cos (·, ·) is the cosine similarity

cos(uj
i , r) � uj

i · r
‖ uj

i ‖‖ r ‖
. (4)

A large si indicates the representation is close to the class i,
which means the input x has a high probability of class i.

The measured similarities between the representation and the
CKBs can be seen as the logits of the input image, and thus can be
used to compute probabilities of classes through softmax function

pi � exp(si)
∑N−1

k�0 exp(sk)
(5)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 9 | Article 8110283

Xu et al. Classification of Diabetic Foot Ulcers

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


where pi is the probability of class i. Based on the similarities, we
define the following contrastive loss

LCON(C, r, y) � − 1
M

∑
j

cos(uj
y, r)

+ 1
N − 1

∑
i≠y

1
M

∑
j

cos(uj
i , r).

(6)

Label y serves as the index of the correct class. Minimizing this
contrastive loss is equivalent to maximizing the similarity
between r and units in the correct CKB, and to minimizing
the similarity between r and units in other CKBs. The final
training loss is a combination of the above contrastive loss
and cross-entropy loss LCEL:

L � LCON(C, r, y) + LCEL(s, y) (7)

where s � {s0, s1, . . . , sN−1} are logits (represented by averaged
similarities in (3)) of the input.

The units in CKBs are randomly initialized and then
optimized through back-propagation. The network will try to
extract the class knowledge into the CKBs with the objective of
minimizing the designed contrastive loss in (6). In this way, the

proposed CKB method is more effective in utilizing knowledge in
the training data than existing contrastive learning methods, e.g.,
end-to-end mechanism Oord et al. (2018), memory bank Wu
et al. (2018) and momentum contrast He et al. (2020). This
effectiveness is mainly derived from two aspects. Firstly, the
proposed CKBs do not rely on a large number of specific
samples. Instead, CKBs can learn to extract class knowledge
and represent them by the units in the CKBs. Since the CKBs
are optimized on the whole training dataset, they contain more
comprehensive knowledge than some specific samples. Secondly,
a small number of, e.g., 64, units in a CKB can represent the
knowledge of one class very well, which can greatly reduce the
computational complexity and memory usage compared with
existing contrastive learning methods that usually require
thousands of samples in one training iteration.

Figure 2 compares the proposed method and existing popular
image classification methods. In existing image classification
networks, parameters are mainly weights that are trained via
back-propagation using the training data. The classification is
achieved by directly predicting class logits from the
discriminative representation extracted from the encoder. In
such process, class knowledge in the training data is not

FIGURE 1 |Overview of the proposed network. The encoder and projection head embed the input image x into a representation r. The average similarity between
the representation r and the unit uj

i in the class knowledge bank (CKB) Ci is measured as the logit of x for class i. The CKBs are parameterized by a matrix of dimension
N ×M × D, whereN is the number of classes,M is the number of units in each CKB, and D denotes the dimension of a unit. The CKBs are randomly initialized and can be
trained through back-propagation.

FIGURE 2 | Comparison between common classification networks and the network with the proposed class knowledge banks. A common image classification
network on the left is trained on the training data. After training, class knowledge in the training data only functions through the network weights. By contrast, except for
the network weights, the proposed class knowledge banks can learn class knowledge from the training data and store the knowledge. The learned knowledge in the
CKBs participates in the classification process by measuring the similarity between the CKBs and the representation of the input.
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explicitly utilized as the network is trained to focus on extracting
more discriminative representation from the input. As shown in
Figure 2, the network with the proposed CKBs has a different
pipeline of producing class logits. The CKBs learn and represent
class knowledge through units parameterized by vectors. Then
the learned class knowledge in the CKBs explicitly participates in
the classification process by measuring the similarity between the
units in the CKBs and the representation of the input. In this way,
the class knowledge in the training data not only implicitly
functions through network weights but explicitly works in the
form of class similarity.

3.3 Encoder and Projection Head Structures
The encoder is concerned with extracting a discriminative
representation from an input image. Training the network
with an encoder from scratch on medical image datasets is not
effective since medical datasets are usually comparatively small.
Thus, we employ a pre-trained image classification network
Touvron et al. (2020) that is trained on ImageNet as the
encoder in our proposed network. This strategy is shown to be
very effective for many medical image processing tasks when
training datasets are small Shin et al. (2016); Goyal et al. (2020);
Chen et al. (2021). We further introduce a multilayer perceptron
(MLP) projection head as in Chen et al. (2020c) to transform the
output representation from the encoder into a suitable space for
contrastive learning. As shown in Figure 3, the input of the
projection head is the representation r0 extracted from the
encoder, and its output is the transformed representation r
used for the following contrastive learning. The MLP
projection head includes three linear layers and the first two
linear layers are followed by batch normalization (BN) Ioffe and
Szegedy (2015) and ReLU activation Nair and Hinton (2010). The
output of the last linear layer is only processed by batch
normalization without ReLU activation.

4 RESULTS

We use the diabetic foot ulcer (DFU) dataset in Goyal et al. (2020)
to evaluate the performance of the proposed method. The DFU
dataset includes ischaemia and infection parts that were collected
from the Lancashire Teaching Hospitals. There are 628 non-
infection and 831 infection cases, and 1,249 non-ischaemia and

210 ischaemia cases in the dataset. It can be observed that class
imbalance exists in this dataset. The collected images were labeled
by two healthcare professionals and augmented by the natural
data augmentation method which extracts region of interest
(ROI) ulcers by a learn-based ROI localization method Goyal
et al. (2018). After augmentation, the ischaemia and infection
parts include 9,870 and 5,892 augmented image patches,
respectively. Figure 4 shows samples of infection and
ischaemia images from this dataset. We use 5-fold cross-
validation and report on average performance and standard
deviation.

The proposed method is implemented by the deep learning
library Pytorch Paszke et al. (2017). We utilize the AdamW
Loshchilov and Hutter (2017) algorithm as the optimizer to
train models. The AdamW improves the generalization
performance of the commonly used Adam algorithm Kingma
and Ba (2014). The learning rate and weight decay are initialized
to be 5e-4 and 0.01, respectively. The step learning rate scheduler
is employed with the step size of 2 and the decay factor of 0.6. We
use the batch size of 64 and train models in 20 epochs. Several
popular image classification models are used for performance
comparisons, including CNN-based ResNet He et al. (2016),
RegNetY Radosavovic et al. (2020), EfficientNet Tan and Le
(2019), contrastive learning-based MoCo He et al. (2020), and
vision transformer-based DeiT Touvron et al. (2020). The input
images are resized to the resolution of 224 × 224 for all methods
for fair comparison.

To investigate whether larger models can lead to better
performance, we evaluate the performance of the above models
with different layers. Small and base DeiT models are denoted
as DeiT-S and DeiT-B. For fair comparisons, all the competing
methods use three linear layers with dimension 512 (first and
second layers are followed by ReLU) as their classifiers, where
the objective of the classifiers is to yield the logits. The
objective of the projection head in our method is to
produce discriminative representations. The number of units
in each CKB is 64. Batch normalization (BN) is not applied in the
MLP classifiers for comparison methods, since BN degrades these
networks’ performances. For all methods, we use the models pre-
trained on ImageNet and freeze their parameters except for the
parameters in theMLP classifiers,MLP projection head, and CKBs.
We find freezing the pre-trained parameters leads to better
performance than fine-tuning the whole network. For DeiT
with knowledge distillation, there are two classifiers or
projection heads that process the class token and distillation
token, and the final prediction is the sum of two logits. We use
accuracy, sensitivity, precision, specificity, F-measure, and area
under the ROC curve (AUC) to measure the performance of the
classification models.

Table 1 presents the DFU infection classification
performances of various methods. As shown in Table 1, larger
CNN models usually produce better results. The F-measure and
AUC score of ResNet-152 are superior to those of ResNet-101.
Similar results are also observed for RegNetY, where RegNetY-
16GF achieves better performances than RegNetY-4GF and
RegNetY-8GF. However, the performance differences for
EfficientNet with different sizes are not significant, and the

FIGURE 3 | Structure of projection head. Three linear layers are used
and the first two linear layers are followed with batch normalization (BN) and
ReLU activation. The input of the projection head is the representation r0
extracted from the encoder, and its output is the transformed
representation r used for contrastive learning.
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large model even performs slightly worse than small models.
MoCo with the backbone of ResNet-50 performs better than
the vanilla ResNet-50 for infection classification, showing that
the contrastive learning method helps the network learns more
discriminative representations for image classifications. Vision
transformer-based DeiT models trained with knowledge
distillation (denoted as DeiT-S-D and DeiT-B-D) perform
better than CNN models. This is reasonable as DeiT-B-D is
shown to perform better than the comparison CNN models on
ImageNet classification task Touvron et al. (2020). The
superior performance of DeiT-B-D when transferred for the
task of diabetic foot infection classification demonstrates its
robustness. We also observe a phenomenon similar with

Touvron et al. (2020) that knowledge distillation can
significantly improve the performance of DeiT. For
example, the F-measure and AUC score of DeiT-B-D are
76.72 and 83.26, which are better than those of DeiT-B
(F-measure 74.91 and AUC 81.58) by large margins. The
performance improvements of knowledge distillation for
DeiT may be due to the inherited inductive bias from the
CNN-based teacher model, e.g., RegNet Radosavovic et al.
(2020), where DeiT mainly consists of multilayer perceptrons
and attention modules.

Furthermore, when distilled DeiT is used in conjunction with
the proposed CKB, denoted by CKB-DeiT-B-D, further
performance improvements are obtained, leading to the best

FIGURE 4 | Sample images from the DFU dataset Goyal et al. (2020). (A) are non-infection images, (B) are infection images, (C) are non-ischaemia images and (D)
are ischaemia images.

TABLE 1 | Performance of binary classification on the DFU infection dataset.

Network Accuracy Sensitivity Precision Specificity F-measure AUC score

ResNet-18 74.20 ± 1.25 76.66 ± 2.82 73.08 ± 4.13 71.98 ± 2.98 74.72 ± 2.08 82.23 ± 1.26
ResNet-50 73.79 ± 1.31 76.96 ± 3.13 72.33 ± 2.93 70.75 ± 0.92 74.50 ± 1.98 81.44 ± 1.60
ResNet-101 74.63 ± 0.98 75.97 ± 0.88 73.88 ± 2.65 73.26 ± 1.37 74.89 ± 1.63 82.52 ± 0.81
ResNet-152 74.82 ± 1.02 76.80 ± 0.67 73.82 ± 2.42 72.82 ± 1.95 75.25 ± 1.17 82.78 ± 0.85

RegNetY-4GF 73.63 ± 1.50 75.92 ± 1.97 72.57 ± 2.72 71.37 ± 2.30 74.16 ± 1.53 81.33 ± 1.54
RegNetY-8GF 74.85 ± 1.51 76.72 ± 2.18 73.91 ± 3.18 73.00 ± 2.66 75.24 ± 1.89 81.90 ± 1.60
RegNetY-16GF 75.41 ± 0.95 77.42 ± 1.48 74.44 ± 2.61 73.51 ± 1.82 75.85 ± 0.75 83.02 ± 1.28

EfficientNet-B0 73.95 ± 1.06 77.81 ± 2.48 72.23 ± 3.51 70.19 ± 3.00 74.83 ± 1.75 81.77 ± 1.01
EfficientNet-B2 73.85 ± 1.21 77.64 ± 1.15 72.13 ± 3.34 70.09 ± 2.88 74.73 ± 1.70 81.58 ± 0.90
EfficientNet-B4 73.61 ± 1.17 77.24 ± 2.28 72.05 ± 3.78 70.16 ± 3.07 74.46 ± 1.66 81.70 ± 1.08
EfficientNet-B6 73.43 ± 0.54 75.77 ± 1.85 72.40 ± 3.30 71.29 ± 1.69 73.97 ± 1.14 80.98 ± 1.10
EfficientNet-B7 72.79 ± 1.53 72.14 ± 3.10 73.10 ± 2.60 73.43 ± 3.16 72.54 ± 1.67 80.08 ± 1.26

MoCo 74.97 ± 2.01 74.06 ± 1.75 75.47 ± 4.37 75.96 ± 4.08 74.68 ± 2.22 82.77 ± 1.46

DeiT-S 73.65 ± 0.64 77.22 ± 1.79 72.02 ± 3.18 70.14 ± 1.89 74.47 ± 1.62 80.90 ± 0.95
DeiT-B 73.97 ± 0.83 78.09 ± 2.23 72.12 ± 3.40 69.97 ± 2.42 74.91 ± 1.63 81.58 ± 1.35
DeiT-S-D 73.98 ± 1.97 78.06 ± 2.07 72.21 ± 4.28 70.09 ± 3.81 74.93 ± 2.23 81.51 ± 1.81
DeiT-B-D 75.82 ± 1.96 79.96 ± 2.88 73.86 ± 3.33 71.88 ± 2.14 76.72 ± 2.11 83.26 ± 2.36

CKB-DeiT-S-D 75.18 ± 1.27 76.91 ± 2.15 74.36 ± 3.79 73.54 ± 3.44 75.53 ± 1.78 82.66 ± 1.28
CKB-DeiT-B-D 78.00 ± 0.93 79.16 ± 1.74 77.38 ± 2.68 77.00 ± 1.51 78.20 ± 0.94 84.78 ± 1.30
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performance for infection classification on all performance
metrics except sensitivity. As can be seen from Table 1, the
proposed CKB-DeiT-B-D performs better than the latest vision
transformer DeiT-B-D, and significantly better than other
comparison CNN-based methods in terms of all the reported
metrics except sensitivity. For instance, the proposed CKB-DeiT-
B-D achieves the best F-measure of 78.20 and the best AUC score
of 84.78, which are better than the results of 76.72 and 83.26
achieved by the second-best DeiT-B-D, and significantly better
than the results of 75.85 and 83.02 achieved by the CNN-based
RegNetY-16GF. The proposed CKB significantly improves the
precision and specificity of DeiT-B-D, e.g., improving precision
from 73.86 to 77.38 and specificity from 71.88 to 77.00. Also,

CKB-DeiT-S-D that combines the CKB with the small DeiT with
knowledge distillation performs better than the vanilla DeiT-S-D.
Although the proposed CKB-DeiT-B-D performs slightly worse
in terms of sensitivity, the performance improvements on all the
other metrics demonstrate the superiority of the proposed
method. In Figure 5, we compare the ROC curves of the
comparison methods. The methods that achieve the best AUC
score over the networks with the same architecture but different
layers are selected for comparison. It can be observed from
Figure 5 that our proposed CKB-DeiT-B-D produces a better
ROC curve than the comparison methods.

The proposed method also achieves the best accuracy,
sensitivity, F-measure, and AUC score on the DFU ischaemia

FIGURE 5 | ROC curves of different methods for the DFU infection
classification.

TABLE 2 | Performance of binary classification on the DFU ischaemia dataset.

Network Accuracy Sensitivity Precision Specificity F-measure AUC score

ResNet-18 88.30 ± 1.36 82.40 ± 3.48 93.23 ± 1.73 94.16 ± 1.03 87.43 ± 2.03 95.48 ± 0.89
ResNet-50 88.13 ± 1.77 81.46 ± 3.49 93.80 ± 1.42 94.76 ± 0.59 87.16 ± 2.26 95.09 ± 1.24
ResNet-101 89.95 ± 1.29 85.17 ± 2.50 94.10 ± 1.25 94.78 ± 0.55 89.38 ± 1.37 96.29 ± 1.17
ResNet-152 88.62 ± 2.18 82.45 ± 3.16 93.92 ± 2.22 94.84 ± 1.55 87.79 ± 2.42 95.58 ± 1.15

RegNetY-4GF 89.55 ± 0.89 83.64 ± 1.53 94.66 ± 1.53 95.41 ± 1.05 88.80 ± 1.34 95.92 ± 1.33
RegNetY-8GF 89.36 ± 1.23 83.64 ± 1.61 94.45 ± 0.60 95.13 ± 0.45 88.70 ± 0.80 95.59 ± 1.07
RegNetY-16GF 90.48 ± 1.01 85.54 ± 2.00 94.79 ± 1.54 95.40 ± 1.19 89.91 ± 1.25 96.43 ± 1.03

EfficientNet-B0 87.26 ± 1.74 79.07 ± 3.89 94.38 ± 1.11 95.38 ± 0.68 85.99 ± 2.29 94.81 ± 0.90
EfficientNet-B2 88.23 ± 0.71 81.17 ± 2.42 94.37 ± 1.46 95.20 ± 1.23 87.24 ± 1.21 95.67 ± 0.92
EfficientNet-B4 87.24 ± 1.77 79.11 ± 3.75 94.27 ± 1.30 95.31 ± 0.67 85.98 ± 2.33 94.46 ± 1.22
EfficientNet-B6 87.40 ± 2.38 80.57 ± 4.96 93.41 ± 0.95 94.34 ± 0.95 86.41 ± 2.50 94.53 ± 1.21
EfficientNet-B7 86.41 ± 2.40 78.57 ± 4.95 93.06 ± 0.90 94.21 ± 0.58 85.11 ± 2.94 94.64 ± 1.62

MoCo 89.74 ± 1.29 86.01 ± 3.24 92.92 ± 1.86 93.56 ± 1.53 89.28 ± 1.41 95.70 ± 1.01

DeiT-S 88.89 ± 2.13 82.35 ± 4.19 94.58 ± 1.08 95.38 ± 0.64 87.99 ± 2.54 96.45 ± 0.95
DeiT-B 89.10 ± 2.32 81.76 ± 5.02 95.84 ± 1.13 96.50 ± 0.80 88.13 ± 2.68 96.19 ± 1.49
DeiT-S-D 89.96 ± 1.88 83.44 ± 3.65 95.96 ± 1.06 96.58 ± 0.63 89.21 ± 1.96 97.06 ± 1.07
DeiT-B-D 89.69 ± 1.93 82.51 ± 3.48 96.29 ± 0.63 96.88 ± 0.17 88.83 ± 2.12 96.61 ± 1.01

CKB-DeiT-S-D 90.27 ± 1.90 84.09 ± 4.00 95.97 ± 1.41 96.59 ± 0.86 89.57 ± 2.04 97.28 ± 0.91
CKB-DeiT-B-D 90.90 ± 1.74 86.09 ± 2.98 95.00 ± 1.29 95.59 ± 0.71 90.30 ± 1.83 96.80 ± 1.16

FIGURE 6 | ROC curves of different methods for the DFU ischaemia
classification.
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dataset. As shown in Table 2, the performances of different
methods on the DFU ischaemia dataset are better than their
performances on the DFU infection dataset since the
characteristics of ischaemia are more discriminative as shown
in Figure 4. The precision and specificity of the proposed
method are better than the CNN-based methods (ResNet,
RegNetY, and EfficientNet) and contrastive learning method
(MoCo) but inferior to the DeiT-B-D. The comparison methods
all seem to produce high precision and specificity but
significantly lower accuracy, sensitivity, and F-measure. The
proposed CKB-DeiT-B-D produces more balanced results
across all the reported metrics. The proposed CKB-DeiT-S-D
achieves the best AUC score but the improvement of the ROC
curve of our method shown in Figure 6 is not significant
compared with DeiT-S-D. Overall, the proposed CKB using
DeiT Touvron et al. (2020) as the encoder achieves the best
infection and ischaemia classification performances in terms of
most metrics.

5 DISCUSSIONS

The main finding of this research is that better utilization of class
knowledge in the training data can improve the performance of
DFU image classifications. We have proposed an approach called
class knowledge bank which can explicitly and effectively extract
class knowledge from the training data and participate in
prediction process in the testing. Experimental results have
demonstrated the effectiveness of the proposed method in
improving classification performances on both DFU infection
and ischaemia datasets.

Examples of classification results by the proposed method on
the infection and ischaemia datasets are presented in Figures 7, 8,
respectively. Correctly classified ulcer images (true negative and
true positive) are shown to have discriminative visual
characteristics, which are useful for image-based classifications.
For instance, true negative non-infection cases in Figure 7A are
clean and dry, while true positive infection cases in Figure 7B are

FIGURE 7 | Examples of classification results of the proposed method on the infection dataset. (A) true negative cases, (B) true positive cases, (C) false negative
cases and (D) false positive cases.

FIGURE 8 | Examples of classification results of the proposed method on the ischaemia dataset. (A) true negative cases, (B) true positive cases, (C) false negative
cases and (D) false positive cases.
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full of yellow secretion. For ischaemia classification examples, it is
observed from Figures 8A,B that color characteristic is very
different between true negative and true positive cases. A close
inspection of incorrectly classified cases in Figures 7C,D; Figures
8C,D suggests that many factors including lighting condition, size
of ulcers, secretion, subtle characteristic and model’s ability can
all affect classification results. This observation means that one
needs to carefully consider these factors in real applications.

The proposedmethod is good at handling class imbalance than
the comparison methods. As can be observed from Tables 1, 2, the
specificity of the comparison methods is significantly worse than the
sensitivity caused by the class imbalance on the infection dataset,
while the proposed method can achieve high sensitivity and
specificity simultaneously. Also, the proposed method produces
more balanced sensitivity and specificity than the comparison
methods on the ischaemia dataset. The advantage of the
proposed method in handling imbalance data is derived from the
structure of the class knowledge banks, where different CKBs have
the same units which give the same importance to different classes.

The proposed classification network is based on a pre-trained
powerful encoder as training a network from scratch on a
relatively small medical image dataset is not efficient. This is a
limitation of the proposed network because its performance relies
on the pre-trained encoder. We believe that one can achieve better
DFU classification performances without relying on a pre-trained
encoder when more training data are available. Another limitation is
that the proposed method does not consider the contrastive idea in
samples in the training data and units in class knowledge banks.
Incorporating this idea into the proposed method may further
improve DFU classification performances. This paper verifies the
performance of the proposed method on the DFU infection and
ischaemia datasets. It will be interesting to extend this research to
wider areas such as othermedical image classification tasks, including
binary or multi-class classification problems. The proposed method
also has the potential to work as an incremental learning method as
we can train additional class knowledge banks for incremental classes.
Its performance and characteristics for incremental learning remain
further investigation in the future.

6 CONCLUSION

In this paper, we proposed the method called the class knowledge
banks (CKBs) which can effectively extract class knowledge from
the training data and explicitly leverage the class knowledge in the
testing. The proposed method is an alternative means to produce
the logits instead of the usual linear classifiers in the literature.
The CKBs leverage their units to extract and represent class
knowledge from different perspectives and the similarities
between the representation of the input and the
corresponding CKBs can be regarded as the logits of the
input. The CKB can be trained through back-propagation
and be easily embedded into existing image classification
models. Experimental results on the DFU infection and
ischaemia datasets demonstrate the effectiveness of the
proposed CKB in DFU image classifications.
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