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1  |  INTRODUC TION

Knowledge of parasite biology and how environmental conditions 
affect parasite development can help design effective aquaculture 

management strategies. Innovation in parasite prevention benefits 
from deep knowledge of biology and behaviour of both fish hosts 
and parasites.1–7 Yet, the fish aquaculture industry continues to 
have to rely to a large extent on medicinal baths or osmotic shift to 
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Abstract
A decision support tool was developed to aid management of problematic parasites 
in marine fish aquaculture. The tool provides biologically relevant treatment intervals 
to interrupt the life cycle of ectoparasitic flatworms that occur in global kingfish and 
amberjack (Seriola spp.) aquaculture. Temperature-dependent life cycle parameters 
for the ‘skin flukes’, Benedenia seriolae and Neobenedenia girellae, and the ‘gill fluke’, 
Zeuxapta seriolae, were derived from published data and modelled using non-linear 
regressions. Increasing temperatures shortened the duration of most life cycle pa-
rameters of all parasites. Salinity had no effect on the timing of life cycle parameters 
but limited hatching success in hypo- and hypersaline conditions. The tool, named 
BeNeZe after the first two letters of each parasite genera, enables rapid determi-
nation of treatment intervals for two consecutive medicinal immersion or ‘bathing’ 
treatments—the first to kill adult flatworms attached to fish and the second to prevent 
maturity of new parasite recruits. As temperature increases, the interval between 
treatments and the ‘window’ within which the second treatment should be applied is 
reduced. The tool can be used for multi-species infections. The inclusion of parasite 
taxonomy, biology and behaviour as part of an integrated management strategy is 
reviewed. Available through an open access app, BeNeZe is intended to be applied 
in conjunction with farm biosecurity, surveillance, management measures and rec-
ognition of independent management units. BeNeZe can be used to reduce infec-
tion burdens, improve fish welfare and production and reduce treatment number and 
frequency.
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[Correction added on 17 May 2022, after first online publication: CAUL funding statement has been added.]  
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treat ectoparasitic protozoans, flatworms and sea-lice.8–12 Medicinal 
baths are more effective if they are applied when parasite infection 
intensities are low and when they are timed to interrupt parasite life 
cycles (i.e., treatment intervals or therapeutic windows). Repeated 
use of chemotherapeutants drives the development of resistance in 
ectoparasites given their high fecundity and short life cycles,13 thus 
strategically timed treatments are important because they alleviate 
treatment frequency and limit the amount of chemicals permeating 
into surrounding ecosystems.

Strategically timed medicinal bath treatments can account 
for temperature being a key influential factor for marine para-
site life cycle parameters. In ectoparasitic flatworms (Monogenea: 
Platyhelminthes), temperature influences egg size, egg energy 
content, egg embryonation period, hatching success, larva (on-
comiracidia) longevity, parasite size, development rate, fecundity 
and period of oviposition.14–16 The direct life cycle of monogene-
ans can be interrupted using two successive bath treatments to kill 
parasites attached to fish (Figure  1).17,18 The first treatment kills 
adult parasite populations on fish and the second kills immature, 
juvenile parasites that infect treated fish from eggs and larvae (on-
comiracidia) resident in and around the system or farm. Timing of the 
second treatment is important because it can be coordinated so that 
all eggs in the vicinity have hatched and so that it kills new parasite 
recruits before they mature, commence laying eggs and contaminate 
the environment (Figure 1). While individual systems can be treated 
in recirculating aquaculture facilities, for maximum benefit in open 
aquaculture, every sea pen on each farm (or independent manage-
ment unit [IMU]) must be treated within a short time frame.18,19

Global aquaculture of kingfish and amberjacks (Seriola spp.) 
is impacted by numerous pathogens and parasites20 with mono-
genean ectoparasites considered to be particularly limiting for 
industry expansion. The Seriola industry comprises four main spe-
cies including Seriola quinqueradiata Temminck & Schlegel, 1845, 
S.  lalandi Valenciennes, 1833, S.  dumerili (Risso, 1810) and S.  rivo-
liana Valenciennes, 1833 which are predominantly farmed in net 
pens (e.g., Japan, China, US, Chile and Australia), while production 

in recirculating aquaculture systems (RASs) on land is also gaining 
momentum (e.g., Europe, South Africa, Chile and New Zealand; 
Figure 2). Seriola quinqueradiata rank third in world production vol-
ume for farmed marine finfish species following Atlantic salmon 
and rainbow trout21 with considerable potential for further growth. 
Three parasite species are particularly problematic for production 
of Seriola spp. —the ‘skin flukes’, Benedenia seriolae (Yamaguti, 1934) 
Meserve, 1938 and Neobenedenia girellae (Hargis, 1955) Yamaguti, 
1963, and the ‘gill fluke’, Zeuxapta seriolae (Meserve, 1938) Price, 
1962, which occur in most regions where Seriola are farmed (Table 1). 
Neobenedenia girellae is widespread geographically and able to infest 
many different host fishes, including species that support commer-
cial fisheries, aquaculture and the ornamental trade.22

Monogeneans that live on the skin can cause mechanical damage 
to fish epidermis and can lead to secondary infection,23–26 while high 
gill monogenean burdens cause host anaemia.27 Monogeneans are 
commonly treated using hydrogen peroxide baths (75–100 ppm for 
up to 1 h) to kill parasites attached to fish.8,27,28 The eggs of these 
species bear long filamentous strands that tangle in aquaculture 
structures,5,14,29 so filter changes, net changes or net cleaning aid 
in removing parasite eggs and other biofouling. Previously proposed 
strategically timed treatments for B. seriolae and Z. seriolae were sug-
gested by Tubbs et al.17 at three temperatures in New Zealand, while 
in South Australia knowledge of factors that influence the B. seriolae 
life cycle has been applied to minimise infections in farmed yellowtail 
kingfish, S. lalandi.18,30 Brazenor and Hutson16 developed an online 
tool for fish farmers to determine appropriate treatment times for 
the cosmopolitan parasite N. girellae that accounted for a range of 
temperatures and salinities using barramundi, Lates calcarifer (Bloch, 
1790; Latidae) as the host model (http://www.marineparasites.com/
paratreatmentcal.html). Nevertheless, the information required to 
make informed parasite management decisions for the Seriola indus-
try has not been previously consolidated and is not available in open 
access or a format easily accessible to industry.

Expansion and retraction of aquaculture ventures around the 
globe can result in the loss of industry corporate knowledge. The 

F I G U R E  1  Schematic diagram showing key parasite life stages and representation of treatment schedules of (a) ‘skin fluke’ (i.e., Benedenia 
seriolae) and (b) ‘gill fluke’, Zeuxapta seriolae. Treatment 1 kills juvenile and adult stages attached to fish, while the biologically timed 
Treatment 2 is delivered when all eggs in the environment have hatched and oncomiracidia have infected fish but have not reached sexual 
maturity
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1658  |    HUTSON et al.

implementation pathway for scientific data to enable change in in-
dustry practice needs to be founded in open access literature and on 
other platforms readily accessible to and understood by farm man-
agers. Indeed, several mobile phone apps have been developed for 
the salmonid industry to assist with sea lice management including 
tools to help predict sea-lice development and infection pressure, 
treatment dosing and fish welfare during mechanical de-lousing 
processes.31,32 The aim of this review was to assimilate published 
and previously unpublished data for B. seriolae, N. girellae and Z. se-
riolae life cycle parameters at various temperatures and salinities 
to determine appropriate timing of treatments to interrupt parasite 
life cycles. This information formed the basis of a decision support 
tool provided through an open-access app, BeNeZe (https://benez​
eapp.cawth​ron.org.nz/) and website (https://beneze.cawthron.org.
nz/). BeNeZe (Benˈeasy; named after the first two letters of three 
monogenean parasite genera), provides guidelines for treatment of 
single and multi-species infections, parasite species diagnosis and 
surveillance. It is intended that the tool could accommodate changes 
and develop in its complexity and applicability as more information 
becomes available on monogenean life history parameters.

2  |  METHODS: PAR A SITE LIFE CYCLE 
PAR AMETERS AND MODEL S

Life cycle parameters (i.e., time to first hatch, time to last hatch, 
oncomiracidia longevity and time to maturity) measured at various 

temperatures and salinities were compiled for Benedenia seriolae, 
Neobenedenia girellae and Zeuxapta seriolae from available published 
literature and previously unpublished data (Figure 1, Table 2). Given 
limited life cycle data available, parasite data were combined ir-
respective of host species and country of origin (Table 2). No data 
were available for B.  seriolae oncomiracidia longevity. Life cycle 
parameters were obtained for a range of seawater salinities and 
temperatures, ranging between 10 and 50  ppt and 6 and 36.3°C, 
respectively. To provide conservative extension of the tool, pro-
posed thermal tolerance limits were assigned 1°C either side of the 
lowest and highest experimental temperatures where egg hatching 
was observed for each species (Table 3). For example, N. girellae eggs 
hatched at 18°C, but not at 15°C, and the proposed lower thermal 
tolerance limit was 17°C (Table 3). In the event the proposed thermal 
tolerance exceeded the true thermal tolerance limit, the extension 
was not applied. This occurred in one instance for B. seriolae eggs 
that hatch at 29.7°C ± 0.3°C,33 while Ernst et al.14 did not observe 
hatching at 30°C. Thus, 30°C is likely the true upper thermal toler-
ance limit for this species (Table 3). Hatching success (= egg viability) 
data were compiled for salinities ≥24 ppt to provide an estimate of 
optimal hatching temperature but were not included as a parameter 
in the tool (Figure 3). Thermal hatching optima were estimated as the 
maximum predicted value by 95% quantile polynomial regressions 
with hatching success as function of temperature. Where the day of 
hatching was estimated by authors the data were omitted and where 
the salinity of seawater was not indicated, it was assumed as 35 ppt. 
Oncomiracidia longevity data obtained ≤25 ppt were not used.

F I G U R E  2  Production statistics for global Seriola aquaculture obtained from FAO statistics21 and Clean Seas Seafood Limited Annual 
Reports.110 Currently, New Zealand does not have commercial scale production; however, a 600 t/annum recirculating aquaculture system 
for S. lalandi is under construction111
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The effect of temperature on the duration of four parasite life 
cycle parameters, namely time to first hatch, time to last hatch, on-
comiracidia longevity and time to sexual maturity, was tested using 
non-linear least squares models. The best fit for the models was ob-
tained using power regressions fitted using the formula:

where y is the number of days for each species to first, last hatch, on-
comiracidia longevity or sexual maturity at a water temperature t in 
°C, a is the number of days to first, last hatch, longevity or maturity at 
a water temperature of 0°C and b is a constant describing how quickly 
each life cycle parameter decreases with temperature. Models were 
validated by inspecting standardised residuals.

y = a ⋅ tb ,

TA B L E  1  Seriola hosts and localities for Benedenia spp., Neobenedenia spp. and Zeuxapta seriolae

Parasite species Host Seriola spp. Location (Ocean, Country) Origin Key sources

Benedenia seriolae Seriola dumerili NW Pacific, off Japan Captive 88

Seriola hippos Southern, off Australia Wild 89

Seriola lalandi Indian, off Australia Captive 90

Southern, off Australia Captive and wild 86,89

SW Pacific, off Australia Captive and& wild (KSH pers obs; 91)

SW Pacific, off New Zealand Captive and wild 17,92

NW Pacific, off Japan Captive 60

Seriola quinqueradiata NW Pacific, off Japan Captive 88,93

Benedenia humboldtia Seriola lalandi SE Pacific, off Chile Wild 59

Benedenia sp. Seriola lalandi NE Pacific, off California Captive 94

Neobenedenia girellae Seriola dumerili NW Pacific, off Japan Captive 88

NE Atlantic, off Canary Islands Captive 25

Seriola lalandi SE Indian, off Australia Captive 22

NW Pacific, off Japan Captive 61

Seriola rivoliana NE Pacific, off Hawaii Captive 22

Seriola quinqueradiata NW Pacific, off Japan Captive 88

Neobenedenia sp. Seriola lalandi SE Pacific, off Chile Captive and wild 95

Seriola lalandi NE Pacific, off México Captive 96

NE Pacific, off California Captive 94

Seriola rivoliana Land-based, México Captive 97

NE Atlantic, off Canary Islands Captive (wild sourced) 98

Zeuxapta seriolae Seriola dumerili Mediterranean, off Spain Captive and wild 99,100

Mediterranean, off Greece Captive 9

NW Pacific, off China Captive 101

NW Pacific, off Taiwan Captive 102

NW Pacific, off Japan Captive 8,88b

Seriola lalandi SE Indian, off Australia Captive and wild 103

Southern, off Australia Captive and wild 80,89

SW Pacific, off Australia Wild 67,91

SW Atlantic, off Brazil Wild 68

SE Pacific, off Chile Captive and wild 72

SW Pacific, off New Zealand Captive and wild 17,92

NE Pacific, off California Captive 104

SW Indian, off South Africa Captive 105

Seriola rivoliana E Atlantic, off Portugal Wild 106

Note: Seriola lalandi exhibits population subdivisions between some geographics areas and the reinstatement of Seriola aureovittata for the Northwest 
Pacific, and Seriola dorsalis for the Northeast Pacific is a point of contention in the scientific community; parasite–host records are provided as listed 
in the key sources indicated and in most cases identification through morphology or molecular means was not the primary aim of these reports.
aSynonymous with B. seriolae of Sepúlveda and González 2014.
bAs syn. Zeuxapta japonica.
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The lower and upper limits of treatment times in days were then 
calculated using:

The lower treatment limit presents the maximum time for all 
eggs in the surrounding environment to hatch and for oncomiracidia 
to infect fish. Assumptions were that documented oncomiracidia 
longevity is not equivalent to infectivity (AJM unpublished data).34 
As such, oncomiracidia infectivity was estimated as 50% of their 
documented lifespan.35 In the absence of longevity data for B. serio-
lae, infectivity was applied as per Z. seriolae, which occurs at a similar 
thermal tolerance range (Table 3).

The upper treatment limit represents the minimum time that 
parasites reinfect the fish and before they attain sexual maturity. 
Assumptions were that oncomiracidia and/or eggs at a later stage of 
development may be present in the environment and that parasites 
can infect fish immediately following the initial treatment. This is 
supported by laboratory experiments which showed that N. girellae 

oncomiracidia can infect fish immediately post-hatch (i.e., within 
15 min).36 A conservative approach to time to sexual maturity was 
suggested through the deduction of 24 h to allow for natural varia-
tion in the population where a small proportion of individuals may 
mature more quickly. Treatment limits for multiple species infection 
(i.e., two or three parasite species present in a farm) were deter-
mined from the range where species treatment intervals overlapped 
at a given temperature.

Temperature ceilings were applied to the decision support tool to 
ensure its suitability to real-world applications. A minimum low tem-
perature was applied at 10°C to accommodate winter sea surface 
temperatures (e.g., S.  lalandi farms Spencer Gulf, South Australia, 
Australia) while the maximum summer sea surface temperatures was 
applied at 30°C (e.g., S. dumerili farms Penghu Island, Taiwan). When 
using the tool, health managers should assess water temperature on 
the farm regularly and accommodate for changes in water tempera-
ture to the treatment plans as informed through surveillance. For 
example, seasonal changes such as winter to spring will result in ac-
celerated parasite development (see Appendix S1, BeNeZe manual).

Based on the modelling predictions and calculated treatment 
time limits, an interactive open-source web tool, BeNeZe (https://

Lower treatment limit = time to last hatch + (oncomiracidia longevity × 0.5),

Upper treatment limit = (time to sexual maturity) − 24 h.

TA B L E  2  Source of temperature and life cycle parameter data for monogenean parasites Benedenia seriolae, Neobenedenia girellae and 
Zeuxapta seriolae indicating host fish species and locality

Parasite species Host fish species Location Source
Reference 
no.

B. seriolae Seriola lalandi Australia Lackenby et al. 2007 30

New Zealand Tubbs et al. 2005 17

S. quinqueradiata Japan Ernst et al. 2005 14

Kearn et al. 1992 107

Hoshina and Matsusato 1967 33

S. dumerili Hirazawa 2019 45

N. girellae Lates calcarifer Australia Brazenor and Hutson 2015 16

Brazenor et al. 2020 15

Verasper variegatus Japan Hirazawa et al. 2010 108

S. dumerili Hirazawa 2019 45

Paralichthys olivaceus Bondad-Reantaso et al. 1995 109

Z. seriolae S. lalandi Australia AJM, unpublished data

New Zealand Tubbs et al. 2005 17

TA B L E  3  Assumed lower and upper thermal tolerance limits for monogenean parasites Benedenia seriolae, Neobenedenia girellae and 
Zeuxapta seriolae. Thermal tolerance limits were assigned 1°C below the lowest and 1°C above the highest experimental temperatures 
where egg hatching has been previously observed. Optimal thermal conditions were estimated based on egg-hatching success ≥25 ppt (see 
Figure 3)

Parasite species Lower thermal tolerance (°C) Upper thermal tolerance (°C)
Optimal thermal 
conditions (°C)

Benedenia seriolae 11.5 30a 21.9

Neobenedenia girellae 17 35 27.5

Zeuxapta seriolae 9 29 18.1

aTrue upper thermal tolerance limit based on available data.
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    |  1661HUTSON et al.

benezeapp.cawthron.org.nz/), and website (https://beneze.cawthron.
org.nz/) was written and developed by the authors and Cawthron sup-
port staff. The BeNeZe app is a single page application written in the 
progressive JavaScript framework vue.js. The app allows for the se-
lection of parasite species, temperature and date for the initial treat-
ment. It quickly provides the user with the determined time frames 
and durations for the consecutive relevant life cycle parameters and 
treatment events. The tool is configured for desktop computers, tab-
lets and mobile phone devices. All data and scripts are available at 
https://doi.org/10.5281/zenodo.5701475. While the app could stand 
alone, it is embedded in a shorthand story web page to provide the 
reader with further information (https://beneze.cawthron.org.nz/). 
The main website hosts the tool and includes photographs and video 
to aid parasite identification and suggested use of the tool. A BeNeZe 
user manual, available as a Supplementary document (see Appendix 
S1) and on the website, provides broader background information on 
the biology of the three species, descriptions of the parasite life cycle 
and recommended techniques for farm surveillance.

3  |  PAR A SITE LIFE CYCLE DUR ATION, 
THERMAL TOLER ANCE , THERMAL 
OPTIMUM AND TRE ATMENT WINDOWS

Parasites exhibited a wide thermal tolerance range (9–35°C, Table 3). 
Zeuxapta seriolae exhibited the widest thermal tolerance, followed 
by B. seriolae and N. girellae (Table 3). Concurrent infections of B. se-
riolae and Z. seriolae are most likely to occur above 12°C, while in-
fection of all three species is possible above 17°C in regions where 
parasite species cooccur (Table 3). Zeuxapta seriolae and B. seriolae 
are unlikely to persist above 30°C, while N.  girellae may survive 

at slightly higher temperatures, potentially up to 35°C (Table  3). 
Thermal hatching optimum was 18.1°C for Z.  seriolae, 21.9°C for 
B. seriolae and 27.5°C for N. girellae (Table 3, Figure 3). Given that 
hatching success increases towards the thermal optimum, farms that 
operate around these temperatures may experience heightened 
parasite burdens.

Regression analyses showed that life cycle duration was gen-
erally significantly reduced with increasing water temperature 
(Table  4, Figure  2). Benedenia seriolae and Z.  seriolae exhibited an 
exponential decline in the time to first and last hatch and time to 
sexual maturity with increasing water temperatures, as evidenced 
by negative b parameters ranging between −4.9 and −0.37 (p < 0.05; 
Table 4, Figure 4). Temperature had weak effect on time to first hatch 
(b = −0.8, p = 0.03, Table 4, Figure 4) and sexual maturity (b = −0.9, 
p = 0.007; Table 4, Figure 4) of N. girellae, and it had no effect on time 
to last hatch (b = 0.5, p = 0.26; Figure 4, Table 4). Zeuxapta seriolae 
oncomiracidia longevity was significantly higher (3.95  ±  0.7  days) 
than for N. girellae (0.7 ± 0.6 days), but it was reduced at a slower 
rate with increasing temperatures (p < 0.05, Table 2, Figure 4).

BeNeZe can be applied in multi-infection scenarios (Figure  5), 
assuming the treatment used is effective against all target parasite 
species. Considerable overlap in the timing of life cycle parameters 
between B. seriolae and Z. seriolae means that the tool can be applied 
between 12 and 29°C to treat concurrent infections. Treatment win-
dows for administering the second treatment to provide coverage 
for all three species were considerably limited with increasing sea-
water temperatures (Figure 5). While all three species can potentially 
co-infect fish at temperatures between 17 and 29°C (Table 3), there 
is no treatment window that applies to all three ≤22°C given the 
rapid development of N. girellae compared to B. seriolae and Z. serio-
lae (Figure 5). While a single treatment window is available between 

F I G U R E  3  Hatching success of Benedenia seriolae, Neobenedenia girellae and Zeuxapta seriolae between 6 and 36.3°C. Data include 
hatching success measured at salinities ≥25 ppt. A quantile polynomial regression was fitted for each species to estimate optimal hatching 
temperature indicated by the dashed lines (see also Table 3). The horizontal bars represent the hatching temperature range for each species
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23 and 29°C against all three species, the opportunity is short and 
may be challenging to meet in open aquaculture scenarios (Figure 5).

4  |  SALINIT Y

There was no effect of salinity on the development rate for all three 
species (Figure S1). The effect of salinity on oncomiracidia longevity 
was not examined due to limited data. Given that salinity did not af-
fect life cycle parameter durations, it is not relevant to the timing of 
treatments and was not incorporated in the BeNeZe tool. Hypo- and 
hypersalinity reduced egg viability (Figure S1) which is particularly 
relevant for more complex epidemiological models in open aquacul-
ture systems for predicting parasite infection pressure. Furthermore, 
hyposalinity has been used to eradicate parasites in RASs.37

5  |  BENEZE: APPLIC ATION AND 
A SSUMPTIONS

Strategically timed treatments can break the life cycle of ectopara-
sites in farm systems (Figures 1 and 6). As temperature increases, the 

number of days or the ‘window’ for application of a second, timed 
treatment is greatly reduced for management of ectoparasitic mono-
geneans on Seriola farms. When managing infestations in cooler 
water temperatures in winter, there is more scope for accommodat-
ing logistical considerations (e.g., weather in open aquaculture, staff 
availability) compared to summer. Treatments that aim to manage 
concurrent infections by all three species are challenging given lim-
ited overlap in the timing of life cycle parameters for N. girellae; how-
ever, co-infections of B.  seriolae and Z.  seriolae exhibit reasonable 
and achievable treatment windows for small-scale farms (Figure 5, 
Figure 6). Note that N. girellae has been recorded from several host 
fishes and host fish families,22 and thus selection of this species from 
the tool may also be effective in public aquaria, research facilities, 
the ornamental fish trade and hobbyist aquaria. Life cycle parameter 
estimates should be validated to confirm tsuitability at various farm-
ing locations globally.

BeNeZe assumes that the infection source is from within the 
farm, that treatments are coordinated across the farm, that each 
treatment has complete efficacy and that parasite eggs cannot go 
dormant. Many of these assumptions may be met in land-based 
hatcheries and RASs and are highly applicable to the growing RAS-
based Seriola industry in the Netherlands, South Africa, Chile and 

TA B L E  4  Results of non-linear regressions testing the relationship between time to first hatch, time to last hatch, oncomiracidia longevity 
and time to sexual maturity in days and sea surface water temperature (°C) for three parasite species: Benedenia seriolae, Neobenedenia 
girellae and Zeuxapta seriolae. Regression term ‘a’ is the number of days to first, last hatch or maturity at a water temperature of 0°C, and ‘b’ is 
a constant describing how quickly each life cycle parameters decrease with temperature. No data were available for B. seriolae oncomiracidia 
longevity

Model Species Term Estimate SE p

First hatch Benedenia seriolae a 2208.8 595.3 0.001

b −1.9 0.1 <0.001

Neobenedenia girellae a 63.6 68.6 0.365

b −0.8 0.3 0.030

Zeuxapta seriolae a 2825.9 786.2 0.001

b −2.1 0.1 <0.001

Last hatch Benedenia seriolae a 2182.7 635.6 0.001

b −1.8 0.1 <0.001

Neobenedenia girellae a 1.3 1.8 0.486

b 0.5 0.4 0.260

Zeuxapta seriolae a 1437.8 215.1 <0.001

b −1.7 0.1 <0.001

Oncomiracidia longevity Neobenedenia girellae a 6,688,027 11,773,692 0.58

b −4.9 0.56 <0.001

Zeuxapta seriolae a 11.53 4.62 0.05

b −0.37 0.14 0.05

Sexual maturity Benedenia seriolae a 6754.4 1498.4 0.006

b −1.9 0.1 <0.001

Neobenedenia girellae a 187.0 186.6 0.328

b −0.9 0.3 0.007

Zeuxapta seriolae a 6955.3 7300.2 0.384

b −1.9 0.4 0.004
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New Zealand. Assumptions are more difficult to meet in open sys-
tems, such as sea pens, where once a monogenean population is 
established, conditions within the net pen are favourable for trans-
mission and establishment of additional populations within and be-
tween pens. The large scale and dynamics of commercial net pen 
farm operations introduce several challenges to parasite manage-
ment because immersion treatments are reliant on suitable weather 
conditions which may not correspond with BeNeZe recommended 
treatment intervals. Furthermore, wild or escaped fish infected with 
monogeneans can associate with sea pens and introduce viable eggs 
and larvae into the system or they may be transported with ocean 
currents.19,38 Nevertheless, without any intervention, parasites can 
potentially spread to all fish within a pen, to other pens on the farm 
and to pens located on other nearby farms, which can lead to mass 
mortality of fish stocks. In open systems, integrated management 
strategies will not eradicate infections, but can be used to reduce 
parasite burdens and treatment frequency.

For maximum benefit in open aquaculture, every sea pen on each 
farm (or IMU) must be treated within a short time frame.18,19 The 
spatial area inclusive of all component parasite communities con-
nected or influenced by the transmission process, termed an IMU, 
may be identified by epidemiological studies that consider the par-
asite life history, parasite–host interactions, the analysis of spatial 
and temporal transmission patterns and hydrodynamics.19,39 Where 
these boundaries encompass multiple farms, cooperation between 

farm managers is required for effective and efficient parasite man-
agement. Several complex connectivity models have been devel-
oped to aid the management of sea-lice in salmonid aquaculture.40 
Data provided for the BeNeZe tool on egg embryonation period 
(time to first and last hatch) and egg viability (Figure 4) are essential 
for incorporation into more complex particle tracking models and 
ultimately the delineation of farm biosecurity zones, leases or loca-
tions that would benefit from targeted surveillance.

6  |  BEHAVIOUR AND BIOLOGY: FURTHER 
CONSIDER ATIONS FOR INTEGR ATED 
PAR A SITE MANAGEMENT

Parasite behaviour and biology are important farm management con-
siderations for the successful application of BeNeZe. Some mono-
geneans exhibit arrested development or dormancy during winter 
and hatch when temperatures rise in spring.41 While dormancy has 
not yet been investigated for B. seriolae, N. girellae or Z. seriolae, it 
would be prudent for fish farmers to conduct net or filter changes to 
remove entangled eggs at the end of winter, prior to spring tempera-
ture increases. Subsequent identification of egg dormancy and the 
temperature triggers under which it occurs can be incorporated into 
the BeNeZe model to enhance accuracy and applicability. Another 
consideration is that some adult monogeneans, including Z. seriolae, 

F I G U R E  4  Exponential curves showing predicted changes in time to first hatch, time to last hatch, oncomiracida longevity and time to 
sexual maturity in days for Benedenia seriolae, Neobenedenia girellae and Zeuxapta seriolae in relation to sea surface water temperature in 
degrees Celsius. No data were available for B. seriolae oncomiracidia longevity
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Time to first hatch Time to last hatch

10 15 20 25 30 35 10 15 20 25 30 35

10

20

30

0

50

100

150

10

20

30

0.0

2.5

5.0

7.5

Temperature (°C)

D
ay

s

Benedenia seriolae
Neobenedenia girellae
Zeuxapta seriolae

 17535131, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12668 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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release their eggs when disturbed or dying.42,43 As such, immersion 
treatments targeted to kill adult Z. seriolae attached to fish could in-
duce mass, simultaneous release of viable parasite eggs into the farm 
environment. In hatcheries or RASs, these eggs could be captured 
on filters or parasite egg collectors and removed.44 In open aqua-
culture, it may be more difficult to capture eggs, but net changes 
conducted in conjunction with the initial immersion treatment may 
assist to reduce the frequency of fish handling and limit reinfection.

While monogenean eggs are highly resistant to short immersion 
in freshwater and hydrogen peroxide,45–47 Boylan37 found that pro-
longed hyposalinity at 20 ppt can be used to eradicate Neobenedenia 
sp. in large public display aquaria without compromising marine 
fishes. Shirakashi and Hirano5 found N. girellae eggs tend to accumu-
late on net pens near the surface and suggested net emersion to kill 
the eggs through desiccation.14,46 It has also been shown that high 
infection of N. girellae occurs near the surface,48 thus ‘snorkel’ cages 
used in salmon production in Norway to limit interactions near the 

surface between salmon and sea-lice49 may have applicability for the 
management of monogeneans in Seriola aquaculture. Biocontrols are 
also being explored as an option to reduce monogenean egg foul-
ing on net pens using shrimp and other crustaceans.50–53 Recently, 
Skilton et al.2 proposed synchronously timed deployment of light 
traps could be used to exploit positive phototaxis and hatching 
rhythms of N. girellae oncomiracidia. Indeed, shaded cages lowered 
N. girellae infections on fish, showing that light manipulation of par-
asites may be achieved in multiple ways.54,55 Trujillo-González et al. 
36 observed that newly recruited N.  girellae can bury beneath the 
host fish scales, where they may be protected from bathing treat-
ments. If this was experimentally demonstrated to provide them ad-
equate protection from treatments, it would be prudent to amend 
the BeNeZe lower treatment limit equation to include the number of 
days larvae typically bury beneath scales.

7  |  ACCOUNTING FOR HOST AND 
PAR A SITE IDENTIFIC ATION

Accurate identification of fish and parasite taxa is essential to deter-
mine the most appropriate management measures in aquaculture. 
For example, misidentification of morphologically similar species, 
such as B. seriolae and N. girellae, could lead to inappropriate use of 
BeNeZe and treatments not being applied at appropriate times. The 
taxonomic status of the taxa examined in this study is considerably 
complex and in a state of flux which can make identification chal-
lenging. BeNeZe was developed from the consolidation of multiple 
data sources and is reliant on accurate identification. While it is plau-
sible that cryptic parasite species and/or varied host associations 
could result in differences in life history trait response to tempera-
ture, life cycle parameters may also be conserved within a species 
and comparative to other species of the same genus. Further investi-
gations of parasite life cycle parameters to validate the application of 
BeNeZe or heighten precision of the tool should carefully document 
host–parasite associations and locality records and aim to deposit 
representative molecular and morphological samples in curated col-
lections for identification and future verification.

Benedenia seriolae (Yamaguti, 1934) Meserve, 1938 was first 
described from Seriola aureovittata [= S. lalandi] in Japanese waters 
(as Epibdella seriolae Yamaguti 1934). Whittington et al.56 proposed 
B. seriolae also infected Seriola quinqueradiata and S. dumerili in Japan 
based on 28S rDNA and species morphology. Perkins et al.57 pub-
lished the complete mitochondrial genome for B. seriolae collected 
from S.  hippos in Australia. Following, Sepúlveda and González58 
suggested B.  seriolae represents a species complex with at least 
three morphologically similar species each restricted to distinct geo-
graphic regions (i.e., Chile, Japan and Australia) and that substantial 
molecular divergence between B.  seriolae specimens of Australian 
and Japanese origin may warrant recognition of separate species. 
Subsequently, Baeza et al.59 proposed a new species, B. bumboldti 
(synonymous with B. seriolae of Sepúlveda and González58 off Chile), 
based on molecular and minor morphological differences. Recently, 

F I G U R E  5  Treatment windows in days after initial treatment 
for Benedenia seriolae, Neobenedenia girellae, Zeuxapta seriolae and 
multiple species in relation to sea surface water temperature (°C). 
Treatment windows indicate the period from when all eggs have 
hatched and all oncomiracidia have infected fish to 24 h before the 
reach sexual maturity. Treatment 2 is administered during these 
treatment windows to break the parasite's life cycle. Treatment 
windows for multiple species are indicated by the first two letters 
of the genus for each combination (e.g., B. seriolae and Z. seriolae 
concurrent infection management is shown as ‘BeZe’). Treatment 
windows were calculated based on modelled life cycle parameters 
(see Methods section for details)
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Kawato et al.60 sequenced the complete mitochondrial genome of 
B. seriolae from Japan which shared 85% identity with the Australian 
specimen57 and exhibited slight differences in the gene arrange-
ment. A formal proposal to separate Japanese and Australian B. seri-
olae has not been made to date.

Neobenedenia girellae is a cosmopolitan species with a large di-
versity of susceptible host species.22 Neobenedenia spp. have been 
recorded from Seriola hosts from numerous localities but are not 
yet known from the Mediterranean Sea or the Southeast Pacific 
off New Zealand (Table  1). Ogawa et al.61 indicated that unreg-
ulated importation of S. dumerili fry to Japan may have been the 
source of N. girellae infection in Japanese fishes. Indeed, N. gire-
llae has likely dispersed through the live ornamental aquarium 
trade.62,63 The delineation of two species, N. girellae and N. mel-
leni, has been a source of controversy and confusion for decades, 

but recent molecular profiling demonstrated that a large propor-
tion of previous identifications made as N. melleni are erroneous.22 
Given difficulties to morphologically distinguish species and that 
morphological variation may be exhibited within Neobenedenia 
species,64 authors occasionally attribute species as ‘Neobenedenia 
sp.’ (see Table 1). Neobenedenia girellae is also challenging to distin-
guish from B. seriolae, but egg morphology and minor features of 
adult parasites may be used on fish farms to aid preliminary iden-
tification using microscopy in the absence of molecular tools.65,66 
Morphological differences of these two species are also high-
lighted in the BeNeZe website and manual (https://beneze.caw-
thron.org.nz/; Appendix S1).

Zeuxapta seriolae (Meserve, 1938) Price, 1962 was first de-
scribed from Seriola quinqueradiata Temminck & Schlegel in Japan. 
It has been formally redescribed on several occasions67–70 and 

F I G U R E  6  Screen shot of the BeNeZe app showing parasite and temperature selection options, timing of key life stages for the selected 
temperature and the recommended treatment period for the second treatment following the initial treatment
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is known to occur in the Pacific, Atlantic, Indian and Southern 
Oceans, including the Mediterranean Sea (Table  1). While most 
records are from Seriola species, it is also known from the caran-
gid Caranx hippos70,71; note uncertainty around host identification. 
According to the World Register for Marine Organisms, there are 
four recognised synonyms including Heteraxine meservei Sproston, 
1946, Microcotyle seriolae Yamaguti, 1940, Zeuxapta japonica 
Yamaguti, 1961, and Zeuxapta zyxivaginata Unnithan, 1957 as well 
as one superseded combination Axine seriolae Meserve, 1938. 
Some authors publish under the synonym Z. japonica 8 and future 
molecular work may confirm or refute whether Z. japonica should 
be reinstated. There is evidence of geographical genetic variation 
of Z. seriolae between regions in Chile.72 Observed differences in 
biological traits between regions were confounded by tempera-
ture at the time of sampling72 and require further investigation 
given the strong influence of temperature on fecundity and size of 
other monogeneans.15

The taxonomy of Seriola lalandi is a topic of considerable scien-
tific discussion. Martinez-Takeshita et al.73 suggested three cryptic 
species bear the name Seriola lalandi and proposed to reinstate ju-
nior synonyms Seriola aureovittata Temminck and Schlegel for the 
northwest Pacific (type locality, Japan), and the northeast Pacific 
species to Seriola dorsalis (type locality Mexico) and Seriola lalandi 
Valenciennes, 1833 (type locality Brazil) to the southern hemisphere. 
Later in the same year, Purcell et al.74 showed evidence for four sig-
nificantly differentiated populations corresponding to the north-
east Pacific, northwest Pacific, south Pacific and south Atlantic and 
suggested there may be at least three cryptic species of S.  lalandi. 
Premachandra et al.75 agreed that there are three different S. lalandi 
populations, but they suggested that the reinstatement of species 
by Martinez-Takeshita et al.73 may be premature, and that low ge-
netic divergence supports the more traditional view that S. lalandi in 
the Pacific comprises three distinct populations rather than species 
subdivisions. Recently, Kerwath et al.76 showed that remote shallow 
seamounts can also contribute to genetic and phenotypic distinc-
tions in S. lalandi. The taxonomy of Seriola spp. may be further com-
plicated by the deliberate movement of animals for aquaculture and 
the potential genetic introgression of aquaculture escapees into wild 
fish populations.77

8  |  FUTURE DATA GATHERING AND 
CONSOLIDATION

The BeNeZe decision support tool presents a base for consolida-
tion of data to inform integrated parasite management in aquacul-
ture. Fish health professionals and researchers are encouraged to 
validate the tool or, alternatively, create a tailored database for their 
specific scenario. This should begin with accurate species identifica-
tion while acknowledging complexity in both Seriola spp. and mono-
genean identification and taxonomy.65,78 Local physicochemical 
factors should also be considered. Additional water quality param-
eters (e.g., pH, ammonia, turbidity and contaminants) may influence 

monogenean infection dynamics to the extent that they are consid-
erably different from expected patterns (see ref. 79 for review).

Data collection should be precise to limit discrepancies in life 
cycle parameters due to differences in method of egg incubation in-
cluding the time of initial egg collection and lighting regimes.44 Egg 
incubation is typically conducted in static dishes with daily water 
renewal; however, aeration of the solution may be more represen-
tative of the farm environment and could yield higher hatching suc-
cess. Contamination of egg cultures can also be avoided by cleaning 
the eggs.44 Monogeneans typically exhibit egg-hatching rhythms 
and egg-laying rhythms,80,81 consequently, the time of day when 
experimental observations are made influences whether time to 
first and last hatch or sexual maturity are observed. Development 
of more complex epidemiological models to predict infection pres-
sure through time should account for the fact that fecundity and 
the duration of oviposition are temperature and age dependent15,81 
and that hatching success is influenced by temperature and salinity 
(Figure 3).

Data on oncomiracidia infectivity would be particularly valu-
able for a revised model. BeNeZe used a proxy for infectivity based 
on oncomiracidia longevity; however, it is unclear what propor-
tion of their lifespan that larva remains infective. Furthermore, 
oncomiracidia longevity is often assessed in confined laboratory 
vessels to enable monitoring and may not be representative of aqua-
culture environments. More applicable data should be obtained on 
oncomiracida infectivity by determining infection success on fish in 
tanks through time.36 This information would be particularly valu-
able for B. seriolae where there are no data available. Further infor-
mation for N.  girellae oncomiracidia longevity/infectivity at lower 
temperatures would also be valuable considering eggs laid in cooler 
temperatures are larger and may provide more energy reserves.15 
There is no evidence that salinity influences development rates in 
B. seriolae, N. girellae and Z. seriolae and it was not included in the 
BeNeZe tool. However, Villar-Torres, Montero82 observed that egg 
development tended to slow towards hypersaline and hyposaline sa-
linities in the monogenean Sparicotyle chrysophrii; thus, salinity may 
need to be considered in the development of equivalent tools for 
other parasite species.

Egg viability should also be considered as it is highly applicable 
for more complex parasite epidemiology and modelling for health 
managers to estimate parasite recruitment following treatment. In 
future, BeNeZe could be modified to support the addition of other 
ectoparasites in Seriola aquaculture such as sea-lice. Endoparasites 
such as blood flukes could also be incorporated with recommenda-
tions on the frequency of biofouling management to remove suscep-
tible intermediate polychaete hosts.83,84

9  |  CONCLUDING REMARKS

Parasite populations may evolve in response to selective para-
site management (see ref. 85 for review); thus, it is important to 
apply multiple tools as part of an integrated management strategy. 
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BeNeZe should complement farm biosecurity, prevention meas-
ures and integration of other management measures where pos-
sible (e.g., filter or net cleaning, net changes). Indeed, the tool will 
be most useful to farmers that engage in parasite surveillance to 
monitor parasite burdens because immersion treatments are more 
effective when parasite infection intensities are low. If fish stocks 
are severely compromised from anaemia or secondary bacterial in-
fection, they may not survive stressors associated with immersion 
treatments, particularly during summer. Farmers that monitor infec-
tion burdens (while acknowledging potential sampling bias)86,87 and 
parasite development and maturation will be able to identify infec-
tion burdens or ‘trigger points’ to commence the initial treatment. 
Monitoring the efficacy of treatments baths will help avoid the de-
velopment of resistance in parasites.11 The application of BeNeZe 
as part of an integrated parasite management plan can help improve 
farm operational efficiency and extend treatment intervals.
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