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Abstract
Installation of feral pig (Sus scrofa) exclusion fences to conserve and rehabilitate 
coastal floodplain habitat for fish production and water quality services remains un-
tested. Twenty-one floodplain and riverine wetlands in the Archer River catchment 
(north Queensland) were surveyed during postwet (June–August) and late-dry sea-
son (November–December) in 2016, 2017, and 2018, using a fyke net soaked over-
night (~14–15 hr) to test: (a) whether the fish assemblage are similar in wetlands with 
and without fences; and (b) whether specific environmental conditions influence fish 
composition between fenced and unfenced wetlands. A total of 6,353 fish repre-
senting twenty-six species from 15 families were captured. There were no wetland 
differences in fish assemblages across seasons, years and for fenced and unfenced 
(PERMANOVA, Pseudo-F  <  0.589, p  <  .84). Interestingly, the late-dry season fish 
were far smaller compared to postwet season fish: a strategy presumably in place to 
maximize rapid disposal following rain and floodplain connectivity. In each wetland, 
a calibrated Hydrolab was deployed (between 2 and4 days, with 20 min logging) in 
the epilimnion (0.2 m) and revealed distinct diel water quality cycling of temperature, 
dissolved oxygen and pH (conductivity represented freshwater wetlands), which was 
more obvious in the late-dry season survey because of extreme summer conditions. 
Water quality varied among wetlands in terms of the daily amplitude and extent of 
daily photosynthesis recovery, which highlights the need to consider local conditions 
and that applying general assumptions around water quality conditions for these 
types of wetlands is problematic for managers. Though many fish access wetlands 
during wet season connection, the seasonal effect of reduced water level conditions 
seems more overimprovised when compared to whether fences are installed, as all 
wetlands supported few, juvenile, or no fish species because they had dried com-
pletely regardless of the presence of fences.
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1  | INTRODUC TION

Wetlands (palustrine and lacustrine) that are located on flood-
plains away from riverine channels support rich aquatic plant 
and fauna communities (Ambrose & Meffert,  1999; Brandolin & 
Blendinger, 2016; Jiang et al., 2015). However, after peak flood con-
nection, aquatic organisms occupying these wetlands face a mov-
ing land-water margin until connection is broken, at which point 
wetlands have been shown to support a nonrandom assortment of 
aquatic species, including fish (Arrington & Winemiller, 2006; Pander 
et  al.,  2018). The duration, timing and frequency that off channel 
wetlands maintain lateral pulse connection with primary rivers is an 
important determining factor in broader contribution to coastal fish-
eries production—higher floodplain connection results in more fish 
production is the overwhelming conclusion (Bennett & Kozak, 2016; 
Galib et  al.,  2018; Górski et  al.,  2016; Hurd et  al.,  2016). In addi-
tion to connection, environmental conditions become important 
on floodplains, including water quality (Waltham & Schaffer, 2018), 
but also access to shelter to escape predation and available food 
resources (Blanchette et  al.,  2014; Jardine et  al.,  2012). Although 
optimism about coastal floodplain restoration is building (Waltham 
et  al.,  2020), efforts by managers to restore wetland services and 
values is increasing, though data delineating success are limited. This 
lack of data becomes important when attempting to quantify bio-
diversity returns for the funding investment made by government 
or private investor organizations (Elliott et  al.,  2016; Waltham & 
Fixler, 2017; Weinstein & Litvin, 2016; Zedler, 2016).

At some point after floodplain connection, the waters begin re-
ceding and progressively disconnect from the main river channel, 
forming smaller and shallower off channel wetland/swamp refugia 
(Abbott et al., 2020; McJannet et al., 2014; Pettit et al., 2012; Pusey 
& Arthington, 2003). In tropical north Australia, formation and per-
sistence of seasonal off channel wetland are more pronounced owing 
to high evaporation rates, loss to groundwater (Petheram et al., 2008), 
and in many situations, the water quickly retracts away from the banks 
and riparian shade (Pusey & Arthington, 2003). After floodplain dis-
connection from primary rivers, they become more prone to reduced 
water quality conditions—most notably reduced water depth (Pettit 
et al., 2012), high water temperatures (Wallace et al., 2017), and suf-
fer extended low oxygen periods (Waltham & Schaffer, 2018). This 
reduced state of water quality (or habitat) increases aquatic fauna ex-
posure risks to acute and chronic thresholds (Burrows & Butler, 2012; 
Wallace et al., 2015). In the late-dry season, fish confined to these iso-
lated wetlands on floodplains therefore have very limited avoidance 
choices (Waltham & Schaffer, 2018) and must exploit available habitat 
opportunities (Love et al., 2017; Phelps et al., 2015), which are specific 
to each wetland depending on orientation and location (Schomaker 
& Wolter, 2011), depth and vegetation cover (Wallace et al., 2017). 
Floodplain fish must deal with these vagaries at least until the mon-
soonal rain again reconnects overbank coastal floodplains.

Across northern Australia, feral pigs (Sus scrofa) have been 
shown to contribute wide-scale negative impacts on wetland vege-
tation assemblages, water quality, biological communities, and wider 

ecological processes (Baber & Coblentz,  1986; Krull et  al.,  2013). 
Feral pigs utilize an omnivorous diet supported by foraging or dig-
ging plant roots, bulbs, and other below ground vegetation material 
over terrestrial or wetland areas (Ballari & Barrios-García, 2014). This 
feeding strategy has a massive impact on wetland aquatic vegetation 
communities (Doupe et al., 2010), giving rise to soil erosion and ben-
thic sediment resuspension, reduced water clarity and eutrophica-
tion which becomes particularly critical late-dry season. The fact that 
limited data exits on the impact that feral pigs contribute to wetlands 
(Doupe et al., 2010; Marshall et al., 2020; Mitchell & Mayer, 1997; 
Steward et al., 2018; Waltham & Schaffer, 2018), places a strain on 
the ability for land managers to quantify the consequences of pig 
destruction (Commonwealth of Australia, 2017). Conversely, a lack 
of baseline data means quantifying success following expensive mit-
igation efforts is problematic (Negus et al., 2019).

Strategies focused on reducing or removing feral pigs from the 
floodplain landscape have been employed since their introduction to 
Australia (Fordham et al., 2006). Control strategies have included poi-
son baiting, aerial shooting, and trapping using specially constructed 
mesh cages (that are baited sometimes) (Ross et al., 2017). Attempts 
have also included installing exclusion fencing that border the wetland 
of interest. While advantages of installing fencing around wetlands 
has been examined only recently in Australia (Doupe et  al.,  2010), 
those authors claim fencing might well be less effective particularly 
in situations where wetlands would normally dry before the next wet 
season rainfall and reconnection. Fencing is expensive to construct 
and maintain (Ross et al., 2017), but at the same time prevents other 
nontarget terrestrial fauna from accessing wetlands, which becomes 
imperative late-dry season where wetlands become regional water 
points for many mobile fauna (Commonwealth of Australia, 2017).

The aims here were twofold: (a) What is the spatial and tempo-
ral variability of fish assemblages in waterbodies with and without 
feral pig fencing, and (b) does this pattern correlate to water quality 
variables? These data are important and necessary given increasing 
government funding investment planned in northern Australia for 
restoration of wetlands impacted by feral animals (including pigs) 
(Waltham & Schaffer, 2018).

2  | METHODS

2.1 | Description of study system

The Archer River catchment is located on Cape York Peninsula, 
north Queensland (Figure  1). The head waters of the river rise in 
the McIlwraith range on the eastern side Cape York, where it 
flows and then enters Archer Bay on the western side of the Gulf 
of Carpentaria; along with the Watson and Ward Rivers. The 
catchment area is 13,820  km2, which includes approximately 4% 
(510  km2) of wetland habitats (https://wetla​ndinfo.des.qld.gov.au/
wetla​nds/facts​-maps/basin​-arche​r/), such as estuarine mangroves, 
salt flats and saltmarshes, wet heath swamps, floodplain grass 
sedge, herb and tree Melaleuca spp. swamps and riverine habitat. 

https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/basin-archer/
https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/basin-archer/
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The lower region of the catchment includes part of the Directory 
of Internationally Important Wetland network (i.e., nationally recog-
nized status for conservation and cultural value) that extends along 
much of the eastern Gulf of Carpentaria, including the Archer Bay 
Aggregation, Northeast Karumba Plain Aggregation and Northern 
Holroyd Plain Aggregation. Two national parks are located in the 
catchment (KULLA (McIlwraith Range) National Park, and Oyala 
Thumotang National Park). Land use is predominately grazing with 
some mining activities planned in the next few years on the northern 
bank of the river (not within the area of this study).

Rainfall is tropical monsoonal, strongly seasonal, with between 
60% and 90% of total annual rain occurring between November 
and February. Rainfall records for the catchment reveal highest wet 
season rainfall occurred in 1989/1999 (2,515 mm), while lowest was 
1960/1961 (563.5 mm) (Waltham & Schaffer, 2017). Total anteced-
ent rainfall for the wet season prior (Nov 2014 to Feb 2015) to this 
survey was 1,081 mm, which is below the 10th percentile for histor-
ical records. The wet seasons experienced through the years prior to 
this study (2010–2015) were among the wettest on record, within 
the 95th percentile of the long-term data records. The low rainfall 

F I G U R E  1   Location of wetlands in this study: (a) location of the Archer River catchment in northern Queensland, Australia and (b) 
wetland sites on the coastal floodplain and mid-catchment where feral pig fencing has been completed around wetlands preventing access 
(yellow circles). The three wetland typologies (c—pig impacted wetlands that are shallow (typically <0.5 m deep), without submerged aquatic 
vegetation, turbid, and eutrophic; d—fenced wetland preventing pig access that are deeper (typically <2 m deep), clear with submerged 
aquatic vegetation present) exist across the catchment; and e—permanent wetlands that are deeper (typically <2 m deep), steep sides 
limiting pig access, clear with submerged aquatic vegetation present. Archer River gauge station (red circle)

F I G U R E  2   Daily discharge at the 
Archer River roadhouse gauge (Figure 1) 
before and during (dashed insert box) 
this study. Sampling occasions (arrows) 
are indicated. Data provided by the 
Queensland Government
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during this study may have contributed to a short flood duration, and 
thereby connection between wetlands and the main Archer River, 
when compared to average or above average rainfall years where 
connection is presumed to be far longer (Figure 2).

Twenty-one wetlands were sampled including both floodplain 
and riverine wetlands that were not on the main flow channels, but 
on anabranches and flood channels that connect to the main chan-
nels only during high flow conditions. All wetlands have been his-
torically damaged by pigs (and cattle to a lesser extent) for up to 
160 years (Gongora et al., 2004; Lopez et al., 2014), and there is no 
background data on the wetland condition before introduction of 
feral pigs in the region. In response to the obvious and widespread 
impact in the region, a small number were fenced to prevent feral 
pig and cattle from accessing wetlands, in accordance with the feral 
animal research and management program (to meet the objectives of 
traditional owners in the region) of both Kalan enterprises and Aak 
Puul Ngangtam, and their partners.

The characteristics of each wetland are summarized in Table S1. 
Here, sampling focused on two periods: (a) immediately following 
the wet season after disconnection between the river and wetlands 
(hereafter referred to as postwet season); and (b) late-dry season 
(hereafter late-dry) in 2016, 2017 and 2018. Each sampling cam-
paign was completed over 14 days with six total campaigns (postwet 
and late-dry season in 2016, 2017, and 2018).

2.2 | Field methods

In each wetland, a calibrated high frequency Hydrolab multi-
parameter logger (OTT Hydromet USA) was deployed (0.2 m depth) 
for between 2 and 4 days to record epilimnion (0.2 m) water tem-
perature, dissolved oxygen (%), electrical conductivity, and pH every 
20 min - logging at this frequency provides explicit insight into diel 
changes in environmental water processes (Wallace et  al., 2015, 
2017). Weather conditions were fine with all surveys occurring on 
the falling limb of the hydrograph.

Fish were collected in wetlands using a fyke net (0.8  m open-
ing, double 4 m wing panels, 1 mm stretch mesh) that was soaked 
overnight (approximately 14:00–09:00). Wetlands substantially 
impacted by feral pigs; secchi disk depth <0.1 m, no submerged or 
floating aquatic plants exist, while the fenced wetlands were gen-
erally deeper (up to 1.5 m), and had submerged aquatic vegetation 
(Figure 1). Fish were placed in a tub (~150 L) temporarily, identified, 
measured (standard length, mm), and returned to the wetland alive 
in accordance with Australian laws (except for a small number that 
were kept for food web studies, data not shown here).

2.3 | Data analysis

There are two main biases in the sampling method here: (a) that the 
technique will capture large numbers of schooling fish along the wet-
land margins; and (b) the fact that predatory aquatic fauna including 

fish, snakes (macleays watersnakes, Pseudoferania polylepis), file 
snakes (Acrochordus arafurae)), and freshwater turtles (Chelodina 
rugosa, Chelodina canni, and Emydura s. worrelli) were periodically 
trapped for hours means that they could consume fish caught in 
nets. To overcome these uncertainties, analyses were based on 
presence/absence of species. Presence/absence provide robust data 
when relative abundance are of doubtful validity because it deals 
with species with a diversity of behaviors, trophic functions, and 
spatial distribute in a more equivalent way than fully quantitative 
techniques (Quinn & Keough, 2002).

Multivariate differences were examined using PERMANOVA 
using the Bray–Curtis similarities measure (Clarke, 1993) with sig-
nificance determined from 10,000 permutations of presence/ab-
sence transformation. Multivariate dispersion were tested using 
PERMDISP, however, homogeneity of variance could not be sta-
bilized with transformation, and therefore, untransformed data 
were used. Three factors where included years (fixed), season 
(fixed); and fenced/unfenced (random). These factors were deter-
mined a-prior during study design—in addition, the 2016 late-dry 
season only had a single fenced wetland site; this data point was 
removed in the PERMANOVA. Spatial patterns in multivariate fish 
assemblage structure and the importance of explanatory data 
sets were analyzed using a multivariate classification and regres-
sion tree (mCARTs) (De'Ath,  2002) package in R (version 3.4.4). 
Analysis was conducted using presence/absence transformed fish 
data for the 10 species that occurred in >20% of wetland sites (to 
remove rare species). Selection of the final tree model was con-
ducted using 10-fold cross-validation, with a 1-SE tree; the small-
est tree with cross-validation error within 1 SE of the tree with the 
minimum cross-validation error (Sheaves & Johnston, 2009). The 
relative importance of the explanatory variables were assessed 
to determine those with a high overall contribution to tree node 
split, with the best overall classifier being given a relative impor-
tance of 100%.

Kolmogorov–Smirnov (K-S) two-sample tests determined dif-
ferences in the overall shape of fish body size distribution using a 
Bonferroni correction for multiple comparisons. K-S tests take into 
account differences between the location, skew, and kurtosis of 
frequency distributions, but do not identify which of these parame-
ters are driving distributional differences. Therefore, we report the 
following characteristics of each body size distribution to further 
describe any differences found: mean, standard deviation (SD), min-
imum value (min), maximum value (max), the range of values, skew-
ness, and kurtosis.

3  | RESULTS

3.1 | Hydrology and wetland water quality

Wet season rainfall totals in the Archer River catchment were low 
during the study period compared to the preceding years (Figure 2), 
with rainfall within the 10th percentile for historical recordings held 
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TA B L E  1   Fish taxa identified in the Archer River (freshwater section) from broad northern Australia survey of freshwaters, and those 
species presented in wetlands recorded during this study

Family Genus Species Common name
Present in 
Archer River

Present in 
wetlands

Apogonidae Glossamia aprion Mouth almighty √ √

Ariidae Neoarius berneyi Berney's catfish √

Neoarius graeffei Lesser salmon catfish √

Neoarius leptaspis Triangular shield catfish √

Neoarius paucus Silver cobbler √

Atherinidae Craterocephalus stercusmuscarum Fly-speck hardyhead √ √

Belonidae Strongylura krefftii Long tom √ √

Centropomidae Lates calcarifer Barramundia  √

Chandidae Ambassis sp. Glass perch √ √

Ambassis sp. Northwest glassfish √

Ambassis agrammus Sailfin glassfish √

Ambassis elongatus Elongate glassfish √

Ambassis macleayi Macleay's glassfish √ √

Denariusa bandata Pennyfish √ √

Clupediae Nematalosa erebi Bony bream √ √

Dasyatidae Dasyatis sp. Freshwater stingrayb  √

Eleotridae Hypseleotris compressa Empire gudgeon √

Mogurnda mogurnda Northern purple-spot 
gudgeon

√ √

Oxyeleotris sp. Gudgeon √

Oxyeleotris nullipora Poreless cod √

Oxyeleotris lineolatus Sleepy cod √ √

Oxyeleotris selheimi Giant cod √ √

Engraulidae Thryssa scratchleyi Freshwater anchovy √

Gobiidae Glossogobius aureus Golden goby √

Glossogobius giuris Flathead goby √

Glossogobius sp2 Goby (Munroi) √

Glossogobius sp3 Goby (Dwarf) √

Megalopidae Megalops cyprinoides Oxeye herring √ √

Melanotaeniidae Iriatherina werneri Threadfin rainbowfish √ √

Melanotaenia nigrans Black-banded rainbowfish √ √

Melanotaenia splendid inornata Chequered rainbow fish √ √

Melanotaenia trifasciata Banded rainbow fish √ √

Melanotaenia sp. Rainbowfish √

Pseudomugil tenellus √

Pseudomugil gertrudae √

Osteoglossidae Scleropages jardinii Saratoga √ √

Plotosidae Anodontiglanis dahli Toothless catfish √

Neosilurus sp. Eel-tailed catfish √

Neosilurus ater Black catfish √ √

Neosilurus hyrtlii Hyrtl's tandan √ √

Porochilus rendahli Rendahl's catfish √ √

Pristidae Pristis pristis Freshwater sawfishb  √

(Continues)
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by the Australian Bureau of Meteorology. This means that some 
caution is necessary with interpretation of these data, namely that 
floodplain connectivity under higher rainfall years is likely to have a 
longer duration when compared to lower connection duration under 
the current rainfall conditions.

A full summary of water quality data are provided in 
Supplementary files (S1). In summary, water temperatures during the 
study period were generally about 26℃ (Table 1). Minimum water 
temperature recordings as low as 18℃, while maximum tempera-
tures occurred in November 2016 survey reached above 40℃ for 
several hours of the day in some instances. The water column exhib-
ited pronounced diel temperature periodicity; 1 or 2 hr after sunrise 
each day. Near-surface water temperatures began to rise at an al-
most linear rate for a period of 8.0 ± 0.5 hr, generally reaching daily 
maxima during the middle of the afternoon. The mean daily tem-
perature amplitude was 6.2°C (highest daily amplitude 9.6°C, lowest 
4.4℃). For the remaining 16 hr of each day, near-surface water tem-
peratures gradually declined reaching minimum conditions shortly 
after sunset.

The electrical conductivity (EC) was very low (Table S1) during 
the postwet season surveys, while the late-dry season conductiv-
ity was higher, a consequence of evapo-concentration. The lowest 
wetland in the catchment (AR08 located on the coastal floodplain) 
recorded the highest conductivity, suggesting connection with tidal 
water from the nearby estuary at some stage.

There was evidence of cyclical daily DO fluctuations support-
ing the contention that biological diel periodicity processes were 
probably not significantly inhibited in all wetlands (Figure 3). Daily 
minimum DO concentrations were low enough to suggest there was 
enough respiratory oxygen consumption to measurably affect water 
quality, particularly so at the pig impacted wetlands, but also during 
the late-dry season survey in November 2016. Dissolved oxygen 
(DO) seemed to reach daily minima conditions, well below the as-
phyxiation thresholds of sensitive fish species, in the early morning 

hours during all surveys. In the examples shown, after the morning 
low DO (following overnight respiration processes), conditions gen-
erally recovered to approximately 50%, but reaching a high of 100%–
160% in the late afternoon (before sunset).

pH is also potentially subject to the same kinds of biogenic 
fluctuations as DO, due to consumption of carbon dioxide (i.e., 
carbonic acid) by aquatic plants and algae during the day (through 
photosynthesis), and net production of carbon dioxide at night. 
If respiratory oxygen consumption is predominant, DO concen-
trations are low and pH values are generally moderately acidic to 
neutral, which was the case for wetlands examined here. All pho-
tosynthetically active organisms’ utilize carbon dioxide as a pre-
ferred carbon source. Some species (including most green algae) 
are unable to photosynthesize if carbon dioxide is unavailable, but 
there are other species (including most cyanobacteria and sub-
merged macrophytes) which can utilize bicarbonate as an alterna-
tive carbon source. Carbon dioxide consumption causes pH to rise 
to values in the order of 8.6–8.7 (but that was not the case here 
during this survey period).

3.2 | Fish community

A total of 6,353 fish were captured, representing twenty-six spe-
cies from 15 families (Table 1). The most common species was the 
freshwater glassfish (Ambassis sp., 51% total catch), delicate blue-
eyes (Pseudomugil tenellus, 11%), and northern purple-spot gudgeon 
(Morgunda morgunda, 9%). A greater number of fish species were 
caught in the postwet season survey, with a lower number captured 
during the late-dry season, including the northern purple-spot gudg-
eon (Morgunda mogunda), chequered rainbow fish (Melanotaenia s. 
inornata), and the empire gudgeon (Hypseleoptris compressa). In ad-
dition to fish, we captured a freshwater crayfish (Cherax sp.), ma-
cleays watersnakes (Pseudoferania polylepis) and freshwater turtles 

Family Genus Species Common name
Present in 
Archer River

Present in 
wetlands

Soleidae Synaptura salinarum Freshwater sole √

Synbranchidae Ophisternon sp. Swamp eel √ c 

Terapontidae Amniataba percoides Banded grunter √ √

Hephaestus carbo Coal grunter √

Hephaestus fuliginosus Sooty grunter √

Leiopotherapon unicolor Spangled perch √ √

Scortum ogilbyi Gulf grunter √

Toxotidae Toxotes chatareus Archer fish √ √

Toxotes jaculatrix Banded archerfish √

Total species 48 26

aDenotes species of economic importance.
bDenotes species declared as endangered under Australian conservation and biodiversity legislation.
cSwamp eel caught in macroinvertebrate samples.

TA B L E  1   (Continued)
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(Chelodina rugosa and Emydura s. worrelli) in most wetlands, nota-
bly during postwet season. Overall, there was no significant dif-
ference among seasons, fenced/unfenced wetlands, and years 
(PERMANOVA, Pseudo-F < 0.589, p < .84).

With a reduced list confined to dominant species, occurrence 
profiles for groups in the terminal branches of the mCART analy-
sis (Figure 4) show two initial wetland groups based on a split sup-
ported by region, with wetlands in the Coen (mid-catchment) region 
separating from those wetlands in the coastal plains. Following the 
left branch there is interannual variation among wetlands, and a 
second terminal node based on whether wetlands were fenced in 
2016, but not so in 2017 and 2018 data. Following the right branch 
(APN, coastal plains), the first node separates seasons, and following 
late-dry season wetlands further separate based on mean dissolved 
oxygen (~3.0%), and then mean temperature (~28.5℃). The postwet 
season branch appears to have more separation among data, with a 
separation based on mean water temperature (~26.5℃), years, and 
then finally dissolved oxygen (~4%).

Mean fish body size distributions differed between the three 
sample years (with fish for each wetland and survey pooled) (KS, 
p < .001, Tables S2-S5), with larger fish measured in 2017 (50.5 mm) 
compared to 2016 (38.7 mm) and 2018 (31.6 mm), despite the as-
semblages having similar size ranges. When comparing the overall 
fish size distribution by pooling years, postwet season fish were 
larger (44.9 mm) when compared to the late-dry season (39.7 mm) 

(KS, p < .01). For some fish species such as the chequered rainbow 
fish (Melanotaenia s. inornata), the postwet season (32.5  mm) was 
similar when compared to late-dry season (38.4 mm) (KS, p =  .06, 
S3). In contrast, the northern purple-spot gudgeon (Mogurnda mo-
gurnda) was larger postwet season (52.8 mm) compared to late-dry 
season (37.1 mm) (KS, p < .01, Table S4).

4  | DISCUSSION

While installation of fences can protect terrestrial ecosystem ser-
vices from feral impacts (Bariyanga et  al.,  2016), in the case here 
fences appear to offer little overimprovised fish additional value 
compared to those that are not fenced—overall the fish assemblage 
remained similar across years, seasons, and with and without fenc-
ing. While this is the case, importantly what this means is that many 
fish indeed access both fenced and unfenced wetlands during wet 
season connection, however, the seasonal effects of reduced water 
level conditions and the loss of fish assemblage as the dry season 
progresses is a pattern that remains regardless of fencing. To this 
end, installation of expensive exclusion fences might not offer ad-
ditional protection to fish species habitat on this tropical floodplain. 
The same conclusion was reported by Doupe et  al.  (2010) where 
those authors surveyed strongly seasonal wetlands (similar to the 
wetlands here) elsewhere in northern Australia, and concluded that 

F I G U R E  3   Examples of the diel dissolved oxygen, pH, water temperature, and conductivity cycling in Archer River wetlands. These 
examples are from KA06 during postwet season (a), and late-dry season (b) in 2016, and AR01 during postwet season (c) and late-dry season 
(d) in 2016
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the seasonal dry down of wetlands ultimately prohibits the wetland 
contribution to future year successful fish recruitment. In contrast, 
where floodplain wetlands remain more permanently connected, 
fish can take more advantage of rich food and nutrient-rich flood-
plains (Hurd et al., 2016; Love et al., 2017).

The low species richness in wetlands relative to the main 
Archer River channel might be a consequence of the frequency 
and duration of connection between wetlands and the main 
Archer River. The wet season rainfall immediately prior, and during 

this survey, was within the 10th percentile for historical records. 
In research elsewhere, a longer connection duration was shown to 
result in more fish present postwet season, and conceivably, more 
species present late-dry season (Arthington et  al.,  2015; Hurd 
et  al.,  2016). Examples exist where longer connection between 
main river channels and wetlands contributes positively to fish 
growth rates, and higher abundance and diversity of fish (Barko 
et al., 2006; Love et al., 2017; Schomaker & Wolter, 2011). It is also 
possible that the field methods used here confound our ability to 

F I G U R E  4   Multivariate regression tree showing the major divisions in the database on assemblage composition. Each of the splits are 
labeled with the contributing variable, and the division threshold (in the case of electronic conductivity; EC, and dissolved oxygen; DO). The 
length of the descending branches is proportional to the divergence between groups. Bar plots represent the fish assemblage composition 
at the corresponding color code node sharing the same attributes. Values in the bar plots represent the relative frequencies of occurrence of 
each taxon within a same node
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F I G U R E  5   Conceptual diagram of wetland ecosystem conditions during (a) wet season, and (b) late-dry season. During the wet season, 
the lateral connection between the Archer River channel and wetlands occurs, during which fish can access wetlands and water quality is 
generally best because feral pig impact is minimal regardless of fencing. The dry season results in water retracting from the land margins, 
allowing pigs to access unfenced wetlands. At this stage, water quality conditions are poor in unfenced wetlands with high turbidity/
nutrients and temperature, and dissolved oxygen is generally critical for fish. Fenced wetlands become shallower too, through temperature 
and dissolved oxygen cycling reduced, turbidity is low (<20 NTU), while nutrients can be also high (>20 NTU). Regardless of fencing, fish 
community reduced to a few resilient species dominated by juveniles ready for rapid dispersal when wet seasons commences again
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determine the full species composition in wetlands—this could be 
overcome by using additional survey techniques, including multi-
panel gill nets, traps, or electrofishing (though we attempted to 
electrofish these wetlands, and however, the conductivity was too 
low to effectively use that method), in addition to the presence of 
crocodiles in these wetlands present a real challenge to sampling. 
Future research might consider riparian vegetation condition, ben-
thic, and floating aquatic plant extent and pig impact pressure as 
potential correlating variables describing the fish assemblage in 
fenced and unfenced wetlands.

An obvious characteristic of the fish assemblage here were 
larger, presumably adult, individuals in the wetlands after the wet 
season compared to small individuals present in the late-dry sea-
son. This suggests that the wetlands serve as important refugia for 
successful recruitment of freshwater fish that adult fish remaining 
in the wetlands after disconnection are able to complete imperative 
life cycle stages. The fact that we did not catch large fish in the late-
dry season suggests that adult fish might be lost as the dry season 
progresses, consumed either by predators such as estuarine croc-
odiles (Crocodylus porosus). Wetlands are also popular feeding and 
roosting locations for water birds (Brandolin & Blendinger,  2016; 
Chacin et al., 2015); we observed a large number of species at most 
wetlands in the late-dry season. The value of wetlands to wader 
birds is limited by the condition (Robertson et al., 2017; Żmihorski 
et al., 2016), but are thought to provide an important nutrient sub-
sidy more broadly on seasonal floodplains (Buelow et al., 2018; Ma 
et al., 2010). Hurd et al. (2016) postulates that differences in fish 
communities between main channel and off channel waters is more 
influenced by the presence of piscivorous predators, or even via 
a function of competitive exclusion within fish guilds as resources 
diminish as the late-dry season takes hold. Examining this point 
could be achieved by investigating the species niche width (Jackson 
et  al.,  2011; Swanson et  al.,  2015) in drying waters by construct-
ing food webs in individual waters to determine species ranges and 
changes with fencing treatment, and comparing postwet season 
and late-dry season conditions.

In the late-dry season for the few fish species present, juveniles 
dominated the catch regardless whether wetlands were fenced. 
Having small recruits in the late-dry period might be an import-
ant strategy in maximizing dispersal after connectivity with the 
commencement of the wet season (Pusey et al., 2018). Moreover, 
late season conditions with no flow and warm conditions might 
favor larval development (Godfrey et al., 2016; King et al., 2003). 
Melanotaeniid rainbowfish, for example, have a flexible reproduc-
tive behavior that is well adapt to deal with the vagaries of tempo-
ral variation in habitat conditions (Pusey et al., 2001). The same is 
true for both Eleotrid gudgeon species here with smaller recruits 
presumably ready for wide-scape distribution with the pending 
wet season flow. Pusey et  al.  (2018) provide a case that the re-
production success of freshwater fish in northern Australia could 
in fact hinge on antecedent flow patterns across the landscape, 
and that this flexibility ensures population level success (Stewart-
Koster et al., 2011). This strategy might be particularly appropriate 

given the below average summer rainfall totals seen during this 
survey, particularly when compared to previous years.

As the dry season takes hold, water quality conditions progres-
sively deteriorate mostly because of increasing impact from rooting 
pigs as they access the wetland vegetation. Generally, fenced wet-
lands change little in terms of water conditions (Figure 5). However, 
it is the late-dry season when water conditions are poorest and 
therefore most critical to fish. Unfenced wetlands tended to be 
shallower, highly turbid, and suffer water temperatures that ex-
ceed acute thermal effects thresholds for fish—which does provide 
good justification for fencing wetlands, particularly those that are 
more permanent, such as those spring feed, compared to wetlands 
that will dry because they are so distant from the primary water 
course (Waltham & Schaffer, 2018). The most critical water quality 
condition for fish survival is dissolved oxygen, and the solubility 
of dissolved oxygen in water  is  strongly affected by temperature 
(i.e., high temperature reduces dissolved oxygen solubility (Diaz 
& Breitburg, 2009). Data on hypoxia tolerances of local  freshwa-
ter fish  species  in northern Queensland  are available  (Butler & 
Burrows,  2007), and while tolerances vary between species and 
life stages,  there were obvious periods in wetlands when these 
threshold limits are exceeded. During critical periods, fish must 
regulate breathing  either via increasing ventilation rates  (Collins 
et  al., 2013), or by rising to the surface to utilize aquatic surface 
respiration and/or air gulping (e.g., tarpon, Megalops cyprinoides). In 
any case, the capacity for fish to do that safely depends on the tim-
ing of the oxygen sag and antecedent  conditions, though nota-
bly it appears that most hypoxia-induced fish kills originate from 
thermal stress and sunburn resulting from the animals' need to re-
main at the surface during the heat of the day  in order to access 
available oxygen for respiration. Increasing these risks to fish can 
have important chronic effects including reducing physical fitness 
to successfully contribute to future populations (Flint et al., 2018; 
Gilmore et al., 2018).

5  | SUMMARY AND CONCLUSIONS

The cultural and ecological value of coastal wetlands means that 
management intervention is increasingly necessary to ensure they 
remain productive and viable habitat (Creighton et al., 2015; Canning 
& Waltham, 2021). Overall, these data support a model that dam-
age to wetlands from pig activities not only contributes to reduced 
aquatic habitat, through loss of aquatic vegetation communities, but 
also probably has secondary impacts including water temperature 
and asphyxiation risks for many hours each day, that are higher than 
when compared to fenced wetlands (Figure 5). However, fish occu-
pying fenced and unfenced wetlands here were similar, particularly 
in the late-dry season where those remaining few species were small 
and presumably juveniles ready for wet season redistribution. On 
this basis, installing fences to both floodplain and riverine wetlands 
that were not on the main flow channels, but rather were on ana-
branches and flood channels that connect to the main channels only 
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during high flow conditions, seems to offer little additional habitat 
value for fish from the treat of feral pig impact. Where wetlands are 
largely ephemeral and will dry anyway, or where wetlands remain 
until the next seasons rain connection; species abundance and/or di-
versity is not improved by restricting feral pig access—the exception 
is that unfenced wetlands tend to be hotter and experience lower 
available oxygen for fish which may support fencing wetlands most 
distant from primary water courses if they are like to remain until the 
next wet season. Further research is necessary to examine climate 
change resilience on permanent wetlands (and managed wetlands) 
particularly whether they provide a similar level of refugia as future 
climate warming in the region is likely to result in more variable wet 
season rainfall and flow patterns (James et al., 2017). Under this sce-
nario, it is possible that even the more persistent wetlands might 
suffer similar dry out fate to the ephemeral wetlands examine here.
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