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Abstract 

 

This essay examines the consequences of so-called “big data” technologies in 

biomedicine. Analyzing algorithms and data structures used by biologists can provide 

insight into how biologists perceive and understand their objects of study. As such, I 

examine some of the most widely used algorithms in genomics: those used for 

sequence comparison or sequence mapping. These algorithms are derived from 

powerful tools for text-searching and indexing that have been developed since the 

1950s and now play an important role in online search. In biology, sequence 

comparison algorithms have been used to assemble genomes, process next-generation 

sequence data, and, most recently, for “precision medicine.” I argue that the 

predominance of a specific set of text-matching and pattern-finding tools has 

influenced problem choice in genomics. It has allowed genomics to continue to think 

of genomes as textual objects and to increasingly lock genomics into “big data”-

driven text-searching methods. Many “big data” methods are designed for finding 

patterns in human-written texts. But genomes and other ’omic data are not human-

written and are unlikely to be meaningful in the same way. 

 



	 2	

Introduction 

 

This essay examines the how the use of so-called “big data” technologies in 

biomedicine has led to the dominance of a specific set of tools in genomics. What 

happens when tools developed for managing Google’s File System end up organizing 

genomic data? What difference does it make that the same algorithms that run Yahoo 

and Facebook are also searching biomedical data for evidence of disease? What kinds 

of questions do these approaches open up or close off to investigation? And what 

broader socio-economic impacts are these changes in biomedical practice likely to 

have?   

To begin to answer these questions, we need to understand some of the ways 

in which “big data” itself is beginning to come under scrutiny. “Big data” is a 

contested term; in this essay I use the term to refer to algorithms and infrastructures 

used by large Web-based companies (Google, Facebook, Yahoo, and a few others) to 

manage and analyze their massive volumes of data. The nascent field of “critical data 

studies” (Mackenzie 2012; Kitchin 2014; Ruppert et al 2015; Gitelman 2013; Dalton 

and Thatcher 2014) has begun to highlight some of the risks and challenges posed by 

these new technologies. As danah boyd and Kate Crawford have pointed out, “big 

data” is characterized by arrogance and surrounded with a mythology that it provides 

access to higher forms of truth: more accuracy and more objectivity (boyd and 

Crawford 2012, 663). The hype- and rhetoric-powered financial investment in “big 

data,” reinforces the idea that bigger (data) is always better. This has the potential to 

destabilize ways of knowing that cannot deal with such large data volumes (boyd and 

Crawford 2012, 666).      
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I will argue here that in biomedicine, big data tools pose a related but more 

specific set of risks. Most importantly, they have led to the increasing dominance of a 

specific set of textual pattern-matching tools in genomics. These tools, while 

powerful, constrain the kinds of questions and answers that genome biologists pose 

and attempt to answer. Finding patterns and over-represented correlations within texts 

has become the one of the primary ways of understanding genomes and what we can 

do with them. However, many of the algorithms deployed for this work are derived 

from tools designed to search other kinds of large bodies of text (especially the World 

Wide Web). This has meant that some of the most important ways in which biologists 

attempt to understand genomes are now deeply intertwined with ways of searching 

and understanding the Web. Ultimately, this may limit the kinds of ways in which 

genomes can be understood and manipulated.  

The ability of “big data” tools to rapidly analyze large volume of data has 

made them particularly attractive. This is a story of how a particular set of tools 

(known as a sequence comparison or sequence matching or sequence mapping 

algorithms) has come to enjoy wide application and dominance in genomics. In the 

1990s, these tools were critical for assembling genomes; in the 2000s they were 

necessary for making use of next-generation sequencing (NGS) data; and most 

recently they are central to the approaches that come under the label “precision 

medicine.” Without these tools biologists could not have assembled genomes, nor 

used NGS data, nor begun to develop “precision medicine” approaches. These 

algorithms have also become exemplary for biologists as they deal with other large 

non-sequence-based “high-throughput” data sets. Of course, the kinds of big data 

tools described here are not the only methods deployed in genomics, but they do play 

a central role in some of the most visible new approaches to understanding organisms 
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in the genomic era. As such, analyzing these algorithms provides an important means 

through which we can gain insight into recent genomic practices.   

Search algorithms promise to make sense of the Web by finding correlations 

and patterns amidst the trillions of bytes of words. Similarly, sequence comparisons 

hope to make sense of organisms and diseases by finding patterns amidst the trillions 

of bytes of data collected in high-throughput experiments. This connection is more 

than metaphorical: the algorithms described here show how the data of the Web and 

the data of genomes are subjected to the very same kinds of pattern-searching 

methods. By linking biological and “big data” practices, algorithms are playing a 

central role in reconstituting biomedical practice in ways that tie it to particular sorts 

of questions and problems. Many “big data” methods are designed for finding patterns 

in websites. But genomes and other ’omic data are not websites and are unlikely to be 

meaningful in the same way. Since we don’t know, a priori, how genomes are 

organized or function, assuming that they are organized or function like texts 

necessarily constrains the possibilities for understanding them.   

Scholars across a range of fields are increasingly paying attention to how 

software and data structures affect the world and our understanding of it (including 

Bowker & Star 1999; Bowker 2006; Manovich 1999; Manovich 2013; Kirschenbaum 

2007). Material properties of information systems “constrain, shape, guide, and resist 

patterns of engagement and use” says Paul Dourish (2014). Brian Cantwell Smith 

argues that “the representational nature of computation implies something very 

strong: that it is not just the ontology of computation at stake; it is the nature of 

ontology itself.” (Smith 1998, 42). In other words, how objects are represented in 

databases, algorithms, and data structures reveals much about what we consider 

objects to be in the world. These approaches suggest that algorithms can be used to 
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gain insight into ways of thinking and doing in specific fields. Because of the ways 

algorithms structure and order the biological world, examining algorithms can provide 

a means to understand the kinds of ways biologists think about and work with their 

objects of study. In other words, this essay takes algorithms as an analytic tool 

through which to interrogate how biologists know and work. Software is increasingly 

a mechanism through which practices, styles of thought, and ways of constituting and 

understanding the world move from domain to domain. In particular, algorithms carry 

with them not merely ways of working, but ways of organizing, categorizing, and 

valuing objects; this too, forms a critical part of software’s contemporary power and 

significance.  

Adrian Mackenzie has examined how bioinformatic practices have evolved as 

biologists had to deal with larger and larger amounts of sequence data, especially data 

emerging from NGS machines. This has involved paying increasing attention to the 

“logistics” (Mackenzie et al 2015) and multi-dimensionality (Mackenzie 2015) of 

sequence data. This essay seeks to build on Mackenzie’s work by showing how large 

volumes of biological data require not only new modes of storage and new statistical 

approaches, but have also mobilized and developed particular kinds of algorithmic 

approaches. 

Molecular biologists have long considered genes a sort of “book of life” (Kay 

2000). However, sequence comparison algorithms have operationalized these textual 

metaphors, strengthening and deepening the associations between DNA sequence and 

text. Elsewhere I have described how the emergence of bioinformatics transformed 

biological practice, orienting it towards production, exchange, and circulation of 

nucleotide sequences (Stevens 2011b; Stevens 2013; see also Thacker 2005). 

Sequence comparison algorithms form a critical part of this transformation, allowing 
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DNA sequence to be manipulated, analyzed, and circulated in ways much like textual 

data. As such, bioinformatic modes of data-driven circulation contributed to and 

reinforced the notion that genomes could be appropriately and usefully rendered as 

texts. Kay argued the that “code” and “text” metaphors of molecular biology were 

ultimately misleading (particularly in over-emphasizing the role of DNA in 

controlling organisms). By strengthening the associations between DNA and text and 

embedding them in software, sequence comparison algorithms emphasize particular 

kinds of accounts and explanations of how organisms work. These accounts are based 

the assumption that biological data can meaningful in the same way as other kinds of 

human-generated texts.    

In tracking these developments, I first examine “indexing” algorithms 

developed in the early 1990s and used to assemble the first complete draft of the 

human genome. Second, I analyze a set of algorithms designed to process data from 

NGS machines using the Burrows-Wheeler Transform. Data from NGS exhibited 

specific characteristics that made it susceptible to nascent “big data” methods. Finally, 

I turn to explicit attempts to apply “big data” tools to the solution of problems in 

genomic medicine. My analysis is based on published descriptions of the algorithms 

in the scientific literature as well as other accounts intended for pedagogical purposes 

or for the biotechnology industry. These particular algorithms are important because 

they comprise one significant way in which biologists seek to understand genomes 

and how they work; without sequence comparison and mapping, genomes could not 

be made legible and meaningful biological objects. Since algorithms themselves 

comprise ways of doing and making in genomics, the analysis of the ways in which 

these algorithms work provides an alternative method for gaining insight into 

biological practice.   
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I: The Application of Indexing Algorithms to Genomes 

 

During the 1990s, “indexing” algorithms became critical tools for genomics. These 

algorithms provided the means through which biologists could computationally 

reconstruct whole genomes. This was achieved by applying techniques that had been 

developed for and applied to text-searching problems since the 1950s. By describing 

some of the history of indexing algorithms and showing how these methods were 

taken up in genomics, I show here how genomes came to be understood increasingly 

as texts. Genomes had to become “textual” in order to be assembled into meaningful 

biological objects.  

One of the first effective (and now ubiquitous) “indexing” algorithms - the 

hash - was invented by Hans Peter Luhn at IBM in the 1950s (Knuth 1973, 540-541). 

In early 1953, Luhn wrote an internal IBM memo in which he suggested putting 

information into “buckets” in order speed up a search. Rather, than searching through 

a long list of items one by one, a computer search could be sped up by dividing up the 

list into “buckets” according to a simple procedure. For instance, if one had a long list 

of telephone numbers, they could be divided up according to the last digit of each 

number. This would create ten “buckets,” each containing approximately one tenth of 

the full list. This is a simple hash index.  

Luhn’s thinking about such search problems was influenced by his thinking 

about searching texts. Since the 1940s, Luhn had been working on various ways of 

auto-indexing, auto-abstracting, and searching texts using machines. In 1947, Luhn 

invented a way of modifying a typewriter to make machine-readable documents using 
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magnetic marks, and during the 1950s Luhn developed a series of card-sorting 

machines designed for indexing an information retrieval (Belzer et al 1978, 139-151). 

Luhn’s most important invention in this field was called KWIC: Key Words In 

Context. This procedure could quickly and automatically construct a kind of index for 

a set of titles. Each keyword appearing in the titles would appear alphabetically, “in 

context” (that is, showing the words appearing before and after it). Like Luhn’s 

“bucket” system, KWIC relied on automatically re-arranging items in such a way that 

they could then be easily scanned or searched for the required information.  

Although this now seems quite trivial, until Luhn’s invention there was no 

practical way to quickly index a set of titles or documents. Extracting keywords was a 

painstaking process that required human eyes and brains. With the amount of 

information in science and business growing too fast for most people to keep up, 

KWIC was the 1950s equivalent of a search engine: it allowed users to rapidly locate 

the information they needed. KWIC resulted in the design and construction of 

hundreds of computerized indexing systems in the early 1960s including those used 

by the Chemical Abstracts Service, Biological Abstracts, and the Institute for 

Scientific Information. Luhn knew that his system was useful for business users too. 

In 1958, Luhn wrote an article for the IBM Journal of Research and Development 

called “A Business Intelligence System.” Here, Luhn proposed a system that could 

“auto-abstract” documents, extract “action points,” and distribute them to appropriate 

people within an organization (this is the basis of the field that became known as 

“Selective Dissemination of Information”; Luhn 1958).  

Hashing functions are one important example of the powerful set of tools 

developed for text searching and indexing. Various types of hashes are now used in a 

wide range of applications including computer graphics, caches, cryptography, 
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telecommunications, and plagiarism and piracy detection. Indeed, the significance of 

indexing across all domains of computing has made it one of the most important 

domains of research in computer science. This research has led to the development of 

other indexing schemes including suffix trees (1973), suffix arrays (1989), the 

Burrows-Wheeler Transform (1994), and Ukkonen’s algorithm (1995).   

During the 1990s, indexing algorithms, including hash functions, became widely 

used tools in genomics. In the late 1980s, at the newly created National Center for 

Biotechnology Information at the National Institutes of Health, David Lipman 

oversaw the development of a new algorithm called the Basic Local Alignment 

Search Tool (BLAST; Altschul et al 1990). BLAST was initially designed for 

searching for a particular string of DNA text in a large DNA sequence database such 

as GenBank. This involved a sequence matching or sequence alignment problem: that 

is, finding the best match between one piece of DNA and another. BLAST works by 

identifying high-scoring “key words” of DNA (usually 11 letters for DNA), then 

creating an index of the locations of these words for searching, then trying to find 

matches between the target sequence and these words, and finally extending those 

matches outwards, producing longer and longer matching regions (for more details on 

these developments see Stevens 2011a).   

This way of thinking about sequences a series of “words” had a significant impact 

on how biologists began to imagine sequence and how fragments of sequence related 

to one another. In particular, it made it possible to deploy different kinds of text-

searching techniques on sequences and genomes. This opened up new possibilities for 

not only searching for words, but also assembling fragments into longer sentences and 

paragraphs. A single chromosome can be tens of millions of base pairs long. 

Sequencing technology in the 1990s allowed determining sequences of around five 



	 10	

hundred base pairs at a time. This presented a fundamental problem for genomics: 

how was it possible to join up all the five-hundred base pair fragments in the correct 

order to reconstruct the full genome? One important part of the strategy was to make 

many copies of a chromosome and then sequence lots of random overlapping 

fragments. In theory, the overlapping segments could then be matched with one 

another to reconstruct longer pieces.  

This reconstruction of long sequences from overlapping sequence fragments is a 

problem of sequencing matching or alignment. Lining up two sequences end-to-end is 

simple. But assembling a whole chromosome would require finding the best matches 

between tens of thousands of such fragments. Here, the aim of sequence comparison 

was not locating sequences within databases, but rather the assembly of the sequence 

fragments produced by sequencing machines into whole chromosomes. One of the 

first algorithms to be successfully utilized for genome assembly on a large scale was 

the TIGR Assembler, developed at The Institute for Genome Research and used to 

assemble the sequence of Haemophilus influenzae in 1995 (the first free-living 

organism to be sequenced; Sutton et al 1995). TIGR’s algorithm utilized a strategy 

similar to BLAST, identifying short matching “words” within the sequences as 

candidate overlapping regions and then creating a searchable hash index of such 

words. 

The indexing step works like an index for a book – a full index would tell you the 

exact location of every occurrence of every word in a book. An index of a genome 

does the same thing, but instead of listing the words in alphabetical order, it uses 

clever ways of pointing to the locations of various “words,” just as Luhn did with his 

“buckets,” using a simple set of mathematical or logical operations. Algorithms like 



	 11	

the TIGR Assembler provided something like a KWIC for the genome, allowing rapid 

lookup.  

Other indexing schemes such as suffix arrays and suffix trees have also been used 

extensively in genomics from the 1990s onwards. For example, suffix trees have been 

used for whole-genome alignment (Delcher et al 1999). Suffix arrays, first applied to 

biology by Udi Manber and Eugene Myers (1993) were adapted for applications 

including sequence alignment (Kielbasa et al 2011), error correction of sequences 

from genome sequencers (Ilie et al 2011), genome assembly (Gonella and Kurtz 

2012), word counting (Kurtz et al 2008), and sequence clustering (Hazelhurst and 

Lipák 2011). One of the first textbooks for computational biology, Algorithms on 

Trees, Strings, and Sequences (Gusfield 1997) also emphasized suffix-tree 

approaches. Text searching using these techniques was critical to growing power of 

bioinformatics in the 1990s and early 2000s.    

Significantly, the “competition” between the private company Celera Genomics 

and the publicly funded HGP was, in part, a competition over algorithms. The public 

project had previously considered and rejected the “whole genome shotgun” (WGS) 

method on the basis that it was not computationally possible to assemble a whole 

genome’s worth of fragments. Celera, however, collaborated with Compaq to develop 

a high-speed supercomputing environment for this purpose. This system allowed Eric 

Anson and Eugene Myers to extend the TIGR Assembler into the basis for the Celera 

Assembler (Anson and Myers 1999; Myers et al 2000). This was used to sequence the 

Drosophila genome and eventually the human genome on a powerful computer 

cluster (Venter et al. 2001).   

In 2000, Celera had bought the computer company Paracel for $283 million in 

order to acquire “the world’s fastest sequence comparison supercomputer 
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(GeneMatcher™), high-throughput sequence analysis and annotation software tools, 

and a text search supercomputer (TextFinder™)” (Celera 2000). Paracel, spun out of 

the defense contractor TRW in 1992, primarily built hardware and software for 

intelligence-gathering; TextFinder and other software was designed to sift through 

communications for hidden patterns of letters and words; one of its main customers 

was the National Security Agency (Pollack 2000). Once purchased by Celera, this 

technology was re-deployed to searching for patterns in genomes. Here, as elsewhere, 

tool that had important and valuable applications in other contexts were rapidly 

appropriated and adapted for genomics.  

Without these tools, DNA sequencing methods could only produce a jumble of 

random DNA fragments. Indexing became critical for biologists in imagining what a 

genome was, how it could be assembled, and how it worked; it showed one particular 

way in which the patterns of letters in DNA sequences could come to have meaning. 

The algorithms also allowed sets of tools designed for business and intelligence 

applications, especially those designed for manipulating texts, to be deployed in 

genomics. Genome sequences thus increasingly came to be organized, circulated, and 

analyzed like other forms of textual data. Unlike email messages, books, or scientific 

papers, however, DNA sequence is not written by humans. There is little reason to 

expect that the kinds of patterns found in human-generated texts would be found in 

genomes. Genomes have more recently begun to show themselves as more densely 

interconnected, more non-linear, and more complex than most human texts. Assuming 

that the patterns of genomes would be like patterns in texts necessarily closes off 

alternative possibilities for understanding how they work. Nevertheless, DNA 

sequences were analyzed as texts, reinforcing the notion that genomes are texts and 

that they could be meaningfully parsed as such.    
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II: Next-Generation Sequencing and the Burrows-Wheeler Transform  

 

In the first decade of the 21st century, sequence comparison tools played a critical role 

in the analysis of so-called “next-generation” sequencing (NGS) data. Here too, 

sequence comparison algorithms framed the search for the causes of genetic disease 

in genomes as a problem of text searching. The massive volumes of NGS data could 

only be effectively used by once again borrowing and adapting powerful software 

designed for searching and manipulating texts.   

Just after the conclusion of the HGP, several new DNA and RNA sequencing 

technologies became available to genomics. Many of these relied on techniques 

developed in the 1990s but took a decade or more to mature into commercial 

machines. In 2004, Roche Applied Sciences marketed their 454 FLX Pyrosequencer, 

in 2006 Illumina released the Solexa 1G Genetic Analyzer, and in 2007 Applied 

Biosystems began sales of the their SOLiD (Supported Oligonucleotide Ligation and 

Detection) machine (Stein 2008). These platforms allowed a substantial speeding-up 

of DNA and RNA sequencing. The first generation of Illumina’s machines, for 

example, could produce around one gigabase of data (one third of one human 

genome’s worth) in a “run” that could be completed in around a week. By 2011, 

newer machines could produce nearly one thousand times that much (one terabase of 

data) in a similar amount of time (Illumina 2013). 

One important limitation of these NGS machines was the short “read-length.” 

While the Sanger sequencing methods (used in the HGP) could reliably sequence 

from 500 to 1000 base pairs, early NGS machines could sequence only (randomly 
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selected) small chunks, often as few as 20-30 base pairs.1 A one-gigabase run of an 

Illumina machine could produce around 30 million very short “reads” of DNA or 

RNA. This limited the kinds of work that could be done with these new technologies. 

Sequencing a new species (called de novo sequencing) was not possible since it would 

be impossible for sequence comparison algorithms to reconstruct so many short 

pieces into a full genome. Rather, NGS could be used to take “snapshots” of gene 

expression (RNA sequencing) or to identify mutations at specific sites on the genome.  

The key to making NGS data useful was the ability to “map” each read from 

the sequencing machine to its specific location on the “reference” genome (that is, a 

genome that had been previously assembled based on Sanger sequencing).2 This 

“mapping” step relied, once again, on sequence comparison algorithms to match the 

short reads to their correct places on the genome. The emergence of NGS, then, led to 

the development of a new set of specialized algorithms for mapping short reads.  

Although some of the earliest “mapping” algorithms for NGS data (including 

ELAND, the Short Oligonucleotide Alignment Program (SOAP), SeqMap, and 

MAQ) used hashing and other indexing methods, the most successful and powerful of 

these (including Bowtie and SOAP2) deployed a new indexing method called the 

Burrows-Wheeler Transform (BWT).3 The BWT was first described by Michael 

Burrows and David Wheeler (1994) and published by the DEC Systems Research 

Center in Palo Alto, California. BWT was designed as a compression algorithm; the 

main uses of BWT are in the “zip” software “bzip2” (http://www.bzip.org/). Data 

	
1 In the 1990s most of the sequencing machines used to sequence the human genome were reliable up 
to about 500 base pairs. Later versions of Sanger sequencers were reliable closer to 1000 base pairs. 
Very early NGS machines had read lengths of 20-30 base pairs; common read lengths on current 
(2015) models are between 100 and 250 base pairs.  
2 The move from Sanger sequencing to NGS can also be characterized as a move from constructing 
“reference genomes” to “references populations” characterized by their specific patterns of variations. 
On the production and use of “reference populations” see M’Charek (2005, 44-46).  
3 For a review of these algorithms see Li and Homer 2010.	
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compression usually relies on finding repeated letters within strings of text. BWT 

involves a clever and reversible method of reordering strings alphabetically, 

maximizing the number of repeated letters and thereby increasing the efficiency of the 

compression. 

Using the BWT for sequence matching and mapping takes advantage of some 

of the same special properties that make the algorithm useful for compression. In 

2000, Paolo Ferragina and Giovanni Manzini (2000) discovered that the BWT of a 

long string of letters could be used as a space-efficient index of the original string. In 

other words, it could be used, like a hash table, as a way to look up occurrences of 

subsequences within the original string. The FM-index, as it was called, could be 

stored in a fraction of the space of an equivalent hash table (or suffix array; Langmead 

et al 2009). An index to a book tells us which important words or phrases occur on 

which pages of the book. A full index, listing every occurrence of every word and 

phrase in the book, would usually be much longer than the book itself.4 The BWT-FM 

Index provides a way of generating a full index that is only two-thirds longer than the 

book itself. Significantly, though, BWT-FM looks and works nothing like a 

conventional index. It functions via a set of mathematical tricks that provide a 

convenient shortcut to the content.  

For our purposes, there are two important points about the use of BWT in 

genomics. First, its use relies on treating sequence data as text – the algorithm relies 

on ordering and manipulating the characters in the string lexicographically. That is, it 

necessarily treats the DNA string as a written text. Second, BWT’s ability to handle 

	
4 The size of the index would depend on the content of the book and the minimum and maximum size 
of the words in the index. Indexing a genome is harder than indexing a book since there are no discrete 
words. For example, the words “wire door” would need to be indexed not only as “wire,” “door” and 
“wire door,” but also as “wi,” “ir,” “re,” “ed,” “do,” “oo,” “or,”  “wir,” “ire,” “red,” “edo,” “doo,” 
“oor,” “ired,” “redo,” and “edoo.”  
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large quantities of textual data made it possible to find ways of utilizing the 

exponentially larger data volumes generated by NGS.  

In particular, the BWT allowed biologists to use NGS data to address one 

specific problem. Beginning in 2005, genome-wide association studies (GWAS) were 

designed to identify the genomic sites responsible for particular human diseases or 

traits and to determine the “risk” factors associated with each site (Rose 2007, chapter 

4). These studies involved hundreds or thousands of individuals, some possessing a 

particular trait (eg. autism or obesity) and some not. By examining hundreds of 

thousands (or even millions) or locations on the genomes of each individual using 

microarrays, biologists could use statistical techniques to highlight particular genomic 

mutations (SNPs) that were over-represented amongst those possessing the trait.  

GWAS approaches, however, had limited success in explaining human 

diseases and phenotypic traits (Daly 2010). Attempts to apply GWAS to complex 

diseases (such as obesity or autism) correlated the diseases with hundreds or 

thousands or genomic loci (Visscher et al 2012b). Even apparently simple traits, such 

as height, appeared to be linked to hundreds of sites (Allen et al 2010). Even more 

problematic, even the contributions of this multitude of loci did not seem to be able to 

fully explain the heritability of these traits and diseases. This “missing heritability” 

problem seemed to suggest that something much more complex must have been going 

on between genomes and phenotypes (Manolio et al 2009).  

GWAS advocates argued that the answer would lie in the collection of more 

data on human genomic variation (Visscher et al 2012a). Mapped NGS data could be 

used to exactly this. The use of NGS for GWAS-type studies, therefore, represented a 

doubling down on GWAS’s data- and correlation-driven approach (Koboldt et al 

2013). The basic idea was the same as GWAS, but now much more data could be 
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collected (in the form of the millions of reads from NGS mapped to the human 

genome). Moreover, no prior assumptions needed to be made about where to look for 

variation.5 The genomic basis of human diseases and traits could be discovered, 

GWAS proponents believed, by searching more deeply for patterns of variation 

between genomes, using NGS.  

Indeed, much of the interest in (and excitement about) NGS was based on its 

potential for extending GWAS methods by searching more deeply for variation. As 

such the most significant early uses of NGS technology were in performing genome-

wide searches for human variation and the most critical challenges were in finding 

faster algorithms for performing alignment and mapping of short-reads (Zhang et al 

2011). One influential early review of NGS (Shendure and Ji 2008) reported several 

uses for the new machines including “targeted discovery of mutations or 

polymorphisms,” “mapping of structural rearrangements,” “serial analysis of gene 

expression,” and “large-scale analysis of DNA methylation”). All of these involved 

mapping reads to a reference genome in order to track patterns of variations. At a 

broad level, all of these experiments involved a “find” procedure – that is, searching 

for a specific pattern of text within a large set of textual fragments. While genome 

assembly required finding matching patterns within a single genome in order to 

discover overlaps, NGS approaches searched for matching patterns across multiple 

genomes in order to draw conclusions about variation between these genomes.    

Sequence mapping allowed NGS to be directed towards asking and answering 

a specific kind of biological question. Namely, they allowed biologists to search 

genomes for patterns of variations that could be correlated with disease. NGS 

	
5 GWAS had necessarily had to limit itself to looking for so-called “common variants.” NGS could 
search for “rare variants.”  
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algorithms were directed towards identifying over-represented patterns of DNA letters 

in large numbers of genomes. The massive volumes of short-read data from NGS 

machines could only be made useful and legible by deploying these specific kinds of 

powerful text-matching algorithms. The BWT was designed to take advantage of 

patterns in texts for the purposes of compression; in genomics, the algorithm could be 

deployed to rapidly search for textual patterns. Once again, the logic of human-

generated text was applied to analyzing genes and genomes. The dominance of this  

“big data” approach has constrained the ways in which biologists have come to use 

NGS data and the kinds of meanings they expect to find within it.    

 

III: Big Data Methods and Precision Medicine   

 

Most recently, genomics has been touted as the means to achieve “precision 

medicine” – this involves the use of genomic and other data to tailor diagnostics and 

treatments for individuals. “Big data” tools are critical to this work. Again, however, 

these tools rely on adapting and re-deploying tools from other domains. Such tools are 

designed to address specific sorts of text-based problems and their use in genomics 

reflects this.  

Between 1994 and 1997, Sergey Brin and Lawrence Page, while graduate 

students at Stanford, designed a new method for searching the expanding amount of 

information on the World Wide Web. This system relied on “crawling” the Web 

(downloading and storing pages) and creating an “index” that could be rapidly 

searched against a user query (Brin and Page 2000). A 1998 version of Brin and 

Page’s system already had to download and index 25 million web pages. This 

required ways of managing large amounts of data that could be stored (and accessed) 
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across multiple computers. Brin and Page developed a method of creating “virtual 

files” – system they called “BigFiles” – that spanned multiple computers.  

As the web grew rapidly in the early 2000s, keeping up with ways to store and 

index the growing volume of information was a priority for Google. Google continued 

to develop and refine its own file system for storing the vast quantities of information 

it required. This eventually became the Google File System, capable of managing 

files hundreds of gigabytes in size (Carr 2006). However, in addition to merely 

storing large volumes of information Google also needed to perform computations 

involving these huge data sets: summarizing of the numbers of pages crawled per 

host, or finding the set of the most frequent queries in a given day, for example (Dean 

and Ghemawat 2004).  

In 2003, this requirement inspired the creation of Google’s MapReduce 

software. The idea was that, for a large computation involving hundreds of computers, 

MapReduce would take care of all the details of distributing the calculation and 

aggregating the results. Engineers seeking to perform a task that required multiple 

machines could simply forget about this multiplicity and act as if the operation was 

going to be performed on a single computer - MapReduce would take care of all the 

details of dividing up the calculation. Its developers wrote: “we designed a new 

abstraction that allows us to express the simple computations we were trying to 

perform but hides the messy details of parallelization, fault-tolerance, data-

distribution, and load balancing” (Dean and Ghemawat 2004). 

Although Google kept the precise details of its software secret, it did publish 

enough information about MapReduce to allow others to implement similar systems. 

In 2004, software engineers Doug Cutting and Mike Cafarella began developing their 

own version, called Nutch. Yahoo, determined not to be outdone by Google, hired 
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Cutting and Cafarella to join their own search engine development team in 2005 

(Metz 2011). Yahoo was also committed to keeping the project in the public domain, 

spinning off the project to a separate company called Hortonworks. The result was 

Hadoop (named after the elephant in the Dr. Seuss book Horton Hears A Who). 

The kinds of problems for which MapReduce was designed and used suggest 

the kinds of problems that Google needed to solve. In the paper describing 

MapReduce, Dean and Ghemawat report on three kinds of tasks. First, they describe 

the performance of the software in performing a “grep” task, scanning through 1010 

100-byte records, searching for a relatively rare three-character pattern. Second, they 

describe how the algorithm executes a “sort” task, ordering 1010 100-byte records. 

Third, the authors describe how MapReduce has been used to speed up Google’s 

indexing of webpages (Dean and Ghemawat 2004, 10-11). Although the authors also 

note that MapReduce has found uses in other domains (“large-scale machine learning 

problems, clustering problems for Google News and Froogle products, extraction of 

data used to produce reports of popular queries (eg. Google Zeitgeist), extraction of 

properties of webpages for new experiments and products, and large-scale graph 

computations” (Dean and Ghemawat 2004)) many of these are essentially large-scale 

text-matching and pattern-finding problems. This sort of text-matching is an 

exemplary problem for Google and MapReduce. David Carr recounts a training 

assignment that would be typical for a new programmer hired by Google - using 

MapReduce to count all occurrences of words in a set of Web documents:  

 

In that case, the “map” would involve tallying all occurrences of each word on 

each page—not bothering to add them at this stage, just ticking off records for 

each one like hash marks on a sheet of scratch paper. The programmer would 
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then write a reduce function to do the math—in this case, taking the scratch 

paper data, the intermediate results, and producing a count for the number of 

times each word occurs on each page (Carr 2006). 

 

Although this is a simple problem in principle, the technique is the basis for a wide 

range of statistical-data mining problems at the center of Google’s work. “[This sort 

of problem] is particularly key for Google, which invests heavily in a statistical style 

of computing, not just for search but for solving other problems such as automatic 

translation between human languages...” (Carr 2006). 

Indeed, Google’s attempts to “solve the world's problems” are based on 

exactly this type of approach. That is, they rely on efficient ways of counting 

occurrences and finding patterns in the occurrences of words in large data sets. 

Google Translate, Google’s search, Google FluTrends, and Google’s advertising 

systems all work in this way. Google Translate, for example, looks for statistical 

relationships between the ways words occur together across millions of human-

translated documents (such as UN documents, which are translated into multiple 

languages). Google FluTrends examines patterns in search terms and associates them 

with particular locations. Google’s Adsense attempts looks for patterns of words 

occurring together in order to indicate the “meaning” of webpages so as to make ads 

more relevant to the content alongside which they are placed (Levy 2011). For 

Google, solving problems means finding patterns in text. 

 

In 2009, Michael Schatz, a scientist at the University of Maryland, began to 

apply Hadoop to biological problems (Hernandez 2013). Schatz used Hadoop to run 

genomics calculations on Amazon’s EC2 “elastic” cloud computing service, finding 
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ways to drastically reduce the amount of time required to process his data. Like 

Google, sequence comparison algorithms seek patterns in large quantities of text. 

Schatz’s contribution – a program he called Cloudburst – was to implement sequence 

mapping in a way that allowed it to be distributed and accelerated via Hadoop. “It is 

an accurate, fast, and cheap way of squeezing 1000 hours of computation into an 

afternoon...” Schatz’s team reported (Bisciglia 2009).  

The adaptation of Hadoop for biology is enabled by the fact that sequence 

comparison algorithms are conceptually similar to the kinds of problems MapReduce 

was designed to solve. Problems such as counting all occurrences of words in a 

(large) set of web documents are precisely analogous to counting “the number of 

occurrences of all length k substrings (k-mers) in a set of DNA sequences” (Schatz 

2009). The problem that Schatz uses to illustrate the application of MapReduce to 

sequence analysis is exactly the kind of word-counting problem assigned to Google’s 

novice programmers (Schatz 2009). In one sense, this is not surprising: the algorithm 

is simply being deployed for its original purpose. But since Hadoop is one of the few 

algorithms able to handle massive data volumes, this practically limits the kind of 

work and the kinds of “big data” problems biologists are able to tackle.   

The use of Hadoop/MapReduce techniques in biology has made a range of 

new computational resources available for biological work (Taylor 2010). In 

particular, biology can now take advantage of “the cloud,” doing its computing in 

Amazon’s “elastic compute cloud” or elsewhere. The resources at companies such as 

Cloudera, designed for speeding online business operations, are now at the disposal of 

biology. Other companies, such as Spiral Genetics, DNAnexus, are now attempting to 

sell more specially adapted cloud services to biology labs (Hernandez 2013). These 
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developments also make biological work more dependent on the commercial 

infrastructures of “big data,” especially cloud computing.  

But more significantly, the ways in Hadoop has been used in biomedicine 

further suggest that this technology is suited to answering a very particular set of 

questions. The kinds of statistical methods all rely on discovering patterns and 

correlations within very large data sets. In effect, they once again extend the GWAS 

model and approach to much larger and more diverse data sets. A diagram from 

GigaOm shows the how this is supposed to work or how the cloud is (or will be) used 

to create “better medicine, brought to you by big data” (Harris 2012; see 

https://gigaom.com/2012/07/15/better-medicine-brought-to-you-by-big-data/). 

Tumour samples are collected from patients, sequenced, and stored in the cloud. But 

the key step is “map and match”: the tumour genome is matched to a database of 

known tumours in order to determine “targeted drug therapy.” This is a sequence 

comparison or text-matching problem. The aim is to identify patterns in the text of 

DNA that correlate with specific clinical outcomes. If one specific pattern of DNA 

words is found to be correlated with high survival rates across thousands of samples, 

and another pattern with the success of a particular treatment, then that information 

will be useful for characterizing and treating future cancers, proponents of this 

approach hope. Such “map and match” may be helpful for identifying and treating a 

particular patient’s cancer, but that patient’s data is then also collected and added to 

the database in order to refine future predictions. This is best described as a “find and 

count” problem – finding particular patterns of letters or words and counting their 

occurrence in order to identify which patterns are over-represented.  

In another example, in June 2012, Google began a collaboration with the 

Institute for Systems Biology, adapting the Institute’s “Regulome Explorer” software 
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for the Google Compute Engine. A “random forest” algorithm was put to work on 

data from the Cancer Genome Atlas to “explore associations between DNA, RNA, 

epigenetic, and clinical cancer data” (Thomas 2012). Here, once again, the aim is to 

find patterns in the text of DNA and RNA that correlate with specific clinical 

outcomes (such as survival rates). Finding out anything clinically useful about a 

specific patient or a specific tumor relies on data about a vast number of other patients 

and tumors. Individual results require massive aggregation. Removing the emphasis 

from the individual patient or the individualized disease leaves little room for 

recognizing exceptions or novelty – the individual’s disease exists only in relation to 

the collective. This de-individualization of medicine means that, in order to benefit 

from “big data,” all patients must subject themselves to these regimes of data 

collection and comparison. 

 “Big data” collaborations are premised on the idea that “big data” tools such 

as Hadoop will be able to process larger and larger quantities data fast enough to 

make a difference to patients (NextBio 2012; Brust 2012; Lohr 2015). Advocates of 

these approaches anticipate that novel insight will come not from new kinds of 

models or new approaches, but from scaling up. This kind of work does not rely on 

understanding the meaning or function of specific pieces of DNA (just as Google 

Translate does not understand the “meaning” of texts it translates). Rather, it relies on 

the notion that commonly occurring or over-represented patterns in the DNA (or 

RNA) have some functional or causal significance. It also relies, like Google’s 

services, on having vast amounts of data at one’s disposal – the more data, the better.  

This is both logically and practically similar to the ways in which Google 

searches for and uses patterns in Web pages to establish their likely “meaning.” The 

accuracy of Google Translate relies on comparing massive amounts of textual input, 
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and, as most users are aware, the more one uses Google’s search, the better it gets at 

predicting what one want to know. Likewise, the efficacy of the cloud in medicine 

will rely consuming on massive amounts of patient data. It is only with tools such as 

Hadoop that biologists can hope to effectively mine these datasets. In this version of 

biomedicine, more data is always the key to finding the answer. Indeed, the more 

specific the result required, the more data will be needed.   

The “precision medicine” paradigm relies on transforming not only sequence 

data, but also vast amounts of other kinds of biomedical and clinical data into text that 

can be searched for patterns and correlations. While the BWT rendered NGS data as 

text, Hadoop and other “big data” tools articular an even wider vision of biological 

work as a text-matching problem that involves pattern findings within sequence, 

clinical, environmental, and other forms of biomedical data. In other words, this 

approach is now no longer limited to DNA sequence data. These kinds of statistical 

methods all rely on discovering patterns and correlations within very large data sets. 

Hadoop can been applied to generate statistical associations between any kinds of 

data; all kinds of biological data can become “texts,” to be analyzed in the same ways. 

This represents a narrowing, rather than an opening up, of the possibilities for 

thinking about the workings of genes, proteins, small molecules, and their mutual 

interactions.  

Newer approaches such as environment-wide association studies (EWAS) and 

phenome-wide association studies (PheWAS) generate more and new types of data. 

But all of these are processed according to the same methods. In environment-wide 

association data, information about individuals’ exposure to environmental toxins, 

diet, or physical activity is examined alongside their genomic and health data (Patel et 

al 2010). The goal is to correlate particular exposures or environmental factors with 
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the incident of specific diseases. In PheWAS, a single genomic location is compared 

across a range of individuals in order to identify the diseases or traits with which it is 

associated (Hebbring 2014). Although it is often described as an “alternative” or 

“complementary” approach to GWAS, it relies on the same method of searching for 

correlations and over-represented patterns using “big data” tools.  

 

Conclusions 

 

Although the application of Hadoop to biology is recent, I have argued that this is the 

latest stage of a longer borrowing of tools and from text-searching and text-matching 

problems. In the 1990s, indexing techniques borrowed from computer science (but 

originally developed for text matching and searching) became critical for assembling 

genomes. Later, the explosion of NGS data required even more powerful data-

processing techniques. In particular, NGS data and analysis connected biomedicine to 

a variety of problems in software, databases, and the Web (including compression, 

indexing, and search). In genomics, the exemplary problem became – and has 

remained – finding patterns within very large sets of textual fragments. 

Since the 1950s, computer scientists have devised powerful algorithms for 

searching, indexing, abstracting, and sorting text. Most recently, for search engines 

such as Google, matching and identifying patterns within the vast (hyper-)textual 

space of the World Wide Web is its central problem. As a result, computer scientists 

and Google’s engineers have developed a set of extremely powerful solutions to this 

problem. The fixation of genomics on the “search” problem has much to do with the 

origins and usefulness of these methods in text searching and indexing, search 

engines, and pattern finding. “Search pervasively affects our view of the Internet and, 
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increasingly, of ‘real life’” Frank Pasquale argues (Pasquale 2015, 59). Search 

pervades the way contemporary society thinks about our own lives, but has also 

influenced how many biologists think about “life itself.” Genomics has capitalized on 

the powerful resources that the “search” problem has produced in framing its own 

problems and solutions. These textual tools have provided ready-made (or near ready-

made) solutions to problems through adaptation of these tools for biology.  

In the 2015 film Ex Machina, the anti-hero protagonist, Nathan, explains to 

one of his employees how he created an artificial intelligence. The key to making an 

intelligent robot was mining the world’s Internet search data: 

 

Nathan: It was the weird thing about search engines. They were like striking 

oil in a world that hadn’t invented internal combustion. They gave too much 

raw material. No one knew what to do with it… My competitors were fixated 

on sucking it up, and trying to monetize via shopping and social media. They 

thought engines were a map of what people were thinking. But actually, they 

were a map of how people were thinking. Impulse, response. Fluid, imperfect. 

Patterned, chaotic (Garland 2015). 

 

This detail of Garland’s film is suggestive of the value that the contemporary 

society places on search engines. The search engine has become a means for tracking 

trends, understanding language, and even understanding thought. “Google looks like 

the model for everything and the solution to every problem” argues Siva 

Vaidhyanathan (2011, 6). They have also become a powerful means, both practically 

and metaphorically, for understanding genomes.  
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What consequences does this problem-choice have for biology? Algorithms 

can reveal much about how groups of practitioners order their world and conceive of 

the objects in it. As Brian Cantwell Smith suggests, algorithms and data structures 

reveal how their designers and users organize categorize the world outside the 

computer too (Smith 1998). This suggests that “big data” approaches may be limiting 

our thinking about genomes and organisms. Conceiving biological systems in terms 

of text or pattern-matching limits the ways in which we might think about what they 

are and how they work. The notion that the genome is a meaningful text, a code to be 

broken, or a dataset with hidden patterns may close off other kinds of conceptions of 

biology. 

But beyond this more speculative concern, the ubiquity of search poses other 

significant risks. First, such “search” methods may crowd out other ways of biological 

doing and knowing (eg. case studies) that do not deal in huge data volumes. High-

throughput methods (such as next-generation sequencing) produce massive data 

volumes that seem to demand “big data” analysis that rely on pattern matching and 

correlation. Data production and data analysis become locked into a feedback cycle: 

more data demands faster analysis that justifies the production of yet more data. 

Although “big data” approaches actually amount to a very narrow set of text-

matching tools, they are increasingly the only way of approaching problems involving 

large volumes of data.  

A range of other high-throughput techniques now supplements NGS and 

machines such as flow cytometers, fMRIs, ChIP-seq, RNA-seq, and RIP-seq that also 

produce massive data sets (see, for instance, the variety of methods used in the 

ENCODE project; ENCODE at UCSC 2012). While these new techniques might, in 

principle, open up a wide range of new analytic possibilities, the very magnitude of 
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the data they produce seems to be limiting the kinds of approaches that can be 

imagined; “search” tools provide the only ready-made way for reducing and analyzing 

the large quantities of data they spew out. Increasing volumes and increasing 

messiness and diversity of data can be brought under control by returning to “big 

data” tools and techniques.6 In a climate where bigger is better, the volume of data 

that can be produced becomes its own justification. The production of data, in turn, 

justifies the use of “big data” methods for finding patterns within it.  

But many of these methods are tuned to finding patterns in websites. As 

disordered as the Web may be, it ultimately consists of (mostly) human writings that 

are (mostly) intended to be meaningful. There is no reason to expect that sequences 

will be meaningful in the same way. The limitations of GWAS suggest that genomes 

may function in ways that are more holistic, more densely interconnected, and more 

combinatoric than human-generated text. Applying text-specific algorithms to 

genomes begins with the assumption that biological data is like text, necessarily 

limiting the possibilities for discovering alternatives. Algorithms designed to find 

patterns will (almost) inevitably find them. The patterns that algorithms discover find 

may have more to do with how they are searching than what they are looking at. As 

with GWAS, however, more data may yield more correlations and more patterns, but 

they do not necessarily reveal which of these is likely to be biologically or clinically 

significant. More data may increase our ability to see patterns, but they do not tell us 

what those patterns mean (or what causes them). 

Ultimately, Google’s (or Facebook’s) aim is to capture more of our attention 

and sell it to advertisers. As such, the company’s focus in on aggregating user data in 

ways that can better respond to our needs, but also better predict our (consumer) 

	
6 ENCODE has been criticized for its “big science” approach to biology (Eisen 2012).  
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behavior. Applied to biology, these technologies also seem to promise a 

“personalized” genomics and medicine. In both cases, the notion of “personalization” 

is an illusion; both rely on the massive aggregation of data from large numbers of 

people. What appears to be “personalized” is in fact dependent on millions of other 

individuals with whom you may share little or nothing in common.  

In 2008, the direct-to-consumer personal genomics company, 23andMe began 

a service they called “23andWe.” This part of their operation would aggregate their 

genomic customers data and correlate it with survey data (also from customers) that 

provided information about family and medical history, diet, and lifestyle 

information. This, 23andMe CEO Anne Wojcicki claimed, would allow the company 

to run it’s own “experiments” – mining their database for linkages between genetic 

markers and diseases. This could even, Wojcicki went on, become an alternative to 

publicly-funded forms of biomedical research, speeding up the slow processes of peer 

review and approval for human subjects research (Wojcicki et al 2012).  

In an impassioned critique of these developments, Sanford Kwinter argued 

that this amounted to nothing less than a “crypto-bio-prospecting” in which customers 

exchanged their bioproperty for a “service contract.” The “logic of the startup, 

imposed on biology” resulted in the dangerous “handing over of biological 

endowment to a simplistic, discredited market model” (Wojcicki et al 2012). 

23andWe’s “experiments,” and Kwinter’s response, suggests how the 

“personalization” of medicine is tied to corporate ownership over data and the 

increasing empowerment of corporations within the frameworks of datafied medicine. 

Although 23andMe may represent an extreme example, other “big data” practices 

increasingly subject personal data to corporate control.    
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The deepening linkage, through algorithms, of biomedicine to commercial 

infrastructures (databases, clouds) indicates that society might come to see 

biomedicine in increasingly “market” terms. The rhetoric of “personal choice” and 

“individual responsibility” over “public health” already pervades biomedicine (Rose 

2007, 124; Waldby 2006). The advent of “big data” methods increasingly makes 

medicine something to be sold. Users of Google and Facebook trade personal data 

(such as the contents of emails) for convenience. Critics of these platforms argue that 

ultimately the users get the worse end of this bargain – that the data collectors and 

aggregators have more to gain from massive amounts of aggregated personal data 

than can be used and sold (Vaidhyanathan 2011; Silverman 2015; Schneier 2015). 

Similarly in medicine, patients trade their genomic and health data for treatments. 

But, although beneficial to patients in the short term, this data may have more value to 

those able to collect, store, and analyze it in the long run. If the examples of personal 

data online are any indication, “big data” practices, by increasing the value of large, 

centralized data sets, may significantly contribute to the consumerization of medicine 

and the commodification of individuals that lies at the heart of “personalized” 

medicine.  
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