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Understanding how Victoria, Australia gained
control of its second COVID-19 wave
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During 2020, Victoria was the Australian state hardest hit by COVID-19, but was successful

in controlling its second wave through aggressive policy interventions. We calibrated a

detailed compartmental model of Victoria’s second wave to multiple geographically-

structured epidemic time-series indicators. We achieved a good fit overall and for indivi-

dual health services through a combination of time-varying processes, including case

detection, population mobility, school closures, physical distancing and face covering usage.

Estimates of the risk of death in those aged ≥75 and of hospitalisation were higher than

international estimates, reflecting concentration of cases in high-risk settings. We estimated

significant effects for each of the calibrated time-varying processes, with estimates for the

individual-level effect of physical distancing of 37.4% (95%CrI 7.2−56.4%) and of

face coverings of 45.9% (95%CrI 32.9−55.6%). That the multi-faceted interventions led to

the dramatic reversal in the epidemic trajectory is supported by our results, with face cov-

erings likely particularly important.
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The COVID-19 pandemic has had an unprecedented impact
on human health and society1,2, with high-income, urban
and temperate areas often the most severely affected3–5.

The impacts of the virus are felt directly through its substantial
infection-related mortality6,7 and post-infection sequelae8, as well
as through the often highly restrictive public health measures
needed to achieve control9.

Australia was relatively successful in controlling COVID-19
throughout 202010, with all jurisdictions of the country achieving
good control of the first wave of imported cases through March
and April. However, the southern state of Victoria suffered a
substantial second wave of locally-transmitted cases, reaching
around 600 notifications per day, predominantly in Metropolitan
Melbourne in winter.

In response to the pandemic, the Victorian Government
implemented a number of recommendations and policy changes
with the aim of reversing the escalating case numbers that had a
severe impact on social and economic activities. Specific changes
included stringent restrictions on movement, increased testing
rates, school closures, and face-covering requirements. In
Metropolitan Melbourne face coverings were mandated from
23rd July and significantly more stringent movement restrictions
were implemented from 9th July (moving to “stage 3”) and from
2nd August (moving from “stage 3” to “stage 4”). Stage 4
restrictions included business closures, restriction of restaurants
and cafes to take-away service only, remote schooling, restriction
of travel to a five-kilometre radius, an 8 pm curfew, and reduction
in public transportation11, constituting one of the world’s longest
and toughest lockdowns12. Case numbers peaked in the final days
of July and the first days of August and declined thereafter.

Understanding the relative contribution of each of these
interventions is complicated by several interventions being
implemented within a few weeks, along with policy differences
between metropolitan and regional areas. Although several
countries of Asia also maintained effective control strategies
through much of 202013, Victoria’s second wave was notable in
that these policy changes reversed substantial and escalating
community cases rates and supported subsequent sustained
elimination, which was achieved for several months from
November 2020. The clear reversal in the trajectory of the epi-
demic following the implementation of these policy changes
offers the opportunity to explore the contribution of these factors
to the epidemic profile. We adapted our computational model to
create a unified transmission model for the state and infer the
contribution of the policy interventions implemented to changing
the direction of the epidemic trajectory.

Results
Calibration fit. We achieved good calibration fits to all calibra-
tion targets (Fig. 1 and Supplemental Figs. 7, 8), along with close
matches to health service cluster-specific (henceforward “service”)
indicators not used for calibration (Supplemental Figs. 9–11),
under the framework of a single state-wide model. The modelled
epidemic peaks in the regional services occurred somewhat later
than in the metropolitan services, which is attributable to the
modelled infection first being seeded in the metropolitan regions
before triggering epidemics outside of Greater Melbourne and is
consistent with historical reality. These fits were associated with a
post-wave proportion of the population recovered of around 1%,
with higher proportions in metropolitan regions and young
adults (Supplemental Fig. 20).

Parameter estimation. The posterior estimates of model cali-
bration parameters are presented in Table 1 and posterior his-
tograms of key parameters of interest in Fig. 2. Several

epidemiological parameters with good evidence from interna-
tional studies showed posteriors that were consistent with prior
beliefs. This prevented overfitting, reduced the degree of freedom,
and provided better estimates of key free parameters including
the effect of time-varying processes, allowing insights into the
dynamics of the epidemic. The unadjusted risk of transmission
per contact (specifically the risk of transmission per contact
between a susceptible person aged 15–64 years and a sympto-
matic infectious person not in isolation in any location) was
estimated at 4–6%. This needed to be adjusted for contiguous
groups of services, with the modifiers applied to the metropolitan
services reaching values up to double that for the regional services
(other than Barwon South West). Consistent with our intuition
around these parameters, the location-specific adjusters to the
contact rate were generally correlated with one another, but anti-
correlated with the transmission risk parameter. The extent of
mixing between neighbouring geographical patches was low, with
around 0.6–4.7% of the local force of infection contributed by
regions neighbouring the index patch.

Estimates of the incubation period, the infectious period, and
the period prior to ICU admission were similar to our prior
estimates derived from the literature. However, the risk of
hospitalisation, and hence of ICU admission among those
infected, was considerably greater than our age-specific prior
estimate obtained from the literature. Similarly, the risk of death
in those aged 75 and above was considerably higher than that
typically reported in the literature. This likely reflects higher rates
of exposure and infection in population groups at particularly
high risk of adverse outcomes, including residents of aged care
facilities.

The case detection rate associated with a testing rate of one test
per 1,000 population per day was not markedly constrained by
fitting to data and was estimated at 17.9% (95%CrI, 8.1–28.5),
such that peak rates of detection of symptomatic infections were
estimated at greater than 60%.

To understand the reasons behind the epidemic curve peaking
at the start of August and beginning to decline thereafter, we were
particularly interested in parameters governing the effect of time-
varying processes. We estimated that physical distancing
behaviours and face coverings were both important in achieving
control of Victoria’s second wave, with face coverings estimated
to have reduced transmission and infection risk by around 33 to
56%. The effect of physical distancing behaviour was less
constrained through calibration, but was estimated to have
reduced the risk of transmission/infection by 7 to 56%. The
smaller changes in reported adherence to this intervention
(Supplemental Fig. 5) meant that this had a lesser impact on
the epidemic profile. For the two behavioural changes, the
posterior probability density was substantially more informative
than the prior and had lower density around the value of zero,
consistent with an effect of each of these interventions in
reversing the epidemic trajectory. Additionally, the posterior
probabilities of the parameters were only moderately collinear
(Supplemental Fig. 14), supporting independent effects for each
process.

Initiating our calibration algorithm from a diverse set of
starting points did not influence our parameter posterior
estimates, supporting the ability of our model to define the high
posterior regions of the multi-dimensional parameter space
(Supplementary Section 14).

Sensitivity analyses. Using base contact survey data from Bel-
gium instead of those from the United Kingdom resulted in
negligible differences to our analysis. Similarly, when residential
Google mobility was used to scale home contacts instead of
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keeping these contact rates fixed, the estimated posteriors for the
behavioural processes changed moderately, with a greater esti-
mate for the effect of physical distancing. This observation
resulted from the need to scale back contacts in the three loca-
tions outside of the home more dramatically if the effect of home
contacts increased during lockdown.

Counterfactual scenarios. Figures 3–5 present counterfactual
scenarios compared to the baseline scenario. The effect of re-
opening schools from 9th July (the date that stage 3 restrictions
were imposed) was projected to be modest, with daily case rates
peaking around 200 higher than under baseline conditions, but
with the epidemic profile otherwise broadly similar. The effect of
not mandating face coverings was projected to be dramatic, with
case numbers in the thousands for several months under the
counterfactual of face coverings usage remaining at the baseline
level of 13.0%. Returning to full mobility from 9th July resulted in
a similarly poorly controlled epidemic, under the assumption that
face coverings usage could not then have reached the baseline
estimate of >90% compliance in all workplaces and other loca-
tions if industries such as hospitality were fully re-opened. An
epidemic unmitigated by any movement and behavioural
restrictions was projected to substantially overwhelm expanded
ICU capacity.

Discussion
We found that the improvement in Victoria’s second wave of
COVID-19 cases could be well captured in our transmission
model through a combination of time-varying processes that
included: testing rates, population mobility, use of face coverings,

and physical distancing. The lower rates of COVID-19 observed
in regional services were captured with the introduction of the
infectious seed through the metropolitan services along with
modest and plausible changes to the risk of transmission by
geographical region. The risk of infection in metropolitan areas
was estimated to be up to double that of regional areas, consistent
with international findings of a moderate correlation between
population density and epidemic severity3. Although Barwon
South West showed transmission rates that were more compar-
able to Metropolitan Melbourne, this region includes Victoria’s
second-largest city of Geelong. Interaction between populations
of different services was low in the context of significant
restrictions on movement between regions. Each of the time-
varying processes modelled appeared to be important to the
observed dynamics, with both face coverings and behavioural
changes associated with a significant reduction in transmission
risk per contact. However, face coverings had a considerably
greater effect on reversing the epidemic, which was observable
due to the sharp transition in the extent of their use when they
were mandated.

Victoria’s second wave of cases was dramatically different from
its first autumn wave, which was driven by importations and
during which time the effective reproduction number was con-
sistently estimated to be below one14,15. Victoria’s second wave
was initiated by quarantine escape, from which widespread
community transmission soon followed. Progressively more
extensive lockdown measures were then implemented, with local
targeting of specific residential blocks and then postcodes, which
were insufficient to reverse the epidemic trajectory.

As noted previously, stage 3 restrictions were associated with a
reduction in the effective reproduction number16, although

Fig. 1 Calibration fits to daily state-wide time series of notifications, hospital admissions, intensive care unit admissions, and deaths. Daily confirmed
cases (black dots) overlaid on the median modelled detected cases (dark blue line), with shaded areas representing the 25th−75th centile (mid blue),
2.5th−97.5th centile (light blue), and 1st to 99th centile (faintest blue) of estimated detected cases. The timing of restrictions applied to Metropolitan
Melbourne is indicated in the upper left panel.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26558-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6266 | https://doi.org/10.1038/s41467-021-26558-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Table 1 Prior distributions and posterior estimates with 95% credible intervals of all calibrated epidemiological model
parameters.

Parameter (units) Prior distribution 2.5th centile Median 97.5th centile

Unadjusted risk of transmission per contact Uniform,
support: [0.04, 0.07]

0.0413 0.0463 0.0602

Incubation period (days) Truncated normal,
mean: 5.5,
standard deviation: 0.97
support: [1, infinity)

4.35 6.06 7.62

Duration of active disease (days) Truncated normal,
mean: 6.5,
standard deviation: 0.77
support: [4, infinity)

5.23 6.47 7.86

Pre-ICU period (days) Truncated normal,
mean: 12.7,
standard deviation: 4
support: [4, infinity)

6.72 13.0 20.0

Infection fatality rate for ≥75 age group Uniform,
support: [0.05, 0.3]

0.071 0.189 0.289

Hospitalisation rate adjuster Uniform,
support: [0.5, 5]

1.27 3.02 4.73

Infectiousness of asymptomatic persons multiplier Uniform,
support: [0.2, 0.8]

0.227 0.509 0.762

Starting infectious population (persons) Uniform,
support: [20, 70]

21.6 37.3 66.6

Case detection rate at one test per 1,000 per day (proportion) Uniform,
support: [0.05, 0.3]

0.081 0.179 0.285

Proportion of contacts identified at prevalence of one case per
1,000 population

Uniform,
support: [0.2, 0.5]

0.209 0.341 0.487

Inter-service mixing (%) Uniform,
support: [0.005, 0.05]

0.00591 0.0217 0.0471

Effect of physical distancing Uniform,
support: [0, 0.6]

0.072 0.374 0.564

Effect of face coverings Uniform,
support: [0, 0.6]

0.329 0.459 0.556

Reduction in the effect of home contacts Uniform,
support: [0, 0.4]

0.0147 0.206 0.389

Service-specific contact rate multipliers
North Metro and West Metro Truncated normal,

mean: 1,
standard deviation: 0.5,
support: [0.5, infinity)

0.96 1.25 1.63
South Metro and South East Metro 0.70 1.01 1.34
Barwon South West 0.58 0.95 1.41
Other regional services 0.53 0.71 1.01

Fig. 2 Posterior density histograms for key state-wide epidemiological parameters from accepted model runs. Red histograms, model posterior
estimates; blue lines, prior distributions for the same parameters (both uniform distributions).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26558-4

4 NATURE COMMUNICATIONS |         (2021) 12:6266 | https://doi.org/10.1038/s41467-021-26558-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


significant case rates persisted throughout July, and further
reductions in mobility were observed with stage 4. An agent-
based model with detailed social networks, consideration of
multiple intervention types, and without geographical structure
was calibrated to the Victorian epidemic17. This model empha-
sised the importance of associations between individuals who
would not otherwise be in regular contact to the epidemic.
Another agent-based simulation found that earlier activation of
social distancing interventions could halve the total epidemic
size18. By contrast to previous work, our model captures both the
temporal and spatial implementation of the policy changes in
Victoria to allow inference of the effect of each intervention. As
concern increased that epidemic control had not been achieved
over the course of July, the policy changed rapidly in an attempt
to bring the epidemic under control. Testing numbers increased
following a nadir in early June and lockdown measures
were implemented differently in twelve Melbourne postcodes,
the remaining postcodes of Greater Melbourne, Mitchell Shire
(immediately north of Greater Melbourne) and the remainder of
regional Victoria. We captured these complicated geographical
patterns of restriction by scaling our mixing matrices using
Google mobility data, which are available at the LGA level for
Victoria. School closure and face-covering policy changes were
captured according to the dates of policy changes.

In earlier versions of the model we included an effect of sea-
sonal forcing. While good fits were also achieved with this effect
included, the posterior estimate of the effect of seasonality was

not markedly constrained through fitting to data. The minimal
information provided on seasonal forcing was likely attributable
to our simulation period spanning less than four months and so
covering a small proportion of the cycling period. Therefore,
while a potentially important seasonal effect would be consistent
with our analysis and with evidence from elsewhere19, it was not
possible to draw conclusions as to its strength. The effect of face
coverings was similar to or greater than is typically estimated at
the individual level20,21, but is consistent with the dominant
importance of the respiratory route to transmission22. The find-
ing was also not unexpected given the marked shift in population
use of face coverings at this time and the timing of the policy
change in late July relative to the dramatic reversal in case
numbers occurring around one week later. The significant esti-
mated effect of behavioural changes suggests that reductions in
interpersonal associations (macro-distancing) alone were not
solely responsible for the dramatic reversal in the epidemic tra-
jectory observed. However, the Google mobility functions used to
capture macro-distancing simulated falls in attendance at work-
places and other non-household locations to considerably below
baseline values in several services (Fig. 6), emphasising their
importance. The dramatic effect of each of these interventions on
the epidemic trajectory (relative to the parameter estimates that
suggest relatively modest individual-level efficacy) is partly attri-
butable to our implementation of these processes as applying to
both the infectious cases and the exposed individual. This
approach is analogous to simulating the use of bed-nets for

Fig. 3 Counterfactual scenarios compared against baseline calibration and data. Scenarios are: blue, face coverings not mandated with compliance
remaining at base level of 13.0%; purple, work, education and other locations mobility return to baseline levels from 9th July with 60% face coverings
compliance; green, work, education, and other locations mobility return to baseline levels from 9th July with face coverings compliance remaining at base
level. Data (black dots), median modelled estimates (lines), shaded areas 25th−75th centile (darkest shading), 2.5th−97.5th centile (intermediate shading
depth), and 1st to 99th centile (faintest shading) of each indicator for each scenario. 9th July chosen as the date that stage 3 restrictions were imposed. We
considered that full compliance with mandatory face coverings would be impractical if workplaces and other locations returned to full capacity (for
example, if hospitality was fully re-opened, patrons would not wear masks in all other locations). Base and surge ICU capacity for Victoria presented on
lower left panel38.
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malaria control, where the overall effect of the intervention is
quadratic (i.e., the scaled transmission rate is effectively the
square of the complement of the intervention effect), as it affects
both the infection vector and recipient23.

Compared to many other countries, Australia experienced a
relatively minor COVID-19 epidemic throughout 2020 and relatively
few serosurveys have been undertaken in the country. A national
serosurvey undertaken in elective surgery patients in four states
including Victoria in June/July 2020 identified no seropositive
patients from 3,037 samples tested24, supporting our approach of
commencing our simulations with a fully susceptible population. A
serosurvey of health care workers from Eastern Health in Mel-
bourne’s eastern suburbs found a seropositive proportion of 2.2% in
November/December 2020 in a group at higher risk of exposure than
the general community25. This is consistent with our estimates of a
population-wide recovered proportion of around 1%, with marked
differences by age group and location.

Despite the complexity of our model, it is inevitably a simplifica-
tion of reality. The uncertainty regarding the effect of asymptomatic
persons on epidemic dynamics was addressed by varying the relative
infectiousness of these patients, which was not well-constrained
through fitting, but suggested around twofold lower infectiousness
per unit time. Our findings relating to the impact of time-varying
interventions could be proxies for other behavioural changes,
although our simulation has the advantage of having all time-varying
processes informed through empiric data. With limited data for the
profile of face-covering use in regional Victoria, we assumed this
followed the policy change dates with an analogous shape to that of
Metropolitan Melbourne.

In earlier analyses and manual exploration of parameter var-
iation in our model, we found that fixing the importance of home

contacts to be equal to that of those in the three other locations
(i.e., omitting the home contact reduction parameter) required
either a greater effect of face coverings or a shorter incubation
period to achieve the observed downslope in case numbers in
August and September. This alternative configuration increased
effective home contacts relative to those in other locations during
the epidemic peak and led to either implausibly high effects for
face covering or a very short incubation period and hence serial
interval. We also note that the use of face coverings may partially
be a surrogate for other individual-level behavioural changes that
are not captured through the survey responses that scale the
physical distancing function in our model.

Victoria’s second wave is known to have had particularly
dramatic effects on residents of aged care facilities and health care
workers26, which we did not explicitly capture except by varying
parameters relating to disease severity. The concentration of cases
in aged care was likely the main factor requiring us to inflate the
international estimate for the infection fatality rate for those aged
75 years and over. Our results suggest a markedly higher IFR in
this group than that estimated from other settings, but is con-
sistent with the high raw case-fatality rate of 4.3% in the data used
for fitting (801 deaths, 18,459 notifications). This highlights the
importance of risk factors and comorbid conditions on the esti-
mated IFR, which likely underpin some of the dramatic increases
in IFR with increasing age and are particularly concentrated in
residents of aged care facilities. For these reasons, we emphasise
that our forward projections (Figs. 3 and 5) of a lesser public
health response assumed that the IFR for the oldest age group
returned to the uninflated international estimate. Our inflation of
the age-specific estimates of the risk of hospitalisation given
symptomatic COVID-19 are also consistent with a more severe

Fig. 4 Counterfactual scenarios compared against baseline calibration and data. Scenarios are: purple, face coverings policy introduced two weeks earlier
with stage 3; green, stage 4 mobility levels (introduced 2nd August) instead commence from 9th July. Data (black dots), median modelled estimates
(lines), shaded areas 25th−75th centile (darkest shading), 2.5th−97.5th centile (intermediate shading depth), and 1st−99th centile (faintest shading) of
each indicator for each scenario.
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epidemic, although hospital admission is driven by factors other
than disease severity. These include infection control and work-
force capacity with staff isolation requirements in residential aged
care facilities, which were particularly important to this
epidemic wave.

With the state’s explicit objective of achieving no community
transmission in Victoria (and therefore across Australia) within a
few months27,28, our findings emphasise that multiple interacting
components of the public health interventions were required to
achieve this within the modelled period29,30, Consistent with
findings from elsewhere31–33, without reductions in contacts
outside the home and mandating the use of masks, there would
have been no reasonable prospect of driving transmission to zero
within a time period tolerable to the community, given the
starting point of the epidemiological situation in late July. Since
the period modelled, Victoria has achieved several periods of
sustained COVID-19 elimination, likely allowing restrictions to
be released to an extent that would have been impossible
otherwise34. The small effect of school closures was also con-
sistent with findings from overseas30,35, although if schools had
remained open throughout the epidemic wave, some additional
weeks would likely have been required for transmission to decline
to the point that elimination was an immediate prospect. None-
theless, it is encouraging that in a low transmission scenario prior
to the emergence of variants of concern, school closures are likely
not necessary to gain control in the presence of other effective
population-level restrictions, including masks.

In conclusion, we found that Victoria’s major second wave of
COVID-19 was brought under control through a combination of
policy interventions that were synergistic and together contributed
substantially to the dramatic reversal in the observed epidemic tra-
jectory. In particular, the considerable individual-level effect of face

coverings was critical to achieving epidemic control, and so should
be a cornerstone of any public health response given the much lesser
inconvenience associated with their use compared to restrictions on
mobility. Rates of hospitalisation and death were higher than
anticipated given international estimates of parameters pertaining to
these quantities, likely reflecting the concentration of the epidemic in
high-risk groups, particularly residents of aged care facilities. As
vaccination is rolled out as a more targeted and definitive inter-
vention to gain control of the pandemic, procurement, logistics and
population confidence continue to limit the rate at which population
immunity can be achieved, while variants of concern increasingly
threaten control. In this context, understanding how public health
and social measures can be efficiently deployed to regain temporary
control while vaccination is deployed remains critically important.

Methods
We adapted the transmission dynamic model that was previously used to produce
policy-relevant analyses and projections of specific public health and social measures in
2020. The model was also used to forecast new cases, health system capacity
requirements, and deaths for the Victorian Department of Health and Human Services
(DHHS) and the Government of Victoria at the health service cluster level (hence-
forward “service”) during the second wave to December 2020. By incorporating
geographical structure to represent services, we built a unified model of the COVID-19
epidemic in Victoria, and fitted the model to multiple indicators of epidemic burden in
order to infer the effectiveness of each component of the response to the epidemic. Full
methods are provided in the Supplementary Methods, key features of the model are
illustrated in Fig. 1 and the version of the code used is tagged at https://github.com/
monash-emu/AuTuMN/releases/tag/vic_2nd_revision.

Base model. Our model of COVID-19 epidemiology is a stratified, deterministic
SEIR framework, with sequential compartments representing non-infectious and
infectious incubation periods and early and late active disease (Fig. 6A) coded in
Python version 3.6. The late incubation compartment and the two active com-
partments are stratified to simulate epidemiological considerations including
asymptomatic cases36, incomplete detection of symptomatic cases, hospitalisation,

Fig. 5 Counterfactual scenario of education remaining on-site, compared against baseline calibration and data. Scenarios are: purple, school opening
scenario; blue, baseline calibration. Data (black dots), median modelled estimates (lines), shaded areas 25th to 75th centile (darkest shading), 2.5th to
97.5th centile (intermediate shading depth) and 1st to 99th centile (faintest shading) of each indicator for each scenario.
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and ICU admission (Fig. 6B). All model compartments were then stratified by age,
with susceptibility, the clinical fraction, hospitalisation risk, and infection fatality
rate modified by age group6. We introduced heterogeneous mixing by age using
mixing matrices that we constructed by weighting the empiric age-specific contact
rates for the United Kingdom from the POLYMOD study to the age structure of
the Victorian population (Fig. 6D and Supplementary Section 1).

Simulation of public health interventions. We simulated movement restrictions
(including school closures, business closures, and working from home) by varying the
relative contribution of three of four locations to the overall mixing matrix (Fig. 6E)
continuously over time. Using Google mobility data (https://www.google.com/covid19/
mobility/) weighted to service, we scaled the work contribution with workplace
mobility and the contribution from other locations (contacts outside of schools,
homes, and work) with an average of mobility from the remaining Google mobility
locations other than residential (Fig. 6E). We simulated school closures by scaling the
school contribution according to the proportion of children attending schools on site.
We assumed that schools began transitioning to onsite learning from the 26th of May,
at which time 400,000 of 1,018,000 students returned to onsite education. The
remaining students were considered to return onsite from the 9th of June, before 90%
of students moved to remote learning from the 9th of July, which continued until
October. We reduced the contribution of contacts in the home with a parameter that
was constant over time to avoid over-emphasising the importance of this location. This
approach was chosen to acknowledge processes that cannot be captured through a
compartmental model, including that home-based contacts are subject to contact
saturation and are less important to linking transmission chains together.

The term “micro-distancing” is used to refer to behavioural changes that reduce
the risk of transmission given an interpersonal contact and so are not captured
through data on population mobility (e.g., maintaining physical distance and use of
face coverings). Micro-distancing was assumed to reduce the risk of both
transmission from index cases and the risk of infection of susceptible persons, with
the effect of both physical distancing and face coverings applied to all three non-
residential locations. Both the coverage and the effectiveness of each intervention
were incorporated, with time-varying functions representing the proportion of the
population complying with recommendations over time and constant calibration
parameters scaling these functions to represent the effectiveness of the intervention.
The profiles of compliance with these two recommendations was estimated by
fitting to YouGov data, available at https://github.com/YouGov-Data/covid-19-
tracker, with hyperbolic tan functions providing a good fit to data (Supplemental
Figs. 5 and 6). Because face coverings were mandated ten days later in regional
Victoria than Metropolitan Melbourne, the face coverings compliance function was
delayed by this period for regional services, while the physical distancing function
was identical for all services.

We defined the modelled case detection rate as the proportion of all symptomatic
cases that were detected through passive presentation to health care (Fig. 6B). We
related the case detection rate (CDR, Eq. 1) to the number of tests performed using an
exponential function, under the assumption that a certain per capita daily testing rate is
associated with a specific case detection rate, with this relationship varied during
calibration:

CDR timeð Þ ¼ 1� e�shape ´ testsðtimeÞ ð1Þ

Fig. 6 Age-structured COVID-19 model with population distribution, age-specific contact rates, and mobility inputs. A Unstratified model structure
(with example infectiousness shading for infected compartments). B Illustration of the “clinical” stratification used to capture infection, detection, and
hospitalisation status, with a depth of red shading illustrating the infectiousness for infectious compartments (with light blue being non-infectious). Note
that some or all compartments are further stratified by age, contact tracing status and health service cluster. C Starting population age distribution in five
year bands starting from 0 to 4. All bands aged 75 and above were aggregated into a single modelled age group representing those aged 75 and above. D
Heterogeneous mixing matrices by 16 age groups in the absence of non-pharmaceutical interventions. The intensity of yellow/red shading represents the
number of contacts per day. E Macro-distancing adjustments to the mixing matrices for each service smoothed with 7-day moving average. Black,
workplace mobility for metropolitan services; green, other locations mobility for metropolitan services; blue, workplace mobility for regional services;
brown, other locations mobility for regional services. The horizontal axis is date of year 2020. The vertical axis indicates Google mobility estimate relative
to the baseline pre-pandemic period in early 2020. S susceptible; E exposed; I active; R recovered; ICU intensive care unit.
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To capture contact tracing, all model compartments representing current infection
were stratified into traced and untraced strata, with infectiousness of all compartments
of the traced stratum reduced to the same level as those admitted to hospital. The
infectious seed was assigned to the untraced stratum and all new infections enter the
incubation compartment through the untraced stratum of the early incubation
compartment. The process of contact tracing is then represented as moving people from
the untraced to the traced stratum of the early incubation period. The proportion of all
persons moving to the traced stratum rather than continuing to progress through
compartments in the untraced stratum is calculated as the product of the proportion of
all active cases detected and a proportion representing the effectiveness of contact
tracing (q(time)). The latter proportion is considered to decline as prevalence of
infection increases according to Eq. 2. The parameter governing the relationship
between infection prevalence and the effectiveness of contact tracing (τ) is varied
through calibration on the assumption that a certain infection prevalence is associated
with a specific contact tracing effectiveness.

q timeð Þ ¼ e�prevðtimeÞ ´ τ ð2Þ

Incorporation of health service clusters. We further stratified the above model to
Victoria’s nine health service clusters, including four services which together
constitute Metropolitan Melbourne (North, West, South, South East Metro) and
five regional services which together constitute the rest of Victoria (Barwon South
West, Gippsland, Grampians, Hume, Loddon-Mallee). We split the estimated age-
specific population for Victoria (Fig. 6C) according to historical patterns of
accessing health service clusters provided by DHHS. The infectious seed was split
across the compartments representing current infection and assigned evenly across
the metropolitan services, with the remainder of the population assigned to the
susceptible compartments. The force of infection in each service was calculated
using a spatial mixing matrix constructed based on the geographical adjacency of
the clusters. The final model included 2,592 compartments interacting through a
dynamic mixing matrix of dimensions 144 × 144 (16 age groups and nine geo-
graphical patches), with each matrix element scaling over time to reflect changes to
population mixing in response to changes in mobility and pandemic-related policy
decisions as introduced above.

Calibration. Because of the high-dimensional parameter space, we calibrated the
model to reproduce local COVID-19 dynamics during Victoria’s second wave
using an adaptive Metropolis algorithm, which is non-Markovian but retains
ergodic properties37. For the prior distributions of epidemiological calibration
parameters, we used uniform priors for highly uncertain quantities and truncated
normal distributions for quantities informed by epidemiological evidence (Table 1).
To reduce the number of parameters estimated, we included “adjuster” parameters
in our calibration to modify all of the age-specific proportions of symptomatic
individuals together, and all of the age-specific proportions of symptomatic indi-
viduals who are hospitalised together. These adjusters are multiplicative factors that
are applied to the odds ratio equivalent to the proportion parameter, rather than
directly to the parameter value itself; thus ensuring that the adjusted value lies
between zero and one. We also reduced the number of free parameters scaling the
transmission rate in each of the services, using two scaling parameters across the
four metropolitan clusters and two across the regional clusters.

The likelihood function was constructed by first incorporating Poisson
distributions with rate parameters equal to the modelled daily state-wide estimates
for each of notifications, hospitalisations, ICU admissions, and deaths. This was
then multiplied by terms for the daily time-series of notifications for each service,
smoothed with a four-day moving average, using normal distributions. As there is
no requirement for individuals living in a service’s catchment to attend that health
service, we allocated each service a proportion of each notification according to the
historical tendency of persons from each Local Government Area (LGA) to attend a
hospital from that service (such that daily service-specific notification and death
counts are not integer-valued). To demonstrate the ability of our calibration
algorithm to define the highest posterior regions of our parameter space, we used
Latin hypercube sampling to initialise parameter sets from diverse starting points
across their prior distributions (Supplementary Section 14).

Sensitivity analyses. We ran two sensitivity analyses to vary key assumptions
employed in the base analysis described above. First, we replaced the matrices
derived from data from the United Kingdom with matrices similarly derived from
Belgian data, given similar population demographics of this country. Second, we
considered the effect of assuming that “home” location contact rates scaled with
residential Google mobility estimates because this data source is qualitatively dif-
ferent from other Google mobility domains.

Scenarios. We considered counterfactual scenario projections based on the
baseline calibration that included both earlier and later applications of the same
interventions as were applied in reality. For projections considering lesser
restrictions (and so a larger epidemic) we returned the infection fatality rate in
those aged 75 and above to the baseline estimate (a weighted average of the

infection fatality rate in those aged 75−79 and those aged 80 and above). We
chose this assumption because the higher mortality rates observed during the
second wave were likely attributable to higher rates of transmission in elderly
persons with higher rates of comorbid illness. Therefore, we wished to avoid
assuming that this observation would continue if widespread community trans-
mission had occurred.

Data ethics. Notification, death, and health service capacity data (disaggregated by
health service and date only) for calibration were provided to Monash and stored in
encrypted form. Google’s publicly available mobility data consist of aggregated,
anonymised sets of data from users who have chosen to turn on the location
history setting. The YouGov data used for constructing microdistancing functions
are publicly available at https://github.com/YouGov-Data/covid-19-tracker.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data other than that used for calibration are available at git tag https://github.com/
monash-emu/AuTuMN/releases/tag/vic_2nd_revision and are deposited with Zenodo at
https://zenodo.org/record/5553691#.YV7OSdrZU2w. The input data (including mobility
estimates) used in this analysis are contained in the SQLlite database at AuTuMN/data/
inputs/inputs.db of the tagged repository. The output data from our models are available
at http://www.autumn-data.com/app/covid_19/region/victoria/run/1627427875-
54bf2e3.html.

Code availability
All code is available at the git tag and Zenodo repository listed above. The current version
of the repository for infectious disease model construction is at https://github.com/
monash-emu/summer, with documentation at http://summerepi.com/index.html.

Received: 25 April 2021; Accepted: 13 October 2021;

References
1. Nelson, R. COVID-19 disrupts vaccine delivery. Lancet Infect. Dis. 20,

546–546 (2020).
2. Barlow, P., van Schalkwyk, M. C. I., McKee, M., Labonté, R. & Stuckler, D.

COVID-19 and the collapse of global trade: building an effective public health
response. Lancet Planet. Health 5, e102–e107 (2021).

3. Kodera, S., Rashed, E. A. & Hirata, A. Correlation between COVID-19
morbidity and mortality rates in Japan and local population density,
temperature, and absolute humidity. Int. J. Environ. Res. Public Health 17,
1–14 (2020).

4. Rashed, E. A., Kodera, S., Gomez-Tames, J. & Hirata, A. Influence of absolute
humidity, temperature and population density on COVID-19 spread and
decay durations: multi-prefecture study in Japan. Int. J. Environ. Res. Public
Health 17, 1–14 (2020).

5. Walker, P. G. T. et al. The impact of COVID-19 and strategies for mitigation
and suppression in low- and middle-income countries. Science 369, 413
(2020).

6. O’Driscoll, M. et al. Age-specific mortality and immunity patterns of SARS-
CoV-2. Nature 590, 140–145 (2021).

7. Verity, R. et al. Estimates of the severity of coronavirus disease 2019: a model-
based analysis. Lancet. Infectious Diseases 20, 669−677 (2020).

8. Huang, C. et al. 6-month consequences of COVID-19 in patients discharged
from hospital: a cohort study. Lancet 397, 220–232 (2021).

9. Bavli, I., Sutton, B. & Galea, S. Harms of public health interventions against
covid-19 must not be ignored. BMJ 371, m4074 (2020).

10. Kennedy, D. S. et al. COVID-19: Identifying countries with indicators of
success in responding to the outbreak. Gates Open Res. 4, 62–62 (2020).

11. Murray-Atfield, Y. & Dunstan, J.Melbourne Placed Under Stage 4 Coronavirus
Lockdown, Stage 3 for Rest of Victoria as State of Disaster Declared (ABC
News, 2020).

12. Mercer, P. Covid: Melbourne’s Hard-Won Success after a Marathon Lockdown
(BBC News, 2020).

13. Han, E. et al. Lessons learnt from easing COVID-19 restrictions: an analysis of
countries and regions in Asia Pacific and Europe. Lancet 396, 1525–1534 (2020).

14. Adekunle, A., Meehan, M., Rojas-Alvarez, D., Trauer, J. M. & McBryde, E. S.
Delaying the COVID-19 epidemic in Australia: evaluating the effectiveness of
international travel bans. Aust. N. Z. J. Public Health 44, 257–259 (2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26558-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6266 | https://doi.org/10.1038/s41467-021-26558-4 |www.nature.com/naturecommunications 9

https://github.com/YouGov-Data/covid-19-tracker
https://github.com/monash-emu/AuTuMN/releases/tag/vic_2nd_revision
https://github.com/monash-emu/AuTuMN/releases/tag/vic_2nd_revision
https://zenodo.org/record/5553691#.YV7OSdrZU2w
http://www.autumn-data.com/app/covid_19/region/victoria/run/1627427875-54bf2e3.html
http://www.autumn-data.com/app/covid_19/region/victoria/run/1627427875-54bf2e3.html
https://github.com/monash-emu/summer
https://github.com/monash-emu/summer
http://summerepi.com/index.html
www.nature.com/naturecommunications
www.nature.com/naturecommunications


15. Price, D. J. et al. Early analysis of the Australian covid-19 epidemic. eLife 9,
1–14 (2020).

16. Saul, A. et al. Victoria’s response to a resurgence of COVID-19 has averted
9,000-37,000 cases in July 2020. Med. J. Aust. https://www.mja.com.au/
journal/2020/victoriasresponse-resurgence-covid-19-has-averted-9000-37000-
cases-july-2020 (2020).

17. Scott, N. et al. Modelling the impact of relaxing COVID-19 control measures
during a period of low viral transmission. Med. J. Aust. 214, 79–83 (2021).

18. Milne, G. et al. Effectiveness of second wave COVID-19 response strategies in
Australia. medRxiv https://doi.org/10.1101/2020.11.16.20232843 (2020).

19. Carlson, C. J., Gomez, A. C. R., Bansal, S. & Ryan, S. J. Misconceptions about
weather and seasonality must not misguide COVID-19 response. Nat.
Commun. 11, 1–4 (2020).

20. Bundgaard, H. et al. Effectiveness of adding a mask recommendation to other
public health measures to prevent SARS-CoV-2 infection in Danish mask
wearers: a randomized controlled trial. Ann. Intern. Med. 174, 335–343 (2021).

21. Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent
person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic
review and meta-analysis. Lancet 395, 1973–1987 (2020).

22. Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne
transmission as the dominant route for the spread of COVID-19. Proc. Natl
Acad. Sci. USA 117, 14857–14863 (2020).

23. Smith, D. L. & Ellis McKenzie, F. Statics and dynamics of malaria infection in
Anopheles mosquitoes. Malar. J. 3, 13 (2004).

24. Coatsworth, N. et al. Prevalence of asymptomatic SARS-CoV-2 infection in
elective surgical patients in Australia: a prospective surveillance study. ANZ J.
Surg. 91, 27–32 (2021).

25. Lau, J. S. Y. et al. SARS-CoV-2 seroprevalence in healthcare workers in a
tertiary healthcare network in Victoria, Australia. Infect., Dis. Health 26,
208−213 (2021).

26. Cousins, S. Experts criticise Australia’s aged care failings over COVID-19.
Lancet 396, 1322–1323 (2020).

27. Zhang, L., Tao, Y., Zhuang, G. & Fairley, C. K. Characteristics analysis and
implications on the COVID-19 reopening of Victoria, Australia. Innovation 1,
100049–100049 (2020).

28. Blakely, T. et al. The probability of the 6-week lockdown in Victoria
(commencing 9 July 2020) achieving elimination of community transmission
of SARS-CoV-2. Med. J. Aust. 213, 349–351.e341 (2020).

29. Giles, M. L. et al. Suppression of SARS-CoV-2 after a second wave in Victoria,
Australia. Clin. Infect. Dis. 73, ciaa1882 (2020).

30. Soltesz, K. et al. The effect of interventions on COVID-19. Nature 588,
E26–E28 (2020).

31. Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions
on COVID-19 in Europe. Nature 584, 257–261 (2020).

32. Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals
the effectiveness of interventions. Science 369, eabb9789 (2020).

33. Jarvis, C. I. et al. Quantifying the impact of physical distance measures on the
transmission of COVID-19 in the UK. BMC Med. 18, 124–124 (2020).

34. Blakely, T. et al. Determining the optimal COVID-19 policy response using
agent-based modelling linked to health and cost modelling: case study for
Victoria, Australia. medRxiv https://doi.org/10.1101/2021.01.11.21249630
(2021).

35. Vlachos, J., Hertegård, E. & Svaleryd, H. B. The effects of school closures on
SARS-CoV-2 among parents and teachers. Proc. Natl Acad. Sci. USA 118,
e2020834118 (2021).

36. Sah, P. et al. Asymptomatic SARS-CoV-2 infection: a systematic review and
meta-analysis. Proc. Natl Acad. Sci. USA 118, e2109229118 (2021).

37. Haario, H., Saksman, E. & Tamminen, J. An adaptive Metropolis algorithm.
Bernoulli 7, 223−242 (2001).

38. Litton, E. et al. Surge capacity of intensive care units in case of acute increase in
demand caused by COVID-19 in Australia. Med J. Aust. 212, 463–467 (2020).

Acknowledgements
We gratefully acknowledge the support and advice of staff of the Victorian Department
of Health and Human Services (now the Victorian Department of Health) for the pro-
vision of data and assistance with its interpretation. We thank Prof Nicholas Golding for
providing the micro-distancing compliance functions.

Author contributions
J.M.T. and R.R. constructed and analysed the model. M.J.L. and G.W.D. assisted with the
provision of data. D.P. advised on the implications for ICU capacity. A.C.C. and B.S.
advised on the implications for pandemic management. M.T.M., R.R. and E.S.M. checked
the mathematical approach and expressions. J.M.T. wrote the first draft of the manu-
script, which was then revised with input from all authors.

Competing interests
B.S. and A.C.C. wish to emphasise their important statutory roles during Victoria’s
pandemic response in 2020, as Chief Health Office and acting Chief Health Officer
respectively. M.J.L. and G.W.D. were also employed by DHHS during 2020. JMT pro-
vided regular advice to DHHS during this time as an independent advisor. The Epide-
miological Modelling Unit of Monash University provided the health system cluster-level
projections for notifications, admissions, and deaths under contract to the Victorian
Department of Health and Human Services in 2020. JMT is a recipient of an Early Career
Fellowship from the Australian National Health and Medical Research Council
(APP1142638). The other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26558-4.

Correspondence and requests for materials should be addressed to James M. Trauer.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26558-4

10 NATURE COMMUNICATIONS |         (2021) 12:6266 | https://doi.org/10.1038/s41467-021-26558-4 | www.nature.com/naturecommunications

https://www.mja.com.au/journal/2020/victoriasresponse-resurgence-covid-19-has-averted-9000-37000-cases-july-2020
https://www.mja.com.au/journal/2020/victoriasresponse-resurgence-covid-19-has-averted-9000-37000-cases-july-2020
https://www.mja.com.au/journal/2020/victoriasresponse-resurgence-covid-19-has-averted-9000-37000-cases-july-2020
https://doi.org/10.1101/2020.11.16.20232843
https://doi.org/10.1101/2021.01.11.21249630
https://doi.org/10.1038/s41467-021-26558-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Understanding how Victoria, Australia gained control of its second COVID-19 wave
	Results
	Calibration fit
	Parameter estimation
	Sensitivity analyses
	Counterfactual scenarios

	Discussion
	Methods
	Base model
	Simulation of public health interventions
	Incorporation of health service clusters
	Calibration
	Sensitivity analyses
	Scenarios
	Data ethics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




