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Species are not uniformly distributed across the landscape. For every species, there 
should be few favoured sites where abundance is high and many other sites of lower 
suitability where abundance is low. Consequently, local abundance could be thought 
of as a natural expression of species response to local conditions. The correlation 
between abundance and environmental suitability has been well documented, and a 
recent meta-analysis has suggested that this relationship could be a generality. Despite 
the importance and potential implication of the abundance–suitability relationship, its 
predictive power for meaningful extrapolations has been surprisingly poorly explored. 
In this study, we showed how a highly predictable trend can be extracted from the 
abundance–suitability relationship, accurately predicting the variation in species abun-
dance at a high spatial resolution. We produced high-quality environmental suitability 
estimations for 50 endemic species in the Australian Wet Tropics. Environmental suit-
ability derived from species distribution models was related to observed abundance 
estimated using data from 29 years of uninterrupted monitoring effort. We used the 
fitted relationship to accurately predict abundance at a fine scale across the species 
range. Our results showed that the abundance–suitability relationship was strong for 
endemic species in the Australian Wet Tropics. The predictive power of our mod-
els was high, explaining, on average, 55% of the deviance across taxa. Despite inter-
specific variation in the strength of the abundance–suitability relationship associated 
with potential intrinsic estimation biases, our approach provides a powerful tool for 
predicting abundance across the species range at a fine scale. The potential for robust 
abundance predictions from occurrence-based species distribution models shown in 
this study are numerous, and it could have a significant impact in enhancing species 
conservation and management decisions.
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species distribution models, tropical rainforest

Introduction

A widely held belief in biogeographical ecology is that local abundance reflects 
how well a particular site meets the needs of a species along many ecological axes 
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(Hutchinson 1957, Brown 1984, Holt 2009). This concept 
is a natural extension of niche theory, formally proposed by 
G. E. Hutchinson in a seminal essay more than 60 years ago 
(Hutchinson 1957). The response of a species to local condi-
tions could thus be measured as local abundance, with more 
favourable sites containing a greater proportion of the species 
population (Brown 1984).

Unravelling the ecological and environmental conditions 
that favour species persistence across their range is a cen-
tral goal in ecology. Indeed, understanding the relationship 
between species and the environment could provide invalu-
able insights into forecasting species responses to climate 
change (VanDerWal  et  al. 2009) or predicting biological 
invasions (Kulhanek et al. 2011). However, estimating abun-
dance from species distributions remains an unsolved prob-
lem (He and Gaston 2007).

A range of algorithms have been developed to fore-
cast species distributions. These techniques, better known 
as ecological niche models (Peterson and Soberón 2012), 
use occurrence data to estimate environmental suitability 
as a function of ecological and environmental predictors 
(Hijmans and Graham 2006). The underlying mechanism 
that determines species occurrence is based on population 
demography, as presences and absences represent positive and 
negative population growth rates, respectively (Gaston 2003, 
Thuiller et al. 2014). In this respect, areas with higher envi-
ronmental suitability should also have larger populations and 
vice versa. This hypothesis has been called the abundance–
suitability relationship, which states that environmental suit-
ability derived from ecological niche models should explain 
the spatial variation in abundance over a species’ geographi-
cal range (Weber et al. 2017). While evidence suggests that 
the abundance–suitability relationship could be a generality 
(Weber et al. 2017), several studies failed to detect an effect 
(Nielsen et al. 2005, Jiménez-Valverde et al. 2009, Filz et al. 
2013, Dallas and Hastings 2018), questioning the ubiquity 
of this relationship (Dallas and Hastings 2018).

Several factors may explain the weak abundance–suitabil-
ity relationship in some studies (Estrada and Arroyo 2012). 
Environmental suitability predictions may be affected by 
the scale at which occurrence and abundance are measured 
(Nielsen  et  al. 2005), and a lack of information about the 
entire range of a species may increase the probability of biases 
in sampling species abundance (Martínez-Meyer et al. 2013). 
Other potential methodological issues could be related to dif-
ferences in modelling techniques and the appropriate selec-
tion of the set of predictors used to model environmental 
suitability (Weber  et  al. 2017). Alternatively, intrinsic spe-
cies factors that may affect the estimation of abundance and/
or distribution could also influence the strength of the rela-
tionship (Dallas and Hastings 2018). Among these factors, 
species detectability (Jiménez-Valverde 2011), availability of 
biological-relevant occurrences (Carrascal  et  al. 2017) and 
species interaction (Braz et al. 2020) could play a major role 
at estimating species habitat suitability.

Previous research in the Australian Wet Tropics (AWT) 
found a positive correlation between abundance and 

environmental suitability (VanDerWal et al. 2009). Yet, the 
power of prediction reported in the study was low (linear 
models explained on average only 12% of the variation in 
abundance), arguing that the relationship could only pre-
dict the upper limit of abundance due to the likelihood of 
important missing niche parameters at any given local site 
(VanDerWal  et  al. 2009, Weber  et  al. 2017). The relation-
ship between environmental suitability and the upper limit 
of abundance may be valuable when the goal is to make 
inferences at a broad spatial scale, without the necessity of 
determining abundance in all places. However, more detailed 
information at a finer scale is required (e.g. when planning 
species reintroductions), and an improvement in our models’ 
predictive power is crucial for meaningful extrapolation of 
abundance information from modelled environmental suit-
ability (Carrascal et al. 2015).

Here, we show that population abundance can be accu-
rately predicted at a fine scale as a function of environmen-
tal suitability derived from ecological niche models. Due to 
the unavoidable triangularity of the abundance–suitability 
relationship derived from ecological niche models (Jiménez-
Valverde et  al. 2021), we do not attempt to infer a precise 
measure of local abundance but instead produce a precise 
measure of the spatial variation in population size given the 
parameters that conform to species’ environmental niches. 
To achieve this, we produced high-quality environmental 
suitability predictions using ensemble ecological niche mod-
els for 50 endemic species in the AWT. We then examined 
the degree, sign and significance of the relationship between 
observed abundance and environmental suitability. We 
addressed the non-linear nature of the abundance–suitability 
relationship by fitting general additive models (GAMs) using 
a Tweedie distribution. Lastly, we explored the potential for 
the abundance–suitability relationships to be influenced by 
species traits and sample size.

Material and methods

Study system

The AWT is one of the best-studied tropical rainforests 
worldwide (Williams 2006, VanDerWal et al. 2009). Long-
term biodiversity monitoring has been conducted uninter-
ruptedly since 1992, with approximately 11 650 independent 
surveys conducted across the region. Survey sites were estab-
lished within large continuous patches of rainforest (Fig. 1). 
The monitoring of birds, lizards and frogs was conducted 
at independent points within the study sites, separated by 
a minimum distance of 0.25 km, while mammal surveys 
consisted of a one-kilometre-long line transect at each site 
(n = 121). Following VanDerWal et al. (2009), we calculated 
local abundance using the average relative abundance of each 
species derived from multiple count surveys at each location. 
Only independent surveys using identical standardised meth-
odology were considered, and abundance was calculated for 
locations with a minimum of three independent replicates. A 



1725

detailed protocol for species sampling methodology for abun-
dance calculation can be found in VanDerWal et al. (2009).

Among all vertebrates monitored, 76 species are region-
ally endemic (Williams et al. 2010). Only regionally endemic 
species were included in this study to ensure that the envi-
ronmental suitability predicted by ecological niche mod-
els included the species’ entire range. Further, we discarded 
species that were not detected in standardised surveys and 
whose information was only obtained from opportunistic 
encounters, as we could not reliably estimate local abundance 
or determine whether the occurrences were of biological rel-
evance, respectively. Species with sufficient abundance and 
occurrence information available for analyses included 12 
birds, 21 frogs, 4 mammals and 13 reptile species (Supporting 
information). A detailed description of species traits and dis-
tributions can be found in Williams et al. (2010).

Species occurrences were derived from a standardised sam-
pling protocol (Fig. 1). Absence was defined in those locations 
where a given species was not detected after a minimum of 
10 survey replicates. Presences and absences for each species 
were spatially thinned to reduce potential sampling bias. The 
spatial thinning was implemented using a minimum nearest 
neighbour distance algorithm with 1000 iterations, retaining 

the dataset with the greatest number of records. We used a 
thinning distance of 0.25 km, which is the minimum dis-
tance between point sampling locations. Spatial thinning was 
implemented using the ‘thin’ function within the ‘spThin’ 
R package (Aiello-Lammens  et  al. 2015). Because of the 
reduced number of true absences in the dataset, we addition-
ally included 7000 background points in the analyses. These 
background points or pseudo-absences were implemented 
using the ‘disk’ strategy, with a minimum distance of 1 km 
to the closest occurrence, which is the minimum distance 
between study sites. This approach was selected to avoid the 
pseudo-absences being too close (avoid pseudo-replication) 
or too far from the occurrences (localised sampling strategy) 
(Thuiller et al. 2013).

Predictor variables

We selected 28 potential variables to predict environmental 
suitability at 30 arc-second resolution (~1 km2). These vari-
ables represented climate, topography, soil characteristics, 
fragmentation, forest structure and ecosystem productiv-
ity (Supporting information). Additionally, we provide the 
methods used to develop precipitation and maximum and 
minimum temperature seasonality variables in the Supporting 
information.

Some predictors are likely to show a strong covariation, 
causing instability in parameter estimation (Dormann et al. 
2013). We used the variance inflation factor (VIF) to detect 
collinearity (Naimi et al. 2014). We found pairs of variables 
that had the maximum linear correlation (greater than a 
correlation threshold of 0.7) and excluded the one with the 
larger VIF. The process was repeated until no pair of variables 
with a high correlation coefficient remained. This stepwise 
variable selection was implemented using the ‘vifstep’ func-
tion in the ‘usdm’ R package (Naimi 2015).

Ensemble distribution models and environmental 
suitability estimation

We determined environmental suitability for each species 
across their entire biogeographical range by training nine dif-
ferent algorithms. Algorithms included surface range envelop, 
classification tree analysis, random forest, multivariate adap-
tive regression spline, flexible discriminant analysis, MaxEnt, 
generalised additive models, generalised boosted regression 
and artificial neural networks.

We used ‘biomod2’ R package (Thuiller  et  al. 2013), 
as it offers a streamlined framework for building ensemble 
ecological niche models. Ensemble forecasting or consen-
sus methods have been proved to be an efficient approach 
to model species ecological niche for a diverse range of spe-
cies (Marmion  et  al. 2009), as identifying an appropriate 
species-specific model selection is usually not straightforward 
(Elith and Graham 2009). We selected default model tun-
ings within ‘biomod2’ (Hao et al. 2019) to be consistent with 
other studies and optimise ensemble modelling performance 

Figure 1. The Australian Wet Tropics bioregion and its location in 
Australia. Rainforest coverage is shown as dark grey. Survey sites are 
depicted as black dots and main towns as black asterisks.
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(Hao et al. 2020). We used 80% of the data for each species 
as training data and 20% as model evaluation. This random 
data split ratio was iterated three times for each algorithm, 
resulting in a total of 27 models for each species, allowing 
us to account for intra- and interspecific variation among 
algorithms (Supporting information). We constructed the 
ensemble models using the weighted average of individual 
high-performance models, determined by a quality threshold 
of true skill statistic (TSS) = 0.7 (Allouche et al. 2006). The 
weights were awarded for each method in proportion to their 
evaluation scores.

Abundance–suitability relationship

Empirical population estimates were related to model-pre-
dicted environmental suitability using generalised additive 
models (GAMs). Models were fitted using a Tweedie dis-
tribution and a log-link function. A Tweedie distribution 
was chosen due to the increasing tendency of abundance 
to be high when environmental suitability reaches high 
values while presenting a cluster of zeroes when environ-
mental suitability is low (Weber  et  al. 2017, Jiménez-
Valverde et al. 2021). We fitted GAMs using the ‘mgcv’ R 
package (Wood 2017).

We reported the predictive power of the fit between 
observed abundance and predicted environmental suitability 
as the deviance explained by the model. Spearman rank cor-
relation coefficients (ρ) were used to quantify the abundance–
environmental suitability relationship in terms of degree, sign 
and significance. We applied a false discovery rate method 
(Benjamini and Hochberg 1995) to adjust our significance 
rate for multiple testing.

The effect of species potential dispersal,  
sample size, taxa and body mass on the  
abundance–suitability relationship

The strength of the abundance–suitability relationship may be 
associated with the accuracy of the estimation of both abun-
dance and distribution. Thus, factors that strongly influence 
our ability to reliably estimate these parameters, such as species 
detectability (Jiménez-Valverde 2011, Johnston et al. 2014), 
could lead to mixed results when different taxa are examined 
(Dallas and Hastings 2018). To examine the potential influ-
ence of intrinsic biases in estimating species abundance and/
or distribution, we related the abundance–suitability correla-
tion coefficients (ρ) to species body size, sample size, species 
potential dispersal and taxa (Williams et al. 2010) using mul-
tiple linear regression analysis. We expected that species with 
lower body size, lower potential dispersal and species with a 
smaller sample size would show a weaker abundance–suit-
ability relationship, as these factors would reduce our ability 
to detect species, the ability of species to occupy all poten-
tially suitable habitats and the quality of the data used to 
model the relationship, respectively.

All analyses were performed in R, ver. 4.0 (<www.r-
project.org>).

Results

Overall, trained ensemble ecological niche models performed 
well (TSS ± SD = 0.91 ± 0.06; Supporting information). 
Models accurately captured species presence (sensitivity ± 
SD = 97 ± 3%) and absence (specificity ± SD = 94 ± 4%) 
as a function of our predictors (Supporting information). 
The relationship between observed abundance and environ-
mental suitability derived from ecological niche models was 
strong across endemic species in the AWT (ρ ± SD = 0.58 
± 0.14; Fig. 2a). Moreover, the spatial variation in observed 
abundance was largely explained by modelled environmental 
suitability (deviance explained ± SD = 0.55 ± 0.23; Fig. 2b), 
accurately predicting abundance across the species’ geo-
graphical range. The significance and sign of the abundance–
suitability relationship were consistent across the vertebrate 
taxa examined (Fig. 2c, Supporting information). Mammals 
showed the highest consistency, presenting on average the 
greatest predictive power and strength of the relationship. On 
the other hand, reptiles and frogs exhibited the largest inter-
specific variation, with deviance explained ranging from 10 
to >95%. Birds systematically showed a stronger abundance–
suitability relationship than frogs and reptiles, but they pre-
sented the lowest predictive power on average (Fig. 2c).

Multiple linear regressions allowed us to measure the 
influence of species traits on the abundance–suitability rela-
tionship. The initial model containing the number of occur-
rences, species potential dispersal, taxa and species mass 
run into multicollinearity issues, and the variable ‘taxa’ was 
removed due to its high VIF (VIF = 10.73). Stepwise model 
selection by AIC removed the variable ‘species mass’, consid-
erably improving model performance. The best-performing 
model fit the inter-specific variation in the abundance–suit-
ability relationship as a function of the number of occurrences 
and potential dispersal predictors (F2–47 = 7.392; R2 = 0.21; 
p-value = 0.002; Table 1). Although both predictors showed a 
positive correlation with the abundance–suitability relation-
ship as expected, only the effect of species potential dispersal 
showed a statistical significance (Table 1), suggesting that 
species with a higher dispersal capacity showed a stronger 
abundance–suitability relationship.

Discussion

In this study, we have shown that the spatial variation in spe-
cies abundance can be accurately predicted at high-resolution 
using niche theory. Our results showed a consistently strong 
positive correlation between species abundance and environ-
mental suitability derived from correlative ecological niche 
models. However, the strength of the abundance–suitability 
relationship may be affected by intrinsic species traits, high-
lighting potential biases in estimating species abundance and 
distribution.

Our findings support the hypothesis that local abun-
dance is a reflection of how species respond to local condi-
tions (Brown 1984), which is a direct consequence of species’ 
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ecological niche (Hutchinson 1957). Habitats with higher 
suitability tend to hold a greater proportion of a species 
population (Weber et al. 2017). The link between demogra-
phy and local conditions should be a natural result from the 
decrease in the probability of extinction (Araújo et al. 2002) 
and an increase in birth and survival rates in high-quality 
habitats (Bock and Jones 2004, Morrison et al. 2012).

The effect of covariates in the abundance–suitability 
relationship

The strength of the abundance–suitability relationship may 
be influenced by our capacity to accurately determine both 
species abundance and distribution (Jiménez-Valverde 2011, 
Weber et al. 2017, Jiménez-Valverde et al. 2021). Likewise, 
the estimation of these parameters could be inherently 
affected by species detectability (Seoane et al. 2005, Jiménez-
Valverde 2011). The accurate estimation of abundance and 
suitability could thus present challenges for elusive species 
(Seoane  et  al. 2005, Aubry  et  al. 2017), for which a large 
sampling effort is often required (Price and Endo 1989).

Our findings showed that, in accordance with our expec-
tations, the abundance–suitability relationship was weaker 
for species with smaller sample sizes. However, the effect of 
species’ sample size was not strong enough to show statistical 
significance (Table 1). Alternatively, physical boundaries and 
species dispersal limitations could promote higher abundance 
in climatically unsuitable environments or depress abundance 
in some otherwise suitable areas (VanDerWal  et  al. 2009), 
which could potentially produce near-zero correlations 
between abundance and suitability (Dallas and Hastings 
2018). The effect of dispersal limitation on the abundance–
suitability relationship was reflected in our results. We found 
that species with a more limited dispersal capacity may pres-
ent a weaker abundance–suitability relationship. These results 
may reflect the lower data quality for frogs and reptiles spe-
cies in our study. The higher uncertainty in the abundance–
suitability relationship for these taxa could be explained by 
sampling biases related to the high dependence on weather 
conditions for the detectability of tropical ectotherms and 
their inherent dispersal limitations (Williams et al. 2010).

Prediction of the spatial variation in abundance

Previous research has shown that the abundance–suitability 
relationship could be described by a wedge or triangular shape. 
Given the anatomy of this relationship, at higher suitability, 
abundance can be high or low, whereas at the lowest suitabil-
ity, abundance is predominantly low (VanDerWal et al. 2009, 

Figure  2. Relationship between species abundance and environmental suitability across 50 endemic vertebrates in the Australian Wet 
Tropics. Panel (a) shows the degree of correlation between abundance and suitability, estimated using Spearman rank correlation. Panel (b) 
shows the predictive power of the relationship, measured as the deviance explained by the models. Panel (c) shows an examination of the 
consistency of the abundance-suitability relationship across taxa.

Table 1. Multiple linear regression models on covariates related to 
the abundance–suitability relationship in the Australian Wet Tropics.

Coefficients Slope ± SD t-value p-value

Intercept 0.346 ± 0.08 4.258 0.00010
Log(occurrences) 0.032 ± 0.020 1.586 0.12
Potential dispersal 0.044 ± 0.021 2.08 0.043
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Jiménez-Valverde 2011, Tôrres  et  al. 2012, Carrascal  et  al. 
2015, Acevedo  et  al. 2017, Lunghi  et  al. 2018, Braz  et  al. 
2020, Jiménez-Valverde et al. 2021). The origin of this trian-
gular relationship could be assumed to be related to difficul-
ties in reliably estimating environmental suitability, as abiotic 
conditions alone are often not enough to accurately dis-
criminate high-quality habitats (Guisan and Thuiller 2005). 
Biotic components, such as species interactions, could poten-
tially influence species distribution (Giannini  et  al. 2013, 
Wisz et al. 2013) and spatial variation in abundance (Gaston 
2003, Peterson et al. 2011, Braz et al. 2020). However, biotic 
information is usually scarce at a large spatial scale and there-
fore often not explicitly included in ecological niche models.

To what extent can we reliably estimate species abundance 
as a function of environmental suitability derived from eco-
logical niche models using only abiotic information? Our 
findings showed that, despite the greater variation in abun-
dance when suitability is high (Supporting information), a 
highly predictable trend can be extracted from the relation-
ship. Furthermore, we found that using a more suitable set 
of predictors and a more flexible approach to fitting the non-
linear relationship between abundance and suitability can 
yield a substantially higher predictive power and accuracy 
than previously reported (Fig. 2, Supporting information) 
(VanDerWal et al. 2009). Our study shows the importance 
of using biologically relevant predictors that potentially 
shape species populations and distribution. In contrast to 
VanDerWal et al. (2009), we developed targeted spatial vari-
ables based on known limiting factors for endemic vertebrates 
in the AWT. For example, a measure of length and intensity 
of thermal seasonality was included (Supporting informa-
tion), which is sensible given the role of thermal physiologi-
cal limitation on the distributional range of tropical montane 
vertebrates (Krockenberger et al. 2012). We also showed the 
importance of considering different algorithms to model eco-
logical niches for a range of species from different taxa. For 
example, Maxent, the algorithm used by VanDerWal  et  al. 
(2009), showed marked limitations when modelling the 
niche of some species (Supporting information). These 
limitations were not observed for ensemble models in our 
results. In addition to providing a more accurate approxima-
tion of species habitat suitability than in previous studies, we 
modelled the predictive power of the abundance–suitability 
relationship accounting for the non-linear structure of the 
correlation, which allowed greater flexibility when predicting 
abundance for a set of species across taxa. In summary, our 
approach aimed to reduce the inherent triangularity nature 
of the abundance–suitability relationship, which resulted in a 
five-fold increase in prediction power compared to previous 
studies (VanDerWal et al. 2009).

The potential for robust abundance predictions from 
occurrence-based ecological niche models shown in this 
study could have numerous meaningful ecological and 
conservation applications. Many management plans and 
threatened species evaluations rely on abundance data to 

detect significant population changes in space and time. 
However, abundance data is scarce, limiting our capacity 
to understand ecological patterns at a population level. 
In this regard, the extrapolation of accurate abundance 
information derived from modelled environmental suit-
ability shown here could provide invaluable insights into 
how species experience the landscape. For example, when 
information is limited, accurate predictions of population 
size in different habitats could be crucial when planning 
reintroductions (Malone et al. 2018) or identifying prior-
ity conservation areas (Wilson  et  al. 2011). Additionally, 
understanding how species respond to local conditions 
could have broad implications for conservation biology, and 
it could be used to predict the impact of invasive species 
(Kulhanek et al. 2011) or to estimate the potential impact 
of climate change on species distribution and abundance 
(VanDerWal et al. 2009).
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