Dugong behaviour and responses to human influences

Thesis submitted by

Amanda Jane HODGSON BSc ECU, (Hons I) JCU

in November 2004

for the degree of
Doctor of Philosophy
School of Tropical Environment Studies and Geography
James Cook University
Townsville
Australia
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

_________________________ ______________
Signature Date
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

_________________________ ______________
Signature Date
STATEMENT ON THE CONTRIBUTION OF OTHERS

Project support
- CRC Reef Research Centre
- Pew Foundation
- ARC SPIRT
- Sea World Research and Rescue Foundation
- Australian Defence Force
- Doctoral Merit Research Scheme, JCU
- Capalaba Lions Club
- Great Barrier Reef Marine Park Authority
- CRC Postgraduate Travel Award
- School of Tropical Environment Studies and Geography
- Digital Blue

Stipend
- Australian Post Graduate Award & CRC Reef top-up
- CRC Reef Completion Scholarship

External infrastructure
- Fieldwork support: Tangalooma Wild Dolphin Resort

Supervision
- Prof. Helene Marsh
- Dr Louise Chilvers

Statistical support
- Steve Delean
- Rohan Arthur

Editorial assistance
- Chapters 3 & 4: Jillian Grayson
- Chapters 7 & 8: Dr Ivan Lawler
- Chapter 9: Dr Kirstin Dobbs
- Whole thesis: Tim Harvey

Research assistance
- Log of dive times: Josh Smith
Acknowledgments

To my supervisor, Helene Marsh, I owe the greatest gratitude. I’m not sure that I can ever thank you enough for giving me such amazing opportunities. As a supervisor you manage to provide both astute guidance and enough rope, combined with enthusiasm, wisdom and understanding. During this project you often had more confidence in me than I did and I’m truly grateful for your continued support and friendship (but I don’t think I could ever afford a fitting manager’s fee!). To my associate supervisor and friend, Louise Chilvers, I am also sincerely grateful. Your constant positiveness and encouragement was exactly what I needed. Thankyou for showing me the ropes in the field and for all your insightful advise throughout this project.

My research was funded by CRC Reef Research Centre, Sea World Research and Rescue Foundation, Tangalooma Wild Dolphin Resort, James Cook University, the Pew Foundation, the Australian Defence Force, Capalaba Lions Club, the Great Barrier Reef Marine Park Authority, and Digital Blue. I received an Australian Postgraduate Award stipend and CRC Reef top-up scholarship to conduct this PhD. Permits for the fieldwork were issued by Queensland Parks and Wildlife Service in conjunction with the Quandamooka Aboriginal Land Council.

Tangalooma Wild Dolphin Resort provided in-kind support throughout both my field seasons, including accommodation, food, ferry transfers, fuel, a dinghy, space for the blimp tent, an office, and assistance from staff. This level of generosity is hard to come by and I am sincerely grateful to the owners of the resort, Brian and Betty Osbourne, for providing this invaluable support. I would particularly like to thank Trevor Hassard who made all this happen, and who was extremely accommodating throughout my (never-ending) fieldwork. A huge thanks also to the Club Toys guys for help with boat maintenance, skippering, and of course, rescuing us when the need arose (which was only a couple of times… three max… well, who can remember?).

I attribute the idea for the blimp-cam to Nick Gales, who’s suggestion to Helene Marsh during a chat over coffee inadvertently changed the face of my PhD. I enlisted the help and advise of many people during the construction of the blimp-cam (being completely non-technically minded myself). Thankyou to Chris Bransgrove for introducing me to the world of blimps (and encouraging words that kept me uplifted – ha!); to Gavin Bunn, Daryl King, and Ron Brown for designing and building the electronics of the blimp-cam; and Edward Owen, Alan Gunders, Richard Fitzpatric, Greg Smith, Jan Aldenhoven and Glen Carruthers for loads of technical advise and encouragement.

Prior to my field experiments, a Pew Foundation project was conducted with Ken Baldwin and Greg Stone to determine the propagation of pinger sounds. Thankyou both for conducting this important work, allowing me to visit you in America to learn more about sound analysis, and your advise on my pinger experiments. Darlene Ketten, Bill Dolphin, Andrew Quick and Wendy Blanshard also conducted a preliminary ABR on a captured dugong which aided in designing and interpreting the pinger experiments. I also gained valuable advise for my project from Paul Anderson, who, together with his wife Donna, generously accommodated me in their home so I could compare notes with the only other person to conduct behavioural observations of dugongs.

My fieldwork relied completely on the help of volunteers, and lucky for me, I had a cast of wonderful people. They endured many days of waiting for functioning equipment.
and the right weather (while suffering through my constant anguish over the wind), but remained enthusiastic and most importantly, provided heaps of laughs. Many of you offered support and assistance beyond what was required (e.g., cooking, scraping hulls, fixing cables, towing the boat, designing BTODAS, knitting dugong beanies, making breakfast on the boat while doing yoga, fighting killer rats and most importantly, supplying chocolate). I’m enormously thankful for the support from my friends, and the new friendships I gained throughout my fieldwork. In order of appearance: Andrea Finch, Jean-Pascal Gillig, Imogen Jubb, Alex Gladding, Anne Williams, Carmel Cook, Helen Penrose, Sarah Lowe, Ann Biasol, Brenda McDonald, Edward Game, Nikolai Liebsch, Susan Hassard, Liz Johnson, Jeanie Heaslop, Emma Scragg, Kellie Wilson, Jessica Huybrechs, Karen Holman, Gemma Chapman, Mytel, Anna Lashko, James Shepperd, Isabelle Thiebaud, Maureen Hodgson, Fiona Marshal, Achim Stroeh, Cathryn Schuetze, Jenna Rumney, Wendy Blanshard and Fabiana Mourão.

In addition, Alistair Hutt supplied the remote control pinger, Fiona Macknight provided accommodation in Brisbane, Don Cameron helped with boat logistics, Max and Sherie provided (luxurious) emergency accommodation at Kooringal, and Rochelle Constantine offered invaluable support and advice (and Tim Tams) during the initial tricky stages of my fieldwork.

Thankyou to the administration staff in TESAG for (patiently) dealing with my complicated accounts; the computer guys, Clive Grant and Rob Scott, without whom nothing would get done; Jodie Krequag for organising equipment and my boat; and Adella Edwards for her mapping expertise. I’m extremely grateful for help in analysing my data and experimental design from Steve ‘the statistics guy’ Delean, Rohan Arthur and Guido Parra. Josh Smith thankfully saved me from some video analysis by logging the diving behaviour. I also got great feedback on some of my chapters from Jillian Grayson, Kirstin Dobbs and Ivan Lawler (thanks also for many chats and your help with all things dugong), while Tim Harvey generously edited my entire thesis (in his own time).

Fortunately I had an amazing group of fellow TESAG PhDers to offer huge quantities of moral support. Thanks especially to Oli (okay, best office mate in the whole world - Vee he made me say it), Ameer, Rohan, James M, James S, and Donna. My awesome mates Bec and Kel, thankyou for helping me through the first year, and your incredible friendship. To my Townsville family: Anna (oirekonyortopsmate), thankyou for understanding, loving the same trashy tellie, and most of all, taking longer to obtain data than me (and willingly using that fact to reassure me); Guido, thanks for teaching me the three P’s (procrastin… no, what was it again?), for being happy to help every time I knocked on your door, for endless lunches and so, so, so many laughs; and Vimoksalehi, thankyou for brightening every day in the office, for knowing me so well, for so many dinners and coffees and chats about everything.

Finally to my amazingly supportive family who rode every bump and celebrated every success along with me. I can honestly say that I hugely appreciated every word of encouragement, long phone chat, letter, email, and of course, holiday at home. In particular, Mum, it means so much to me that you were part of my fieldwork (and brought good weather each time!), Dad, I’m truly grateful for your insistence on positive thinking, Ryan, you have a way of making it all seem easy, and my late Nanna, thankyou for being so proud and enthusiastic about my work and encouraging me to make to most of every opportunity.
Abstract

Knowledge of the behavioural ecology of a species is important for the development of conservation initiatives. With an understanding of how behaviour has evolved under given environmental and phylogenetic constraints, it is possible to predict the response of a population to novel circumstances such as anthropogenic disturbance. Little is known about many aspects of the behaviour of dugongs (*Dugong dugon*). This species is difficult to observe as dugongs are benthic feeders, usually occurring in turbid waters. They tend to be wary of boats or divers and individuals cannot easily be distinguished. As dugongs occur in shallow, coastal waters, they are particularly vulnerable to human impacts; however, these impacts have not previously been quantified through direct observations of dugong behaviour.

To overcome the difficulties in observing dugongs, I developed a blimp-cam, which allowed me to video dugongs from a blimp tethered to my research vessel. The use of the blimp-cam was facilitated by selecting Moreton Bay, Queensland, as my study site, where dugongs are readily located in clear, shallow waters. I used this technology to obtain baseline information about dugong behaviour, and investigated the function of the large herds persistently formed by dugongs in Moreton Bay. I then observed the response of dugongs to boats and pingers (acoustic alarms used on fishing nets to reduce marine mammal bycatch) to determine the risk of boat strikes and effects of disturbance from these two sound sources.

At a height of 50m the blimp-cam provided an overhead view of dugongs at water depths of up to 4m, and distances of up to 200 m via a monitor on board the research vessel. Using a remote control, I could scan large herds of dugongs or continually observe individuals. Through focal follows of individual dugongs I developed an ethogram and a daily time budget for dugongs in Moreton Bay.

Dugongs spent most of their time feeding (41%), travelling (32%), and surfacing (ascending to, and descending from, surface, 18%), and relatively little time resting (7%), socialising (6%) or rolling (1%). Environmental variables accounted for little of the variability in the proportion of time dugongs spent in each behavioural category. Time budgets did not differ significantly between single individuals and mothers with
calves. However, mothers spent significantly more time feeding and surfacing, and less
time travelling than their calves. Calves were observed suckling for mean bout lengths
of 87 s. The mean submergence time for all individuals was 75 s, but was significantly
shorter for calves (72 s) in comparison to their mothers (82 s). Submergence times were
not affected by depth (< or ≥ 1.5 m), but were affected by behaviour.

Dugongs spent 3.5% of the day resting at the surface of the water, during which time
they are particularly vulnerable to boat strike. Mother-calf pairs appear most vulnerable
to boat strike because they spend more time near the surface than single individuals.
Calves are especially vulnerable as they rise or submerge by crossing onto their
mother’s back during a quarter of their dives, and spent 13% of their time travelling and
resting over their mothers’ back.

I found that individual dugongs spent significantly more time feeding while in large,
dense herds than when in smaller groups or scattered, suggesting that these herds are
formed primarily to facilitate feeding. Dugongs did not seek large herds for resting, and
calves were less likely to be surrounded by dugongs other than their mothers, than
single individuals. These observations suggest that dugongs do not shelter in herds
when most vulnerable to shark attack, and that herds are unlikely to have a predatory
defence function. Herd structure was fluid, with individuals changing nearest
neighbours after an average of 1 min, and showing no obvious preference for nearest
neighbour type (single individual or mother-calf pair). Thus there was no evidence of a
social function for these herds. My results support the theory that seagrass distribution
and seasonality, sediment type, a lack of other disturbance of seagrass beds, and a year-
round presence of dugongs on the Moreton Banks facilitate cultivation grazing.

Observations of the response of dugongs to boats passing opportunistically provided
information on the risk of boat strikes. Unlike controlled passes which were restricted to
the below-planing speed limit of the study area, independent boats were often travelling
above this limit. Only boats travelling above planing speed were observed passing
directly over the top of dugongs. I hypothesise that the distance of the flight threshold
for dugongs remains constant regardless of boat speed. Thus the speed of an
approaching boat determines the time dugongs have to evade the boat, and speed is the
main factor affecting the risk of boat strikes.
Controlled experiments were conducted to determine the effects of boats on dugong behaviour. The behaviour of focal dugongs during a 4.5 min time sample was not significantly affected by whether there was a boat passing, the number of consecutive passes made (1 to 5 passes), or whether the pass was continuous or included a stop and restart during the pass. During the subsurface interval of the focal dugong that corresponded with the control boat’s closest approach time, the travel distance, travel direction and subsurface time were not correlated with the boat’s approach distance. However, during this subsurface interval dugongs were less likely to remain feeding if the boat passed within 50 m than if it passed at a greater distance. Mass movements of dugong feeding herds in response to boats were obvious but only lasted an average of 122 sec. These movements occurred in response to boats passing at all speeds, and at distances of less than 50 m to over 500 m. Relatively low levels of boat traffic in Moreton Bay in winter mean that a maximum 0.8 – 6% of feeding time may be interrupted by boats. However, if the number of boats registered in Queensland continues to increase at the current rate, the rate of disturbance is likely to increase.

The response of dugongs to pingers was tested to determine whether these alarms may prevent dugongs from using important habitat areas. An array of two 10kHz ‘BASA’ pingers did not cause an observable response by dugongs. There was no significant difference in the rate of dugong movement away from the focal arena surrounding the pingers, orientation of the dugongs, or the presence or absence of feeding plumes, while the pingers were active compared to when inactive.

The observed responses suggest that boat strikes are currently a bigger threat to dugongs than disturbance from boats or pingers, and support speed restrictions for boats in areas commonly used by dugongs. My results also reflect the need for detailed risk assessments to be conducted in areas where dugong habitat overlaps with areas of high boat traffic, and prior to future developments that will increase boat traffic. Further studies that build on the fundamental knowledge of dugong behaviour gained through this research will provide an understanding of human impacts in a wide range of habitats and aid in developing appropriate anthropogenic mortality targets for dugongs.
Contents

CHAPTER 1 . THE IMPORTANCE OF BEHAVIOURAL STUDIES IN CONSERVATION BIOLOGY: PREDICTING THE IMPACTS OF HUMAN ACTIVITIES ON DUGONGS 3

1.1 General introduction 3

1.2 Conservation of dugongs 5
 1.2.1 International obligations 5
 1.2.2 Conservation status 6
 1.2.3 Population status and threats in Australia 7
 1.2.4 Habitat requirements and population growth 9
 1.2.5 Movements 10

1.3 Assessing and predicting human impacts on dugong populations 11
 1.3.1 Dugong Protection Areas 12
 1.3.2 Responses of populations and individuals to novel circumstances 14
 1.3.3 Estimating population trends 15

1.4 Using behavioural responses to assess impacts: boats and pingers 18
 1.4.1 Quantifying behaviour 19
 1.4.2 Biological significance of short-term responses to disturbance 19
 1.4.3 Behaviour and risk of boat strikes 20

1.5 Research aims and thesis structure 21

CHAPTER 2 . MORETON BAY MARINE PARK AND OBSERVATIONS USING THE BLIMP-CAM 27

2.1 Moreton Bay 27
 2.1.1 General description 27
 2.1.2 Status and use 28
 2.1.3 The Moreton Banks 29

2.2 Observing dugongs 31
 2.2.1 Elevated observation platforms 32
 2.2.2 Blimp-cam 32
 2.2.3 Components 34
 2.2.4 Operation 37
 2.2.5 Limitations 39

2.3 Comparison of the blimp-cam with Nowacek et al. (2001) 41

2.4 Potential uses of the blimp-cam 43

CHAPTER 3 . THE DIURNAL BEHAVIOUR OF DUGONGS AT THE SOUTHERN LIMIT OF THEIR RANGE IN SOUTHEAST QUEENSLAND 47

3.1 Introduction 47

3.2 Methods 50
 3.2.1 Habitat use and herd movements 50
 3.2.2 Focal follow protocol 51
 3.2.3 Time budgets 53
 3.2.4 Dive cycles 53
CHAPTER 8 . ACOUSTIC ALARMS FAIL TO MOVE DUGONGS: THE BEHAVIOURAL RESPONSE OF DUGONGS TO PINGERS IN MORETON BAY, QUEENSLAND

8.1 Introduction

8.2 Methods
 8.2.1 Pinger array
 8.2.2 Focal arena
 8.2.3 Experiment protocol
 8.2.4 Number of dugongs within the focal arena
 8.2.5 Orientation of dugongs within the focal arena
 8.2.6 Passing between pingers
 8.2.7 Feeding plumes

8.3 Results
 8.3.1 Number of dugongs within the focal arena
 8.3.2 Orientation of dugongs within the focal arena
 8.3.3 Passing between pingers
 8.3.4 Feeding plumes

8.4 Discussion
 8.4.1 Dugongs’ response to pingers: potential displacement?
 8.4.2 Implications for the effectiveness of pingers for dugongs
 8.4.3 Prospects for widespread use of pingers in Queensland

8.5 Chapter summary

CHAPTER 9 . APPLICATION OF THIS RESEARCH TO DUGONG CONSERVATION AND MANAGEMENT

9.1 Major results of this project
 9.1.1 Objective 1. Develop a technique to conduct continuous observations of individual dugongs and to observe herd behaviour
 9.1.2 Objective 2. Describe the normal daily behaviour and movements of dugongs on the Moreton Banks, including development of an ethogram and time budget
 9.1.3 Objective 3. Investigate the function of large herds on the Moreton Banks through observations of the behaviour and positions of individual dugongs
 9.1.4 Objective 4. Determine what factors affect the risk of boat strikes to dugongs by observing their behaviour while boats are passing opportunistically
 9.1.5 Objective 5. Assess whether disturbance from boats significantly affects the time available for normal behaviours, or has the potential to cause displacement from key habitats
 9.1.6 Objective 6. Determine whether pingers have the potential to alienate dugongs from their important habitat areas
 9.1.7 Applicability to other dugong populations

9.2 Boat strikes: a risk assessment
 9.2.1 Moreton Bay Marine Park
 9.2.2 Cleveland Bay
 9.2.3 The Hinchinbrook area

9.3 Further management considerations
 9.3.1 Compliance with speed restrictions
 9.3.2 Technical alternatives to reduce boat strikes
 9.3.3 Minimising disturbance
 9.3.4 Implementation of pingers

9.4 Limitations and future research
 9.4.1 Identifying individual dugongs
List of Figures

Figure 1.1: The effects of habitat quality on the success of Dugong Protection Areas (DPAs). 14

Figure 2.1 Moreton Bay in SE Queensland, bounded by Moreton Island, Stradbroke Island, the mainland and Bribie Island. ... 27

Figure 2.2 The Moreton Banks, where all dugong observations were conducted, located at the southern tip of Moreton Island. ... 30

Figure 2.3 Components of blimp-cam: camera (in water-proof housing) suspended from blimp, two signal transmission methods (both remote and via cable), and transmission of video image from receiver to monitor, and finally to digital video recorder. The entire system is run from 2 x 12 V batteries. .. 33

Figure 2.4 The blimp-cam, including an ovoid blimp and camera enclosed in a waterproof housing. .. 34

Figure 2.5 (a) Camera inside camera housing, attached to blimp with six tether lines and metal clips, and (b) dome security camera with pan and tilt system in housing. 35

Figure 2.6 Blimp attached to the front end of the boat and kept at a height of approximately 10 m while towing during transit. ... 38

Figure 2.7 Images of dugongs obtained using the blimp-cam showing part of a herd at two different focal lengths. ... 41

Figure 3.1 The classification of dugong behaviours into categories and bouts of behavioural categories. The duration of each bout included time spent surfacing between successive behaviours in the same category. The total time spent surfacing included surfacing behaviours within and between bouts. The surface interval was considered as the time a dugong’s nose remained above the surface of the water, and submergence interval (also representing the respiration interval) was the time between successive surface intervals. One surface and one submergence interval together represent a whole dive cycle. ... 54

Figure 3.2 The study area at the southern tip of Moreton Island highlighted on a map (a) and shown in georeferenced aerial photos (b, c, and d). All points are GPS locations recorded on board the research vessel while dugongs were within sight. These points are categorised according to number of hours before or after high tide (b) and according to months delineated by each new moon in 2001 (c) and 2002 (d). .. 58

Figure 3.3 Water temperatures recorded from the research vessel when dugongs were within sight during the 2001 and 2002 field season. ... 59

Figure 3.4 Time budgets based on the mean proportion of time single dugongs and mothers with calves spent within bouts for each behavioural category and for specific behaviours within categories (Appendix 3) during focal follows (N = 126). These proportions do not total to 100%
because surfacing behaviour was included within bouts of other behaviours, as well being as assessed separately.

Figure 3.5 Mean proportion of time (± SE) single individuals (N = 94), mothers (N = 32) and calves (N = 32) spent in bouts of each behavioural category (Appendix 3) during focal follows.

Figure 3.6 An example of a dugong surfacing: (a) where the spray from the nostrils can be seen as the dugong exhales slightly below the water surface, and submerging (b) where the ripple of the water indicates when the dugong’s nostrils are completely submerged.

Figure 3.7 Mother and calf surfacing behaviour: (a) calf travelling beside the mother, (b) calf beginning to cross over the mother’s back while surfacing, (c) mother and calf surfacing almost in synchrony, (d) calf submerging on the opposite side of the mother.

Figure 3.8 A suckling calf with its muzzle attached to the mother’s nipple at the base of her pectoral fin. Calves were always positioned with their dorsum uppermost and their head and ventrum angled slightly towards the mother. Calves continued suckling while the mother fed (a) and surfaced to breath (b).

Figure 3.9 Scatter diagrams representing the proportion of time each individual dugong spent: (a) feeding, (b) feeding with plumes, (c) resting, and (d) travelling, in relation to the environmental variable which best explained the variance according to forwards stepwise multiple regression. Linear regressions were fitted with 95% prediction intervals, and the r² value obtained from multiple regression is given for each.

Figure 4.1 Template overlayed onto paused video image to determine number of dugongs within three body lengths of the focal individual (filled black), in four zones. In this example there are two dugongs in the front zone and one in the back zone.

Figure 4.2 A typical dugong feeding herd with sediment plumes which are created, depending on sediment type, when dugongs extract the rhizomes of the seagrass as they are foraging.

Figure 4.3 The mean proportion of time focal dugongs spent within each behavioural category in relation to the number of other dugongs visible at the start of the focal follow; the position of the focal dugong relative to the main herd at the start and end of the focal follow (where SG = subgroup and MH = main herd); and the average distance of the nearest neighbour throughout the focal follow, measured in dugong body lengths. Error bars depict SE, label on bottom X axis applies to both graphs.

Figure 6.1 (a) Example of a boat travelling above planing speed and driving over the top of two dugongs (circled, arrows indicate swim direction). (b) Example of boat travelling below planing speed and dugongs fleeing from the vessel, note mother (circled in orange) and calf (circled in green) in (iii) swim in opposite directions and in (iv) calf swims across front of boat to join mother.

xix
Figure 6.2 The hypothesised four stages of the response of dugongs to boats according to the perceived risk of boat strike. Dugongs delaying fleeing until the risk of boat strike is greater than the energetic cost of fleeing. Ultimate avoidance of the boat is dependent on the time the dugong has to respond once the boat has reached the strike threshold. Thus boat speed is the main factor affecting the risk of boat strike to dugongs.

Figure 7.1 Design of boat pass experiments. The two variables altered were pass number (single pass or multiple passes), and continuity (continuous pass at constant speed, or engine switched off and on when closest to dugongs).

Figure 7.2 Correlation between the true distance of dugongs or objects obtained using a laser range finder, and the distance estimated by a trained observer. The regression line is presented with 95% confidence limits.

Figure 7.3 Example of dugong and dinghy tracks during a single, stop/start boat pass experiment. Insert showing classifications for travel direction of dugong relative to travel direction of dinghy.

Figure 7.4 The subsurface time (length of time between two successive respiration surfaces) for the focal dugong at the time of closest approach by the dinghy during each boat pass, with all single boat passes classified as ‘pass 1’, and a different symbol representing each successive pass for multiple boat passes.

Figure 7.5 The subsurface time (length of time between two successive respiration surfaces) for the focal dugong at the time of closest approach by the dinghy during each boat pass, classified into either continuous passes or passes with one complete stop at the halfway point.

Figure 7.6 The travel distance of the focal dugong between two successive respiration surfaces at the time of closest approach by the dinghy during each boat pass, with all single boat passes classified as ‘pass 1’, and a different symbol representing each successive pass for multiple boat passes.

Figure 7.7 The travel distance of the focal dugong between two successive respiration surfaces at the time of closest approach by the dinghy during each boat pass, classified into either continuous passes or passes with one complete stop at the halfway point.

Figure 7.8 Percentage of time during a 4.5 min sample spent feeding and travelling by the focal dugong according to boat presence, the number of successive passes made by the experimental boat, and the continuity of passes. Bars depict SE.

Figure 8.1 The array of two pingers, one deployed from the research vessel, the other remotely deployed from a floating tube. Both the research vessel and tube were anchored at a set distance from one another. Silent pingers were exchanged with active pingers during the experiment, manually on the research vessel and using a remote control to the floating tube. The focal arena was bounded by the two pingers and the width of view at the top of bottom was estimated using dugong lengths as a reference when dugongs were aligned with these boundaries.
Figure 8.2 Experiment protocol showing deployment of silent and active pingers in 10 min treatment periods and the filming protocol. ... 187

Figure 8.3 An example of an instantaneous scan sample obtained by capturing a still image of the focal arena from the video. The focal arena is bounded by the boat seen mid-bottom of the image, and the remote floating pinger circled mid-top of the image. All dugongs within the arena are marked in red with the circle indicating the head of the animal. Dugongs were classed as facing towards or away from the array according to their orientation relative to the line between the boat pinger and floating pinger. In this example all dugongs are oriented towards the pingers. ... 189

Figure 8.4 Distribution of the number of individual dugongs observed in each treatment period. Boxes represent the interquartile range of values (i.e., 50% of values), the white line represents the median, and vertical dotted lines extend from the boxes to the highest and lowest values (excluding outliers which are each represented by a horizontal line). .. 191

Figure 8.5 Number of dugongs observed over time in each of the before, during and after treatment periods. Coloured lines represent replicate experiments, dashed lines separate treatment periods. ... 192

Figure 9.1 (a) Map of Moreton Bay indicating the location of (b) the Moreton Banks and (c) the Southern Bay Islands area. Current and proposed zoning plans, and the locations of dugongs are shown to illustrate the relative risk of boat strikes in each of these areas. 216

Figure 9.2 Map showing the zoning plans in relation to the area used by dugongs in order to estimate the risk of boat strikes to dugongs Cleveland Bay, Southern GBRMP. The Townsville Port is outside of the GBRMP and thus is not zoned. ... 220

Figure 9.3 Map showing both the state and federal (GBRMPA) zoning in the Hinchinbrook area, and voluntary transit lanes designed to reduce the risk of boat strikes. 224
List of Tables

Table 1.1 A comparison of the strengths and limitations of the three approaches to assessing and predicting human impacts on dugong populations.. 18

Table 2.1 A comparison of the components and operation of the blimp-cam with the overhead video system described by Flamm et al. (2000) and Nowacek et al. (2001a)................................. 42

Table 3.1 Descriptions of the six broad behavioural categories into which all specific behaviours of dugongs were classified, and the specific feeding, travelling and resting behaviours discussed in this chapter. A full ethogram is provided in Appendix 3. 52

Table 3.2 Summary of the length of bouts of each behavioural category, including bouts recorded for all single individuals and mothers during focal follows. Incomplete bouts (those that occurred at the beginning or end of the focal follow) were treated separately and not included in mean, SE, median or range statistics. Maximum bout lengths when including incomplete bouts are provided separately. ... 60

Table 3.3 Proportions of time single individuals, mothers and calves spent exhibiting behaviours in each category, with the results of t tests comparing single individuals and mothers, and paired t tests comparing mothers with their calves (P < 0.05 in bold).............. 62

Table 3.4 Correlations between environmental variables. .. 66

Table 4.1 Kruskal-Wallis tests to determine the effects of the focal individual’s position and number of other dugongs on the proportion of time focal individuals spent performing each behaviour during focal follows, and Tukey-type multiple comparisons tests using the Q statistic for unequal numbers of data in groups (Zar, 1999). P ≤ 0.05 bolded. 93

Table 4.2 Results of ANOVAs to determine the difference in the number of dugongs within three body lengths of single individuals (N = 21) and calves in a mother-calf pair (N = 21). 96

Table 4.3 The three possible function of the large persistent dugongs herds in Moreton Bay, the possible indicators that might prove or disprove each of the three functions which are presented with a √ if observed or X if not. ... 109

Table 6.1 The four cases of dugongs being run over by boats, including the number of dugongs run over, water depth, propulsion type (inboard or outboard motor, jet, sail or drift), and speed (< > planing) of the boat... 128

Table 7.1 Travel direction of dugong relative to passing dinghy compared with the distance of the dinghy. Observed frequencies with expected frequencies in brackets. 163

Table 7.2 Number of focal dugongs exhibiting feeding and travelling behaviour during the single subsurface interval at the experimental dinghy’s closest approach distance, compared with the behaviour of dugongs during the first full subsurface interval during focal follows when no boats were present. Observed frequencies with expected frequencies in brackets. 163
Table 7.3 Number of dugongs recording feeding only or exhibiting some travelling during the subsurface interval at the boat’s closest approach during boat pass experiments compared with undisturbed dugongs. ... 163

Table 7.4 Number of dugongs recording feeding only or exhibiting some travelling during one subsurface interval at the boat’s closest approach during boat pass experiments when boats were less than or greater than 50 m from the focal dugong. ... 164

Table 7.5 Results of six ANOVAs testing the effect of experimental boat passes on the feeding and travelling behaviour of focal dugongs. Three between-subjects factors were tested: (1) boat presence - whether or not the experimental boat is passing, (2) pass number - one, four or five, and (3) pass continuity - continuous or stop/start. The common within-subjects factor is herd position (within main herd, sub-group or scattered). P < 0.05 bolded. ... 165

Table 7.6 The average duration of herd responses (in seconds) to boats on the first and second estimation occasions, and the overall average according to the mean of the two estimates for each boat pass. The average error according to the two estimates for each pass are given for the onset and offset of each response. ... 166

Table 7.7 The duration of the response by feeding dugong herds and details of each opportunistic boat pass in response to which dugongs exhibited mass movements that could be timed. ... 167

Table 8.1 Shapiro-Wilk tests to determine whether the proportions of dugongs facing towards the pinger were normally distributed within each treatment. ... 192

Table 8.2 Observed and expected counts of one minute surveys where dugongs did or did not pass between the two pingers during each treatment across all experiments. Five one minute surveys were conducted per treatment for each of six experiments, with one data point missing from a ‘pinger’ treatment. ... 193

Table 8.3 Observed and expected counts of one minute surveys where feeding plumes were visible within 100 m of the pinger array or not, during each treatment across all experiments.193

Table 9.1 The risk of boat strikes in six locations along the urban coast of Queensland, based on the probability and consequence of a boat strike occurring. ... 210