Delineation of the ancestral tus-dependent replication fork trap

Toft, Casey, Moreau, Morgane J.J., Perutka, Jiri, Mandapati, Savitri, Enyeart, Peter, Sorenson, Alanna E., Ellington, Andrew, and Schaeffer, Patrick M. (2021) Delineation of the ancestral tus-dependent replication fork trap. International Journal of Molecular Sciences, 22 (24). 13533.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (21MB) | Preview
View at Publisher Website:


In Escherichia coli, DNA replication termination is orchestrated by two clusters of Ter sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a ‘locked’ Tus– Ter complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some Ter sites raised questions about their significance. In this study, we examined the genome-wide distribution of Tus and found that only the six innermost Ter sites (TerA–E and G) were significantly bound by Tus. We also found that a single ectopic insertion of TerB in its non-permissive orientation could not be achieved, advocating against a need for ‘back-up’ Ter sites. Finally, examination of the genomes of a variety of Enterobacterales revealed a new replication fork trap architecture mostly found outside the Enterobacteriaceae family. Taken together, our data enabled the delineation of a narrow ancestral Tus-dependent DNA replication fork trap consisting of only two Ter sites.

Item ID: 72847
Item Type: Article (Research - C1)
ISSN: 1422-0067
Keywords: ChIP-Seq, Dif, Enterobacterales, GC-skew, Replication fork trap, Tus–Ter
Copyright Information: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Date Deposited: 09 May 2022 08:04
Downloads: Total: 173
Last 12 Months: 59
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page