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The stability features of the inviscid, homogenous and free cross sheared flow, with

base flow velocities U = tanh(z) in the primary direction which is unstable and V =

ξz3 in the orthogonal direction which is stable, are thoroughly examined with linear

temporal stability analysis, where z is the transverse coordinate perpendicular to the

flow and ξ is the cross shear ratio which is the ratio of the characteristic magnitudes of

V to U . The map of the unstable regions directly related to χ = ξ(β/α) is obtained,

where (β/α) is the ratio between the orthogonal and primary wavenumbers. Further

examination of the eigenfunctions shows that the eigenfunction structures divide into

the orthogonal wavenumber (OW) mode where (β/α) dominates and the cross shear

(CS) mode where ξ dominates. The cross shear is found necessary for stabilization,

in spite of different fashions for the OW and CS modes. The transition from the

OW mode to the CS mode shows that the developments of the two modes inherently

compete with each other, so that when ψ = (β/α)/ξ decreases the enhanced cross

shear needs to deteriorate the OW mode before it helps the growth of the CS mode.

Based on the magnitudes of the associated eigenfunctions in the enstrophy budget,

the map of the OW, CS and hybrid modes which includes the mixed features of both

the OW and CS modes, is produced and discussed.
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I. INTRODUCTION

Although the parallel sheared flow approximation, in which two-dimensional perturba-

tions aligned with the base flow direction, for simplicity, was widely applied in hydrodynam-

ics in the past decades, but in reality the non-parallelism of the sheared flows predominates

in engineering and environmental circumstances. In contrast to the parallel approximation,

the non-parallel effect in general can be considered as the misalignment between the base

flow velocity (shear) and perturbations (wavenumber), accordingly it can be invoked in two

ways. First, the non-parallelism can be achieved by either active or passive modifications

of the streamwise/spanwise perturbations. For instance, to reduce the friction drag of the

boundary flow by delaying the laminar-turbulent transition, one effective methodology is

the compliant walls1–5, in which the streamwise/spanwise perturbations are manipulated

by different design fashions, e.g., surface coating6,7, wall-deformation8, and wall motion5,9.

Similar concepts of surface geometrical modifications are also broadly employed in other

convectional flow controls, e.g., splitter plate10, groove11–14, small rotating cylinder15 and

oscillated cylinder16, surface stripes and waviness17–19, as well as chevrons20, in that three-

dimensional forcing, which in essence belongs to non-parallelism, is confirmed to be more

effective than two-dimensional one17,21. Second, the non-parallelism can also be caused by

the misalignment of the base flow, which usually involves remarkably interactive and twisted

coherent structures. For the jet in cross flow (JICF) in gas turbines and propulsion systems,

where a perpendicular jet flow is injected into the boundary layer flow, multiple coherent

structures, e.g., the counter-rotating vortex in the jet cross section, the horseshoe vortices

at the leading edge of the jet and the Kelvin-Helmholtz instability22,23, always interact with

each other and therefore lead to even more complicated streak structures in the downstream

wake region. It is also found that the overall status of the vortex structures of the JICF

system depends on the velocity ratio between the cross jet flow and the boundary layer

flow. Likewise, in geophysical/stratified flows, the non-parallel effects can also be induced

by the flow twists, in which the flow direction and magnitudes may vary differently with

height. The coherent eddy structures in the spanwise direction are experimentally24 and

numerically25 confirmed, with, noticeably, significantly enhanced turbulent mixing. There

are many examples of the non-parallelism in engineering and nature scenarios, but they are

not reviewed here as it is not the focus of this paper.
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In destabilization of a non-parallel flow, the misaligned base flow and the resultant twisted

shear usually play as a governing parameter to determine the occurrence of the discrepant

instability modes. Therefore, to quantitatively define the critical conditions of the involved

instability modes in certain unstable non-parallel flows, the profile of the misaligned base

flow velocity, usually in terms of cross/spanwise flow that is orthogonal to the designated

streamwise flow, needs to be specified in the stability analysis. For a weak non-parallel flow,

only the magnitudes of the base flow velocity are assumed to vary in both the transverse and

vertical directions, e.g., in a recent stability analysis26. Nevertheless, for a strong non-parallel

flow, e.g., the JICF mentioned above, the profiles of the main stream flow (the boundary

layer flow in the JICF) and transverse flow (the jet flow in the JICF) are usually needed

to be specified in stability analysis27–29. Once the profiles are established, the quantitative

influence of the cross shears is represented by the magnitude ratio between the jet and

boundary layer flows. Such a velocity ratio is confirmed to be one of the governing parameters

in the JICF23. Similar to JICFs in engineering, our recent work30 found that the cross shear

in non-parallel free sheared flows, which usually occur in geophysical circumstances, also

directly or indirectly leads to multiple instability modes, which are governed by the ratio

between the base flow velocity and the perturbations in the spanwise direction.

However, in stabilization of a non-parallel flow, though the critical roles of the misaligned

base flow and twisted shear are also confirmed, their modeling in hydrodynamics is rather

implicit. To investigate the stabilization of the leading-edge vortex on a rotating flat plate,

Wojcik & Buchholz31 indirectly included the stabilization from the spanwise velocity as a

source term in the vorticity budget and named it as the ‘annihilation’ of vorticity. Though

the ‘annihilation’ is solidified by the magnitude of the corresponding source term in the

vorticity budget, how the spanwise velocity dynamically stabilizes the leading-edge vortex

is still unclear. Similarly, the indirect influence of the spanwise velocity was confirmed by

Jardin32, who studied the Coriolis effects on the stabilization of the leading-edge vortex.

The author suggested that the Coriolis effects promote the spanwise flow in the core of and

behind the leading-edge vortex, therefore stabilize the vortex structures atop the rotating

boundary layer and prevent the detachment, yet how exactly the spanwise flow interacts

and stabilizes the leading-edge vortex is still unknown. Some studies found that the stabi-

lization associated with the misaligned base flow is relevant to the resultant twisted vortex

structures. For example, the implication of the spanwise velocity on the stabilization of
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bluff-body wakes was also elaborated by Hwang, Kim, & Choi19, who suggested that the

overall vortex structures are significantly modified based on the vortex dynamics, in addition

to the spanwise perturbations induced by surface waviness. Likewise, Guercvio, Cossu &

Pujals33 introduced the spanwise ‘streaky wakes’ as the spanwise modulations in the par-

allel base flow and found the amplitudes of such artificial wakes can completely suppress

the absolute instability and convert it into a convective one. They attributed such effective

stabilization mainly to the spanwise mean flow distortion.

Though some evidences noted above strongly indicate that the spanwise velocity directly

or indirectly modifies the non-parallel base flow or the derived coherent structures, so that

the overall non-parallelism appears more stable, yet, the shear of the spanwise velocity,

named as the cross shear by Atsavapranee & Gharib24, is insufficiently considered in hy-

drodynamic analysis, particularly compared to those studies on destabilization. Likewise,

there should be a quantitative way to describe whether the stable cross shear is necessary in

stabilization of the non-parallel flow and how it contributes to the overall stabilization. The

answer to this primarily motivates the present study. In addition, with the consideration

of the quantitative role of the cross shear, the potential interactions between the base flow

distortions (misaligned base flow) and three-dimensional perturbations in the non-parallel

flow can be investigated together, which also motivates the present study. After all, the

majority of the non-parallel flows are more or less induced by both factors. Furthermore,

as the previous studies19,33 on stabilization of different types of non-parallel flows confirm

the involvement of the twisted vortex structures, the present study will further investigate

how exactly the stable cross shear, together with the three-dimensional perturbations, con-

tributes to the twisted vortex structures in the stabilization. At last, with the improved

understanding of the role of the cross shear in stabilization, the present study may provide

some preliminary implications to the applications of the stable cross shear in engineering

scenarios that desire for stabilization, e.g., by either actively or passively imposing the stable

cross shear to locally stabilize the non-parallel flow.

Nevertheless, as reviewed above, the non-parallelism involving both the cross shear and

the spanwise perturbations is inherently complicated, thus necessary simplifications are

needed to focus on the role of the cross shear. To our best knowledge, so far there has

been no hydrodynamic analysis on stabilization that considers the specific stable spanwise

velocity and the cross shear. As a preliminary study, it is appropriate to focus on the linear
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analysis, as the present study does. Specifically, the free sheared non-parallel flow (cross

sheared flow, abbreviated as ‘CS flow’ hereafter) with the base flow represented by the fol-

lowing profiles is selected in the present study for the investigation of the stabilization effects

via the cross shear,

U = tanh(z), V = ξz3, (1)

in which U and V represent the streamwise and spanwise velocity, and z represents the

vertical (height) coordinate in the Cartesian system. The velocity ratio ξ = |V | / |U |, where

|U | and |V | represent the magnitudes of U and V , is a measure of the relative cross shear

intensity, suitably named as the ‘cross shear ratio’, as V is orthogonal to U . Correspond-

ingly, as V perfectly aligns with the spanwise direction, the spanwise wavenumber of the

perturbations is named as the ‘orthogonal wavenumber’ in the subsequent context. For the

unstable velocity U , the classic hyperbolic-tangent velocity profile U = tanh(z) is selected

for two reasons; theoretically, because for the free sheared flow the linear temporal mode is

sufficient to capture its essential instability features, and practically, the hyperbolic-tangent

profile represents the prototype of the two sheared layer flows, which widely exist in the

circumstances where the velocity shear experiences a significant change within a limited

region, e.g., the sheared stratified flow, the interface between the jet flow and the boundary

flow, and other flows where the strong gradient of the velocity shear is involved. For the

stable velocity V , the profile of V = ξz3 is setup as it satisfies the Rayleigh’s inflection point

theorem but violates the Fjφrtoft’s theorem34 as V ′′(V − Vz=0) = 6ξz(ξz3 − 0) = 6ξ2z4 ≥ 0

where Vz=0 is the value of V at z = 0, which is zero. The selection of V = ξz3 is mainly

due to the limited choices available, because there is barely report on the linear analysis of

the stable base flow alone, which inherently provides no solutions of the temporal growth

rate. Perhaps this is also why the stabilization of a stable base flow velocity could only be

measured in non-parallel flow, thus the previous studies on the stabilization, as reviewed

above, are usually involved for the non-parallelism. Thus, we select V = ξz3 mainly based

on whether a spanwise velocity violates the Rayleigh’s inflection point or the the Fjφrtoft’s

theorem. The simplicity of such an unstable spanwise velocity provides certain theoretical

convenience. Overall, the selection of such a simply base flow aims to give a ‘minimum

representation’ of non-parallel shear flow system, so that the influences of the cross shear

and its interactions with the spanwise perturbations can be better clarified. The profiles and

the first and second derivatives of the base flow (Eq. (1)) with several ξ values are shown in
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FIG. 1. (a) Schematic of the CS flow with U = tanh(z) (solid lines) and V = ξz3 (dash lines) with

ξ = 0.1, 1 and 5, and their first derivatives (b) and second derivatives (c).

Fig. 1.

To examine the role of the cross shear in the stabilization, in the present study, the

overall stability of the CS flow (Eq. (1)) will be quantified first, by solving the eigenvalue

problems described by the linearized perturbation equations. Accordingly, the solutions will

provide the map of the unstable regions governed by a unique parameter that unifies the

cross shear and the spanwise wavenumber. Subsequently, the dependence of stability on V

will be studied. As will be described below, even for the linear stability model, the CS flow

involves more complicated mechanisms, namely, the two distinctively different eigenfunction

modes pertaining to the dominant roles of the orthogonal wavenumber and the cross shear,

along with even more complicated transition in between the two eigenfunction modes. As

the previous studies on stabilization19,31,33 suggested, the importance of vorticity distortion,

the kinetic energy and enstrophy budgets in linearized forms will also be included in the

examinations of eigenfunctions, in addition to the basic perturbations.

This paper is organized as follows. In Section II, the linearized perturbation equations

and the procedures to solve the eigenvalue and the associated eigenfunctions, as well as the

derived kinetic energy and vorticity perturbation budgets in the form of the normal modes

are described in details. Section III presents the details of the eigenvalue/eigenfunction

solver and the computational domain and the boundary conditions. Section IV presents

the results of the eigenvalues/eigenfunctions of the CS flow, followed by the discussion and

conclusions made in Section V.
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II. LINEARIZED PERTURBATION EQUATIONS

It is assumed that the flow velocity vector ~u(~x, t) consist of the basic flow ~U(z) and the

infinitesimal perturbation ~u′(~x, t), i.e.,

~u(~x, t) = ~U(z) + ~u′(~x, t), (2)

where t is time, the components of ~x are x, y and z, and the components of ~U in the x, y

and z directions are U , V and W and that of ~u′ are u′, v′ and w′, respectively.

The dimensionless perturbation equations for an inviscid, incompressible and unstratified

flow are as follows35–37,

∇ · ~u′ = 0, (3)

∂~u′

∂t
+ (~U · ∇~u′ + ~u′ · ∇~U) = −

1

ρ̄
∇p′, (4)

where ρ̄ is the reference density and p′ is the perturbation part of the pressure away from

the reference pressure corresponding to ρ̄. All parameters are made dimensionless by their

respective characteristic scales.

For the CS flow considered, both the primary and orthogonal base flow velocities are

assumed to vary with the vertical coordinate z only, i.e.,

~U(z) = U(z)~i + V (z)~j. (5)

Thus,

~U · ∇~u′ = (U
∂u′

∂x
+ V

∂u′

∂y
)~i+ (U

∂v′

∂x
+ V

∂v′

∂y
)~j + (U

∂w′

∂x
+ V

∂w′

∂y
)~k,

~u′ · ∇~U = w′

(

∂U

∂z
~i+

∂V

∂z
~j

)

.

The following normal mode is used in the subsequent linear stability analysis,

φ′(~x, t) = φ̂(z)ei(αx+βy)−iαct = φ̂(z)ei(αx+βy)+σt, (6)

where i is the imaginary unit of a complex number, α and β are the wavenumbers in the x

and y directions, respectively, and the perturbation quantity φ′ represents velocity, pressure

or other physical quantities. The hat symbol ‘ˆ’ denotes the peak amplitude of the corre-

sponding perturbation. c is the wave (phase) speed, which gives αc as the angular frequency

for the perturbation, and σ = −iαc as the temporal growth rate of the perturbation.
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Substituting the above normal modes into Eq. (3) and Eq. (4) leads to the following,

iαû+ iβv̂ +Dŵ = 0, (7)

(iαU + iβV + σ)û+ Uzŵ = −i
1

ρ̄
αp̂, (8)

(iαU + iβV + σ)v̂ + Vzŵ = −i
1

ρ̄
βp̂, (9)

(iαU + iβV + σ)ŵ = −
1

ρ̄
Dp̂, (10)

whereD = ∂/∂z is the differential operator for the perturbation properties, and the subscript

‘z’ denotes the first order differentiation with respect to z.

By applying the Squire transformations35,38, the three-dimensional perturbation equa-

tions (7)-(10) can be reduced to (more details are presented in the Supplementary Materi-

als),

σ̃ŵ = [−iα̃(U∇2
s − Uzz)− i

α̃β

α
(V∇2

s − Vzz)]ŵ (11)

where

α̃ = (α2 + β2)1/2, σ̃ =
α̃

α
σ, ∇2

s = D2 − α̃2,

in which the tilde symbol ‘̃ ’ denotes the Squire transformation properties, and the subscript

‘zz’ denotes the second order differentiation of the base flow velocity with respect to z. If

V = 0 or β = 0, the perturbation equations for CS flows (Eq. (11)) will be reduced to the

Rayleigh equation for the parallel sheared (PS) flow with α = α̃ inherently. On the other

hand, if the composed velocity ~U = U~i + V~j aligns with the Squire wavenumber α̃, so that

the CS flow occurs in a single plane without any twists, Eq. (11) will also be reduced to the

Rayleigh equation. However, if the profiles of U and V are different so that ~U is twisted,

~U will always misalign with the Squire wavenumber. The flow twists are represented by

the term (i α̃β
α
V∆2

s − Vzz) and therefore are determined by both the perturbation and the

orthogonal velocity.

In Eq. (11), the terms (β/α)V and (β/α)Vzz unite the roles of ratio of the orthogonal

wavenumber and the primary wavenumber β/α and the orthogonal velocity component V

while solving the eigenvalue problems of σ̃, in spite of their distinctively physical differences.

To distinguish the individual influences of β/α and ξ, the examination of the eigenfunctions

is needed. As solving the eigenvalue problem of Eq. (11) also allows σ̃ and ŵ being solved,
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the rest of the eigenfunctions û, v̂ and p̂ can be established by substituting the obtained σ̃

and ŵ into Eqs. (7)-(9). For simplicity, ρ̄ = 1 is assumed in this study, so that p̂/ρ̄ = p̂.

After all basic eigenfunctions, i.e., the perturbation fields are obtained, the kinetic energy

(e = 1
2
u′2i ) budgets of the perturbation field for inviscid flow as shown below36, can be

obtained,
∂e

∂t
+ uj

∂e

∂xj
= Pk + Tk +Πk, (12)

where

Pk = −u′iu
′

j

∂ui
∂xj

, Tk = −
∂u′je

′

∂xj
, Πk = −

1

ρ

∂p′u′j
∂xj

,

in which e′ = 1
2
u′2i , Pk is the shear production of e via deformation work, Tk and Πk describe

the transports of e by the velocity and pressure perturbations, respectively.

As all the perturbations are assumed in the normal mode with the form of Eq. (6),

for the homogeneous free-sheared flow studied in this paper, the product of two random

perturbations yields,

φ′(~x, t)ϕ′(~x, t) = φ̂(z)ϕ̂(z)e2i(αx+βy)+2σt, (13)

as all perturbations share the same wavenumbers α̃ and β̃ as well as the same grow rate σ̃.

The average operation of the product φ′(~x, t)ϕ′(~x, t) is defined at one wavelength of 2π/α

and 2π/β in the primary and orthogonal directions, respectively, as follows,

φ′(~x, t)ϕ′(~x, t) =

∫ 2π
α

0

α

2π

∫ 2π
β

0

β

2π
φ̂(z)ϕ̂(z)e2[i(αx+βy)+σt]dxdy

=
αβ

4π2
φ̂(z)ϕ̂(z)e2σt

∫ 2π
α

0

∫ 2π
β

0

e2i(αx+βy)dxdy

= ǫ(x, y, t)φ̂(z)ϕ̂(z),

(14)

in which

ǫ(x, y, t) =
αβ

4π2
e2σt

∫ 2π
α

0

∫ 2π
β

0

e2i(αx+βy)dxdy.

Every term in Eq. (12) includes the same integration term
∫ 2π

α

0

∫

2π
β

0 e2i(αx+βy)dxdy which can

be canceled with each other.

By applying Eq. (14) to Eq. (12) yields the following kinetic energy budget of the per-

turbations in the normal mode form (more details are presented in the Supplementary Ma-

terials),

σ(û2 + v̂2 + ŵ2) + (iαU + iβV )(û2 + v̂2 + ŵ2) = P̂k,u + P̂k,v + Π̂k, (15)
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in which

P̂k,u = −ûŵUz, P̂k,v = −v̂ŵVz, Π̂k = −i2(αp̂û+ βp̂v̂)−D(p̂ŵ),

where T̂k is eliminated due to the term ûj ê = ûjûiûi, in which one integration
∫ 2π

α

0

∫

2π
β

0 ei(αx+βy)dxdy

is unable to be canceled, but it is zero. The physical meanings of P̂k and Π̂k are the same as

Pk and Πk, as they are just in the normal mode form. The influences of U and V on P̂k are

separated into the U -oriented term P̂k,u and the V -oriented term P̂k,v for analytical conven-

tions. As all eigenfunctions are complex numbers, the conservation of Eq. (15) is satisfied

only for the real/imaginary part but not for the magnitudes of the complex properties.

Another parameter, called enstrophy and defined as 1
2
ω′2
i , can be introduced through

vorticity perturbations to represent the twisted features of the CS flow36. The vorticity

perturbations are as follows,

ω′

x =
∂w′

∂y
−
∂v′

∂z
, ω′

y =
∂u′

∂z
−
∂w′

∂x
, ω′

z =
∂v′

∂x
−
∂u′

∂y
. (16)

By applying the normal modes yields the following,

ω̂x = iβŵ −Dv̂, ω̂y = Dû− iαŵ, ω̂z = iαv̂ − iβû. (17)

The enstrophy budget of the perturbation field for the invicid sheared flow considered in

this paper is as follows36,

∂

∂t

(

1

2
ω′2

)

+ uj
∂

∂xj

(

1

2
ω′2

)

= Pω + Tω + Sω, (18)

where

Pω = −u′jω
′

i

∂ωi

∂xj
, Tω = −

∂

∂xj
u′j

(

1

2
ω′2
i

)

, Sω = ω′

iω
′

js
′

ij + ω′

iω
′

j s̄ij + ωiω
′

js
′

ij.

Pω is the gradient production of enstrophy via the exchange between the basic flow and

the perturbed vorticity field, Tω is the transport of enstrophy by the velocity perturbation,

Sω is the stretching of the vortex by the perturbation deformation field s′ij, the average

deformation field sij and the average vorticity field ωi. The rate of strain tensor is defined

as follows,

s′ij =
1

2

(

∂u′i
∂xj

+
∂u′j
∂xi

)

. (19)

By applying Eq. (14) to Eq. (18), the enstrophy budget of the perturbations in the normal

mode form, after both sides are divided by 2ǫ(x, y, t), becomes,

(σ + iαU + iβV )(ω̂2
x + ω̂2

y + ω̂2
z) = P̂ω,u + P̂ω,v + Ŝω,1,u + Ŝω,1,v + Ŝω,2,u + Ŝω,2,v, (20)
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in which

P̂ω,u = −Uzz(ŵDû− iαŵ2), P̂ω,v = −Vzz(ŵDv̂ − iβŵ2),

Ŝω,1,u = ω̂xω̂zUz, Ŝω,1,v = ω̂yω̂zVz,

Ŝω,2,u = Uz(ω̂xŝyx + ω̂yŝyy + ω̂zŝyz)

=
1

2
Uz(iβω̂xû+ iαω̂xv̂ + 2iβω̂yv̂ + ω̂zDv̂ + iβω̂zŵ),

Ŝω,2,v = −Vz(ω̂xŝxx + ω̂y ŝxy + ω̂zŝxz)

= −
1

2
Vz(2iαω̂xû+ iβω̂yû+ iαω̂yv̂ + ω̂zDû+ iαω̂zŵ),

where T̂ω is eliminated as the same as T̂k because of the term ûω̂iω̂i. P̂ω and Ŝω inherit the

physical meanings of Pω and Sω as they are just in the normal mode form. To facilitate

the analysis in the following sections, both P̂ω and Ŝω are subdivided into the U and V

related sub-terms as indicated by the third subscripts ‘u’ and ‘v’. For Ŝω, the term ω̂iω̂j ŝij

is also eliminated, and the rest terms involving s̄ij and ŝij are also separated and indicated

by the second subscripts ‘1’ and ‘2’. As all eigenfunctions in Eq. (20) are complex numbers,

the conservation of Eq. (20) is also satisfied only for the real/imaginary part, not for the

magnitudes of the complex properties.

III. METHODOLOGY

The temporal mode of the eigenvalue problems (11) is solved with the matrix methods.

The linearized perturbation equation (11) is uniformly discretized by using the second-order

central difference scheme. The QZ algorithm developed by Moler & Stewart39, which is

integrated in the Linear Algebra package (LAPACK) routine CGGEV, is used as the complex

eigenvalue solver. The robustness of the QZ algorithm in the hydrodynamic stability analysis

has been demonstrated in some studies (e.g., Liu, Thorpe & Smyth40, Smyth, Moum &

Nash41, Thorpe, Smyth & Li42). With the QZ algorithm, solving the eigenvalue problem

(11) also obtains ŵ. As both σ and ŵ are solved, Eqs. (7)-(9) are used to solve the rest

unknown eigenfunctions û, v̂ and p̂ with the solver ZSYSV integrated in the LAPACK. After

all basic eigenfunctions associated to the eigenvalue σ are obtained, the related terms to the

kinetic energy and enstrophy budgets Eq. (15) and Eq. (20) are computed.

The boundary conditions u = w = v = 0 are applied at both the top and the bottom

boundaries. The dimensionless vertical coordinate z varies between −5 and 5, giving the cor-
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responding dimensional computational domain a size ten times of the characteristic length.

The resolution with node numbers of 600 ∼ 2000 as well as the dimensionless computational

domain sizes between 10 and 50 are tested, with less than 1% variations observed. Thus

10 is selected as the dimensionless computational size along with the node number of 600,

which is sufficiently large to capture the asymptotic hydrodynamic behaviors obtained in

other settings with the much larger domain sizes and many more node numbers.

IV. RESULTS

A. Unstable region - its boundary and the path of the maximum growth rate

With the above base flow, (β/α)V and (β/α)Vzz in Eq. (11) become (β/α)ξz3 and

6(β/α)ξz, respectively, so that the velocity (cross shear) ratio ξ and the orthogonal wavenum-

ber ratio β/α are combined into a single factor χ = (β/α)ξ, which determines the eigenvalue

σ̃ regardless of the relative ratio between β/α and ξ. Figure 2 plots the temporal growth

rate σ̃ against the Squire wavenumber α̃ for different χ values. For χ = 0, the CS flow of

Eq. (1) reduces to the PS flow of U = tanh(z) and the values of the wavenumber α̃max where

the maximum σ̃ occurs on the dispersion relation is around 0.45 ∼ 0.46, which agrees with

the results obtained by the shooting methods and other spectrum methods37,43–45. After

non-zero χ is introduced and increased, the curve signifying the dispersion relation begins

to shrink significantly and α̃max reduces. Further increase of χ leads to α̃max approaching

0.1. As χ increases to more than 0.14, none of the σ̃ 6= 0 solution is obtained, indicating that

the stability boundary is reached. The drastic falling of the dispersion curves by increasing

χ exhibits obviously the stabilized effect of the orthogonal velocity component V , which

proves that introducing a stable V profile can indeed stabilize the whole CS flow.

To gain a comprehensive perspective of how V stabilizes the CS flow (Eq. (1)), the sta-

bility boundary, i.e., the contour of σ̃ = 0, is plotted in Fig. 2(b), along with the path

of the maximum growth rate σ̃max inside the unstable regions. Every σ̃max for a given χ

is searched from the corresponding curve of dispersion relation, and accordingly the corre-

sponding wavenumber α̃max where σ̃max occurs is recorded as well. Consequently, a series

of (α̃max, χ) pairs are plotted in Fig. 2(b) and form the path of σ̃max, where σ̃max decreases

as χ increases as indicated by the arrow. It should be noted that the stability boundary in
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FIG. 2. (a) The growth rate σ̃ plotted against the Squire wavenumber α̃ with different χ values

and (b) the contour of σ̃ = 0 (solid line) as well as the path of the maximum growth rate α̃max

(void circles) of different dispersion curves in terms of χ versus α̃ for the CS flow (Eq. (1)). The

arrow in (b) denotes the decrease of α̃max with increasing χ.

Fig. 2(b) is unique in that it only exists when the V profile is stable and χ 6= 0. That is to

say, as χ = (β/α)ξ, non-zero ξ, even with a negligible magnitude, is a necessary condition

for the stabilization of the CS flow, regardless how large β/α is. The necessity of stable

V agrees with the indirect but necessary role of spanwise velocity with significant spanwise

perturbations found in previous studies19,33. The maximum χ on the stability boundary is

χcr ≈ 0.145, whose role is similar to the critical Richardson number Ricr = 0.25 for the strat-

ified PS flow. Unlike the stability boundary created by the stratification, e.g., as computed

by Hazel44 and Smyth & Peltier45, the wavenumber at which σ̃max occurs also significantly

shifts along the σ̃max path, e.g., from α̃ ≈ 0.46 at χ = 0 to α̃ ≈ 0.1 at χ = 0.14, which

indicates that the overall length scale of the instability on the path of σ̃max will increase

with increased χ during the decay stage. This is supported by the subsequent eigenfunction

results.

B. Eigenfunctions

As a perturbation property and a measure of the background shear, β/α and ξ inherently

indicate distinctively different physical situations. If β/α≫ ξ, the perturbation structures,
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namely, the eigenfunction structures, might be close to the ones where U ≫ V with β ≫ α,

leading to the ‘orthogonal wavenumber’ (OW) eigenfunction mode. On the other hand,

if ξ ≫ β/α, the perturbation structures may be determined by the cross shear from the

V profile, resulting in the ‘cross shear’ (CS) eigenfunction mode. The two extreme cases

correspond to two fundamental eigenfunction modes in the CS flow for each fixed χ. As β/α

and ξ are mostly in finite magnitudes, the eigenfunctions are a mixture of the two extreme

modes, which corresponds to a ‘hybrid’ eigenfunction mode.

As unified by χ, the influences of β/α and ξ are concealed by the eigenvalue problems.

To further examine the individual influences of β/α and ξ and their associated OW and

CS modes, the basic eigenfunctions and their derived budgets of Eq. (15) and Eq. (20) are

needed. In addition, to quantify the relative role of β/α and ξ, a ratio ψ = (β/α)/ξ is

defined to indicate the critical conditions of the OW, CS and hybrid modes. Moreover, as

the path of σ̃max indicates the gradient of σ̃ within the whole unstable regions as shown in

Fig. 2(b), it is both mathematically and physically reasonable to select the eigenfunctions

on the path of σ̃max as the representatives of the entire unstable region. For convenience,

the path of σ̃max will be called ‘the path’ in the rest of the paper.

1. The OW mode

Figure 3 presents the profiles of the basic eigenfunctions in the z direction with χ = 0.06

at ψ = 600, i.e., û, ŵ, p̂, ω̂x, v̂ and ω̂y as well as the products ûŵ, p̂ŵ, D(p̂ŵ), ω̂xω̂z and ω̂yω̂z

that have significant influences on the kinetic energy/enstrophy budget. For comparison,

the results for the eigenfunctions associated with the PS flow of U = tanh(z) with χ = 0

are also plotted.

From this figure, it is seen that overall, for the OW mode, the majority of the profiles of

the basic eigenfunctions in the z direction vary within z ∈ [−2, 2] where the major variations

of the primary shear Uz = sech2(z) and Uzz = −2tanh(z)sech2(z) occur, rather than the

entire domain of z ∈ [−5, 5] on which the orthogonal shear Vz = 3z2 and Vzz = 6z have

influences. Such confined regions of z ∈ [−2, 2] indicate that the primary shear remains

critical in the OW mode. Under such critical influence of the primary shear, some basic

eigenfunctions, e.g., û, ŵ as well as their product term ûŵ shown in the first row of Fig. 3,

develop similar symmetrical features and magnitudes to those associated with U = tanh(z).
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FIG. 3. The profiles of the absolute values of û, ŵ, ûŵ, p̂, p̂ŵ, D(p̂ŵ), ω̂x and v̂, ω̂y, and ω̂xω̂z

and ω̂yω̂z in the z direction, with ψ = 600 at χ = 0.06 (solid lines) and χ = 0 (dashed lines),

respectively.

Yet, due to the flow twist in terms of β/α ≫ ξ in the OW mode, some deformations

compared to the PS flow of U = tanh(z) are found, e.g., p̂ of the OW mode involves a

triple-peak profile so that the related product p̂ŵ and D(p̂ŵ) appear to be quite different

from those associated with the PS flow. These scattered eigenfunction structures in terms

of multiple peaks are apparently attributed to the reduced wavelength of perturbations due

to the dominant role of β/α in the OW mode. The features of multiple peaks in the OW

mode further complicate the transportation and productions of the kinetic energy/enstrophy

as will be shown later. The most deviated feature of the OW mode is the significant non-

zero values of ω̂x and v̂. In the PS flow, the perfect alignment between the perturbations

and the base flow gives rise to little perturbations in the orthogonal direction and therefore
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result in zero v̂ and ω̂x. On the contrary, the misalignment between the Squire wavenumber

and the base flow forces the perturbations to develop in both the primary and orthogonal

directions, leading to significant non-zero values of ω̂x and v̂ in the orthogonal direction.

Nevertheless, for the OW mode, the misalignment is mainly caused by β/α as β/α≫ ξ, as

a result the magnitudes of v̂ are less than those of ω̂x as ω̂x = iβŵ − Dv̂ is augmented by

β. The contributions of v̂ to the kinetic energy/enstrophy budget are further substantially

compromised by the suppressed cross shear Vz owing to (β/α) ≫ ξ in the OW mode. The

suppressed cross shear also enlarges the gap between ω̂xω̂z and ω̂yω̂z in the enstrophy budget,

thereby introducing new structures that never exist in the PS flow as will be shown later.

Figure 4 shows the eigenfunctions of the kinetic energy and enstrophy budgets at χ = 0

and χ = 0.06, both with fixed ψ = 600. Compared to the PS flow (χ = 0), for the

CS flow (χ = 0.06), due to the deformations of p̂ and its associated product, e.g., p̂ŵ,

the eigenfunctions of Π̂k, namely, the transportation of the kinetic energy via the pressure

gradient, display the dominant quadruple-peak profiles as shown in Fig. 4(c), indicating

that the flow structures are twisted at several scattered regions. At the approximately same

positions where the quadruple peaks of Π̂k occur, in Fig. 4(d) the twin-peak structures

of Ŝω,u,1 , Ŝω,u,2 and P̂k,u occur and represent the twisted effects in the enstrophy budget.

The existences of Ŝω,u,1 and Ŝω,u,2 are unique for the CS flow, because for the PS flow, the

alignment between the base flow and perturbations inherently eliminates vortex stretching

via the rate of the strain in the linear instability.

The diminished length scales due to β/α with β/α≫ ξ in the OWmode are demonstrated

by the profiles of Π̂k, Ŝω,u,1, Ŝω,u,2 shown in Fig. 4. Nonetheless, they do not necessarily lead

to stabilization, as the reduced/scattered length scales are also observed in destabilization

of the non-parallel flows. For instance, with spanwise perturbations, a similar streamwise

velocity U applied in this study can also create a series of unstable spanwise vortex structures

with reduced length scales, as what Atsavapranee & Gharib24 and Lin et al.25 experimentally

and numerically investigated. The similar destabilization via the spanwise wavenumber can

also be found in numerous studies on the JICF23. Then why can some studies, e.g.,9,19,26,

still achieve stabilization by introducing spanwise perturbations? We still suggest that the

stable V and the associated cross shear is the key mechanism behind the stabilization of the

OW mode. The evidence is the weak but not negligible presence of the twin-peak structures

of P̂k,v confined in z ∈ [−1, 1] shown in Fig. 4(d). Thus, the stabilization from cross shear
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FIG. 4. The profiles of the absolute values of the kinetic energy budget (left column) and the

enstrophy budget (right column) of the perturbations for the CS flow (1) at χ = 0 (a)˜(b) and

χ = 0.06 (c)˜(d), both with ψ = 600, in the z direction. For the kinetic energy budget, ( ),

( ), ( ) and ( ) denote Dê/Dt, P̂k,u, P̂k,v and Π̂k; for the enstrophy budget, ( ), ( ),

( ), ( ), ( ), ( ), and ( ) denote Dω̂2/Dt, Ŝω,u,1, Ŝω,u,2, P̂ω,u, Ŝω,v,1, Ŝω,v,2 and P̂ω,v,

respectively.

on vortex deformation is not negligible, even V is negligible in the OW mode.

The limited regions of the twin-peak structures of P̂k,v also determine how the stabilization

is achieved in the OW mode. Figure 5 shows the profiles of the eigenfunction p̂ at χ = 0.06,

0.09 and 0.14 along the path at ψ = 1000 for the OW mode. A clear decay of the triple-peak

structures of p̂ can be observed as ψ increases along the path. Particularly, as indicated by

the arrows, the overall structures of p̂ shrink towards the central region at z ∈ [−1, 1], the

same position where the twin-peak structures of P̂k,v occur shown in Fig. 4(d). Meanwhile,
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FIG. 5. The profiles of the absolute value of p̂ at ψ = 1000 with χ = 0.06, 0.09 and 0.14,

respectively. The arrows indicate the decay of p̂.

the central peak of p̂ ostensibly decays with increased χ and is almost annihilated at χ = 0.14

very near the stability boundary. Thus, such a decay fashion of p̂ suggests that it is the

cross shear which stabilizes the pressure perturbations. As the sheared CS flow is pressure-

driven, p̂ provides momentum for the perturbed velocity as well as vorticity, therefore the

stabilization of p̂ at last leads to the overall stabilization of the CS flow as χ increases along

the path.

2. The CS mode

Figure 6 shows the eigenfunctions of v̂ and û, v̂ŵ and ûŵ, ω̂x and ω̂y, ω̂z and ω̂y, ω̂xω̂y,

and ω̂yω̂z with ψ = 1/600 at χ = 0.06. Similar to the OW mode, the misalignment between

the base flow and the perturbations leads to the twisted features of the eigenfunctions, e.g.,

the non-zero v̂, ω̂x and ω̂z. Nevertheless, as a result of ξ ≫ (β/α), the twisted features of the

CS mode are extremely inclined to the orthogonal direction. For instance, the cross shear

directly produces absolutely dominant v̂ in the orthogonal directions over û in the primary

direction. Accordingly, the dominant v̂ significantly increases the magnitudes of ω̂x and ω̂z,

so that ω̂y exerts very little influences. In addition, the profiles of v̂ and ω̂x extend across
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FIG. 6. The profiles of the absolute values of v̂ and û, v̂w and ûw, ω̂x and ω̂y, ω̂z and ω̂y, ω̂xω̂z,

and ω̂yω̂z in the z direction, with ψ = 1/600 at χ = 0.06.

the entire domain, which agrees with the extensions of the cross shear Uz = sech2(z) and

Uzz = −2tanh(z)sech2(z) in the z direction as shown in Fig. 1. Hence, the stabilization also

extends across the entire domain, unlike those associated with the OW mode and the PS

flow that are limited within the region z ∈ [−2, 2] where the primary shear mostly varies.

The extended eigenfunctions developed in favor of the orthogonal direction, i.e., v̂ as well

as the associated ω̂x and ω̂z, also introduce similar features of the related product terms, e.g.,

v̂ŵ, ω̂xω̂z, and ω̂yω̂z. These product terms with significant magnitudes directly contribute

to the cross shear-determined eigenfunctions of the kinetic energy and enstrophy budgets in

the CS mode as shown in Fig. 7. Specially, the kinetic energy is basically all produced by

the twin-peak structure of P̂k,v, which spans over the entire domain as shown in the figure.

For the enstrophy budget, in addition to their extended span in the z direction compared

to the OW mode, the multiple-peak structures, e.g., of Ŝω,v,1, Ŝω,v,2, and P̂ω,v, are observed,

which distinguish the features of the CS mode with that of the OW mode.

To demonstrate the stabilization in the CS mode, Fig. 8 shows the profile p̂ as a function

of ψ along the path at ψ = 0.1. It should be emphasized that there are little changes for the

p̂ profile as ψ further increases beyond 0.1. As the cross shear in terms of Ŝω,v,1, Ŝω,v,2, and
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FIG. 7. The profiles of the absolute values of (a) the kinetic energy budget and (b) the enstrophy

budget of the perturbations in the z direction for the CS flow with ψ = 1/600 and χ = 0.06. For

the kinetic energy budget (left column), ( ), ( ), ( ), and ( ) denote Dê/Dt, P̂k,u, P̂k,v,

and Π̂k; for the enstrophy budget, ( ), ( ), ( ), ( ), ( ), ( ), and ( ) denote Dω̂2/Dt,

Ŝω,u,1, Ŝω,u,2, P̂ω,u, Ŝω,v,1, Ŝω,v,2, and P̂ω,v, respectively.

P̂ω,v almost occurs across the entire vertical domain as shown in Fig. 7(b), the profile of p̂ is

also stabilized everywhere, as the gradient ∂p̂/∂z is significantly decreased when χ increases

from 0.06 to 0.14. Meanwhile, because the destabilizing influence of the primary shear is

weak but still exists in terms of the central twin-peak structures of Ŝω,u,1 shown in Fig. 7(b),

the central peak of p̂ is kept. Yet, as χ increases along the path, the gradient ∂p̂/∂z near

the central peak is still significantly compromised. In general, unlike the OW mode, the

stabilization in the CS mode via the cross shear is achieved by deteriorating the gradient

∂p̂/∂z across the entire vertical domain. The primary shear remains but in a very limited

central region to sustain the destabilization of the CS flow. Once χ reaches the stability

boundary, the gradient ∂p̂/∂z sustained by the primary shear is destroyed at last.

3. The transition

The OW mode and the CS mode are in fact two extreme cases where (β/α) ≫ ξ and

(β/α) ≪ ξ, respectively. When β/α and ξ are comparable, the features of both the OW

mode and the CS mode described above may coexist, leading to a ‘hybrid’ mode. In this

section, the transition among the OW, the CS and the hybrid modes is examined with the
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FIG. 8. The profiles of the absolute value of p̂ at ψ = 0.1 with χ = 0.06, 0.09 and 0.14, respectively.

varying relative ratio ψ = (β/α)/ξ, which also quantifies the effective regions where the OW

mode, the CS mode and the hybrid mode exist.

Figure 9 shows the eigenfunctions of the enstrophy budget at fixed χ = 0.06 and several

ψ values, while Fig. 10 (Multimedia view) presents the results for more ψ values over ψ =

0.001 ∼ 10000 at fixed χ = 0.06, which demonstrates the entire transitions. It is observed

that in general the transitions involve three stages. In the first stage, from ψ = 10000 to

10, the initial eigenfunctions of the OW mode increase their magnitudes as ψ decreases,

with, noticeably, the merger of the twin-peaks of Ŝω,u,1 into a single-peak structures as

shown in Fig. 9(a)-(c). After the merger, the new central peak structure of Ŝω,v,1 begins to

decay further when ψ decreases to below 10 as shown in Fig. 9(d), as both its magnitude

and the span in the z direction decrease with decreased ψ. The deformations of other

eigenfunctions associated with the OW mode are also observed when ψ decreases from

10000 to 10, indicating that it is not only the enstrophy budget but the whole OW mode are

modified during the first transitional stage as ψ decreases. The mechanisms behind this first

transitional stage will be discussed later with the variation of p̂. The second stage begins

from ψ = 2, in which the eigenfunctions signifying the CS mode, i.e., Ŝω,v,1, Ŝω,v,2, P̂ω,v,

start to emerge in the entire z region, and gradually develop into similar appearances as

those shown in Fig. 7(b) for the CS mode, except for the central peak structure of Ŝω,v,1
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FIG. 9. The profiles of the absolute values of the enstrophy budget of the perturbations for the CS

flow in the z direction at fixed χ = 0.06, with decreasing ψ of: (a) 10000, (b) 50, (c) 10, (d) 2, (e)

0.5, and (f) 0.05. ( ), ( ), ( ), ( ), ( ), ( ), and ( ) denote Dω̂2/Dt, Ŝω,u,1, Ŝω,u,2,

P̂ω,u, Ŝω,v,1, Ŝω,v,2, and P̂ω,v respectively.

over z ∈ [−1, 1] as the byproduct of the deformations of the OW mode inherited from the

first stage. It is noted that the remaining central peak structure of Ŝω,v,1 is still degenerating

during the second stage. Nonetheless, both the features of the OW and CS modes coexist,

accordingly the eigenfunction mode belongs to the ‘hybrid’ mode. In the third stage, the

central peak structure of Ŝω,v,1 signifying the OW mode completely decays into negligence
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FIG. 10. The evolution of the profiles of the absolute values of the enstrophy budget of the

perturbations for the CS flow in the z direction with fixed χ = 0.06 and varying ψ values over

ψ = 0.001 ∼ 10000. ( ), ( ), ( ), ( ), ( ), ( ), and ( ) denote Dω̂2/Dt, Ŝω,u,1, Ŝω,u,2,

P̂ω,u, Ŝω,v,1, Ŝω,v,2, and P̂ω,v respectively. (Multimedia view)
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FIG. 11. The evolution of the profiles of the absolute values of the kinetic energy budget of the

perturbations for the CS flow in the z direction with fixed χ = 0.06 and varying ψ values over

ψ = 0.001 ∼ 10000. ( ), ( ), ( ), ( ), ( ), ( ), and ( ) denote Dω̂2/Dt, Ŝω,u,1, Ŝω,u,2,

P̂ω,u, Ŝω,v,1, Ŝω,v,2, and P̂ω,v respectively. (Multimedia view)
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at ψ = 0.05 as shown in Fig. 9(f), indicating that the hybrid mode has transitioned into

the CS mode, which continues to be the dominant mode as ψ decreases from 0.05. For the

eigenfunctions of the kinetic energy budget, as shown in Fig. 11 (Multimedia view) where

the profiles of the absolute values of the kinetic energy budget of the perturbations for the

CS flow in the z direction with fixed χ = 0.06 and varying ψ values over ψ = 0.001 ∼ 10000

are presented to demonstrates the entire transitions, similar second and third transitional

stages are observed, in spite of their different appearances.

The first transitional stage described above is closely related to how the enhanced cross

shear deteriorates the basic eigenfunctions of the OW mode. To demonstrate this, Fig. 12

shows the eigenfunctions of p̂ at fixed χ = 0.06 with ψ decreasing from 10000 to 2, the range

corresponding to the first transitional stage of the enstrophy budget observed in Fig. 9(a)-

(d). As ψ decreases, the three-peak structure of p̂ decays significantly, with the two side

peaks, ‘L’ and ‘R’ peaks, vanished at ψ = 50, so that only the single ‘C’ peak of p̂ remains,

leaving the overall p̂ structures to have the same appearance as those of the CS mode at

ψ = 1 as shown in Fig. 9(b). Only after the establishment of its central peak structure at

ψ = 50, the eigenfunction of p̂ can further increase its magnitude with little variation of its

shape, which corresponds to the second transitional stage.

Similar to the establishment of the single-peak structure of p̂ as shown in Fig. 12(a),

for other basic eigenfunctions not shown here, as ψ decreases their original eigenfunctions

associated with the OW mode always experience a series of deformations to firstly transform

into the appearances of the eigenfunctions associated with CS mode, which corresponds to

the first transitional stage. Only when their appearances become similar to those associated

with the CS mode, these basic eigenfunctions stop deforming their shapes to increase their

magnitudes only, e.g., the growth of the single-peak structure of p̂ as shown in Fig. 12(b).

This means that the developments of the OW and the CS mode always compete with each

other. As ψ decreases, the enhanced cross shear must first deteriorates the OW mode to a

critical degree, which is in favor of the CS mode, then the cross shear is able to help the CS

mode to grow further.

The concept of the competition between the OW mode and the CS mode can also explain

the transition of the enstrophy as shown in Fig. 9. After a series of deformations, the profile

of Ŝω,u,1 signifying the OW mode is shrunk within the confined central region of z ∈ [−1, 1].

The reason for such a degeneration of Ŝω,u,1 is because the eigenfunctions associated with
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CS mode, i.e., Ŝω,v,1 and P̂ω,v in Fig. 7(b), inherently compete with the OW mode whose

original Ŝω,u,1 at ψ < 2 occupies the same central region. To ensure the development of the

CS mode, the enhanced cross shear must first confine the original Ŝω,u,1 structure associated

with the OW mode into a limited central region, that is, the deformations of Ŝω,u,1 shown in

Fig. 9(a)-(d). Only after the confinement of the OW mode is achieved, the eigenfunctions

associated with the CS mode can grow, e.g., the ‘L’ and ‘R’ peaks of Ŝω,v,1 and P̂ω,v as shown

in Fig. 9(e)-(f).

Strictly speaking, there is no hybrid mode for p̂ as demonstrated by Fig. 12, as the profile

of p̂ has already achieved its transformation at ψ = 50. Similar transitional behavior is

found for all basic eigenfunctions, i.e., û, v̂, ŵ, ω̂x, ω̂y, and ω̂z. The reason for the hybrid

mode of the eigenfunctions of the enstrophy budget is because the critical ψ, which indicates

the transition from the OW mode to the CS mode being attained, is different for different

basic eigenfunctions. For example, even when p̂ is transformed into the appearances of the

CS mode at ψ = 50, ω̂x and ω̂z still possess the features of the OW mode, which is why the

overall eigenfunctions of the enstrophy budget at ψ = 50 as shown in Fig. 9(b) still belong

to the OW mode. Likewise, the hybrid mode shown in Fig. 9(e)-(f) is also attributed to the

unfinished transition of some basic eigenfunctions, e.g., ω̂x, ω̂z and their product ω̂xω̂z that

determine the remaining central peak of Ŝω,u,1.

Based on Fig. 9, the two critical ψ values, ψcr,ow = 2 and ψcr,cs = 0.05 signifying the

commencement of the dominance of the CS mode and the complete decay of the OW mode

can serve as the boundaries of the hybrid mode, where the subscript ‘ow’ and ‘cs’ indicate

that the adjacent eigenfunction modes to the hybrid mode are the OW mode and the CS

mode, respectively. Likewise, for other χ values along the path, similar transitions as ex-

hibited for χ = 0.06 shown in Fig. 9 are also found, but with different ψcr,ow and ψcr,cs at

different χ. After collecting all results of ψcr,ow and ψcr,cs along the path, the map of the

effective regions of the OW mode, the CS mode and the hybrid mode is obtained as shown

in Fig. 13. It is found that the upper boundary of the hybrid mode region expands as χ is

near the stability boundary, indicating that the deformation of the OW mode in terms of

ψcr,ow occurs at larger ψ values, followed by the emergence of the CS mode in terms of the

peak structures of Ŝω,v. The expansion of the lower boundary always occurs as long as χ

increases along the path, suggesting that the residual influence of the OW mode, i.e., the

central peak structure of Ŝω,u,1 exhibited in Fig. 9(e), can survive at smaller ψ values.
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FIG. 12. The profiles of the absolute values of p̂ in the z direction at χ = 0.06 with different ψ

values (labeled by the numbers): (a) ψ = 50, 2000, and 10000, (b) ψ = 2, 20, and 50, respectively.

V. DISCUSSION AND CONCLUSIONS

This paper focuses on the hydrodynamics of the inviscid, free sheared and homogeneous

CS flow, with the unstable primary velocity component U = tanh(z) and the stable orthogo-

nal velocity component V = ξz3. By applying the normal mode, a combined multiplier factor

χ = (β/α) ξ, which incorporates the influences of the ratio of the orthogonal wavenumber

and the primary wavenumber β/α and the cross shear ratio ξ, is introduced in the linearized

perturbation equations. By solving the eigenvalue problems pertaining to the perturbation

equations, the map of the unstable region bounded by the unique stability boundary is

obtained, indicating that the stable V = ξz3 indeed stabilizes the entire CS flow.

By solving the associated eigenfunction problems, two distinctive modes, the OW mode

and the CS mode, are found when β/α or ξ absolutely dominate over each other. Because

of the twisted features inherently existed in the CS flow, the eigenfunctions of both the

OW mode and the CS mode involve the distinctively different structures compared to those

associated with the PS flow. For the OW mode, the dominant β/α reduces the length

scales of the perturbed flow structures and splits them into multiple scattered regions, yet

the stabilization is still determined by the remaining but limited influences of the cross
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FIG. 13. The regions of the eigenfunction modes in the (χ, ψ) map along the path for the enstrophy

budget.

shear on vortex deformation. For the CS mode, the dominance of ξ directly contributes to

the absolute domination of v̂, ω̂y and ω̂z over other basic eigenfunctions in the orthogonal

direction, consequently introducing the strong stabilization effects that extend over the

entire z region. Yet the remaining but compromised influences of the primary shear on

vortex deformation sustain the destabilization in the limited central region.

The transitions among the OW mode, the CS mode and their hybrid mode are examined

in terms of the relative ratio ψ = (β/α)/ξ. It is found that the OW mode and the CS mode

inherently compete with each other, so that the enhanced cross shear in terms of decreased

ψ must first deteriorate the eigenfunctions of the OW mode before it supports the growth of

the CS mode. In addition, the critical ψ values indicating the completion of the transition

from the OW mode to the CS mode, are different for different basic eigenfunctions, thereby

directly resulting in the hybrid mode of the kinetic energy and enstrophy budgets. Based

on the critical ψcr,ow and ψcr,cs values that distinguish the hybrid mode from the OW mode
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and the CS mode, respectively, the map of the three eigenfunction modes in terms of ψ and

χ is obtained, in which the region of the hybrid mode expands near the stability boundaries,

due to the enhanced role of the cross shear along the path, which not only depends on ψ

but also on χ.

Though the role of the spanwise velocity on the stabilization of the non-parallel flow was

confirmed in previous studies, the evidences are rather implicit. For instance, in Wojcik

& Buchholz31, the stabilization of the spanwise velocity is only modeled as a source term

in the vorticity budget without considering its dependence on the spatial coordinates. By

directly imposing a stable spanwise/orthogonal velocity to the non-parallel flow, the present

study shows that the stable spanwise velocity and the associated cross shear is not just an

implicit, but a necessary condition for stabilization. In the perturbation equations, ξ must

be non-zero to keep the term i − α̃β
α
(V∇2

s − Vzz) of the non-parallelism. In addition, the

stability boundary is uniquely created by the stable V , because if V is unstable, the CS

flow would be unstable as well. In addition, the stabilization of V and the cross shear is

elaborated by the vortex deformations that are only available for the CS flow. The role of the

vortex deformation is also confirmed by a series of previous investigations on stabilization

of the non-parallel flow19,31,33, nevertheless, the present study shows the further dynamical

complexity, that is, the OW and CS modes as well as their transition to each other. Though

the two modes involve distinctively different mechanisms, essentially it is still the cross shear

which achieves the stabilization.

Some further implications from current linear temporal analysis are worthy of attention.

First, as the necessary role of the cross shear is confirmed based on Fig. 2, is there a

universal critical ξcr value analogous to the critical Richardson number Ricr = 0.25 for

different stablized CS flows with V = ξz3, or other stable V flows? Second, for a viscous

flow, many eliminated terms in the kinetic energy and the enstrophy budgets related to the

viscosity appear, which will further complicate the mechanisms that form the flow structures.

Third, as the stabilization from the stable orthogonal velocity V = ξz3 and the associated

cross shear is demonstrated, in the flow control is it possible to design certain methods

directly based on stable V and cross shear? Although our investigation in this paper is

limited to unstratified, inviscid and homogeneous CS flow, the concept that the overall

stabilization of the flow may be significantly improved by imposing a stable orthogonal base

flow, can possibly provide some suggestive implications for those engineering applications
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that desire to suppress the turbulence. For instance, though introducing a stable spanwise

velocity such as V = ξz3 to a global domain may be technically difficult, locally it is

possible to impose and maintain such a stable spanwise velocity profile and the cross shear

with satisfactory accuracy, via a sequence of synthetic (fluidic) jet actuators with proper

vertical arrangements, such as the synthetic jet actuators applied in the unmanned air

vehicles21. At low velocity, the arrangement of plasma actuators is also a potential way to

induce the stable velocity, similar to its application in the flow control of the swept wing

boundary layers46. Perhaps, the current applications of these actuators in the separation

or transition control of boundary flows more or less involve the local stabilization via the

twisted vortex structures as suggested by Hwang et al.19 and Guercvio et al.33. With a more

specific stable cross shear applied, the actuators can possibly be more efficient to achieve

the local stabilization. In reality, the intensity of the imposed stable cross shear may be

limited by the power of the actuators. Nevertheless, the overall non-parallel flow can still

be stabilized, because, as suggested by the present study, it is both the misaligned base

flow and the three-dimensional perturbations together to determine the stabilization, which

is represented by the combined parameter χ = (β/α)ξ governing the map of the stability

as shown in Fig. 2(b). In other words, the existence of the stable cross shear ensures that

the overall hydrodynamics of the non-parallel flow develops towards the stabilization, not

the destabilization, thus the existence of the stable cross shear is more important than

its magnitude. As χ is determined together by ξ and (β/α), even if the intensity of the

stable cross shear is limited, it can still increase the frequency/wavenumber of the imposed

perturbations to amplify the overall stabilization. At last, we also believe that with more

advanced linear temporal-spatial analysis and non-linear analysis, some more concepts will

be further developed in the future.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for the detailed derivation of the linearized perturbation

equations.
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