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SUMMARY
SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined.
We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days
after symptomonset, quantifying 184 immunological parameters. Acute COVID-19 presentedwith high levels
of IL-6, IL-18, and IL-10 and broad activationmarked by the upregulation of CD38 on innate and adaptive lym-
phocytes andmyeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly corre-
latewith and predict antibody levels and their avidity at convalescence aswell as acute neutralization activity.
Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R,
and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate
disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19
patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19,
providing important insights into potential biomarkers and immunotherapies.
INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) pandemic has caused >101 million infections and 2.18

million deaths worldwide (as of January 28, 2021). Infection

with SARS-CoV-2 results in a spectrum of clinical presentations,

called coronavirus disease 2019 (COVID-19), ranging from

asymptomatic to fatal disease. Disease severity has been asso-

ciated with risk factors, including age, gender, and preexisting

comorbidities,1,2 that correlate with immune responses during

acute infection. While robust, broad, and transient immune re-

sponses precede patients’ recovery in non-severe cases,3–6 se-

vere COVID-19 can be associated with exuberant cytokine re-

sponses, hyperactivation of innate immune cells and

T cells,4,6–8 and high titers of SARS-CoV-2-specific antibodies.8

At convalescence, the majority of individuals has SARS-CoV-2-

specific antibodies and B cell and T cell responses.9–13 CD4+
Cell Re
This is an open access article under the CC BY-N
T cell responses appear more prominent than CD8+ T cell re-

sponses in primary SARS-CoV2 infection.13,14

Our understanding of immune responses to SARS-CoV-2

informed the development and clinical evaluation of immuno-

modulatory therapies, including monoclonal antibodies that

target the interleukin-6 (IL-6) signaling pathway and corticoste-

roids such as dexamethasone.15 However, results from clinical

trials examining the efficacies of current therapeutic approaches

are inconsistent.16 In parallel, global accelerated efforts are

focused on the development of safe vaccines against SARS-

CoV-2, with the main goal of eliciting neutralizing antibodies

against the Spike protein.17 Efforts are needed to understand in-

tegrated immune correlates of recovery and protection from

COVID-19, and the complexity of innate and adaptive immune

perturbations underpinning severe and fatal COVID-19 to inform

the rational design of vaccines and identify predictors of protec-

tive immunity.
ports Medicine 2, 100208, March 16, 2021 ª 2021 The Author(s). 1
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We performed in-depth analyses of broad innate and adap-

tive immune responses in longitudinal acute and convalescent

blood samples from SARS-CoV-2-infected individuals. Our

study revealed integrated innate and adaptive immune dy-

namics during COVID-19 up to 102 days post-disease symp-

tom onset, with circulating T follicular helper (cTFH) cells

strongly correlating with levels of SARS-CoV-2-specific anti-

bodies. We identified IL-18, soluble IL-6 receptor (sIL-6R),

and hyperactivated immune responses depicted with high

CD38 expression (CD4+, CD8+, gd T cells, innate cells) and hu-

man leukocyte antigen-DR isotype (HLA-DR) expression (natu-

ral killer [NK] cells) as correlates of COVID-19 severity, as well

as correlations between dysregulation of cytokines and im-

mune hyperactivation, providing important insights into poten-

tial biomarkers and immunotherapies.
2 Cell Reports Medicine 2, 100208, March 16, 2021
RESULTS

COVID-19 cohort study design
We recruited 85 PCR-confirmed COVID-19 cases. A total of 33

symptomatic/hospitalized individuals were recruited, including

20 ward patients (4 requiring supplemental oxygen support),

12 intensive care unit (ICU) patients (8 requiring invasive ventila-

tion, 3 requiring non-invasive oxygen support), and 1 outpatient.

Twenty-three donors were longitudinally sampled up to 6 times

while in the hospital and 13 of the donors were sampled into

convalescence, between days 20 and 80 post-symptom onset.

An additional 52 COVID-19-recovered individuals were recruited

after discharge from the hospital (n = 9) or after recovering at

home (n = 43) (Figure 1A; Tables S1 and S2), with 4 being longi-

tudinally sampled twice between days 26 and 102 post-
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symptom onset for immune profiling and serological analyses

(Figure 1B). Acute samples were obtained either during the

hospital stay in hospitalized patients or within 2 weeks post-

symptom onset for the non-hospitalized individuals (outpatient)

(Figure 1A, in red). Convalescent samples were obtained either

after hospital discharge or at the earliest day 26 post-symptom

onset for non-hospitalized individuals (Figure 1A, in blue). Dis-

ease severity was determined according to whether the patients

recovered at home (mild disease), the hospital ward (moderate

disease), or the ICU (severe disease). A total of 66 healthy indi-

viduals and 11 non-COVID-19 hospitalized patients were

assessed as controls. Our study included 1 ICU patient, no. 1-

088, with a hematological malignancy treated with rituximab

medication, thus lacking B cells. As this donor had no detectable

SARS-CoV-2 antibodies, only cellular and cytokine data were

included in the statistical analyses.

Breadth of innate, adaptive, and myeloid immune
responses in COVID-19
To understand the dynamics of immune responses to SARS-

CoV-2 over time, we analyzed blood from acute and convales-

cent individuals using 3 multi-parameter flow cytometric panels.

The acute group included moderate (ward) and severe (ICU)

samples. Using a computational pipeline in the Spectre R pack-

age, encompassing the FlowSOM and UMAP (uniform manifold

approximation and projection) algorithms,18 we identified clus-

ters representing major lymphocyte and myeloid lineages and

their activation phenotype from the first panel, clusters of

adaptive B cell and T cell subsets from the second panel, and

cytotoxicity profiles of CD8+ and CD4+ T cells from the third

panel (Figure 1C). The UMAP analysis revealed different subsets

of B helper and TH cells according to CD38 and CXCR3, respec-

tively (second panel), and preferentially high expression of gran-

zyme B and perforin on CD8+ effector memory (TEM) and effector

memory CD45RA+ (TEMRA) T cell subsets (third panel) (Figure 1C).

To assess immune profiles between acute and convalescent

COVID-19 samples, we combined our FlowSOM clustered

data with the data from 14 soluble mediators and plasma recep-

tor binding domain (RBD)-specific immunoglobulin G (IgG), IgM,

and IgA antibodies to generate a total of 184 immune features.

During acute COVID-19 in hospitalized patients, we observed

significant changes in immune compositions compared to

healthy controls and/or convalescent samples, particularly a

greater proportion of neutrophils, neutrophil-to-lymphocyte

and neutrophil-to-T cell ratios, higher proportions of activated

populations of CD38+ neutrophils, CD38+ eosinophils, CD38

expression on CD14+ and CD16+ monocytes, CD38+CD56dim

NK cells, CD38+gd T cells, antibody-secreting cells (ASCs),

PD-1+ICOS+ cTFH cells, CD38+CD4+ T cells, HLA-DR+CD4+
Figure 1. Broad immune activation in longitudinal COVID-19 samples

(A and B) Overviews of (A) cohort and samples collected and (B) analyses perfor

(C) UMAP plot from FlowSOM analysis for 3 flow-cytometric panels, with repres

(D) Volcano plot of 184 immune features in acute and convalescent samples, wit

(E) TrackSOM analysis of samples stained with the immunophenotype panel, with

CD38 and HLA-DR. Time bins were days 1–4, 5–8, 9–12, 13–17, 18–30, 31–35, 3

(F and G) Levels of cytokines (F) IL-6 and (G) IL-18, MCP-1, IFN-g, and sIL-6R in CO

regression line and 95% confidence interval (CI) are shown, n = 119.

4 Cell Reports Medicine 2, 100208, March 16, 2021
T cells, and higher proportions of TEMRA-like CD27�CD45RA+,

and CD38+CD8+ T cells (Figures 1D, S1, and S2). During conva-

lescence, we found higher proportions of TCM CD8+ T cells, NK

cells, TCM, and TEM CD4+ T cells (Figures 1D and S1;Table S4).

To assess immune activation over time, we implemented a

time-series algorithm called TrackSOM on the first immunophe-

notyping panel. TrackSOM is a time series-based clustering and

cluster evolution tracking algorithm that combines the single

time point clustering capacity of FlowSOM with the tracking by

ChronoClust19 of cluster developments over time. TrackSOM

clusters data from all time points using FlowSOM, and thus de-

termines the temporal evolutions of the resulting metaclusters

and clusters using the tracking mechanism of ChronoClust.

With TrackSOM, we categorized, or ‘‘binned,’’ samples into 10

time intervals (‘‘bins’’) post-disease onset (i.e., bin 1 = 1–4, bin

2 = 5–8, bin 3 = 9–12 days, and so on) to allow for at least 4

samples (n = 4–15) per time bin (Figures 1E and S3; Table S3).

Strikingly, the tracking pattern of the CD38 activation marker

indicated dynamic activation of both innate and adaptive cells

peaking within weeks 2–4 of disease onset (bins 4–6) before

declining at later time bins (Figure 1E). These patterns were still

apparent when we excluded ICU patient no. 1-088, who had

continuously high CD38 expression over 4 time points. The

expression of HLA-DR was also dynamic across time points,

but to a lesser extent. Overall, our analyses revealed differences

in immune profiles across the time between acute and convales-

cent phases, with broad immune activation of innate, adaptive,

and myeloid cells.

Rapid and transient activation of innate immune cells
during COVID-19
To define the dynamics of innate responses, we compared 14

cytokines/chemokines inmoderate and severe acute and conva-

lescent COVID-19 plasma samples over time, in comparison to

healthy controls. As IL-6 is a key driver of inflammation in

COVID-19, possibly mediating pathology via engaging sIL-6R

on cells expressing the gp130 co-receptor,20 we also measured

sIL-6R levels, since the role of sIL-6R in COVID-19 remains un-

known. Inflammatory cytokines IL-6, IL-18, and IL-10 were

significantly upregulated in acute samples compared to conva-

lescent samples (Figures 1F, 1G, and S4A), consistent with other

studies.21–23 The levels of monocyte chemoattractant protein-1

(MCP-1), interferon-g (IFN-g), and sIL-6R were also higher in

acute samples from some patients compared to healthy con-

trols, but these responses were variable (Figures 1G, S4A, and

S4B), possibly reflecting the grouping of all ward and ICU pa-

tients in this analysis.

To complement our computational analysis, we applied

manual gating (Figure S5) for immune subsets that contribute
med.

entative clusters and expression profiles.

h key representative features labeled.

plots showing time bins of lineage-defining markers and the activation markers

6–39, 41–45, 46–53, and 71–102 (Table S3).

VID-19 plasma across time. Locally estimated scatterplot smoothing (LOESS)
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to antiviral immunity in COVID-19 and influenza.24–27 Manual

gating showed significantly higher activation of immune subsets

in acute COVID-19 compared to convalescent and healthy do-

nors (Figure S6A). For innate populations, acute samples had

significantly higher proportions of activated HLA-DR+ NK cells,

CD38+HLA-DR+ gd T cells, and effector-like CD27-CD45RA+

gd T cells, but lower levels of non-classical CD16+ monocytes,

compared to convalescent and/or healthy donors (Figures 2A–

2C; S6B, and S6C). The number of monocytes and gd T cells

were comparable between acute and convalescent samples,

while NK cell numbers were significantly lower in the acute sam-

ples (Figure S6D). These highly activated innate cell populations

were dynamic, peaking within the first 3–4 weeks and declining

thereafter (Figures 2A–2C).

Longitudinal dynamics of B cells, cTFH cells, Th1 CD4+,
and CD8+ T cells in COVID-19
Wenext defined immune populations that underpin the induction

of humoral and cellular adaptive immunity, B cells, cTFH cells,

Th1 CD4+ cells, and CD8+ T cells. We observed significantly

higher proportions and numbers of CD38hiCD27+ ASCs and acti-

vated PD-1+ICOS+CXCR5+CD4+ cTFH cells (Figures 2D, 2E, and

S6E), a subset of lymphoid TFH cells, in the blood28 of acute

COVID-19 patients compared to subsets in convalescent or

healthy donors. Moreover, the activation of cTFH cells by the

co-expression of PD-1 and ICOS was attributed more to

CXCR3+ cTFH-type 1 (cTFH1) cells than CXCR3� cTFH2/cTFH17

cells (Figures 2F and S6E). Proportions of ASCs increased

rapidly and transiently at disease onset, while activated cTFH1

cells gradually increased, peaking after 3–4 weeks, similar to

activated innate cells, with cTFH1 cell numbers maintained at

convalescence (Figures 2G and S6E). There was substantial

CD38+HLA-DR+ CD8+ and CD4+ T cell activation during the

acute phase, as determined by increased proportions and

numbers (Figure S6F). Both populations peaked earlier within

the first 2–3 weeks and declined thereafter for home and ward

patients but remained high until weeks 6–7 for ICU patients (Fig-

ure 2H). We also observed greater proportions and numbers of

activated PD-1+CD38+ and CXCR3+CD38+ CD8+ T cells (Fig-

ure S6F) and greater proportions of CD27�CD45RA+ TEMRA-

like and CD27�CD45RA� TEM-like CD8+ T cells in acute samples
Figure 2. Dynamic activation of innate cells, B cells, cTFH1 cells, TH1 C

(A–C) Representative fluorescence-activated cell sorting (FACS) plots of each i

convalescent time points.

(A) Proportion of monocyte subsets.

(B) Proportion of activated HLA-DR+ NK cells.

(C) Proportion of activated CD38+HLA-DR+ gd T cells in COVID-19 samples agai

(D–F) Representative FACS plots of ASCs (D), PD-1+ICOS+ cTFH cells (E), and CXC

19 patient at acute and convalescent time points (D and E), an acute time point

(G) Proportion of ASCs, PD-1+ICOS+ CXCR3+ cTFH1 cells, and PD-1+ICOS+ CXC

(H) Proportion of CD38+HLA-DR+ CD8+ and CD4+ T cells in COVID-19 samples ag

donor and a COVID-19 patient at an acute and a convalescent time point.

(I) Proportion of CD38+ICOS+ CXCR3+ TH1 and CXCR3� TH2/17 CD4+ cells in CO

shown for an acute time point from a COVID-19 patient.

(J) Pie charts representing average fractions of CD38+HLA-DR+, CD38�HLA-DR�

the combinations of granzymes and perforin molecules (arcs). Statistical signific

manual gating strategy, as per Figure S3.

(A–C and G–I) LOESS regression line and 95% CI are shown, n = 105.
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compared to convalescent or healthy controls (Figure S5G).

Similarly, greater proportions of CD27�CD45RA� TEM CD4+

T cells were detected in acute samples (Figure S6G). In line

with the TH1 environment of a viral infection, CXCR3+ TH1 cells

highly expressed CD38 with ICOS, factors that were absent in

CXCR3- TH2/17 cells (Figures 2I and S6F).

To define cytotoxic profiles of CD8+ and CD4+ T cells, the

expression of granzyme A, B, K, and M and perforin was as-

sessed. Activated CD38+HLA-DR+ CD8+ T cells in acute sam-

ples expressed higher levels of granzyme A and B and perforin

compared to healthy and/or convalescent patients (Figures

S7A and S7B). In addition, activated CD38+HLA-DR+ CD8+

T cells in acute samples had higher proportions of cells express-

ingmultiple cytotoxic molecules, with themajority of CD38+HLA-

DR+ CD8+ T cells expressing 3 or 4 cytotoxic molecules (Fig-

ure 2J). Although the expression of granzyme B and perforin

within CD38+HLA-DR+ CD8+ T cells significantly decreased at

convalescence, interestingly, granzyme K andMwere increased

(Figures S7A and S7B). The overall diversity of cytotoxic mole-

cule expression, measured by the different combinations of

molecules simultaneously expressed per cell, also differed at

convalescence as compared to acute COVID-19 and healthy in-

dividuals (Figure 2J).

While modest, activated CD38+HLA-DR+ CD4+ T cells also ex-

pressed higher levels of granzyme B in acute samples (Figures

2J, S7C, and S7D). Similar patternswere foundwhen the expres-

sion of granzymes and perforin were analyzed according to their

T cell differentiation subsets by FlowSOM analysis (Figure S8).

Overall, SARS-CoV-2 infection induced a prototypical antiviral

adaptive immune response comprising ASCs, activated cTFH1

cells, activated TH1 CD4+ T cells, and highly cytotoxic CD8+

T cells that emerged during acute COVID-19 and contracted dur-

ing convalescence.

Seroconversion and antibody signatures during acute
and convalescent COVID-19
As humoral immunity plays a key role in antiviral responses, we

analyzed antibodies in acute and convalescent samples from

25 COVID-19 patients across multiple time points, by comparing

RBD-specific IgG, IgM, and IgA antibodies by ELISA9 with

healthy controls (Figures 3A and S9). Antibody levels were
D4+ T cells, and CD8+ T cells in COVID-19 patients

mmune population for a healthy donor and a COVID-19 patient at acute and

nst time.

R3+ cTFH1 and CXCR3� cTFH2/cTFH17 cells for a healthy donor and a COVID-

from a COVID-19 patient (F).

R3� cTFH2/cTFH17 cells in COVID-19 samples against time.

ainst time. Representative FACS plots of each immune population for a healthy

VID-19 samples against time. Representative FACS plots of each population

CD8+, andCD4+ T cells co-expressing different cytotoxicmolecules (slices) and

ance (p < 0.05) was determined by permutation tests. Data are based on the
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significantly higher in acute (log10 median titer 3.52 IgG, 3.41

IgM, 2.77 IgA) and convalescent COVID-19 samples (log10 me-

dian titer 3.38 IgG, 3.24 IgM, 2.15 IgA) compared to those in

healthy, non-exposed individuals (log10 median titer 1.68 IgG,

2.49 IgM, 2.15 IgA) (Figure 3B). While IgG and IgM titers were

maintained at similar levels between acute and convalescent

samples, IgA titers had significantly decreased by convales-

cence. Paired analysis confirmed a significant increase in anti-

body titers from the first sampling following admission to just

before discharge or at convalescence for all 3 isotypes (Fig-

ure 3C). At the first acute blood collection, 84%, 48%, and

68% of individuals seroconverted (log10 antibody titer >

mean + 23 SD of healthy individuals) for RBD-specific IgG,

IgM, and IgA antibodies, respectively (Figure 3D). IgG serocon-

version rates increased to 88% and 100% at the last acute blood

collection and at convalescence, respectively, although IgM and

IgA were maintained at similar frequencies (Figure 3D). In addi-

tion, the proportion of individuals with undetectable RBD-spe-

cific IgG, IgM, or IgA antibodies decreased from 20.8% during

the acute phase to 0% at convalescence, with 100% of conva-

lescent donors having at least an IgG response to RBD (Fig-

ure 3E). Consistently, the levels of RBD-specific IgG, IgM, and

IgA antibodies rapidly increased in the first 3 weeks, with IgG

and IgM levels being maintained between days 25 and 102

(Figure 3F). We observed a trend toward decreased IgA levels

from day 25 onward (Figure 3F), but only in 3/25 patients. In addi-

tion, we measured Spike-specific antibodies by ELISA and de-

tected higher IgG, IgM, and IgA antibodies against Spike in

pooled acute and convalescent COVID-19 samples compared

to healthy donors (Figure 3G).

To determine the neutralizing activity of SARS-CoV-2-specific

antibodies, a microneutralization (MN) assay was performed us-

ing live SARS-CoV-2 virus infection of Vero cells.11 Neutralizing

antibodies were detected at a low frequency in 3/8 acute pa-

tients, but were more prevalent in 11/13 convalescent samples,

the latter being significantly higher than healthy non-exposed

and hospitalized non-COVID patient control groups (Figure 3H).

Neutralizing activity increased from the acute to the convales-
Figure 3. Antibody signatures against RBD and Spike protein in acute

(A) ELISA titration curves against the SARS-CoV-2 RBD for IgG, IgM, and IgA in h

patients. Dotted line indicates the cutoff for endpoint titer determination.

(B) Endpoint titers of SARS-CoV-2 RBD antibodies, in which the dotted line indic

(C) Paired endpoint titers of SARS-CoV-2 RBD antibodies from COVID-19 patien

(D and E) Seroconversion rates (D) and (E) isotype profiles for RBD-specific IgG,

(F) Kinetics of RBD-specific antibodies for IgG, IgM, and IgA. LOESS regression

(G) Endpoint titers of SARS-CoV-2 Spike antibodies for IgG, IgM, and IgA in hea

(H) Microneutralization titers against SARS-CoV-2 in healthy (n = 21), COVID-19+

n = 7) sera.

(I) Longitudinal analysis of microneutralization titers from days postsymptom ons

(J) Circos plot depicting correlations (links) between different antibody measurem

links represents the strength of the correlation based on the Spearman correla

available.

(K) Correlation between RBD-specific and Spike-specific titers for IgG (n = 44), I

(L) Heatmap of microneutralization and ELISA titers. Each row represents a diffe

(M) Correlation between microneutralization titers and RDB-specific titers for each

shown throughout.

(B and G) Black-filled symbols indicate patient no. 1-088 with rituximab treatm

assessed with a Kruskal-Wallis test with Dunn’s correction for multiple compariso

test (G). (K and M) Spearman correlation coefficients and p values shown.
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cent phase and was still detectable in 3/3 convalescent donors

sampled at �100 days post-symptom onset (Figure 3I). Several

antibody measurements correlated significantly with each other

(Figures 3J–3M). When we ranked COVID-19 patients according

to the neutralizing activity of SARS-CoV-2-specific antibodies,

COVID-19 patients with the highest MN activity had high levels

of RBD-specific IgM, IgG, and IgA, suggesting that engagement

of a broad range of antibody isotypes may lead to improved

neutralizing activity (Figure 3L). Importantly, antibodies against

Spike and neutralizing antibody titers correlated with RBD-spe-

cific IgG, IgM, and IgA antibodies (Figures 3J, 3K, and 3M).

Activated PD-1+ICOS+ cTFH1 cells correlate with robust
humoral immunity
Consistent with previous observations, our analyses of SARS-

CoV-2-specific antibodies demonstrated considerable vari-

ability among acute COVID-19 patients (Figure 3B). To

understand the basis of such variability and identify potential

predictors of antibody signatures, we dissected correlations be-

tween antibody responses (RBD or Spike, IgG, IgM, or IgA, MN)

and immune populations involved in humoral immunity, ASCs,

and activated cTFH1, cTFH2/cTFH17, TH1, and TH2/TH17 subsets

(Figure 4A). We found significant positive correlations between

the number of ASCs andMN titers (rs = 0.543) and Spike-specific

IgA antibodies (rs = 0.597). The number of activated cTFH1 cells

positively correlated with the levels of RBD- and Spike-specific

antibodies of all 3 isotypes (rs > 0.288 for RBD, rs > 0.549 for

Spike) andMN titers (rs = 0.659). We observed no significant cor-

relations between CXCR3� cTFH2/cTFH17 cells or activated

CD4+ T cells not belonging to the CXCR5+ TFH lineage and anti-

body responses.

To evaluate the potential of immune populations as predictors

of the acute antibody response, we performed linear regression

of each immune cell population against each antibody measure-

ment and consistently found ASCs and activated cTFH1 cells, but

not other CD4+ T cell subsets, as significant positive predictors

of matched RBD-specific, Spike-specific, and MN titers (Fig-

ure 4B). While in some instances, the correlations with immune
and convalescent COVID-19

ealthy donors (n = 25–26), acute (n = 61), and convalescent (n = 63) COVID-19

ates the seroconversion titer.

ts (n = 25) at admission and follow-up.

IgM, and IgA at acute and convalescent time points.

lines with 95% confidence intervals shaded in gray are shown.

lthy donors (n = 10–12) and COVID-19 (n = 24–30) plasma.

(acute n = 8, convalescent n = 13) and COVID-19� (acute n = 13, convalescent

et.

ents (edges). Only significant (p < 0.05) correlations are shown. The color of the

tion coefficient, n = 24 samples for which all antibody measurements were

gM (n = 41), and IgA (n = 34) samples.

rent sample with their matched measurements.

isotype (n = 22 samples per isotype). Median and interquartile range (IQR) are

ent who was not included for statistical analysis. Statistical significance was

ns (B and H). (C) Wilcoxon matched-pairs signed rank test or a Mann-Whitney
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populations were strong (e.g., activated cTFH1 cells and Spike-

specific IgM, R2 = 0.73) or modest (e.g., ASC and MN titers

[MNTs], R2 = 0.36), they were weak for RBD-specific antibodies

(R2 < 0.2). Activation of non-TFH cells was also a negative

predictor of RBD-specific antibodies (Figure 4B). We observed

that higher ratios of activated cTFH1 cells to activated cTFH2/

cTFH17 cells or activated cTFH1 cells to activated TH1 cells

were significant positive predictors of matched MNTs (R2 =

0.624 and R2 = 0.404, respectively) and RBD-specific antibodies

for all isotypes, albeit to a lesser extent (R2 < 0.2) (Figure 4C).

As our results are based on immune and antibody analyses

from longitudinal samples during acute COVID-19, and are

consistent with data in convalescent individuals,11 we deter-

mined whether immune populations measured at the acute

phase could act as biomarkers for convalescent antibody re-

sponses. We analyzed paired longitudinal data from individuals

with acute immune and convalescent RBD antibody data (n =

14 patients) using the peak value of the immune cell population

when >1 acute measurement was available. The levels of acti-

vated cTFH1 cells were significant positive predictors of conva-

lescent RBD-specific IgM antibodies, by both proportion and

number of cells (R2 = 0.531 and R2 = 0.37, respectively) (Figures

4D and S10A). Interestingly, while a similar result was also

observed for the proportion of activated cTFH2/cTFH17 cells

(p = 0.0407, R2 = 0.305), this was not observed for cell numbers.

Neither the proportion nor the numbers of acute ASCs were sig-

nificant predictors of convalescent RBD-specific antibodies.

Overall, activated cTFH1 cells in the acute phasewere associated

with greater levels of RBD-specific IgM antibodies at

convalescence.

Having shown that activated PD-1+ICOS+ cTFH1 cells corre-

late with RBD-, Spike-, and MN antibody titers (thus magnitude),

we asked whether these cTFH1 cells could also be associated

with qualitative features of antibodies. We measured the avidity

of RBD-specific IgG and IgM antibodies using a urea dissocia-

tion assay. In paired COVID-19 plasma samples (n = 13) obtained

>7 days apart, we found a significant increase in IgG and IgM

avidity (percentage of antibody remaining after 6 M urea treat-

ment) in the second plasma sample (Figures 4E and S10B). Avid-

ity also increased with time, where RBD-specific IgG antibodies

detected within the first week had significantly lower avidity than

samples obtainedR3 weeks later (Figure S10C). The proportion
Figure 4. cTfh1 cells are associated with acute and convalescent antib

(A) Circos plot depicting correlations (links) between different antibody measurem

relations for absolute numbers (left) and proportions of cells (right). Only significan

of the correlation based on the Spearman correlation coefficient.

(B) Summary of linear regression analysis between different antibody measurem

(C) Linear regression analysis of acute RBD-specific titers (n = 60–61) for each iso

cTFH1 cells (PD-1+ICOS+CXCR3+CXR5+CD4+ T cells) and activated cTFH2/cTFH
(CD38+ICOS+CXCR3+CXR5�CD4+ T cells, right).

(D) Linear regression analysis of the proportion of acute ASCs, PD-1+ICOS+ cTF
titers for each isotype, n = 14.

(E) Avidity analysis for IgG and IgM RBD-specific antibodies in paired samples. Fre

treatment is shown. Presented are results from a 1:100 plasma dilution for IgG a

Statistical significance was assessed with a Wilcoxon matched-pairs signed ran

(F) Linear regression analysis of the proportion of acute PD-1+ICOS+ cTFH1cells

antibodies, n = 11.

(A and B) RBD IgG/M/A n = 60–61, MNTs n = 16, Spike IgG/IgM/IgA n = 12–15.
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of PD-1+ICOS+ cTFH1 cells at the acute time points positively

correlated with antibody avidity for RBD IgM (p = 0.0058, R2 =

0.589), but not RBD IgG, at convalescence (Figure 4F). Thus,

activated PD-1+ICOS+ cTFH1 cells in acute COVID-19 correlate

with robust humoral immunity, in both a quantitative (RBD-

specific, S-specific, and MN titers) and qualitative (IgM avidity)

sense. Overall, robust antibody responses elicited during

SARS-CoV-2 infection were associated with TFH activation;

thus, cTFH responses may be valuable as potential biomarkers

in vaccine clinical trials.

Hyperactivated CD38+HLA-DR+ innate and adaptive
immune cells, sIL-6R, and IL-18 during severe COVID-19
We selected 19 key innate and adaptive immune subsets identi-

fied to be prominent in acute versus convalescent COVID-19

samples (Figure 2) for broader analyses, including acute data-

sets for the 14 cytokines/chemokines and RBD-specific IgG/

IgM/IgA antibodies (total 36 features), while correcting for multi-

ple comparisons (Figure 5A), to elucidate immune mechanisms

driving disease severity. In fact, 9/36 (25%) immune features

were significantly enhanced in severely ill patients (ICU versus

ward), including activated CD38+HLA-DR+CD8+, CD38+HLA-

DR+CD4+, CD38+HLA-DR+ gd T cells, PD-1+ICOS+ cTFH1 and

cTFH2/cTFH17 cells, HLA-DR+ NK cells, patrolling CD16+ mono-

cytes, and higher levels of IL-18 and sIL-6R, reminiscent of pro-

longed and high expression of CD38+HLA-DR+ on CD8+ T cells

associated with mortality in H7N9-infected patients.26 In the

hospitalized moderate patients who did not require ICU care,

classical CD14+ monocytes were higher and RBD-specific anti-

bodies were not significantly different (Figure 5A). Nevertheless,

the 10 features were sufficient to clearly separate samples from

moderate (ward) and severe (ICU) patients by principal-compo-

nent analysis (PCA), whereby the ward and ICU groups were

separated along PC1 (explaining 41.4% of variance) and ICU

samples further separated along PC2 (accounting for 18.1% of

variance) (Figure 5B).

Hyperactivation of immune cell subsets in ICU patients was

further demonstrated by dissecting immune subsets individually.

This was evident when analyzing the proportion of activated

CD38+HLA-DR+ immune sets (Figure 5C). Markedly higher pro-

portions of CD38+HLA-DR+CD4+ (18.25% versus 2.84%),

CD38+HLA-DR+CD8+ (28.9% versus 5.55%), CD38+HLA-DR+
ody levels

ents and various immune cells from acute COVID-19 samples (n = 61). Cor-

t (p < 0.05) correlations are shown. The color of the links represents the strength

ents against various immune cells from acute COVID-19 samples.

type or microneutralization titers (MNTs, n = 16) and the ratio of acute activated

17 cells (PD-1+ICOS+CXCR3�CXR5+CD4+ T cells, left) or activated TH1 cells

H1 or PD-1+ICOS+ cTFH2/cTFH17 cells and paired convalescent RBD-specific

quency of antibody binding after treatment with 6M urea compared to without

nd a 1:316 dilution for IgM. Samples 1 and 2 were collected 7–70 days apart.

k test, n = 13.

and paired convalescent avidity measurements for IgG and IgM RBD-specific
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gd T cells (30.3% versus 5.48%), HLA-DR+ NK cells (8.87%

versus 3.63%), and patrolling CD16+ monocytes (12.8% versus

8.26%)were found in the ICU compared to theward group. Strik-

ingly, in some ICU patients, levels of hyperactivated CD38+HLA-

DR+ CD4+ T cells constituted �80% of all blood CD4+ T cells,

while up to 50% of all blood CD8+ T cells, NK cells, and gd

T cells were found in some ICU patients (Figure 5C) , indicating

a non-specific bystander mode of activation. Moreover, immune

cell activation was clearly higher in ICU patients as the total

numbers for each parent population were comparable between

severity groups (Figure S11). Immune clustering further identified

significant differences between ICU and ward, including higher

levels of CD38+HLA-DR+ neutrophils, eosinophils, NK cells, gd,

CD4+, and CD8+ T cells in ICU samples (Figure S12). We also

found significantly higher neutrophil:lymphocyte and neutro-

phil:T cell ratios in ICU patients (Figure S12).

Concomitantly, we also observed significantly different levels

of IL-6, IL-18, and sIL-6R (Figure 5D). ICU patients had signifi-

cantly higher levels of IL-18 (ward 238.8 pg/mL, ICU 700.9 pg/

mL) and sIL-6R (ward 40.37 ng/mL, ICU 57.9 ng/mL) (Figures

5D and S11C). Importantly, we observed higher IL-6 levels in

ICU compared to ward patients (ward 11.95 pg/mL, ICU 28.8

pg/mL, p = 0.025). Analysis of the area under the receiver oper-

ating characteristic (AUROC) curve indicated that sIL-6R

(AUROC = 0.77), IL-18 (AUROC = 0.7), and IL-6 (AUROC = 0.7)

are potentially predictive of ward versus ICU cases (Figure 5E).

Longitudinal analyses verified high levels of IL-18, IL-6, and

sIL-6R in ICU patients when compared to the ward patients

over time, while the ratio of IL-6:sIL-6R was variable among

ICU and ward patients (Figures 5F and 5H). When paired IL-6

and sIL-6R data were analyzed, high IL-6 levels in acute

COVID-19 did not imply high sIL-6R levels (Figures 5G and

5H). Conversely, it appeared that acute (both ward and ICU)

COVID-19 samples with the highest IL-6 plasma concentration

had modest levels of sIL-6R. These results have important impli-

cations for IL-6/IL-6R immunotherapies and need to be further

investigated in larger COVID-19 cohorts.

Further focus on the association of disease severity with

SARS-CoV-2 antibody responses revealed significantly higher

levels of RBD-specific IgG, IgM, and IgA antibodies in ICU than

in ward patients (Figures 5I and 5J), in agreement with previous
Figure 5. sIL-6R and IL-18 are predictors of severe COVID-19

(A) Volcano plot of differential immune profiles between acute ward and ICU s

chemokine, and 3 RBD-antibody titers.

(B) PCA analysis of ward and ICU samples using the 10 significant features. Individ

each feature to the principal components (right) are shown.

(C) Proportion of acutely activated lymphocytes and monocytes in ward (n = 36–

(D) Acute cytokine levels in healthy controls (n = 32), non-COVID-19 influenza-lik

(E) AUROC analysis of IL-6, IL-18, and sIL-6R for discriminating ward versus ICU

(F) Longitudinal tracking of cytokine levels in ward and ICU patients.

(G) Matched IL-6 and IL-6R levels in acute ward and ICU patients.

(H) IL-6:IL-6R ratios in healthy, acute (ward or ICU), and convalescent individuals

(I) Endpoint titers of SARS-CoV-2 RBD antibodies for IgG, IgM, and IgA in acute

acute phase (top) or in convalescent plasma samples from individuals who were

(J) Longitudinal antibody levels of ward and ICUmatched patient samples for RBD

value for each isotype (antibody titer > mean + 23 SD of healthy individuals).

(C, D, H, and I) Statistical significance was assessed with a Kruskal-Wallis test

throughout.
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reports.8 Interestingly, convalescent patients whowere originally

hospitalized with COVID-19 had significantly higher RBD-spe-

cific IgG and IgA antibodies than those who were cared for at

home (Figure 5I). ICU patients had higher cTFH1 responses,

albeit insignificant in the proportions and numbers, but compara-

ble ASC responses to those of the ward patients (Figure 5C).

Thus, severe COVID-19 was associated with overwhelming

immune activation of innate, adaptive lymphoid and myeloid

compartments, higher antibody responses supported by greater

cTFH1 activation, and enhanced levels of IL-6, IL-18, and sIL-6R.

Thus, IL-18 and CD38+HLA-DR+ expression may be useful bio-

markers of COVID-19 severity, while sIL-6R levels are relatively

low in COVID-19 patients (with the exception of ICU patients),

in comparison to the levels detected in cancer patients (up to

195 ng/mL).29

IL-6/sIL-6R and IL-18 hypercytokinemia associated with
dysregulation of innate and adaptive immunity
To gain insights into the basis of the immune hyperactivation

profiles, we performed correlation analysis of 14 cytokines and

22 immune cell populations (Figures 6A–6C). IL-6 positively

correlated with IL-8, IL-18, and IFN-g (Figure 6A), where elevated

levels of IL-6 were reported for severe influenza disease and

mortality.30,31 Consistent with other studies,2 we found that

IL-6 negatively correlated with lymphocyte numbers in blood

(Figure 6B), possibly reflecting the efflux of immune cells from

blood to the site of infection. Importantly, we also found positive

correlations between levels of IL-6 or IL-18 with T cells and NK

cell hyperactivation (Figures 6B and 6C). IL-6 and IL-18 signifi-

cantly correlated with the proportion of CD38+HLA-DR+ gd

T cells (rs = 0.37, p = 0.004 and rs = 0.53, p < 0.0001, respectively)

and IL-18 significantly correlated with the proportion of CD38+I-

COS+ CD4+ T cells (rs = 0.29, p = 0.028) (Figure 6C). We also

found that the proportions of CD14+ and CD16+ monocytes

were positively and negatively associated with the levels of

MCP-1, respectively. Significant correlations were detected

between the levels of sIL-6R and CD38+HLA-DR+gd T cells

(rs = 0.35, p = 0.008), CD38+HLA-DR+CD8+ T cells (rs = 0.32,

p = 0.012), CD38+HLA-DR+CD4+ T cells (rs = 0.42, p = 0.0013),

and HLA-DR+ NK cells (rs = 0.36, p = 0.006). Interestingly, signif-

icant correlations were found between sIL-6R with RBD IgG,
amples based on 19 manually gated immune cell populations, 14 cytokines/

ual samples color-coded based on severity group (left) and the contribution of

37) and ICU samples (n = 23) based on manual gating strategy.

e illness (ILI) (n = 13), ward (n = 36), and ICU samples (n = 36).

samples.

.

COVID-19 plasma samples from individuals in hospital ward or ICU during the

at home (n = 40) or in the hospital ward (n = 24) during acute COVID-19.

-specific IgG, IgM, and IgA. The dotted line represents the seropositivity cutoff

with Dunn’s correction for multiple comparisons; median and IQR are shown



Figure 6. IL-6, sIL-6R, and IL-18 hypercytokinemia are associated with dysregulation of innate and adaptive immunity

(A) Correlation matrix of cytokines in all acute samples. Statistical significance was defined as false discovery rate (FDR)-corrected p value q < 0.1.

(B) Heatmap summarizing the correlations between cytokine levels and immune populations in acute COVID-19 based on manual gating strategy. Statistical

significance was defined as FDR-corrected p value q < 0.1.

(C and D) Representative plots of significant correlations between cytokine levels and immune cell populations from acute samples (n = 57) based on manual

gating strategy and RBD-antibody titers (C) and FlowSOM analysis (D).
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IgM, and IgA titers, with those being higher in ICU samples.

We found consistent results when analyzing the proportions of

immune cell clusters determined by FlowSOM, with IL-6 and

IL-18 positively correlating with activation of myeloid cells,

T cells, and NK cells (Figures 6D and S13).

Overall, our study provides a comprehensive map of longitudi-

nal immunological responses in COVID-19 patients at acute and
convalescent phases of SARS-CoV-2 infection (Figure S14) and

demonstrates prototypical antiviral immunity in mild/moderate

cases, but dysregulated immune hyperactivation in severe

COVID-19. Our analyses unify the levels of IL-6, sIL-6R, and IL-

18 and their association with severe COVID-19 with the immune

hyperactivation profiles at the cellular level characterized by high

CD38 expression (Figure 6D).
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DISCUSSION

Immune responses toward non-severe SARS-CoV-2 infection

resemble a prototypical antiviral immune response, with tran-

sient activation of innate myeloid and lymphoid populations at

the acute phase. These include cTFH1 cells, TH1 CD4+ T cells,

highly cytotoxic CD38+HLA-DR+CD8+ T cells, SARS-CoV-2-

specific B cells, and antibodies. This is followed by the subse-

quent contraction of immune responses after disease resolution,

as shown by us and others,3,6,11 similar to other acute respiratory

infections.27,32 Despite prototypical immune responses found in

mild/moderate COVID-19 cases, profoundly dysregulated innate

and adaptive immunity underlie severe COVID-19, including

elevated plasma IL-18 and sIL-6R levels, and hyperactivation

of innate, adaptive, and myeloid compartments in ICU COVID-

19 patients. Our study provides a comprehensive map of longi-

tudinal immunological responses in COVID-19 patients at acute

and convalescent phases and integrates key cellular pathways

of complex perturbed immune networks underpinning critical

COVID-19, providing important insights into biomarkers and

immunotherapies.

Our analysis of humoral immune responses to SARS-CoV-2

demonstrated generation of RBD- and Spike-specific IgG, IgM,

and IgA antibodies and their correlation with SARS-CoV-2

neutralization activity. Early activation of ASCs, likely of extrafol-

licular origin, was associated with Spike-specific IgG, IgM, and

IgA antibodies, antibody neutralization activity, and, to a lesser

extent, RBD-specific titers. Our data are in agreement with the

emergence of IgG, IgM, and IgA ASC in COVID-19 patients,

some specific for non-Spike antigens (e.g., nucleocapsid pro-

tein), which may explain the lack of a strong correlation between

ASCs and RBD-specific antibodies in our cohort and other

studies.4,6

Activation of cTFH1 cells is an important correlate of antibody

responses following influenza vaccination,25 yellow fever,33 and

hepatitis C virus (HCV).34 Although the lack of Bcl6+ TFH cells in

lymphoid organs of severely ill COVID-19 patients was shown,35

cTFH response at the convalescent phase was associated with

antibody responses to SARS-CoV-2.11 Our analysis extends

this observation to the acute phase and importantly associates

acute cTFH1 responses with convalescent IgM antibody titers.

It also demonstrates an association between cTFH1 responses

and an increase in antibody avidity, potentially reflecting affinity

maturation in germinal centers. We found that greater activation

of cTFH1 cells relative to other CD4+ T cell subsets was associ-

ated with greater RBD-specific responses and better neutraliza-

tion activity. Our findings thus support the use of adjuvants that

can induce strong TFH responses to improve vaccine efficacies.

In humans, GLA-SE in the malaria vaccine induced greater cTFH
responses than alum,36 while in non-human primates and mice,

MF59 enhanced cTFH activation and antibody responses to HIV-

1 and influenza, respectively.37,38 Since some of the SARS-CoV-

2 vaccines in clinical trials are formulated with alum or MF59,39 it

may be important to compare immunogenicity across vaccine

formulations.

IL-6 is the key driver of an inflammatory cascade in severe

COVID-19;1,2,20 thus, therapies targeting sIL-6R are in clinical tri-

als for SARS-CoV-2 infection. Two humanized monoclonal anti-
14 Cell Reports Medicine 2, 100208, March 16, 2021
bodies against IL-6R, tocilizumab (Roche) and sarilumab

(Sanofi), safely used for autoimmune diseases, are being evalu-

ated in COVID-19, but neither has met the primary end-

points.40,41 There have been limited analyses of sIL-6R in acute

and convalescent COVID-19 patients. Surprisingly, although the

plasma sIL-6R levels were significantly elevated in severe

COVID-19 compared to moderate disease, they remained within

the healthy range (up to 80 ng/mL).42 Interestingly, while IL-6 was

considerably elevated in acute COVID-19 samples, patients with

the highest IL-6 concentrations had only modest sIL-6R levels,

and levels of sIL-6R did not correlate with IL-6 or any other cyto-

kines. In addition, the elevated levels of IL-6 and IL-18 found in

critically ill COVID-19 patients are in the same range as those

of patients with non-COVID-19 acute respiratory distress syn-

drome (ARDS) or sepsis.43 Our results suggest that patients

should be screened for both IL-6 and sIL-6R before the initiation

of anti-IL-6R therapy, especially since critically ill COVID-19 pa-

tients receiving anti-IL-6R therapies may be at higher risk of

nosocomial infections.44 Interestingly, the levels of IL-6 correlate

with lymphocytopenia in our cohort and others,2 and treatment

with anti-sIL-6R therapies can restore lymphocyte numbers.

We also found a correlation between sIL-6R and the activation

of CD8+, CD4+, and gd T cells. Since activated T cells are consid-

ered a major source of sIL-6R45 and severe COVID-19 presents

with T cell hyperactivation, this may explain the elevated levels of

sIL-6R and support the idea that sIL-6R may be an informative

biomarker.

IL-18 was also associated with COVID-19 severity in our anal-

ysis and another report.7 We found a correlation between IL-18

levels and the activation of innate NK cells and gd T cells, as

well as CD4+ and CD8+ T cells, which is consistent with the po-

tential of IL-18/IL-18R signaling to induce bystander activation of

innate and adaptive T cells.46–48 These observations unify the

elevated levels of cytokines, such as IL-6 and IL-18, and their

signaling pathways with hallmark observations of severe

COVID-19 disease, like hyperactivation of T cells and elevated

antibody levels, and thus provide insights into underlying mech-

anisms and a potential therapeutic role for anti-IL-18 thera-

pies.49,50 The use of dexamethasone showed benefits in

severely ill COVID-19 patients,15 consistent with immune hyper-

activation observed in those patients. However, neither sIL-6R

nor IL-18 were universally higher in ICU patients, nor do they

fully explain the immunological differences between ward and

ICU samples. Our data further highlight the need for multi-

parameter immune profiling of severe COVID-19 patients to

identify and appropriately select personalized immune-modula-

tory treatments.

The hyperactivation of immune cells in severe ICU cases, sug-

gestive of substantial immune dysregulation, was clearly evident

from elevated CD38 expression on a broad range of immune

cells. The upregulation of CD38 and HLA-DR on T cells in

COVID-19 in our study and by others4,6,8 is consistent with the

high levels of CD38+HLA-DR+ CD8+ T cells observed in HIV,51

Ebola,52 HCV,53 and dengue.54 Our data from severe COVID-

19 cases support our previous study showing high and pro-

longed proportion of CD38+HLA-DR+ CD8+ T cells (up to 50%

for �30 days) in patients who died from avian A/H7N9 influ-

enza.26 Numerically, 50%–80% of CD38+HLA-DR+ T cells found
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in the peripheral blood of severe H7N9 or COVID-19 cases un-

likely reflect epitope-specific T cell activation. In fatal H7N9

cases, delayed clonal expansion of H7N9-specific CD8+ T cells

and distinct transcriptome signatures of CD38+HLA-DR+ CD8+

T cells were indicative of bystander activation. In COVID-19 pa-

tients, such T cell hyperactivation was associated with elevated

cytokine levels that may drive bystander activation, similar to

H7N9 hypercytokinemia.31 Thus, while rapid and transient

CD38+HLA-DR+ expression can be detected in patients with

relatively rapid recovery,26 prolonged and high expression levels

are associated with severe and/or fatal outcomes in COVID-19

and avian H7N9.3,26 Given that high CD38 expression is a poor

prognostic factor in cancers andHIV,55monitoring CD38 expres-

sion on a wide range of immune cells may be a useful marker of

immune hyperactivation and disease progression in COVID-19.

Limitations of study
We recognize that some of the analyses performed are limited to

a relatively small number of patients available. This is particularly

relevant to the analysis of ICU samples, the longevity analysis of

antibodies, and the analysis of neutralizing titers. In addition, we

could not stratify our cohort based on age groups or the use of

immunomodulatory treatments, which should be the focus of

future studies.
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CD45RA HI100 FITC BD PharMingen Cat#555488; RRID: AB_395879

CD8a SK1 PerCP-Cy5.5 BD PharMingen Cat#565310; RRID: AB_2687497
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CD4 SK3 BV650 BD Biosciences Cat#563875; RRID: AB_2744425
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Granzyme B GB11 AF700 BD PharMingen Cat#560213; RRID: AB_1645453
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Granzyme M 4B2G4 eFluor660 eBioscience Cat#50-9774-42; RRID: AB_2574374
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Peroxidase AffiniPure goat anti-human IgG,
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Jackson ImmunoResearch Cat#109-035-098; RRID: AB_2337586
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phosphate-conjugated

MabTech Cat#3860-9A; RRID: AB_10736550

Mouse anti-human IgM mAb MT22,

biotinylated

MabTech Cat#3880-6-250

Bacterial and virus strains

SARS-CoV-2 isolate CoV/Australia/VIC01/

2020

Caly et al.56 N/A

Biological samples

Blood samples (peripheral blood

mononuclear cells (PBMCs), serum and

plasma samples) from COVID-19 patients

and healthy control individuals

Alfred Hospital, Melbourne Health, Monash

Health, Austin Health, The University of

Melbourne and James Cook University

(Australia)

N/A

Chemicals, peptides, and recombinant proteins

AccuCheck Counting Beads Thermo Fisher Scientific Cat#PCB100

3,30,5,50-Tetramethylbenzidine (TMB)

Liquid Substrate System for ELISA,

peroxidase substrate

Sigma Cat#T0440-1L
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Alkaline phosphatase yellow (pNPP) liquid

substrate for ELISA

Sigma Cat#P7998-100ML

Pierce High Sensitivity Streptavidin-HRP Thermo Fisher Scientific Cat#21130

SARS-CoV-2 RBD protein Amanat et al.9 N/A

SARS-CoV-2 Spike protein Juno et al.57 N/A

Critical commercial assays

eBioscienceTM Foxp3/Transcription Factor

Staining Buffer Set

Thermo Fisher Scientific Cat#00-5521-00

LEGENDplex Human Inflammation Panel 1

kit

BioLegend Cat#740809

Human IL-6R alpha DuoSet ELISA kit R&D Systems Cat#RDSDY227

Experimental models: cell lines

Vero C1008, African Green monkey kidney

cells

ATCC Cat#CRL-1586; Lot#3338237; RRID:

CVCL_0574

Software and algorithms

R v3.6.2 The Comprehensive R Archive Network https://cran.r-project.org

Spectre R package Ashhurst et al.58 https://github.com/ImmuneDynamics/

Spectre

ggplot2 R package Wickham59 https://cran.r-project.org/web/packages/

ggplot2/index.html

circlize R package Gu et al.60 https://cran.r-project.org/web/packages/

circlize/index.html

corrplot R package N/A https://cran.r-project.org/web/packages/

corrplot/index.html

pROC R package Sachs61 https://cran.r-project.org/web/packages/

pROC/index.html

plotROC package Sachs 61 https://cran.r-project.org/web/packages/

plotROC/index.html

FlowJo v10.5.3 N/A https://www.flowjo.com

CytoNorm Van Gassen et al.62 https://www.github.com/saeyslab/

CytoNorm

FlowSOM Van Gassen et al.18 https://github.com/SofieVG/FlowSOM

UMAP McInnes and Healy63 https://arxiv.org/abs/1802.03426

TrackSOM This paper https://www.github.com/ghar1821/

TrackSOM

Pestle v2 and Spice v6 Roederer et al.64 https://niaid.github.io/spice/

Prism v8.3.1 GraphPad https://www.graphpad.com

BD FACS Diva v8.0.1 BD Biosciences https://www.bdbiosciences.com/en-us/

instruments/research-instruments/

research-software/

flow-cytometry-acquisition/

facsdiva-software
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Katherine

Kedzierska (kkedz@unimelb.edu.au).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
Data supporting the findings of this study are available without restriction from the Lead Contact, Katherine Kedzierska (kkedz@

unimelb.edu.au) upon request. acode can be downloaded from https://www.github.com/ghar1821/TrackSOM.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We enrolled consenting adult patients at Victorian hospitals during the first and second waves of the SARS-CoV-2 pandemic

(February-September 2020) with influenza-like illness (ILI), including 33 SARS-CoV-2 PCR-positive patients and 11 patients who pre-

sented with ILI but were SARS-CoV-2 PCR negative as negative serological controls. Out of the 33 COVID-19 symptomatic/hospi-

talized patients, 20 were admitted to the ward, with 4 patients requiring non-invasive oxygen support, 12 were in ICU with 8 requiring

mechanical ventilation and 3 requiring non-invasive oxygen support, and 1 was an outpatient (Table S1). For 7 ICU patients only

plasma samples were available for cytokine analysis. No patients died during the study. Heparinised blood samples were collected

within 24-72 hours of hospital admission (Acute Visit 1, A1) with sequential bleeds every 1-5 days apart until discharge (A2-A6). For 12

COVID-19 patients, a follow-up blood sample was taken approximately 30 days after discharge/recovery (Convalescent Visit 1, C1;

median 43 days, 31-80 range). Additional SARS-CoV-2 PCR-confirmed patients (n = 52) and pre-pandemic healthy donors (n = 66)

were recruited through contacts with the investigators and asked to provide a blood sample at the time of enrolment (A1 n = 1 and

C1 n = 51; median 40 days, 26-102 range) and an additional time-point where available (C2). Demographic, clinical and sampling

information for COVID-19 patients are described in Table S2.

Human experimental work was conducted according to the Declaration of Helsinki Principles and the Australian National Health

andMedical Research Council Code of Practice. All participants provided written informed consent prior to the study. The study was

approved by the Alfred Hospital (#280/14), Melbourne Health (HREC/17/MH/53), Monash Health (HREC/15/MonH/64/2016.196),

Austin Health (HREC/63201/Austin-2020), The University of Melbourne (#2056689, #2056761, #1442952, #1955465, #2057366.1

and #1443389) and James Cook University (H7886) Human Research Ethics Committees.

METHOD DETAILS

Whole blood flow cytometry
Fresh whole blood was used to measure cell populations, essentially as described,3 using three human antibody panels for enumer-

ating immune cell activation (monocytes and T/B/NK/gd cells), TFH and ASC cell activation, and cytotoxicity profiles of T cell’s ex-

pressing intracellular granzymes (A, B, K and M) and perforin. Cells were stained, RBC lysed, then fixed in 1% PFA, or intracellularly

stained using the eBioscienceTM Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific, Carlsbad, CA, USA), as

previously described.3 AccuCheck Counting Beads (Thermo Fisher Scientific) were added to the immune cell activation panel for

calculating absolute numbers just prior to acquisition. Samples were acquired on a BD LSRII Fortessa and analyzed using FlowJo

v10 software.

RBD and Spike protein ELISAs
Detection of RBD- and Spike-specific antibodies was performed as described9,65 with the following modifications; Nunc MaxiSorp

flat bottom 96-well plates (Thermo Fisher Scientific) were used for antigen coating, blocking performedwith PBS (containing w/v 10%

BSA) and serial dilutions performed in PBS (containing v/v 0.05%Tween andw/v 5%BSA). For detection of IgG and IgA, peroxidase-

conjugated goat anti-human IgG (Fcg fragment specific; Jackson ImmunoResearch) or alkaline phosphate-conjugated rat anti-hu-

man IgA (mAb MT20; MabTech), was used and developed with TMB (Sigma) substrate for IgG or pNPP (Sigma) for IgA. For IgM,

biotinylated mAb MT22 and peroxidase-conjugated streptavidin (Pierce; Thermo Fisher Scientific) was used. Peroxidase reactions

were stopped using 1M H3PO4 and plates read on a Multiskan plate reader (Labsystems). Inter- and intra-experimental measure-

ments were normalized using a positive control plasma from a COVID-19 patient (#1-073) run on each plate. Endpoint titers were

determined by interpolation from a sigmodial curve fit (all R-squared values > 0.95; GraphPad Prism 8) as the reciprocal dilution

of plasma that produced R 15% (for IgA and IgG) or R 30% (for IgM) absorbance of the positive control at a 1:31.6 (IgG and

IgM) or 1:10 dilution (IgA). Patients were considered to have seroconverted if titers were above the mean of titers from 16 healthy

non-COVID19 donors +23 the standard deviation.

Antibody avidity assay
The avidity of RBD-specific IgG and IgM antibodies in plasma samples was measured using urea as the chaotropic agent. Following

incubation of plasma at a 1:31.6, 1:100 and 1:316 dilution on antigen-coated plates for 2 h, 6M of urea was added after washing and

incubated for 15 min. Bound antibodies were then detected using respective secondary detection reagents in procedures described

above. Antibody avidity is expressed as the percentage of remaining antibody bound to antigen following urea treatment compared

to the absence of urea. Data of 1:100 diluted plasma for IgG and 1:316 for IgM are reported in Figure 4E, with the rest of the data

presented in Figure S7A. Data from 1:100 and 1:316 diluted plasma were used for linear regression analysis of IgG and IgM avidity

respectively in Figure 4F.
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Microneutralisation assay
Microneutralisation activity of serum samples was assessed as previously described.57 SARS-CoV-2 isolate CoV/Australia/VIC01/

202056 was propagated in Vero cells and stored at �80�C. Serum samples were heat inactivated at 56�C for 30 min. Samples

were serially diluted two-fold starting at 1:20 and 100 TCID50 of SARS-CoV-2 in MEM/0.5% BSA were added and incubated at

room temperature for 1 h. Residual virus infectivity in the serum/virusmixtureswas assessed in quadruplicate wells of Vero cells incu-

bated in serum-free media containing 1 mgml�1 of TPCK trypsin at 37�C and 5%CO2; viral cytopathic effect was read on day 5. The

neutralising antibody titer was calculated using the Reed–Muench method, as previously described.57

Cytokine analysis
Patient’s plasma was diluted 1:2 for measuring IL-1b, IFN-a2, IFNg, TNFa, MCP-1 (CCL2), IL-6, IL-8 (CXCL8), IL-10, IL-12p70, IL-

17A, IL-18, IL-23 and IL-33 using the LEGENDplex Human Inflammation Panel 1 kit, according to manufacturer’s instructions (Bio-

Legend, San Diego, CA, USA). sIL-6R levels were measured in plasma (diluted 1:300) using the Human IL-6R alpha DuoSet ELISA kit

(R&D Systems, Minneapolis, MN, USA) according to manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational flow cytometry analysis
Computational analysis of data was performed using the Spectre R package58 (https://github.com/ImmuneDynamics/Spectre).

Samples were initially prepared in FlowJo, and populations of interest were exported as CSV files containing scale value (raw)

data. In R, data were subject to arcsinh transformation, and data below the limit of detection were compressed to reduce the contri-

bution of noise to the clustering process. Batch alignment was then performed usingCytoNorm62 as implemented in Spectre. Aligned

data were then clustered using FlowSOM and a subset of cells plotted using UMAP.63 Cluster identities were annotated manually.

Cellular expression of dynamic markers (CD38, HLA-DR, ICOS, PD-1, granzymes, or perforin) was determined on each population

using the non-aligned arcsinh transformed data, and adjusted manually per sample where required. Data from the immune panel

were clustered and plotted by UMAP using forward scatter (FSC), side scatter (SSC), CD16, CD14, CD56, CD19, TCRgd, CD3,

CD4, CD8, CD45RA, CD27, CD38, and HLA-DR. Immune cell lineages were manually annotated based on marker expression: eo-

sinophils (FSChiSSChiCD16-), neutrophils (FSCintSSCintCD16hi), monocytes (FSCintCD14+), B cells (CD19+), NK cells (CD56+),

gamma-delta T cells (TCRgd+CD3+), CD4+ T cells (CD3+CD4+), and CD8+ T cells (CD3+CD8+). Subsequently, population subsets

were manually annotated based on marker expression: monocytes (classical CD14+CD16- and non-classical CD14-CD16+), B cells

(naive CD27-CD38-,memory CD27+CD38-, ASCCD27+CD38+), NK cells (CD56bri and CD56dim), CD4+ T cells (naive CD45RA+CD27+,

TEMRA CD45RA+CD27-, TCM CD45RA-CD27+, and TEM CD45RA-CD27-), and CD8+ T cells (naive CD45RA+CD27+, TEMRA

CD45RA+CD27-, TCM CD45RA-CD27+, and TEM CD45RA-CD27-). Lymphocytes from the TFH & B cell panel were clustered and

plotted by UMAP using on CD45, CD3, CD19, CD4, CD8, CXCR5, CXCR3, CD27, CD38. CD4+ T cell subsets were manually anno-

tated based on marker expression: TH1 cells (CXCR5-CXCR3+), TH2/17 cells (CXCR5-CXCR3-), TFH1 cells (CXCR5+CXCR3+), and

TFH2/17 cells (CXCR5+CXCR3-). CD3+ cells from the cytotoxicity panel were clustered and plotted by UMAP using CD4, CD8,

CD45RA, CD27. CD4+ and CD8+ T cell populations were defined as above for naive CD45RA+CD27+, TEMRA CD45RA+CD27-,

TCM CD45RA-CD27+, and TEM CD45RA-CD27-.

Summary statistics, scatter graphs, volcano plots and PCA plots were created in R, where comparisons were performed using a

Wilcoxon rank-sum test (equivalent to theMann-Whitney test) with thewilcox.test function in R. Statistics displayed in scatter graphs

were uncorrected, and statistics displayed in volcano plots were corrected with a False Discovery Rate (FDR) adjustment. TrackSOM

is a time series-based clustering and cluster evolution tracking algorithm which that combines FlowSOM’s single time-point clus-

tering capacity with ChronoClust’s19 tracking of cluster developments over time. TrackSOMwas performed on the first immunophe-

notyping panel by initially clustering data from all time points using FlowSOM, and thereafter tracking the resulting metaclusters and

clusters using ChronoClust’s tracking mechanism. TrackSOM was using 10x10 grid, producing 40 metaclusters per time. Binned

groups are outlined in Table S3.

Statistical analyses
Statistical significance was assessed using Mann-Whitney, Wilcoxon signed-rank test or Kruskal-Wallis test with Dunn’s correction

for multiple comparisons in Prism 8 (GraphPad) unless stated otherwise. Analysis of immune parameters against days post-onset

were visualized in R 3.6.2 using the ggplot2 package59 using LOESS fitting with 95% confidence intervals shaded in gray. Correla-

tions were assessed using Spearman’s correlation coefficient (rs) and visualized in R 3.6.2 as circos plots using the circlize package60

or heatmaps using the corrplot package and p values of correlations were corrected for multiple comparisons by FDR in R 3.6.2.

Cytokine concentrations were log10(x+1) transformed for correlation analysis. Linear regression analysis was performed in Prism

8 (GraphPad). AUROC analysis was performed in R 3.6.2 using the pROC and plotROC packages.61 Pie charts in Figure 3 were

generated using Pestle v2 and Spice v6 software64 and p-values were calculated using a Permutation Test. P-values lower than

0.05 were considered statistically significant.
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