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We appreciate Swartz et al. (1) for highlighting several
key considerations for interpreting our results (2).
While we discuss many of these in our paper, we are
grateful to further highlight our work’s strengths, lim-
itations, and future opportunities.

A major challenge with understanding fisheries
labor abuses is a lack of data. Automatic identification
system (AIS) is only used by a subset of the global
fishing fleet. However, AIS is valuable for monitoring
certain types of fishing vessels, especially those that
are large (∼52 to 85% carry AIS) (3) and those fishing
on the high seas (∼80% carry AIS) (4). Mandating AIS
and unique identifiers on fishing vessels and publish-
ing vessel registries would facilitate more inclusive
AIS-based analyses (5).

Data on fisheries labor conditions are also limited.
We spent over 1 y identifying public reports of forced
labor onboard specific fishing vessels (“positives”).
We also tried to identify a public list of specific fishing
vessels free of forced labor (“negatives”) but were un-
able to, and therefore we were compelled to use
positive-unlabeled learning. We assessed model per-
formance using 10-fold cross-validation, an appropri-
ate technique for small datasets (6) that uses
resampling to train and validate multiple models using
multiple training and separate validation data subsets.
We estimated an average recall of 92%, the fraction of
known positives correctly classified as positive (2). We
used the term “high risk” for vessels classified as pos-
itive by the model for being above the threshold that
maximizes a modified F1 score (7). While we cannot
infer probability using this approach, it theoretically
minimizes false positives and false negatives and
equally weights the practical risks associated with both

error types (7). Publishing information from forced la-
bor vessel sanctions (5) (positives) and information
from vessel inspections that identify either forced la-
bor (positives) or decent working conditions (nega-
tives) would increase training and testing data and
facilitate more accurate analyses.

Our analysis focused on prediction not causation.
We did not estimate what causes forced labor but
predicted whether vessels have forced labor using
observable vessel features. While unpacking correla-
tions between features would be critical in causal
inference, understanding these correlations is less
important for prediction. Nevertheless, we removed
highly correlated model features during data pre-
processing (2), which reduces model complexity
while increasing feature importance interpretability
(8). Moving forward, new research on causal relation-
ships is critical, as are interventions that address
causal drivers.

When using predictive models, there is a risk that
spurious or biased trends in the training data could
lead to unjustified actions with serious human conse-
quences (9). We recognize this ethical concern and
stress the importance of further validation and evalu-
ation of potential biases using new data. Nonetheless,
predictive models can inform decisions within an oth-
erwise opaque decision-making landscape (10). The
path forward should include a suite of forced labor
detection methods alongside interventions that ad-
dress underlying drivers, reform labor policy, promote
social responsibility in seafood production, and sup-
port victims. While we acknowledge the limitations of
our approach, it lays the foundation for new opportu-
nities to improve fisher working conditions.
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