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People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During
LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As
sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investi-
gate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission
of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded
condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae,
latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus
and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels
of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic parasp-
inal muscle activity than controls, both when data were analyzed in grouped and individual muscle
behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and
superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle con-
trol is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle
fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly
contribute to recurrence of LBP.

� 2012 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Low back pain (LBP) is commonly reported to start during self-
initiated sudden movements of the lumbar spine at work, home
and sports (Omino and Hayashi, 1992; Troup et al., 1981). Such on-
set of LBP during trunk movement could be mediated by inade-
quate trunk muscle control (Cholewicki et al., 2002), such as
those that have been causally linked to spinal injury and pain in
other tasks (Cholewicki et al., 2005).

Voluntary trunk movements require finely-tuned coordination
of the spinal muscles in order to provide optimal control of dy-
namic intervertebral, spinal and postural stability while concur-
rently perform the intended movement trajectory (Reeves et al.,
2007). In this context, dynamic motor control involves an interplay
between feedback and feedforward control mechanisms to modu-
late muscle activity to control changing internal and external spine
forces during lumbar movement (Panjabi, 1992). Although muscle
activation contributes throughout the entire range of movement,
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the support is essential around the mid-range where passive struc-
tures contribute negligibly to spinal stiffness (neutral zone)
(Cholewicki et al., 1997; Panjabi, 1992). When acceleration in-
creases (Granata and England, 2006) and predictability decreases,
the potential for error enlarges. Inability of the motor system to
meet the task demands may lead to spinal injury and pain
(Cholewicki et al., 2005; Panjabi, 2003).

People with a history of LBP have an elevated risk of encounter-
ing additional LBP episodes (Cholewicki et al., 2005; Von Korff,
1994). Changes in motor control that persist during remission from
symptoms of LBP have been proposed to contribute to this in-
creased risk (Hodges and Richardson, 1996; Cholewicki et al.,
2005; Hodges and Tucker, 2011). Impaired muscle coordination
during functional trunk movements may maintain this cycle, but
such tasks have received limited attention.

Most research during LBP remission has focused on changes in
muscle recruitment in association with perturbations of neutral
spine positions, including arm movements (Macdonald et al.,
2009) and external trunk loading (predictable (Macdonald et al.,
2010; Magnusson et al., 1996) or unpredictable (Cholewicki
et al., 2002; Macdonald et al., 2010; Magnusson et al., 1996;
Radebold et al., 2000, 2001)). In these tasks, muscle activity is
automatically adjusted to overcome the spinal perturbation and
restore/maintain the spinal orientation, but people with a history
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Table 2
Pain characteristics for LBP group (mean [SD]).

Variable

Time since first onset of LBP (months) 98 (76)
Frequency of episodes (per year) 8 (7)
Time since last episode (days) 92 (122)
Duration of an episode (days) 9 (9)
Pain intensity during episode (0 = no pain at all, 10 = worst

pain that can be imagined)
5 (2)

Disability during episode (0 = not disabled at all, 10 = totally
disabled)

3 (2)

SD – standard deviation. LBP – low back pain.
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of LBP often have delayed and decreased activity of deeper muscles
(Macdonald et al., 2009, 2010), and increased co-contraction of
superficial muscles (Cholewicki et al., 2002; Radebold et al.,
2000, 2001). During movement of the trunk itself there is also
the requirement to maintain spine integrity, but in this case, as
the spine is moving through a trajectory. We hypothesized that,
as for the spinal control in association with neutral spine perturba-
tions, the motor control strategy to perform voluntary trunk move-
ments would be adapted in people with a history of LBP. This could
have potential consequences for stability of the trajectory and
integrity of the spine.

Although studies in remission of LBP often focus either on deep
(DM) and superficial (SM) fibers of multifidus (Macdonald et al.,
2009, 2010) or the more superficial muscles (Cholewicki et al.,
2002; Magnusson et al., 1996; Radebold et al., 2000, 2001), a thor-
ough investigation of voluntary movement requires simultaneous
investigation of multiple muscles.

This study aimed to investigate trunk muscle recruitment in
people in remission from recurrent LBP and a healthy control group
during rapid, loaded and unloaded, voluntary trunk flexion. Muscle
recruitment was analyzed from several complementary perspec-
tives, in order to identify dysfunctional recruitment patterns in
grouped muscle behavior (including co-contraction, and agonis-
tic/antagonistic muscle behavior), as well as muscle-specific dys-
functions in individual muscle behavior in people with a history
of recurrent LBP.

2. Methods

2.1. Participants

Eleven individuals with a history of recurrent, non-specific LBP
and 14 healthy individuals with no history of LBP were recruited
(Table 1). Inclusion criteria for the LBP group (Table 2) were a
recurrent pattern of LBP (at least two episodes) that interfered with
activities of daily living and/or required treatment. Participants
with LBP were tested during symptom remission. Individuals were
excluded if they had: pain elsewhere in the body; spinal deformi-
ties; spine surgery; participated in lumbar muscle training in the
past year; or any major neurological, circulatory, respiratory or
orthopedic condition. The study was approved by the Institutional
Medical Research Ethics Committee and conformed to the Declara-
tion of Helsinki. All participants provided signed informed consent.

2.2. Electromyography

EMG activity was recorded bilaterally from DM and SM at L4
using bipolar intramuscular fine-wire electrodes (Teflon-coated
stainless steel wires, 75 lm with 1 mm of Teflon removed, tips
bent back 1 and 3 mm to form hooks). Electrodes were threaded
into a hypodermic needle (SM: 0.6 � 32 mm, DM: 0.65 � 70 mm)
and inserted using real-time ultrasound guidance (Macdonald
et al., 2009). Pairs of surface electrodes (disposable Ag/AgCl,
Table 1
Participant demographics (mean [SD]).

Variable LBP group Control group p-Value

n 11 14 –
Male:female 7:4 6:8 0.302
Age (years) 30 (9) 25 (6) 0.185
Body weight (kg) 78 (16) 61 (12) 0.007*

Body length (m) 177 (11) 167 (11) 0.022*

BMI (kg/m2) 24.5 (2.5) 22.0 (2.9) 0.033*

SD – standard deviation. LBP – low back pain. BMI – body mass index.
* P < 0.05.
10 mm diameter, 20 mm inter-electrode distance, Ambu-Blue Sen-
sor N, Malaysia), were placed bilaterally over: lumbar erector spi-
nae (LES) at L4, thoracic erector spinae (TES) at T9, latissimus dorsi
(LAT) at T9 (Marras et al., 1995), obliquus externus abdominis (OE)
inferior to rib angle, obliquus internus abdominis (OI) medial to
anterior superior iliac spine, and rectus abdominis (RA) adjacent
to the umbilicus (Ng et al., 1998). A ground electrode was placed
over the right iliac crest. Skin preparation included abrasion and
alcohol cleaning. EMG data were amplified 2000 times, band pass
filtered between 30 and 1000 Hz and sampled at 2000 Hz (surface
EMG) and 3000 Hz (fine-wire EMG) using Spike2 software and
Power 1401 data acquisition system (Cambridge Electronic Design,
Cambridge, UK). The 30 Hz lower cut on the EMG filter was se-
lected as it achieved the optimal balance between removal of un-
wanted movement artifact (if present) and the minor loss of
energy from the lower frequency components of the EMG data.
2.3. Procedure

Trunk muscle control was evaluated during rapid voluntary
trunk flexion from a semi-seated position with their pelvis fixed.
A foam pad was placed in front of the participant to the range of
trunk flexion (�20�) (Fig. 1). Participants moved forward as fast
as possible immediately upon hearing an auditory cue and return.
The task was performed without and with load (15% body weight)
applied through a pulley system attached to the front of a harness
to pre-activate the back muscles. Practice trials were allowed for
familiarization. Ten proper repetitions of each condition were com-
pleted, separated by 5–7 s. Trunk acceleration and displacement
were respectively measured with an Inertial Measurement Unit
(SEN-10010, ±3 g, 300 mV/g sensitivity, Sparkfun, Colorado, USA)
and linear wire potentiometer (full stroke 1000 mm, linearity
±0.15%, repeatability ±0.05%, Hontko, Taiwan) sampling at 2000 Hz.

Maximum voluntary isometric contractions (MVICs) were re-
corded (Cholewicki et al., 1997). Three repetitions each of resisted
trunk extension (DM, SM, LES and TES), left and right trunk rota-
tion (OE and OI), sit up (RA) and shoulder adduction (LAT) were
completed with verbal encouragement, separated by 60 s rest.
2.4. Data analysis

Data were exported to Matlab (v7, Mathworks, USA) for further
EMG amplitude analysis. EMG data were divided into 16 epochs
based on the onset, peak and end of flexion identified from individ-
ual linear potentiometer data, to account for inter-individual vari-
ability in movement velocity: Epoch 1–50 ms before auditive cue
(baseline EMG, B); Epochs 2–6 – five 100 ms epochs for 500 ms be-
fore flexion onset (preparatory phase, P1–P5); Epochs 7–11 – five
equal duration epochs from onset to peak flexion (flexion phase,
F1–F5); Epochs 12–16 – five equal duration epochs from peak to
end of flexion (re-extension phase, R1–R5). The duration of the
flexion movement was 1.14 ± 0.16 s for LBP patients and



Fig. 1. Experimental set-up showing task position, pelvic restraint and position at the beginning (upright) and end of the flexion movement.
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1.22 s ± 0.18 s for controls (each epoch was 10% of this duration)
and did not differ between groups (F = 2.15; p = 0.149). For each
epoch, root mean square (RMS) EMG amplitude was calculated
and normalized to peak (averaged over 3 s) RMS–EMG during
MVICs. In order to consider the validity of normalization of the
EMG data to that recorded during MVIC efforts, the raw EMG
amplitude during the MVIC trials was compared between groups.
No difference was found for any muscle (main effect Group:
F = 0.376; p = 0.546; interaction effect between Group and Muscle:
F = 0.540; p = 0.803). This implies that there was no systematic
difference in activity during MVIC efforts which implies that par-
ticipants with a history of LBP performed true maximal efforts.

EMG activation patterns were analyzed via a multiscale ap-
proach, in order to provide a complementary view on several levels
of trunk muscle control within a clinically relevant perspective of
muscle dysfunction. First, a binary index of co-contraction was cal-
culated. A value of ‘‘1’’ was assigned if the sum of MVIC normalized
EMG amplitude of the flexors (OE, OI and RA) exceeded 30% and the
sum of the extensors (DM, SM, LES, TES and LAT) exceeded 50%. A
value of ‘‘0’’ was assigned if the amplitude of either sum was less.
This construct accounts for individual variation in recruitment
strategy by using the sum of the muscles rather than the require-
ment for each individual muscle to exceed 10% MVIC, as recent
work has highlighted the individual specific nature of adaptation
to trunk muscle coordination in people with low back pain (Hodges
et al., 2006). The threshold has been empirically determined, based
on the MVIC normalized EMG of each of the muscles generally ex-
ceeded 10% during the flexion phase. Second, MVIC normalized
EMG activity of the three flexor and five extensor muscles was
summed to reflect net agonist and antagonist activity, respectively.
Although neither measure accounts for differences in moment arm
or muscle mass, we argue they provide an estimate of tendency to
co-contract flexor and extensor trunk muscles and an estimate of
net activity of each muscle group. Third, the MVIC normalized
EMG amplitude was analyzed for each muscle individually.

Trunk movement was analyzed as peak acceleration and move-
ment duration (onset to end flexion) identified from accelerometer
data, and maximum trunk displacement from potentiometer data.
2.5. Statistical analyses

Analyses were performed using Statistica v7 (Statsoft, USA). Dif-
ferences between groups for demographic characteristics and
movement parameters were investigated with independent sam-
ples t-tests and chi-square test. EMG data were analyzed in several
ways with repeated-measures analyses of variance (ANOVA) using
General Linear Models (GLMs). First, the co-contraction index and
summed EMG amplitudes (agonists and antagonists) were com-
pared between groups, loading condition and epochs. Second,
EMG data for each muscle (average of left and right sides) were
compared between groups, muscles, loading conditions and
epochs. Third, an exploratory analysis was conducted on a sub-
group of participants with a history of unilateral LBP (n = 6) to
investigate whether EMG of individual muscles differed with re-
spect to the side of previous pain during performance of a symmet-
rical task. Such side specific differences have been observed with
respect to unilateral recurrent LBP (Macdonald et al., 2010). EMG
data were compared between groups (previously painful and
non-painful side vs. average of sides from the control group
[n = 14]), muscles, conditions and epochs.
3. Results

3.1. Co-contraction index

LBP participants had a greater propensity to co-contract flexor
and extensor muscles than controls (F = 5.92; p = 0.019), and this
did not differ between loading conditions or epochs (Fig. 2).
3.2. Summed agonist and antagonist EMG

An interaction effect between epoch and group (F = 3.32;
p < 0.001) showed that summed EMG of abdominal/flexor muscles
was lower for the LBP participants than controls during the flexion
phase (F1–F2) (post hoc: P < 0.005) (Fig. 3A). There was no differ-
ence between loading conditions or groups during other epochs.
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For the paraspinal/extensor muscles, an interaction effect be-
tween epoch and group (F = 2.70; p < 0.001) showed that summed
EMG was higher in the LBP group than controls during flexion
(F2–F5) and re-extension phases (R5) (post hoc: P < 0.05)
(Fig. 3B). As expected, paraspinal muscle activity was greater in
the loaded than unloaded condition during epochs in each phase
(B, P1–P4, F5, R1–R4) for both groups (interaction between epoch
and condition: F = 2.94; p < 0.001; post hoc P < 0.05).
3.3. Individual muscle EMG

Analysis of individual muscles showed a significant interaction
between muscle, epoch and group (F = 2.44; p < 0.001). Post hoc
analysis (P < 0.05) (Table 3) (Fig. 4) revealed DM, SM, LES and
TES EMG were higher in LBP participants than controls for several
epochs during flexion, and other epochs. LAT and OI EMG did not
differ between groups for any epoch, but OE and RA EMG was low-
er in the LBP group than controls at the beginning of flexion. An
interaction between muscle, epoch and condition (F = 1.86;
p < 0.001) showed that DM, SM, LES and LAT EMG was greater in
the loaded condition during some epochs (Online supplementary
Table) (post hoc P < 0.05), but this was similar for both participant
groups.
3.4. Exploratory analysis of painful vs. non-painful side

For the six participants with a history of unilateral LBP there
was a significant interaction for Muscle � Epoch � Group for the pre-
viously painful (F = 2.11; p < 0.001) and non-painful sides (F = 1.78;
p < 0.001). Post hoc analyses (P < 0.05) revealed that although LES,
TES, LAT, OE, OI, and RA EMG on the previously painful and non-
painful side generally responded similarly for both groups, the
DM and SM response differed (Table 3). On the painful side, DM
EMG was lower and SM EMG higher, whereas on the non-painful
side, DM EMG was higher and SM EMG lower than controls (Fig. 5).
3.5. Trunk movement

As LBP participants had lower abdominal and greater paraspinal
EMG, differences in movement were considered. Although the
duration of movement (F = 2.15; p = 0.149; LBP = 1.14 ± 0.16 s;
control = 1.22 ± 0.18 s) and maximum displacement (F = 1.46;
p = 0.234; LBP = 133 ± 23 mm; control = 143 ± 31 mm) did not dif-
fer between groups, peak acceleration was less for the LBP group
(F = 6.14; p = 0.017; LBP = 0.66 ± 0.11 m s�2; control = 0.76 ±
0.15 m s�2).
Fig. 2. Co-contraction index. Group data for co-contraction index (displaying proportion o
for each epoch for trials with and without load in people with (LBP) and without (contr
3.6. Adjustment of EMG analyses for differences in peak acceleration

GLM repeated measures analysis were repeated with inclusion
of peak acceleration as covariate. Results were generally identical
to those without this component, although some differences in
interaction effects were identified (Table 4).

4. Discussion

Consistent with our hypothesis, participants with a history of
recurring episodes of LBP exhibited a range of changes in trunk
muscle recruitment in a dynamic voluntary trunk movement, de-
spite the absence of pain. The differences in motor control from
control participants were multifaceted and included a greater pro-
pensity for people with recurring LBP to co-contract flexor and
extensor trunk muscles throughout the task, with a concurrent les-
ser agonist flexor muscle activity and greater extensor muscle
activity than controls during trunk flexion. Generally, similar
observations were made for individual muscle behavior, but our
exploratory analysis of people with a history of unilateral LBP re-
vealed differential, opposite changes in DM and SM related to the
pain side.

Within a broad perspective, the binary index of co-contraction
indicated a greater likelihood for people with a history of LBP than
controls to activate flexors and extensors concurrently. Trunk mus-
cle co-contraction is commonly observed in LBP (Cholewicki et al.,
2002; Radebold et al., 2000; van Dieen et al., 2003a) and has been
proposed a strategy to stiffen the spine to increase the safety mar-
gin for protection from perturbation (Cholewicki et al., 1997). Co-
contraction depends on spinal control demands (Granata and
Orishimo, 2001; van Dieen et al., 2003b) and these may be in-
creased because of reduced passive spine stability, distorted pro-
prioceptive input or reduced trunk muscle force with spinal
injury/pain (Panjabi, 2003; van Dieen et al., 2003b). As suggested
for numerous motor control changes with recurrent LBP (D’Hooge
et al., in press; Macdonald et al., 2009, 2010; Radebold et al., 2000),
increased co-contraction may reflect a suboptimal muscle recruit-
ment strategy (Granata and Marras, 1995).

At the grouped muscle level, reduced agonist muscle activity
and increased antagonist activity during flexion, and reduced peak
trunk acceleration appears consistent with the predictions of the
‘‘pain adaptation’’ theory (Lund et al., 1991), predicting stereotyp-
ical changes in muscle recruitment to reduce a painful movement’s
amplitude and velocity.

Considering individual muscle behavior, activity of paraspinal
muscles was increased in the LBP participants, similar as observed
in the grouped paraspinal behavior. Antagonist LES activity has
been commonly studied during trunk flexion. Although some
f participants with co-contraction of paraspinal and abdominal muscles) are shown
ol) a history of low back pain.



Fig. 3. Summed EMG activity of the abdominal (A) and paraspinal (B) muscles. Data for each epoch are shown for trials with and without load in people with (LBP) and without
(control) a history of low back pain. Grey boxes indicate epochs with significant differences between LBP and control group (P < 0.05). Error bars represent 95% confidence
intervals.

Table 3
Statistical comparison of RMS–EMG amplitude between groups and epochs for individual muscles.

Muscle Post hoc Group � Epoch

Average of sides Previously painful side Previously non-painful side

n: LBP = 11 CON = 14 n: LBP = 6 CON = 14

DM LBP > CON CON > LBP LBP > CON
B, P2–P3, F2–F5, R5 F3–F5, R1–R2 B, P1–P5, F2–F5, R1, R3–R5

SM LBP > CON LBP > CON CON > LBP
F2–F3, R5 P3–P5, F2–F5, R1, R3–R5 F4–F5

LES LBP > CON NS NS
F2–F3

TES LBP > CON LBP > CON LBP > CON
F2–F5, R1, R5 F2–F5, R1, R5 F3–F5, R1

LAT NS NS NS

OE CON > LBP CON > LBP CON > LBP
F1–F2 F1–F2 F1

OI NS LBP > CON LBP > CON
R1–R2 R1

RA CON > LBP NS CON > LBP
F1 F1

CON – control group; LBP – low back pain group; B – indicates significant epoch (P < 0.05) during baseline; P1–P5 – indicates
significant epochs (P < 0.05) during the preparatory phase; F1–F5 – indicates significant epochs (P < 0.05) during the flexion
phase; R1–R5 – indicates significant epochs (P < 0.05) during the re-extension phase of the flexion movement; DM – deep
fibers of multifidus; SM – superficial fibers of multifidus; LES – lumbar erector spinae; TES – thoracic erector spinae; LAT –
latissimus dorsi; OE – obliquus externus abdominis; OI – obliquus internus abdominis; RA – rectus abdominis; NS – no
significant difference between LBP and control group.
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report no changes with LBP (Lariviere, 2000; Sherman, 1985; Shira-
do et al., 1995), others described increased (Sihvonen et al., 1991)
or decreased (Arena et al., 1989; Watson et al., 1997) LES EMG.
Higher TES EMG has been reported with loaded movements (Lari-
viere, 2000). Differences between studies may be explained by
variables of the flexion task such as movement speed (Granata
and Orishimo, 2001); standing vs. semi-seated position (Radebold
et al., 2000); small vs. full movement range (Shirado et al., 1995);
EMG electrode location; and participant differences e.g. LBP diag-
nosis (Arena et al., 1989). Even when adjusting for differences in



Fig. 4. EMG activity of individual muscles. Data (averaged for loads) are shown for deep (DM) and superficial (SM) multifidus, lumbar (LES) and thoracic (TES) erector spinae,
latissimus dorsi (LAT), obliquus externus (OE) and internus abdominis (OI), and rectus abdominis (RA) in people with (LBP) and without (Control) low back pain. Grey boxes
indicate epochs that differ between groups. Error bars – 95% confidence intervals.

Fig. 5. EMG activity of deep (DM) and superficial (SM) multifidus with respect to side of pain. Data (averaged for loads) are shown for the previously painful (P-LBP) and non-
painful side (nP-LBP) and Controls. White and grey boxes indicate epochs with differences between P-LBP or nP-LBP, and control data, respectively. Error bars – 95%
confidence intervals.
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peak trunk acceleration, differences remained in the present study.
This corresponds with observations of Zedka et al. (1999) of re-
duced movement velocity during experimental pain, with persis-
tent changes in LES EMG when matching velocity to pre-pain trials.

However, all individual muscles were not affected uniformly:
no changes were detected for OI and LAT, and DM and SM were
differentially affected in relation to the pain-side for the unilateral
subgroup. EMG recorded with surface electrodes over OI reflects
caudal regions of both OI and transversus abdominis muscles,
which have lesser flexion moment arms compared to flexion tor-
que-generating RA and OE, but also contribute to lumbopelvic sta-
bility (Bergmark, 1989). More complex functions of these muscles
and inability to differentiate between them could explain the less
predictable outcome. Also, differential changes were observed in



Table 4
Adjustment of statistical analysis with inclusion of covariate ‘peak acceleration’.

Test Significant factors p-Value Post hoc

Co-contraction index Group 0.015* LBP > CON
Agonists (sum of abdominals) Epoch � Group 0.006* CON > LBP F1–F2
Antagonists (sum of paraspinals) Group <0.001* LBP > CON
Individual muscles Epoch � Group 0.004* LBP > CON F3–F4, R5

CON – control group; LBP – low back pain group; F1–F5 – indicates significant epochs (P < 0.05) during the flexion phase; R1–R5 – indicates
significant epochs (P < 0.05) during the re-extension phase of the flexion movement.
* P < 0.05.
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our exploratory analysis of unilateral pain. Diminished DM and
augmented SM EMG on the previously painful side agree with pre-
vious reports of compromised deep and augmented superficial
multifidus activity (Macdonald et al., 2009, 2010). Reduced activity
of deeper spinal muscles in some participants, has been considered
to imply less optimal control of intervertebral stability (Macdonald
et al., 2006). Contrasting changes on the non-painful side (aug-
mented DM, diminished SM) may reflect redistribution of activity
between muscles to maintain symmetrical task output. These find-
ings suggest that opposite and potentially compensatory changes
in multifidus muscle activation can present during remission of
unilateral recurrent LBP, and may be missed when both sides are
analyzed together.

Non-uniform changes in individual muscle behavior compared
to grouped muscle behavior implies more complex changes rather
than uniform inhibition and facilitation of motoneuron pools of
opposing muscle groups, as discussed in more recent theories of
motor adaptation to pain (Hodges and Tucker, 2011). Our results
encourage the differentiation between complementary levels of
trunk muscle control, as different levels might reveal differential
changes, which enhances the insight in trunk muscle dysfunction.

In general, participants with recurrent LBP exerted more co-
contraction/paraspinal muscle activity than controls, both with
and without load. Thus, LBP participants retained potential to mod-
ulate muscle activity, although at higher levels, in contrast to a re-
port where addition of load did mask group differences (Silfies
et al., 2005). This implies that people with recurring LBP exert a
strategy normally used for higher loads, which implies a protective
solution to reduce risk of further injury/pain (Hodges, 2011). Pos-
sible consequences of the altered, higher-load recruitment strate-
gies during remission of LBP are potentially problematic as they
could lead to earlier fatigue for a certain repetitive trunk move-
ment task and compromise spinal stability, leaving it susceptible
to pain/injury (Mannion, 1999). Furthermore, increased co-con-
traction and paraspinal muscle activity augments load on spinal
structures, which although beneficial in the short term, may en-
hance the risk for injury in the long term (Gardner-Morse and
Stokes, 1998; Granata and Marras, 1995).

Several methodological issues require consideration. First, tech-
nical issues meant accelerometer-data were not available for one
participant in each group and reduced the power in the additional
statistical analyses. Nevertheless, statistical effects with and with-
out peak acceleration as a covariate were similar, except for loss of
some details in interaction effects. Second, EMG was recorded dur-
ing a dynamic task which could have introduced movement arti-
fact in the EMG signal. The potential for movement artifact in the
EMG recordings was minimized through careful fixation of the
EMG-recording material during data collection, and selection of
optimal band-pass filter settings. All data was visually inspected
and any trial with movement artifact was excluded from analysis.
Third, weight/height/BMI were higher for LBP participants, which
could have contributed to lower peak acceleration in the LBP
group. However, these characteristics did not appear significant
covariates (P > 0.05) in the analysis of group differences in peak
acceleration. Weight and BMI might influence EMG amplitude val-
ues measured with surface electrodes via differences in subcutane-
ous tissue thickness, but the use of EMG data in a normalized
manner should have accounted for this. A final possible limitation
is that the binary index of co-contraction used here provides a sim-
ple estimate of co-activation of the antagonist muscle groups and
does not consider a range of biomechanical aspects that would per-
mit detailed analysis of the mechanical aspects of the co-activation
(e.g. muscle mass, moment arm). It has been used in this study to
provide a simple measure of the simultaneous contraction be-
tween agonists (flexors) and antagonists (extensors), and (together
with the other analyses) provides insight into complementary
parameters of muscle control.

In conclusion, muscle coordination during rapid trunk flexion
was altered in people in remission from recurrent LBP on several
complementary levels of muscle control, both on grouped and indi-
vidual muscle level. Although observations were generally consis-
tent with predictions of the pain adaptation theory, and imply
enhanced spine protection, several features imply more complex
mechanisms than uniform inhibition/facilitation. These findings
have potential repercussions for functional trunk movements per-
formed in daily life and as such provide a potential pathophysio-
logical mechanism for increased likelihood of subsequent
episodes of LBP.
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