How accurate should sight distance measurements be?

Suhir, E. (2022) How accurate should sight distance measurements be? Theoretical Issues in Ergonomics Science, 23 (3). pp. 306-312.

[img] PDF (Publisher Accepted Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1080/1463922X.2021....
 
2


Abstract

We consider a situation, when braking is the only way to avoid obstruction of an automotive vehicle or a railroad train with a suddenly detected steadfast obstacle blocking the path. The velocity at the moment of the impact is viewed as a natural and a suitable criterion of the severity of the impact and, hence, of the very likelihood of the accident. Assuming that this velocity is distributed in accordance with the Rayleigh law, it is shown that the corresponding available sight distance (ASD) treated as a non-random function of the random impact velocity follows the exponential distribution. The variability (uncertainty) of the ASD measurements by the navigation system’s Radar(s) and/or Lidar(s) is assessed assuming that these measurements are normally distributed random variables. It is determined that the accuracy of these measurements, when the actual ASD is short and because of that the expected level of the impact velocity and, hence, the probability of the obstruction, are significant, is as important as the actual, objective, measurement independent ASD. The obtained information can be useful when choosing, developing and employing Radars and/or Lidars as effective navigation devices in various vehicular human-system-integration/interaction (HSI) technologies. This is true not only for the particular automotive or railroad situations in question, but also in other areas of vehicular engineering, such as, say, aerospace (e.g., when landing on Mars or on the Moon) or in maritime engineering (e.g., when encountering an obstacle, like another vessel or an iceberg, or when establishing an adequate under-keel clearance for large tankers navigated in shallow waters).

Item ID: 72302
Item Type: Article (Research - C1)
ISSN: 1464-536X
Keywords: Available sight distance, obstruction, probability of an accident, automated driving, steadfast object
Copyright Information: © 2021 informa UK limited, trading as Taylor & Francis group.
Date Deposited: 09 Feb 2022 13:20
FoR Codes: 40 ENGINEERING > 4002 Automotive engineering > 400203 Automotive mechatronics and autonomous systems @ 100%
SEO Codes: 27 TRANSPORT > 2799 Other transport > 279902 Multimodal transport @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page