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Objective: Using narrative review techniques, this paper evaluates the evidence for separable underlying 
patho-mechanisms of periodic limb movements (PLMs) to separable PLM motor patterns and phenotypes, 
in order to elucidate potential new treatment modalities. 
Background: Periodic limb movement disorder (PLMD) is estimated to occur in 5–8% of the paediatric 
population and 4–11% of the general adult population. Due to significant sleep fragmentation, PLMD 
can lead to functional impairment, including hyperactivity and delayed language development in children, 
and poor concentration and work performance in adults. Longitudinal data demonstrate that those with 
PLMD are at greater risk of depression and anxiety, and a 4-fold greater risk of developing dementia. 
PLMD has been extensively studied over the past two decades, and several key insights into the genetic, 
pathophysiological, and neural correlates have been proposed. Amongst these proposals is the concept of 
separable PLM phenotypes, proposed on the basis of nocturnal features such as the ratio of limb movements 
and distribution throughout the night. PLM phenotype and presentation, however, varies significantly 
depending on the scoring utilized and the nocturnal features examined, across age, and co-morbid clinical 
conditions. Furthermore, associations between these phenotypes with major neurologic and psychiatric 
disorders remain controversial. 
Methods: In order to elucidate potential divergent biological pathways that may help clarify important 
new treatment modalities, this paper utilizes narrative review and evaluates the evidence linking PLM motor 
patterns and phenotypes with hypothesised underlying patho-mechanisms. Distinctive, underlying patho-
mechanisms include: a pure motor mechanism originating in the spinal cord, iron deficiency, dopamine 
system dysfunction, thalamic glutamatergic hyperactivity, and a more cortical-subcortical interplay. In 
support of the latter hypothesis, PLM rhythmicity appears tightly linked to the microarchitecture of sleep, 
not dissimilarly to the apnoeic/hypopneic events seen in obstructive sleep apnea (OSA). 
Conclusions: This review closes with a proposal for greater investigation into the identification of 
potential, divergent biological pathways. To do so would require prospective, multimodal imaging clinical 
studies which may delineate differential responses to treatment in restless legs syndrome (RLS) without 
PLMS and PLMS without RLS. This could pave the way toward important new treatment modalities. 
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Introduction

Periodic limb movements during sleep (PLMS) are 
involuntary, sleep-related phenomena characterized by 
periodic episodes of repetitive, stereotypical movements of 
the limbs (1-3). Lower extremities are commonly affected, 
with typical dorsiflexion of toes and ankles consistently 
reported, resembling the spinal flexor-reflex (Babinski 
sign), along with occasional flexion of the hip and knee. 
The involvement of upper limbs or other parts of the body 
is much less commonly recorded (4). PLMS are found in 
up to 80% of restless legs syndrome (RLS) cases (5), which 
are experienced as an unpleasant urge to move along with 
paresthesia- a burning or pricking sensation felt in the arms, 
legs or feet during periods of rest or inactivity (6). However, a 
much smaller percentage of patients with a polysomnographic 
(PSG) evidence of PLMS (22.5%) are found to have a co-
morbid RLS (4,7). PLMS are frequently comorbid with 
other sleep disorders, s variety of medical conditions (e.g., 
congestive heart failure, diabetes, migraine (8), cardiovascular, 
hepatic and renal disease, alcohol dependance, syringomyelia), 
and several major neurologic and psychiatric disorders (9). 
They can be triggered by medications and psychoactive 
substances, such as antidepressants and lithium (10),  
and they commonly increase with age, even without a co-
morbid sleep disorder (11). Movements similar to PLMS 
have been captured with polysomnography during nocturnal 
wakefulness (PLMW). 

The diagnosis of periodic limb movement disorder 
(PLMD) is a diagnosis of exclusion according to the 
International Classification of Sleep Disorders Third 
Edition (ICSD-3) (12).  In order for PLMD to be 
established, other sleep disorders associated with PLMS 
need to be excluded: namely the RLS (2,13), narcolepsy 
(14), REM sleep behavior disorder (RBD), and sleep-related 
breathing disorder (15). Moreover, PLMS should be linked 
to sleep complaints or/and daytime impairment (2,12,13,16). 

Recent developments in the field of sleep medicine have 
changed our understanding of the impact of periodic motor 
activity on the microstructure and macrostructure of sleep 

and their effect on daytime functioning (17), including the 
modulation of the autonomic system and inflammation  
(18-20). As mentioned, PLMS have also been associated 
with significant cardiovascular and cerebrovascular risks 
(21,22), likely due to associated sympathetic overactivity 
that can lead to surges in nocturnal blood pressure (BP) and 
heart rate (HR) without appropriate modification of the 
global autonomic balance (23). 

Taken together, the relevant evidence summarized in 
this narrative review showcases accelerating research over 
the last two decades. The presented evidence increasingly 
posits that PLMS present a distinct sleep phenomenon with 
separate, if yet not fully delineated, physiopathology (11,24). 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/jtd-21-1353).

Scoring of PLMS

Pathological PLMS are detected when their index is higher 
than five distinct PLM events recorded per hour of sleep. 
This cut-off has been extensively used in correlation studies 
with sleep complaints and other medical conditions, though 
several studies have shown that healthy subjects without 
sleep disorders may score above 10 e/h (25,26). Based on 
epidemiological studies, ICSD-3 has set the PLMI cut-
off to >15/h in adults and >5/h in children (Table 1) when 
a diagnosis of PLMD is considered (35). As a diagnosis 
of exclusion, the reported sleep disturbance or functional 
impairment should not be better explained by another 
medical or mental condition (16). Identifying PLMS can 
be challenging in clinical practice, given that they are also 
associated with primary motor disorders and sleep-related 
breathing disorders during associated respiratory events and 
arousals (13,34,36).

Two similar sets of updated scoring rules are currently 
available. The first, proposed by the World Association 
of Sleep Medicine (WASM), is a product of a joint task 
force from the International and European Restless Legs 
Syndrome Study group (IRLSSG and EURLSSG), and 
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the second is issued by the American Academy of Sleep 
Medicine (AASM) (28,35) (please refer to Table 1 for in-
depth list). 

The AASM scoring criteria require that limb movements 
(LM) must occur in a series of at least four consecutive 
LM lasting 0.5–5 seconds each, with an amplitude of  
8 µV above resting electromyogram (EMG), with an inter-
movement interval (both for monolateral and unilateral 
LM) between ≥5 s and ≤90 s to count as PLMS (35). By 
contrast, WASM criteria scores LM (called candidate 
leg movements, CLM) that may last longer, 0.5–10 s, for 
monolateral CLM, and 0.5–15 s for bilateral, keeps the 
same requirement of at least 4 consecutive CLM, and with 
an inter movement interval adjusted to ≥10 s and ≤90 s (both 
for monolateral and unilateral CLM), without any CLM 
preceded by an interval of <10 s interrupting the PLM 
series. The increase in the maximum duration of the CLM 
is proportionally increasing the inter-movement interval, 
to at least 10 s, which is found to characterize these PLMS 
that respond to dopaminergic treatment (37). It also reduces 
the number of leg movements that count as PLMW due 
to expected reduced periodicity of the movements during  
wakefulness (28) (Table 1). 

Both AASM and WASM rules recommend that any LM 
occurring within 0.5 s of any type of a respiratory event to 
be scored as respiratory event-related LM and be excluded 
from the PLMI. Although both criteria are detailed, their 
definitions have been critiqued as possibly underestimating 
that number (28,35). Based on the results of a well designed 
study, the WASM group allows the extension of the time 
brackets to 2 s before and 10.25 s after a respiratory event, 
but cautions the reader that the study is yet to be replicated 
and was performed on a limited type of respiratory events 
(28,34) (Table 1). 

The number of arousals related to PLMS (i.e., PLMIar) 
is an integral part of the polysomnographic report. It may be 
seen as a marker of sleep fragmentation, but several studies 
have failed to link the PLMIar with the severity of the 
reported sleep complaints nor with subjective or objective 
sleepiness. It is worth mentioning that almost a third of the 
PLMS are not associated with an EEG-arousal, and in 40% 
to 50% of the PLMS, the arousal precedes the onset of the 
motor event, which makes it difficult to maintain that the 
leg movement directly provokes the cortical arousal (38,39). 
The importance of PLMIar appears to lie more in relation 
to the increased hazard (5–26%) for cardiovascular events 
(CVE) seen in patients with PLMS (32,33). 

PLMS phenotypes

A number of studies over the last two decades have 
facilitated the identification of the phenotype of “genuine 
PLM” (18). Genuine PLM [inclusive of PLM during sleep 
(PLMS) and PLMW] comprise of two consistent features: 
approximately 20–40 s peaks in the inter-movement-
interval (IMI) histogram, followed by a decline in frequency 
as the night progresses (40). These have consistently been 
observed in RLS (41-43), PLMD (27) and various other 
conditions, albeit with varying degrees of periodicity (44). 
The IMI of LM activity shows bimodal distribution in RLS 
with the first peak between two to four seconds and the 
second between 20–40 s (43). The second peak represents 
the periodic LM (42). These lognormal distributions 
intersect at ten seconds, which forms the lower threshold 
for genuine periodic peak with an established range between 
10 s and 90 s (45) (Table 1). 

Genuine PLMS can be computed using the periodicity 
index (PI), which is an independent measure of periodicity, 
and is defined as the ratio of the number of sequences with 
an inter-LM interval between 10 and 90 seconds/total 
number of inter-LM intervals (43). At least four consecutive 
LMs are required fulfilling the predetermined IMI interval 
to form PLMs, and theoretically, PI is scored as either 0 or 1, 
with conditions classified based on either complete absence 
or complete periodicity of interval lengths ranging between 
10 s and 90 s (42,43) (Table 1). 

Secondly, PLMS distribution throughout the night 
and inter-night variability also form their distinct  
phenotype (18). In RLS patients, PLMS are commonly 
recorded between 11 PM and 3 AM, predominantly in 
the first half of sleep (46), with a clear decline in PLMS 
from the beginning to the end of sleep cycles (27). 
Traditionally, this has been taken to suggest that PLMS in 
RLS follow a circadian distribution, correlated with levels 
of endogenous dopamine throughout the night (47). It 
remains unclear if this also causes inter-night variability in 
PLMS (18). Characterizing the PLMS phenotype is crucial 
to understanding the mechanisms underlying differences in 
LM activity and presentations in clinical cohorts (18). For 
instance, only genuine PLMS respond to treatment with 
dopaminergic agonists (48,49), and not the PLMW that 
tend to have a shorter IMI (50) (Table 1). 

In keeping, several studies that monitored three 
independent parameters (i.e., PLMI, PI and time of 
the night LM distribution) in different clinical cohorts 
(27,37,51) during investigations of treatment efficacies 
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(52,53) indicate that the degree of PLMS periodicity 
expression varies significantly across clinical subgroups (18). 
This variability likely arises due to significant differences in 
genetic predisposition for PLMS (52,54,55).

The mean log IMI has shown the lowest night-to-night 
variability, compared to the PLMI, the PI and the mean  
MI (30). It is independent of the number of leg events 
at night, and reflects on the intrinsic periodicity of the 
PLMS, with changes over time believed to reflect individual 
changes (Table 1).

Paediatric phenotypes

Predictably, there is marked variability in scoring criteria 
for PLMS in children, depending on the age group (18). 
Periodicity is a rare phenomenon in paediatric PLMS 
(27,42), which impacts the interpretation, but can be 
rectified by altering the diagnostic criteria to fit normative 
cut-offs (18). For example, the diagnostic criterion for 
ages five to 18 years is >5/h (56), whilst the criterion for 
children between ages two to five years is the same in some  
studies (57), and higher in others (58,59). Some studies 
indicate an increased PLMI score (up to 10.1/h) in children 
between ages 3–5 and living at higher altitudes (60).

Distribution during sleep

PLMS commonly start during the non-rapid eye movement 
(NREM) stage N1, are predominant in N2, and less 
frequent in N3. PLMS are generally absent during REM, 
with exception of patients with REM behavior disorder, 
where PLMS are commonly recorded during REM (61,62). 
Historically, the association of PLMS to stages N1 and 
N2 has been argued to be due to the significant link (up 
to 92% of the PLMS) with the cyclic alternating pattern 
(CAP), especially with its fast activity subtypes (A2 and 
A3) (63). Gradual loss of cortical control with concomitant 
increase in arousal threshold from N1 to N3 coincides 
with the emergence of a major background oscillatory 
arousal mechanism, the CAP (64). It has been further 
argued that in patients with PLMS functional changes in 
cortico-subcortical-spinal networks involved in generating 
locomotion may induce these motor patterns (64). 

There are two major nocturnal patterns of PLMS. One 
starts shortly after sleep onset and dominates initial sleep 
cycles, influenced by circadian, as well as homeostatic 
influences (65), and a second type, where PLMS are more 
evenly distributed throughout the sleep cycles, with a 

predominant peak commonly occurring in the middle cycles 
of sleep. Of note is that, in both patterns, the PLMI can 
vary significantly between consecutive nights (17,65,66). 
Anecdotally, it has long been acknowledged that certain 
body positions in susceptible individuals may also affect the 
genesis of PLMS. For example, in a recently published case, 
the generation of PLMS occurred only during the time 
when patient was lying in a particular position (67). The 
authors hypothesized that changes in body position may 
act to generate a deep and complex proprioceptive tactile 
sensory input strong enough to activate the central pattern 
generators linked to PLMS (68,69).

Epidemiology 

PLMD is estimated to occur in four to eleven % of the 
general adult population (25,70-72), with age presenting 
an important risk factor (Table 2). As discussed previously, 
to date, PLMD remains a diagnosis of exclusion, and 
hence, most existing published studies predominantly 
focus on capturing the prevalence of PLMS (≥15 e/h) in 
the community, rather than prevalence of PLMD itself 
(61,89,91,92). Several major studies, the Wisconsin sleep 
cohort (WSC) from the US (91), the HypnoLaus form 
Switzerland (61) and the SHIP-TREND/BiDirect from 
Germany (89), reported similar prevalence and mean age at 
baseline, with 28.8%, 28.6% and 33.3% of the participants 
presenting with a PLMI >15/hour with a baseline mean age 
of 56.1 years, 58.4 years and close to 54 years respectively. 
The Osteoporotic Fractures in Men (MrOS) study from 
US, which included only men of older age (76.5 years) 
showed prevalence of PLMI >15/hour at 61% (92). 
Prevalence also significantly differs across ethnic groups. 
In a younger group (mean age 41.9 years) of 592 adult 
participants in tri-county Detroit, prevalence of PLMI  
>15/hour was 7.6% overall, and lower in African Americans 
(4.3% versus 9.3% in Caucasian) (7). Similarly, even that up 
to 80% of RLS patients are reported with increased PLMS 
(5,21), this also significantly differs between various ethnic 
and genetic group (93). The first large-scale RLS Asian 
population study demonstrated two significant differences 
in PLMS expression: (I) lower prevalence of only 42.3%, 
and (II) evidence that lower prevalence rates could be due to 
underlying differences in genetic expressions (93). However, 
LM periodicity and time structure characteristics did not 
vary across ethnicities (93).

To date, the data regarding gender-related differences 
for PLMS or PLMD remain conflicting, especially when 
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polysomnography-based studies are considered (18). During 
pregnancy, though, and likely related to iron deficiency, 
there is a peak in the prevalence of RLS and PLMI  
>15/hour up to 25% (83). 

Prevalence in children

The prevalence of a pathologically increased PLMI in children, 
which is set at above five events per hour, ranges between 5.6% 
and 8% in community-based studies (56). There is no data yet 

about the prevalence of PLMD in the community, with 14% 
prevalence reported in a pediatric sleep clinic population (94). 
PLMS commonly appear to precede the development of RLS 
in children (95,96) and they are more prominent in Caucasian 
children with sleep disordered breathing, than in African 
American children (97). A large-scale study reported 25.6% of 
children with growing pain exhibited a PLMI >5/h compared 
with 10.2% of children without growing pain, suggesting 
that growing pain could be a part of the pediatric phenotypic 
spectrum (98).

Associated psychiatric and neurologic disorders

Theoretical ly,  PLMS may cause s ignif icant s leep 
fragmentation and lead to functional impairment (18,99) 
through their disturbance of underlying sleep rhythms 
and their intrinsic functions. Unsurprisingly, patients with 
PLMD indeed commonly report a non-restorative sleep, 
excessive daytime sleepiness, poor concentration and 
work performances (95). In children, delayed language 
development and behavior problems such as increased 
irritability, hyperexcitability, hyperactivity, inattention, 
aggressiveness and social withdrawal (57), oppositional 
behaviors (100), and mood disorders such as anxiety and 
depression have all been reported (99).

Paediatric PLMD commonly presents co-morbid with 
the attention deficit hyperactivity disorder (ADHD). 
It has been suggested that up to 26–64% children with 
ADHD may meet PLMD diagnosis, and reciprocally, that 
up to 91% pediatric PLMD cases meet ADHD diagnosis 
(101,102). The PLM-related sleep fragmentation similarly 
appears to be linked to the hyperactivity behavior, with 
significantly more PLMS linked to an arousal in the 
PLMD-ADHD children group compared to the PLMD 
without comorbidities (102). Overall, the consensus is that, 
in children, PLMS may trigger or worsen the symptoms 
of ADHD (103). Moreover, in vulnerable and susceptible 
children, they may increase the likelihood of nightmares, 
difficulty in sleep initiation, as well as increase the risk of 
monosymptomatic and refractory enuresis (104).

In keeping with many other sleep disorders (105), 
PLMD and RLS share bidirectional links with several 
major psychiatric and neurologic disorders (106). Both 
are commonly diagnosed sleep comorbidities in numerous 
neurologic and neurodegenerative diseases (85) including 
alpha-synucleinopathies (62), Alzheimer’s disease (107), 
multiple sclerosis (108), multiple system atrophy (109), 
corticobasal degeneration (76) and amyotrophic lateral 

Table 2 Risk factors for PLMS/PLMD

Risk factor Reference

Older age (61,73)

Drugs

Dopamine-receptor antagonists (74-76)

Lithium (10,77)

Antidepressant (SSRIs, TCA, SNRIs) (10,61,77,78)

Hypnotics (79)

Anticonvulsants (77)

Other conditions

Restless legs syndrome (61,73,80)

Heart disease (79,81)

Musculoskeletal disease (79)

Narcolepy with cataplexy (79)

Chronic kidney disease (61,81,82)

Pregnancy (83)

Magnesium deficiency (84)

Neuropsychiatric and neurodegenerative 
disorders

(85)

Iron deficiency (86-88)

Diabetes (61,89)

Increased caffeine consumption (≥ six cups/day) (79)

Stress (79)

Snoring (79)

Habits

Physical inactivity (89,90)

High BMI (61,89,90)

Doing physical activities close to bedtime (79)

Being a shift or night worker (79)

PLMS, periodic limb movements during sleep; PLMD, periodic 
limb movement disorder; SSRIs, selective-serotonin reuptake 
inhibitors; TCA, tricyclic anti-depressants; SNRIs, serotonin and 
norepinephrine reuptake inhibitors; BMI, body mass index. 
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sclerosis (110), spinal cord injury (111), Gilles de la Tourette 
syndrome (112,113), stroke (114), and several functional 
disorders including chronic pain (115), chronic fatigue (116)  
and fibromyalgia (117). However, the mechanisms 
underlying those links are far from clear (118). Several 
studies have illustrated structural and functional alterations 
in distinct brain regions of the patients, with similar areas 
reported in animal models with RLS/PLMD, but no 
unifying mechanism has yet been identified (119).

A recent retrospective longitudinal study, conducted 
using the national health insurance research database in 
Taiwan, reported four major findings: (I) sleep-related 
movement disorders increased the risk of developing all-
cause dementia by four times, (II) patients aged 45–64 
years had higher associated risk, (III) women were more 
susceptible than men and (IV) dementia risk was time-
dependent and increased progressively over time (107). 
In keeping, frequent PLMS have also been independently 
associated with cognitive decline, with largest effects on the 
cognitive domain of executive function among older men, 
even in the absence of an overt diagnosis of dementia (120). 
In the same vein, prevalence studies of PLMS in Parkinson’s 
disease (PD) confirm an increased prevalence of PLMD in 
PD (121,122). Limited pathophysiologic evidence suggests 
nigrostriatal degeneration, along with a reduced striatal 
dopamine transporter binding in PD patients with PLMS, 
as a shared pathophysiological basis for both disorders (123).

A small number of studies have over the years examined 
the link between PLMS and other neurologic disorders, and 
the links with multiple sclerosis have been amongst those 
most studied. MS patients with PLMS have been shown 
to have a significantly higher disability (124). Prevalence 
of 32.5%, of increased PLMI >15/h has been suggested 
in one study of MS patients (125). A disinhibition of the 
lower spinal network due to cervical or supraspinal MS 
lesions has been proposed as one of the possible underlying 
mechanisms (125). Yet another study suggested a 12% 
prevalence of PLMI >21/h in patient with MS (126). 
Critically, patients with MS may experience PLMS during 
REM, which arguably may explain a greater likelihood of 
disability noted (124).

The data linking adult PLMD and psychiatric disorders 
is potentially even more conflicting. For example, in a 
recent cross-sectional study of idiopathic RLS patients, 
presence of PLMS did not reflect on quality of life (127). 
In addition, lack of PLMS was found to be associated with 
significantly higher depression and anxiety among RLS 
patients, and RLS patients without PLMS had distinct PSG 

parameters such as lower total arousal index, longer latency 
to REM, and a higher spontaneous arousal frequency than 
RLS patients with PLMS (127). The authors argued that 
high prevalence of RLS without PLMS in their carefully 
characterized clinical sample questions the presumed shared 
pathomechanism between RLS and PLMS for a substantial 
portion of RLS patients. Moreover, the authors of the 
study argued that their findings may be taken to suggest 
separate neuromechanisms at play. Another distinct finding 
in this study was the high prevalence (65.1%) of clinically 
significant depression in the RLS patients who did not have 
co-morbid PLMS (127). Previous reports also go some 
way to support this notion, with patients with RLS and 
without PLMS reported to have higher rates of psychiatric 
comorbidities and higher risk for clinical depression 
(127,128). Of note, patients with RLS without PLMS have 
been shown to be treatment-resistant to dopaminergic 
therapy (128). Interestingly, another Korean study reported 
significantly more severe anxiety and depressive symptoms 
in RLS patients with lower PLMI (129). In keeping, 
another study that compared neuropsychiatric symptoms 
in patients with PLMD to those with RLS highlighted a 
higher psychosomatic burden in the RLS patients (130). In 
this study, RLS patients also showed a higher somatization 
burden (130). Future prospective studies should closely 
examine whether PLMS status has any bearing on the pain-
depression-anxiety relationship in RLS, and whether it 
independently predisposes for any distinct neurologic or 
psychiatric phenotype. 

Risk factors 

Amongst recognized risk factors (Table 2), age, male gender 
and RLS have all been recorded as independent risk 
factors for PLMS in adults (PLMI >15/h) in community-
based studies (61,73,80). The impact of lifestyle-related 
factors on PLMS exacerbation, on the other hand, 
remains controversial. Physical inactivity has been linked 
to higher PLMI and vice versa (89,90). Moreover, two 
small-scale studies in PLMD patients reported a reduction 
in PLMI following a single session of maximum effort 
physical training (131,132) and an increase in β-endorphin  
values (132). Such studies suggest the involvement of 
the opioid system, albeit large-scale epidemiologic and 
intervention studies are needed. Data on smoking habit and 
PLMS remain controversial (133). 

Several psychotropic medications have been linked to 
PLMI above 15 events per hour (78). For example, whilst 
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dopamine-receptor antagonists, anticonvulsants, and 
lithium can potentially precipitate PLMS symptoms, it is 
typically the antidepressants, including selective-serotonin 
reuptake inhibitors (SSRIs; including sertraline), tricyclic 
anti-depressants (TCA; e.g., amitriptyline), and serotonin 
and norepinephrine reuptake inhibitors (SNRIs; e.g., 
venlafaxine and mirtazapine) which have been linked to 
pharmacologically induced PLMs (77). However, several 
antidepressants have been identified that do not appear to 
precipitate PLMs and are hence clinically recommended 
in affected or vulnerable patients, namely trazodone, 
bupropion (134), nefazodone and doxepin (10,135).

Serum ferritin has been the focus of several studies with 
controversial results likely reflecting different phenotypes 
(89,136). However, iron supplementation remains a part 
of the treatment pathway in patients with RLS/PLMD 
and with serum ferritin levels at the lower end of normal  
range (137). Studies on magnesium (Mg++) and PLMS are 
rare, with one community based study supporting low levels 
as an independent determinant of PLMI >15/h, and a small 
interventional study showing reduction in the PLMI in 
patients with RLS or insomnia (84).

Chronic kidney disease (CKD) and renal failure have 
been similarly linked with RLS and PLMS (81,82). Diabetes 
has also been reported as potential risk factors for PLMI 
>15/h, however, this relationship weakens when adjusting for 
other confounding factors is done (61,89). Although PLMS 
and obstructive sleep apnea (OSA) may commonly coexist, 
community-based studies have to date failed to detect any 
overt relationship between PLMI and AHI (61,80).

Pathomechanisms 

The mechanistic framework that underlies PLMS 
pathophysiology and aetiology is far from clearly defined. 
Over the years, three major anatomical loci have been 
similarly fervently argued as the potential locus minoris 
resistentiae: a neocortical, subcortical and the spinal cord. 
The hyperexcitability of spinal flexor pathways, especially 
during NREM sleep, could arguably link to increased 
PLMS, with dopamine deficiency triggering these pathways 
in some susceptible individuals (1). Nonetheless, EEG, 
autonomic and sympathetic cortical activations following 
PLMS are a well-established finding. However, the data on 
whether similar activations reliably precede all the PLMS 
remains contradictory. Post PLMS cortical activation has 
been reported in the alpha and beta EEG bands, with 
increased heart rate and systolic and diastolic blood pressure 

too (138-140). Other studies have shown an increase in 
EEG activity in the delta band and HR seconds before 
the leg movement (141-143). Conversely, these findings 
have been taken by some clinicians to suggest that the 
PLMS are simply the motor manifestation of an increased 
sympathetic/autonomic status. Interestingly, when cortical 
arousals and PLMS are iatrogenically disconnected by 
benzodiazepine intake, this minimizes the EEG activation 
but it does not appear to affect the PLMS (144,145). 
Conversely, dopamine agonists have been reported to have 
the opposite effect (144,145). Two distinctive underlying 
pathomechanisms have been argued in that background: a 
pure motor, and possible originating in the spinal cord, and 
a more cortical-subcortical interplay. In putative support 
of the latter hypothesis, it has been shown that the PLMS 
rhythmicity appears tightly linked to the microarchitecture 
of sleep, and its CAP periodicity, not dissimilarly to the 
apnoeic/hypopneic events in OSA (146). Moreover, PLMS 
are rarely recorded during the B phase of CAP, a period of 
a low EEG activation which does not appear to support the 
emergence of PLMS, which are instead typically confined 
to CAP’s A phases. 

PLMS are, however, less stereotyped than previously 
believed, with individual variations recorded widely in 
motor patterns, muscle sequence activation and the groups 
of muscles involved (17,147). PLMS commonly occur 
either on one leg or they can as easily alternate between 
the two limbs (10). According to the EMG activity the 
distinct motor patterns in PLMS may include: (I) tonic 
activity lasting several hundreds of milliseconds followed 
by myoclonic activity, (II) an initial myoclonic jerk followed 
by tonic activity, (III) several clusters of myoclonic jerks 
sometimes followed by tonic activity (148).

Typically, PLMS are most prominent in the tibialis 
anterior (TA) muscle (75%) and therefore are primarily 
recorded there during clinical investigations (96). Other 
activated muscle groups include gastrocnemius (60%), 
biceps femoris (55%), and rectus femoris (40%) (149), 
and less frequently their antagonistic muscles groups (21). 
Upper limb muscles are infrequently involved, and axial 
muscles even less frequently (18). On EMG, 53% of the 
PLMS initiate in the TA, 18% in the gastrocnemius, 13% 
in the biceps femoris and 7% in the rectus femoris muscle 
groups respectively (149). Several groups have argued 
that based on this anatomical distribution, TA muscle 
activity likely falls under the category of “central pattern 
generators” (CPG), and that this spread of PLMS activity 
may reflect a subcortical origin of PLMS. Furthermore, 
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it has been argued that this asynchronous activations of 
the leg muscles with partially or totally disconnected 
supratentorial and spinal structures (39,150,151) may 
theoretically suggest the possibility of two distinctly 
independent spinal pattern generators (one on either side 
of the body) which integrate to form a more complex 
mechanism, sharing anatomical as well as functional 
pathways. Accordingly, multiple supraspinal mechanisms 
that can work in a coordinated manner have been identified 
thus far (152). The descending supraspinal mechanisms 
have further been implicated in modulating PLMS, which 
according to this hypothesis, could initially arise from the 
brainstem reticular system (7). An indirect evidence from a 
transcranial direct-current stimulation (tDCS) study in RLS 
patients suggest that the periodicity of PLMS arises due to 
spinal motor and brainstem hyperexcitability (153). Some 
imaging studies, on the other hand, have been potentially 
taken to implicate the role of the sympathetic nervous 
system and the red nucleus of the brain stem in triggering 
PLMS (154). Synchronization of large-scale cortical 
motor neurocircuitry comprising pericentral, dorsolateral, 
prefrontal and cingulate regions of the brain has been 
recorded in delta band prior to motor demonstration of 
PLMS (155). In addition, activity in those areas and the 
default mode network, appeared significantly associated 
with PLMI severity scores (155).

Iron, dopamine and glutamate

The role for iron deficiency in the pathophysiological 
processes of RLS is recognized (88). 25% of RLS patients 
suffer with iron deficiency (86), and 43% of iron deficient 
patients experience symptoms of leg restlessness (87). 
Moreover, RLS symptom severity is associated with low-
normal range of serum ferritin (156). Conversely, the role 
of iron deficiency in PLMs without RLS remains largely 
unexplored, despite its well-established role in RLS with 
PLMS (157).

Similarly, considerable pharmacological and clinical 
evidence supports dopamine system dysfunction as critical 
in RLS pathophysiology (158). It is well-established that 
RLS symptoms improve when patients are administered 
dopaminergic medications (159), but can also experience 
worsening of their symptoms (augmentation effect) at a rate 
of 8% per year on treatment (160,161). Dopamine agonists 
need to cross the blood brain barrier in order to alleviate 
RLS symptoms suggesting that dopamine plays a central 
role in RLS pathophysiology (162). Moreover, iron is a co-

factor of tyrosine hydroxylase, a rate limiting step enzyme 
involved in the conversion of levodopa to dopamine in the 
brain (163). Thus, inadequate iron supply to the brain can 
alter dopaminergic signaling in the brain (157). Animal 
studies report a decrease in extracellular dopamine levels, 
of its D1, D2 receptors, and of the dopamine-transporter 
density in the striatum of iron-deficient rodents (164).  
Furthermore, neurodevelopmental studies reveal short- 
and long-term alterations associated with neonatal iron 
deficiency, leading to major biological alterations in 
dopamine pathways (165). For instance, impaired dopamine 
function in the nigrostriatal pathway may result in poorer 
motor sequencing during tests (166). Dopaminergic A11 
cells are located in the midbrain, and they are the sole 
source of dopamine in the spinal cord via long and diffuse 
axonal projections (167) that cross over from the dorsal 
horn into the motor neuronal junction (157,168). Reduced 
drive or damage of this system, as evidenced by stereotaxic 
bilateral 6-hydroxydopamine lesion in animal studies, can 
cause changes consistent with RLS (169).

Of note, in animal studies, opioid treatment and an 
intact endogenous opioid system have been shown to have 
a neuroprotective effect on the dopaminergic cells in cases 
of iron deficiency (170), suggesting a new set of molecular 
pathways for newer therapies.

Thalamic glutamatergic hyperactivity has also been 
recently associated with both RLS and PLMS (171,172). 
This pathomechanism may underlie the clinical benefit 
that the RLS and PLMD patients receive from the a-2-δ 
anticonvulsants (e.g., pregabaline and gabapentine), with 
more significant effects on the quality of sleep, than on 
the reduction of PLMI (173). The link between all three 
systems has been suggested by the findings in iron deficient 
animal models where an increased glutamate activity has 
been demonstrated in several brain regions (174,175). 

Genetics 

Familial cases of early-onset RLS and PLMS have 
been identified (Table 3), with heritability greater than 
60% (189,190). Genetic linkage studies in familial RLS 
identified several chromosomal loci (179), namely-RLS1 
on chromosome 12q discovered in a French-Canadian 
family (177), RLS2 on Chr14q observed in an Italian 
family (176), RLS3 on Chr9p in 15 extended American 
families (178), RLS4 ON Chr2q and RLS5 on Chr20p (180)  
respectively. These transmissions are autosomal dominant 
with incomplete penetrance (191). Additionally, high 
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Table 3 Genetic causes of RLS and PLMS

Gene/gene locus Function Reference

Familial

RLS1 (autosomal recessive) – (176-180)

RLS2, RLS3, RLS4, RLS5 (autosomal 
dominant, incomplete penetrance)

Sporadic

MEIS1 Motor neuron development (80,157,181-187)

Iron metabolism

BTBD9 regulation

BTBD9 Regulation of brain dopamine levels

Dopamine biosynthesis

Regulation of IRP2

Embryonic limb development and neuronal development

MAP2K5/SKOR1 Development of the dorsal horn of sensory pathways

Neuroprotection of dopaminergic neurons

PTPRD Axon guidance and termination of motor neurons

TOX3/BC034767 Mediating calcium-dependent transcription in neurons (186,188)

RLS, restless legs syndrome; PLMS, periodic limb movements during sleep.

concordance has been reported in monozygotic twins 
(169,192). 

Genome wide association studies (GWAS) have similarly 
identified four susceptibility candidate genes and single 
nucleotide polymorphisms (SNPs) strongly associated with 
PLMS, namely: rs12469063 and rs2300478 of MEIS1, 
rs3923809 and rs9357271 of BTBD9, rs6494696 of MAP2K5/
SKOR1 (80,187) and TOX3/BC034767 on chromosome 
16q12.1 (Figure 1) (194,195). Each genetic variant carries an 
increased risk of up to 50% in RLS (187). These genes have 
been suggested to play role in embryonic limb development 
and neuronal development (162). For example, MEIS1 
gene (chromosome 2p14) is involved in regulatory network 
crucial for motor neuron development, and it is expressed 
in substantia nigra (196). On the other hand, each risk 
allele of BTBD9 (chromosome 6p21.2) has been associated 
with a 13% decrease in ferritin levels, a known risk factor 
for RLS (195). Moreover, SKOR1 gene, previously called 
LBXCOR1 has been suggested to play the role in regulation 
of development of the dorsal horn of sensory pathways (191).  
Additionally, two SNPs have been expressed in the rs1975197 
of Protein Tyrosine Phosphate, Receptor type, D (PTPRD) 
gene (chromosome 9p24.1-p23), which is involved in 
neuronal development (194). In the Wisconsin sleep cohort 

(WSC), the most prominent genetic associations were 
established in TOX3/BC034767, MEIS1 and BTBD9 with 
both RLS and PLMs (197). Moreover, MEIS1 SNPs were 
most strongly linked with PLMs in the absence of RLS (80). 
In RLS patients autopsy studies, the MEIS1 gene was also 
found to be associated with increased thalamic expression 
of H-ferritin, L-ferritin and divalent metal transporter-
1RNA (181), which suggested that MEIS1 mutant alleles 
predisposed patients to iron deficient conditions.

Similarly, another study has reported that blocked 
MEIS1 mRNA expression leads to increased transferrin-2 
receptor, ferroprotein mRNA and BTBD9 gene expression, 
while hepcidin mRNA expression decreased after 48 hours, 
thereby inferring the role of MEIS1 gene in controlling 
intracellular iron transfer to mitochondria, extracellular iron 
export and potential effects on the BTBD9 gene expression 
and its function in the downregulation of iron (184). While 
MEIS1 regulates iron homeostasis, BTBD9 was observed 
to significantly reduce brain dopamine levels and led 
to an abnormal sleep pattern in mutant flies (182). The 
BTBD9 gene modulates transcription of ion conductance, 
cytoskeletal arrangement and protein ubiquitination and 
it enhances activity in rat striatum, a part of basal ganglia 
involved in voluntary movement in addition to largely 

https://www.ncbi.nlm.nih.gov/nuccore/BC034767
https://www.ncbi.nlm.nih.gov/nuccore/BC034767
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SKOR1 
Probe: CUST 1206 P1416379584

BTBD9 
Probe: A 24 P85169

MEIS1 
Probe: A 24 P319736 

Hip Cb

Figure 1 Genes associated with PLMS. Levels of gene expression for SKOR1, BTBD9 and MEIS1 across different anatomical regions of 
the human brain as heatmaps or as drawings are shown. SKOR1 and MEIS show highest expression in the Cb, while BTBD9 shows highest 
expression in hippocampal regions (Hip). Donor H0351.1016; adapted and data available from Human Brain Atlas of Allen Institute (193). 
Amg, amygdala; BG, basal ganglia; Cb, cerebellum; ET, epithalamus; FL, frontal lobe; HiF, hippocampal formation; Hy, hypothalamus; 
INS, insula; MES, mesencephalon; MET, metencephalon; Mid, midbrain; MY, myelencephalon; OL, occipital lobe; Pons, pons; PL, parietal 
lobe; TH, thalamus; TL, temporal lobe; PLMS, periodic limb movements during sleep. 

comprising of dopaminergic neurons containing both D1 
and D2 receptors (157). A study reported under expression 
of this gene causes hyperactivity and hyperexcitability in the 
calcium-gated dopaminergic neurons in striatum (198).

In summary, clinical implications and diverse phenotypes 
of PLMS are increasingly recognized. Several computerized 
and data-driven assessment techniques have been proposed 
to facilitate the analysis of intrinsic periodicity of PLM 
during both sleep and wakefulness. However, their 
phenotype and presentations vary vastly, across age and 
co-morbid clinical conditions. These motor patterns 
are influenced not just by their intrinsic regulatory and 
oscillatory mechanisms, but also neurophysiological co-
factors- dopamine and iron. Furthermore, sensory inputs 
can alter the activity of these intrinsic motor pattern 
generators and fluctuations in iron and dopamine reportedly 

cause significant exacerbations of symptoms.
Their links with major neurologic and psychiatric 

disorders remain controversial. In the future, prospective, 
multimodal imaging clinical studies should help delineate 
differential responses to treatment in RLS without PLMS 
and PLMS without RLS. This could pave a way toward 
identification of potential divergent biological pathways and 
the important new treatment modalities. 
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