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Abstract

The understanding of the transient behavior of natural convection boundary

layer on a heated vertical solid surface is crucial for numerous applications. In

this study, scaling analysis is performed to derive the scaling laws for the major

parameters that characterize the transient behavior of natural convection boundary

layer of a Prandtl number larger than 1 fluid on a vertical solid surface subject

to a sinusoidal heating flux in a linearly-stratified ambient. It is found that the

developed scaling laws are in good agreement with the direct numerical simulation

results over wide ranges of Prandtl number, stratification parameter, and frequency

of the sinusoidal heat flux.

Key words: Natural convection boundary layer; scaling; stratification; time-dependent

heat flux
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1 Introduction

The natural convection boundary-layer (abbreviated as ‘NCBL’ hereafter) flow on a

heated vertical solid surface is the main mechanism for numerous practical applications,

particularly in solar thermal technologies where many products and applications oper-

ate with this mechanism [1]. For example, it is this mechanism which drives air in the

channels, like the Trombe wall in a solar house [2], the air flow channel in a solar air

collector [3], the glazing and the absorbing wall in a solar chimney [4, 5], etc., to be

heated by the absorbed solar radiation for heating and ventilation purposes. Because

of this practical application importance and its fundamental significance, this topic has

been extensively explored (see, e.g. [6]). Nevertheless, the research has been mostly on

the scenarios where the applied temperature or heat flux on the vertical solid surface is

uniformly constant or spatially altered but without temporal variation [7–15].

In practical applications, particularly in solar thermal technologies, the heating is time-

varying as the solar radiation on surfaces is nearly sinusoidal [1]. Nevertheless, presently

there have been very limited investigations on the unsteady NCBL flow on a vertical solid

surface heated by a heat flux or temperature which changes with time [11, 16–18].

We obtained, through a thorough scaling analysis, the scalings for the key variables

which characterize the behavior of unsteady NCBL flow of a homogenous Pr > 1 fluid on a

vertical solid surface subject to sinusoidal heat flux [11]. These variables include the wall

temperature, the temperature boundary-layer (abbreviated as ‘TBL’ hereafter) thickness,

the velocity boundary-layer (abbreviated as ‘VBL’ hereafter) thickness, the maximum

vertical velocity within the VBL, the Nusselt number, and the corresponding time scales

typifying the various flow development stages. These scaling predict quantitatively the

associated variations of the variables with the changes of the control parameters of NCBL

flow, which include the Rayleigh number (Ra), Prandtl number (Pr), frequency of the

time-varying heating flux or temperature, and stratification parameter of the ambient

fluid. They were validated by numerical results obtained over large ranges of the control

parameters. Scaling analysis has been shown to be a very efficacious and convenient

analytical approach to develop scalings for the variables describing the unsteady NCBL

behavior [19]. It has been extensively used to develop scalings for various NCBL flows

with different configurations and under widely varied conditions (see, i.e., [11,14,20], for
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a summary of some studies). Its ever-growing popularity in NCBL flow studies has been

well evidenced by some recent studies (e.g., [13, 14, 21–27]).

We extended our study [11] to the case under the time-dependent sinusoidal tem-

perature heating condition [16] by conducting a similar scaling analysis to develop the

corresponding scalings, which were also well verified by numerical results. In the past

several years, we had continued the studies using similar scaling analysis and numerical

simulations to derive various scaling laws for the unsteady NCBL flow under the sinu-

soidal heat flux or temperature for Pr > 1 fluid and Pr <1 fluid in both homogeneous

and stratified ambient fluids [28–30]. There are also some other recent studies on the

unsteady NCBL flow behavior subject to different time-dependent sinusoidal temperature

or heat flux for Newtonian and non-Newtonian fluids, such as [31–35]. Zhao et al. studied

the convective instability of NCBL flow during its transition to the turbulent regime by

introducing time-dependent sinusoidal temperature perturbations [17].

In the present study, the studies of [11, 16, 28, 30, 36] are extended to the unsteady

NCBL flow of a Pr> 1 fluid on a vertical solid surface subject to a sinusoidal heating

flux in a linearly-stratified ambient. The significance to investigate the Pr> 1 fluids

for the scenario considered in this study is due to their numerous occurrences in nature

and in practical applications. The most notable example is on the water thermal storage

Trombe wall in a solar house where the absorbed sinusoidal solar radiation heats the water,

which is of Pr ∼ 7.5 serving as a thermal storage medium, to form an unsteady NCBL

flow [2, 37–39]. Another example is the unsteady NCBL flow of fresh or sea water (7.2

. Pr . 13.4) on the sidearm of a reservoir or ocean which is also caused by the absorbed

sinusoidal solar radiation [40, 41]. Much higher Pr fluids have also be studied for many

practical applications involving unsteady NCBL flows, such as engine oil nanofluids (10

. Pr . 1000) [42] and glycerin and its mixtures with water (50 . Pr . 10000) [43–45].

2 Scaling analysis

In the present study we consider the physical scenario when the right-hand side of a

semi-infinite, thickness vertical solid surface is in a Newtonian ambient fluid with Pr > 1

which is linearly-stratified, while its left-hand side surface is heated fully and uniformly
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by a sinusoidal heat flux. It is assumed that the unsteady NCBL flow formed along the

right-hand side of the solid surface is laminar and two-dimensional. The stratified ambient

fluid is initially stationary and at the constant temperature gradient T Y = dT/dY ∗ in the

vertical direction. The heat flux applied to the solid surface, which changes sinusoidally

with time, is represented by T 0
X(t) = −ϕwmsin(2πft). It is assumed that both ϕwm and

f are fixed at a respective value for a particular sinusoidal heat flux scenario considered.

The solid surface is located at X∗ = 0. The origin is at Y ∗ = 0, and X∗ and Y ∗ are

positive in the right and upward directions, respectively.

The governing equations for the unsteady NCBL flow are as follow, with the Boussinesq

approximation for buoyancy in the Y ∗ momentum equation,

∂u∗

∂X∗ +
∂v∗

∂Y ∗ = 0, (1)

∂u∗

∂t
+ u∗ ∂u

∗

∂X∗ + v∗
∂u∗

∂Y ∗ = −1

ρ

∂P ∗

∂X∗ + ν

(
∂2u∗

∂X∗2 +
∂2u∗

∂Y ∗2

)
, (2)

∂v∗

∂t
+ u∗ ∂v

∗

∂X∗ + v∗
∂v∗

∂Y ∗ = −1

ρ

∂P ∗

∂Y ∗ + ν

(
∂2v∗

∂X∗2 +
∂2v∗

∂Y ∗2

)
+ gβT, (3)

∂T

∂t
+ u∗ ∂T

∂X∗ + v∗
∂T

∂Y ∗ + v∗T Y = α

(
∂2T

∂X∗2 +
∂2T

∂Y ∗2

)
. (4)

For the unsteady NCBL flow considered, the control parameters are Pr, s, and fn, as

defined below

Pr = ν

α
, s =

T Y

ϕw

, fn =
f

Vc/Lc

=
0.5/tht
Vc/Lc

=
0.5

τht
, (5)

where ϕw is calculated by

ϕw =
1

tht

∫ tht

0

ϕwmsin(2πft)dt =
2

π
ϕwm. (6)

In accordance with the clear sky solar radiation model [1], only the heating part is con-

sidered in this paper, thus 2πftht = π, so f = 0.5/tht which leads to fn = 0.5/τht.

Nevertheless, the scaling laws developed in the present study are widely applicable for

many other situations in addition to the unsteady NCBL cases caused by the sinusoidal

solar radiation.

Figure 1 depicts the direct numerical simulation (DNS) results of the typical develop-

ment of δT with time at height y = 70 for the case of s = 1, Pr = 10 and fn = 0.025 (DNS

run 2, as be described in the next section), where δT is the non-dimensional TBL thick-

ness non-dimensionalized by Lc. In the DNS, δT is defined as the distance between the
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Figure 1: Time series of δT at y = 70 in Run 2: (a) in linear-linear plot and (b) in log-log

plot, and (c) δT scaled by δ̂T,s and τ scaled by τ̂T,s, where δ̂T,s and τ̂T,s are the scalings for

δT,s and τT,s, respectively.
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right-hand side of the solid surface and the position where the temperature at y becomes

to be 5% of the solid surface temperature at this y value. This figure shows that the

boundary layer (abbreviated as ‘BL’ hereafter) undergoes three distinctive development

stages; a start-up stage (abbreviated as ‘SUS’ hereafter) during which δT increases very

quickly, followed by a transitional stage where the increase of δT is at a rate which is very

small and continually reduces until zero, and thereafter, a quasi steady stage (abbreviated

as ‘QSS’ hereafter) where δT is essentially constant (δT = 1.927 for Run 2 considered).

When Pr, s and fn vary, the durations of these stage change notably, as will be described

in Section 3. For the current DNS run considered, the duration of the SUS is very short

(about dimensionless time duration of 1, where time is non-dimensionalized by Lc/Vc),

the transitional stage is relatively long (from about 1 to 4), and the QSS is very long

(from about 4 to the end of the heating cycle (20)).

For the cases considered in this paper, there are four major parameters to characterize

the BL behavior, i.e., the TBL thickness (∆T , which is the dimensional form of δT ), inner

VBL thickness (∆vi), maximum vertical velocity within the VBL (V ∗
m) which occurs at

X∗ = ∆vi, and the solid surface temperature (Tw). The scaling laws for these characteristic

parameters at the SUP and QSS will be obtained in the subsequent scaling analysis

whereas the scaling laws at the transitional stage cannot be developed.

We follow the same procedure as taken by us in the past studies on the unsteady NCBL

flows with different heating conditions and configurations, in particular that in [11,16,28,

29, 36]. Some details in the following scaling analysis are therefore not repeated as they

can be found in these past studies.

For the unsteady NCBL flow of a Pr > 1 fluid with a background stratification on a

vertical solid surface subjected to a constant heat flux ϕw, Armfield, Patterson & Lin [36]

conducted a scaling analysis to provide the scaling laws for ∆T , Tw and V ∗
m at the SUS as

follows,

∆T ∼ α1/2t1/2, (7)

Tw ∼ T 0
X∆T ∼ ϕwα

1/2t1/2, (8)

V ∗
m ∼ gβϕwν

1/2t3/2

Pr3/2
. (9)

The scaling for ∆T is also applicable for ∆vi at the SUS, i.e.,

∆vi ∼ α1/2t1/2. (10)
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For the present situation considered, i.e., when the sinusoidal time-varying flux is

evenly imposed on the solid surface, the scaling laws for ∆T and ∆vi at the SUS will be

the same as that in the constant heat flux situation, i.e., their scalings are still Eq. (7)

and Eq. (10), respectively; however, the scalings for Tw and V ∗
m must be revised as follows

to account for the sinusoidal flux by replacing ϕw in their scaling laws Eq. (8) and Eq. (9)

with ϕw(t) = ϕwmsin(2πft) ∼ ϕwsin(2πft),

Tw ∼ ϕwsin(2πft)α
1/2t1/2, (11)

V ∗
m ∼ gβϕwsin(2πft)ν

1/2t3/2

Pr3/2
. (12)

At the time scale ts, the SUS of the BL development terminates and the QSS com-

mences. When the imposed flux is fixed, Armfield et al. [36] developed the following

scaling for ts at the height not very close to Y ∗ = 0,

ts ∼
(

Pr
gβsϕw

)1/2

. (13)

At this time, from Eqs. (7)-(10), the corresponding scalings for ∆T , Tw, V ∗
m, and ∆vi are

as follows,

∆T,s ∼ α1/2t1/2s ∼
(

αν

gβsϕw

)1/4

, (14)

Tw,s ∼ T 0
X∆T,s ∼ ϕw

(
αν

gβsϕw

)1/4

, (15)

V ∗
m,s ∼

gβϕwν
1/2t

3/2
s

Pr3/2
∼ ϕw

(
gβ

ν

)1/4(
α

sϕw

)3/4

, (16)

∆vi,s ∼ α1/2t1/2s ∼
(

αν

gβsϕw

)1/4

, (17)

where ∆T,s, Tw,s, V ∗
m,s, and ∆vi,s are the scales for ∆T , Tw, V ∗

m, and ∆vi,s at ts, i.e., they

represent the scales for ∆T , Tw, V ∗
m, and ∆vi,s at the end of the SUS as well as at the

QSS.

In the present study with the sinusoidal time-varying heat flux the above scaling laws

for ∆T,s and ∆vi,s are still Eq. (14) and Eq. (17), respectively, similar to that at the SUS;

however, similarly the above scaling laws for Tw,s and V ∗
m,s must be revised as follows by

replacing ϕw in their scalings with ϕw(t) ∼ ϕwsin(2πft),

Tw,s ∼ ϕwsin(2πft)

(
αν

sgβϕw

)1/4

, (18)
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V ∗
m,s ∼ ϕwsin(2πft)

(
gβ

ν

)1/4(
α

sϕw

)3/4

, (19)

An inspection of these scaling laws informs that when for Y ∗ ≫ 0, the BL development

is one-dimensional and does not depend on Y . However, when Y ∗ is very small, the BL

development will act in the same way as that when the ambient fluid is not stratified

[11,36,46], which is two-dimensional and depends on Y ∗, as elaborated in detail in [28,36].

However, as this paper focuses on Y ∗ not very close 0 (i.e., the one-dimensional flow

regime), the two-dimensional BL development behavior at very small Y ∗ values will not

be elaborated further.

The obtained scaling laws, which are in dimensional forms, can be non-dimensionalized

by their respective characteristic scales typifying the unsteady NCBL flow. It is appro-

priate, from Eq. (14) and Eq. (16), to choose

Lc =

(
αν

gβsϕw

)1/4

, (20)

and

Vc = ϕw

(
gβ

ν

)1/4(
α

sϕw

)3/4

, (21)

as the characteristic length and velocity scales, and Lc/Vc and ϕwLc as the characteristic

time and temperature scales, respectively. With Lc, Vc, Lc/Vc and ϕwLc, the above scaling

laws for the present sinusoidal heat flux scenario can be non-dimensionalized as shown

below.

At the SUS, Eqs. (7)-(10) are made dimensionless as follows,

δT =
∆T

Lc

∼ s1/2τ 1/2, (22)

θw =
Tw

ϕwLc

∼ sin(2πfnτ)s
1/2τ 1/2, (23)

vm =
V ∗
m

Vc

∼ sin(2πfnτ)s
3/2τ 3/2, (24)

δvi =
∆vi

Lc

∼ s1/2τ 1/2, (25)

Thess dimensionless scaling laws (22)-(25) are only applicable for τ < τs. From Eq. (13),

the scaling law for the dimensionless time scale, τs, is as follows,

τs =
ts

(Lc/Vc)
∼ 1

s
. (26)
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At the QSS (i.e., at τs), the scaling laws (14), (18), (19), and (17) can be made

dimensionless as follows,

δT,s =
∆T,s

Lc

∼ 1, (27)

θw,s =
Tw,s

ϕwLc

∼ sin(2πfnτs), (28)

vm,s =
V ∗
m,s

Vc

∼ sin(2πfnτs), (29)

δvi,s =
∆vi,s

Lc

∼ 1. (30)

3 Numerical validation of the scalings

The scaling laws obtained above are assessed and validated numerically with DNS runs.

To examine the roles of Pr, s and fn in the scaling laws, a total of 14 DNS runs were

carried out, with detains of these runs presented in Table 1; five (Runs 1-5) are at varying

Pr over 5 ≤ Pr ≤ 100 with fixed s = 1 and fn = 0.025 to show the Pr dependence; six

(Runs 2 and 6-10) are for the variation of s in the range of 0.2 ≤ s ≤ 20 at Pr = 10 and

fn = 0.025 to show the s dependence; and five (Runs 2 and 11-14) are for the variation of

fn over 0.005 ≤ fn ≤ 0.1 at fixed s = 1 and Pr = 10 to illustrate the fn dependence. As

the scaling laws are developed assuming Pr ≫ 1, the minimum value of Pr selected is 5.

It should be noted that the selected ranges of Pr, fn and s cover a wide range of practical

application scenarios. For example, for the case of the water thermal storage Trombe wall

in a solar house, one of the commonly used materials for the absorbing plate, which is the

vertical wall of the water storage tank where the absorbed solar radiation is transferred

into the tank to heat the water through conduction and natural convection, is stainless

steel which has the thermal conductivity of about 15 W/(m·K) [47]. With the thermal

properties of water at 30 oC being ρ = 996 kg/m3 (density), β = 3× 10−4 1/K (thermal

expansion coefficient), Pr = 5.4, and ν = 8×10−5 m2/s [47], respectively, if it is assumed

that s = 1 and the typical average solar radiation absorbed by the plate is 500 W/m2 [1],

which gives ϕw = 33.3 K/m, the characteristic velocity of the NCBL flow on the plate is

on the order of 0.0014 m/s from Eq. (21) and for the vertical plate of the length of 1 m,

the corresponding half period of the sinusoidal heat flux (the heating period of time) is

on the order of 19.66 hours, 9.83 hours, 3.93 hours and 1.97 hours for fn = 0.005, 0.01,

10



Table 1: Values of Pr, s, fn, τht, τT,s, and τvi,s for the 14 DNS runs.

Run s Pr fn τht τT,s τvi,s

1 1 5 0.025 20 1.065 1.641

2 1 10 0.025 20 1.065 1.243

3 1 20 0.025 20 1.067 0.962

4 1 50 0.025 20 1.067 0.709

5 1 100 0.025 20 1.067 0.579

6 0.2 10 0.025 20 5.325 6.216

7 0.5 10 0.025 20 2.130 2.248

8 5 10 0.025 20 0.213 0.248

9 10 10 0.025 20 0.109 0.124

10 20 10 0.025 20 0.053 0.062

11 1 10 0.005 100 1.065 1.244

12 1 10 0.01 50 1.065 1.243

13 1 10 0.05 10 1.065 1.243

14 1 10 0.1 5 1.065 1.243

0.025, and 0.05, respectively, while for the plate length of 2 m, these values change to

39.32 hours, 19.66 hours, 7.86 hours, and 3.93 hours for fn = 0.005, 0.01, 0.025, and 0.05,

respectively, and when the plate length becomes 0.5 m, these values change to 9.83 hours,

4.91 hours, 1.97 hours, and 0.98 hours for fn = 0.005, 0.01, 0.025, and 0.05, respectively.

All these are applicable for practical applications. As s, heat flux and materials for the

plate and the fluid can vary substantially, the range of 0.005 ≤ fn ≤ 0.1 is therefore able

to cover a wide range of practical application scenarios.

All numerical simulations were conducted with our in-house code used in [11, 28, 29]

and a series of our other past studies, such as [10,36,48]. As the numerical methodology,

meshes, benchmarking of the code, etc., were detailed in those papers, particularly in

[11, 28], they will not be presented here to avoid repetition.

As discussed above, the obtained scaling laws are one-dimensional and do not depend

on y, if y ≫ 0. The two-dimensional and y dependent behavior of the BL development

is present only when y is very small, which is not the focus of the present study. The
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DNS results show that for all runs the regions for the two-dimensional and y dependent

behavior are with very small y values (less than 5). Hence only the DNS results at y = 70

will be used subsequently.

3.1 Validation of the scaling laws for δT scales

As shown in Fig. 1, the development of the TBL in terms of δT undergoes three distinctive

stages; a SUS during which δT increases very quickly, followed by a transitional stage where

the increase of δT is at a rate which is very small and continually reduces until zero, and

thereafter, a QSS where δT is essentially constant. However, as discussed above, only the

scalings at the SUS and QSS were obtained and the scaling analysis was unable to give the

scaling laws at the transitional stage. In addition, the exact times for the end of the SUS

and the transitional stage are not easily defined and thus determined. To quantitatively

validate the obtained scaling laws at the SUS and QSS with the DNS results, it will

appropriate to just assume that the BL development consists of the SUS and QSS, i.e., τs
is used as the time scale for both the end of the SUS and the commencement of the QSS.

The determination of this time scale τT,s for δT is demonstrated in Fig. 1(c). The scaling

for δT at the SUS is Eq. (22) while the scaling for δT at the QSS is Eq. (27). The scaled

time series of δT at the SUS is a straight line as shown in the figure, when δT and τ are

scaled by their respective scales δ̂T,s = 1 and τ̂T,s = 1/s based on the scalings (27) and

(26). As δT/δ̂T,s is a constant at the QSS, an appropriate way to determine τT,s for δT,s is

to find the intersection of δT/δ̂T,s against (τ/τ̂T,s)1/2 at the SUS and QSS. For Run 2, as

shown in Fig. 1(c), δT/δ̂T,s = 1.867(τ/τ̂T,s)
1/2 at the SUS and δT/δ̂T,s = 1.927 at the QSS,

which gives the intersection at τT,s = (1.927/1.867)2/s = 1.065/1 = 1.065. The values of

τT,s for all other runs considered are determined in the same way, and are presented in

Table 1.

The dependence of δT on s, Pr and fn is also clearly shown in the development of δT
with time as presented in Fig. 2. The results in Fig. 2(a-b) demonstrate that at the SUS,

s has a strong effect on δT , as the growth rate of δT with time reduces when s is increased

monotonically, but the rate of the reduction decreases gradually, meanwhile, the time to

approach the QSS reduces as well, which agrees with the scaling (26). Nevertheless, δT,s
essentially does not change when s varies at the QSS, i.e., δT,s ≈ 1.927, confirming the
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respectively.
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scaling (27). The scaling laws (22), (27), and (26) show no Pr dependence. The numerical

results in the figure verify this as there are only slight differences when δT develops over

the time, which occur at the transitional stage. Likewise, the scaling laws do not depend

on fn, which is also confirmed by the results of the figure.

The scaling laws for δT at the SUS and δT,s at the QSS as well as τT,s, i.e., Eqs. (22),

(27), and (26) can be quantitatively validated as well. Figure 2(c) contains the scaled

time series of δT . The results reveal that the scaled time series overlap each other very

well at the SUS and QSS, giving the following quantified scaling law for δT at the SUS,

δT

δ̂T,s
= 1.867

(
τ

τ̂T,s

)1/2

, (31)

which can be written as follows with δ̂T,s = 1 and τ̂T,s = 1/s,

δT = 1.867s1/2τ 1/2. (32)

This validates quantitatively the scaling law (22) for δT at the SUS. As presented in

Table 1, for all DNS runs with different Pr and fn values but the fixed s = 1, the values

of τT,s are essentially the same, i.e., τT,s = 1.065, indicating that τT,s is independent of Pr

and fn. For Runs 2 and 6-10 with varying s and the fixed Pr = 10 and fn = 0.025, the

values of τT,s are 5.325*0.2=1.065, 2.130*0.5=1.065, 0.213*5=1.065, 0.109*10=1.090, and

0.053*20=1.060 for s = 0.2, 0.5, 5, 10, and 20, respectively. These values are either at

the same value (1.065) as that for other runs or just marginally different, which validate

quantitatively the scaling (26). The results presented in Fig. 2((c)) further show this,

which give the following quantified scaling for τT,s,

τT,s =
1.065

s
. (33)

The scaling laws for θw, vm and δvi can be validated in the same way as that for θw,

as detailed below.

3.2 Validation of the scaling laws for θw scales

The development θw with time for all 14 runs are depicted in Fig. 3 to show the dependence

on s, Pr, and fn. It is noted that they largely follow the time series of the applied heat

flux. However, there are noticeable deviations at the SUS of the BL development, in the
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Figure 3: Time series θW with (a) s variation (runs 2, 6-10), all with Pr = 10 and

fn = 0.025, (b) Pr variation (runs 1-5), all with s = 1 and fn = 0.025, and (c) fn variation

(runs 2, 11-14), all with Pr = 10 and s = 1.
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profile of the time series, in the time for the peak value of θw, and in the value of θw at

the end of the heating cycle, although these deviations vary significantly for different s,

Pr and fn values. One considerable difference from δt is that θw continues to increase

after the SUS, and soon becomes essentially follow the heat flux profile, although with

a time delay which varies when s, Pr and fn change. It is observed that Pr does not

affect the time series of θw, as clearly shown in Fig. 3(b), however, both s and fn do. As

shown in Fig. 3(a), when s is small (s ≤ 1), the influence from Pr is significant; the SUS

is long, as predicted by the scaling law (26); the time series at this early stage deviates

noticeably from the applied heat flux profile; the time for θw to attain its maximum (the

time delay) is large and its maximum is smaller; and θw at the end of the heating cycle

is large. However, these deviations reduce significantly when s increases, indicating that

its effect on θw decreases, and when s ≥ 5, the time series of θw of all three large s values

overlap each other and essentially follow the applied heat flux profile, except with some

slight deviations still occurring at the SUSs which are very short as predicted by the

scaling (26), showing that the s effect is negligible when it is very large (much largen than

1). As shown in Fig. 3(c), some of the above observations on the effect of s are also true

for the effect of fn; the development θw with time also largely obeys the sinusoidal heat

flux profile, again with some deviations at the SUS, the time to reach the maximum and

the value of the maximum, as well as the value of θw at the end of the heat cycle. Such

deviations reduce when fn decreases.

At the SUS, the scaling law for θw is (23). The numerical results in Fig. 4(b) validate

this scaling law, as θw is found to increase linearly with sin(2πfnτ)s
1/2τ 1/2 for each run

at the SUS, and more importantly, such linear relations of all runs overlap very well and

collapse onto the following quantified linear relation,

θw = 1.12sin(2πfnτ)s
1/2τ 1/2. (34)

Although it is difficult to determine the time characterizing the end of the SUS which

is also the commencement time for the QSS, and the corresponding value of θw at this

time from the time series of θw as presented in Fig. 3, it is still reasonable and justifi-

able to use τT,s to approximate this time. Figure 5 presents θw at this time τT,s, i.e.,

θw,T,s, plotted against sin(2πfnτT,s)s1/2τ 1/2. It is seen that the relation between θw,T,s and
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sin(2πfnτT,s)s
1/2τ 1/2 is linear and can be quantified as follows,

θw,T,s = 1.216sin(2πfnτ)s
1/2τ 1/2, (35)

with the linear regression coefficient of R2 = 0.9999. This clearly shows that the scaling

(28) for θw,T,s is valid.

3.3 Validation of the scaling laws for vm scales

Figure 6 presents the numerically obtained results for the development of vm with time.

Compared it to Fig. 3, it is noted that the s, Pr, and fn have very similar effects on vm

to that on θw, because of the same term sin(2πfnτ) for vm at the SUS and sin(2πfnτT,s)

for vm,T,s at the end of the SUS and the beginning of the QSS, as shown in the scaling

laws (24) and (29), respectively, and thus are not repeated here.

In Fig. 7(b), the scaled development vm with time at the SUS are shown for all runs,

where the time scaled by sin(2πfnτ)s3/2τ 3/2, which is the scaling law (24) for vm at the

SUS. The results show that the relation between vm and sin(2πfnτ)s3/2τ 3/2 for each run

at the SUS is approximately linear, which validates the scaling (24), although there are

noticeable differences among runs. The results show that the majority of the runs fall

approximately onto the following quantified relation,

vm = 0.21sin(2πfnτ)s3/2τ 3/2. (36)

Similar to that for θ, it is also difficult to determine the time signifying the end of the

SUS and the commencement time for the QSS for vm, and thus the corresponding value

of vm at this time from the time series of vm as presented in Fig. 6. Again τT,s is believed

to be the approximate of this time. The numerical results depicted in Fig. 8 confirms this,

where vm at τT,s, i.e., vm,T,s is plotted against sin(2πfnτT,s). It is seen that the relation

between vm,T,s and sin(2πfnτT,s) is linear and can be quantified as follows,

vm,T,s = 0.21sin(2πfnτ), (37)

with the linear regression coefficient of R2 = 0.9988. This clearly shows that the scaling

(29) for vm,T,s is valid.
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3.4 Validation of the scaling laws for δvi scales

Figure 9 presents the raw and scaled developments of δvi with time, which clearly show

the dependence of δvi on s, Pr and fn. Figure 9(a-b) demonstrates that at the SUS, s

has a strong effect on δvi, which is very similar to that on δT as shown in Fig. 2. The

dependence of δvi on fn is also very similar to that of δT . However, different from that

for δT , Pr has an effect on δvi as the time series with varying Pr values do not overlap,

but deviate noticeably from each other, although only at the SUS, as clearly shown in the

figure. At the QSS, δvi,s is essentially the same for all runs, i.e., δvi,s ≈ 1.109, confirming

the scaling (30). The dependence of δvi on s and fn, i.e., the scaling (25) and (26), is

verified by the DNS results in Fig. 9(c), which shows that for all Pr = 10 runs, the relation

between δvi/δ̂vi,s and (τ/τ̂vi,s)
1/2 at the SUS is linear and can be quantified by the DNS

results as follows,
δvi

δ̂vi,s
= 0.996

(
τ

τ̂vi,s

)1/2

, (38)

which can be written as follows with δ̂vi,s = 1 and τ̂vi,s = 1/s,

δvi = 0.996s1/2τ 1/2. (39)

From the intersection between δvi/δ̂vi,s and (τ/τ̂vi,s)
1/2 at the SUS and QSS, it is also

found that

τvi,s =
1.243

s
, (40)

for all runs with Pr = 10, as shown in Table 1.

However, as noted above, when Pr varies, although the relation between δvi/δ̂vi,s and

(τ/τ̂vi,s)
1/2 at the SUS for the run is still linear, the slope differs and monotonically

increases, from 0.866 at Pr = 5 to 1.457 at Pr = 100. This means that the obtained

scaling (25) does not predict the Pr effect, and thus needs to be modified to account for

the Pr dependence.

In Fig. 10, the value of Cvi, which is the ratio of the slope with Pr ̸= 10 and the slope

with Pr = 10. The regression gives the following empirical relation for Cvi,

Cvi = 2.224Pr−0.35, (41)

with the regression coefficient of R2 = 0.9971. With the Pr dependence modification, it is

found that the scaled developments of δvi with time at the SUS for all runs collapse onto
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the same straight line quantified by the following relation,

δvi = 0.668Pr0.175s1/2τ 1/2. (42)

4 Conclusions

A set of scaling laws have been developed to delineate the intrinsic behavior of unsteady

NCBL flow of a linearly-stratified Pr > 1 fluid on a semi-infinite vertical solid surface

subject to a sinusoidal heat flux. There scalings are represented in terms Pr, s and fn,

which are the major parameters controlling the flow.

The obtained scaling laws are validated and quantified with DNS runs over 0.2 ≤ s ≤

20, 5 ≤ Pr ≤ 100, and 0.005 ≤ fn ≤ 0.1. It is found that the numerical results are in

general in good agreement with the scaling laws, verifying the effects of Pr, s and fn,

although there is a Pr effect on δvi which is not predicted by the scalings which thus need

modifications to account for the complete Pr dependence.
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NOMENCLATURE
Cvi ratio of the slope with Pr ̸= 10 and the slope with Pr = 10 (dimensionless)

f frequency of the sinusoidal heat flux (Hz)

fn f/(Vc/Lc) (dimensionless)

g gravitional acceleration (m/s2), acting in the negative Y ∗ direction

Lc characteristic length (m)

P pressure (Pa)

Pr Prandtl number, ν/α (dimensionless)

s temperature stratification parameter, T Y /T
0
X (dimensionless)

t time (s)

tht heating duration of the applied flux (s)

ts time scale attaining the QSS (s)

tT,s time scale for temperature boundary layer attaining the QSS (s)

tvi,s time scale for inner velocity boundary layer attaining the QSS (s)

T temperature (oC)

Tw solid surface temperature (oC)

Tw,s solid surface temperature at ts (oC)

T 0
X(t) temperature gradient across the solid surface at time t (oC/m)

T ambient fluid temperature (oC)

T y ambient temperature gradient, dT/dY ∗ (oC/m)

u, v u∗/Vc, v∗/Vc (dimensionless)

u∗, v∗ horizontal and vertical velocities (m/s)

vm v∗m/Vc (dimensionless)

vm,s v∗m,s/Vc (dimensionless)

vm,T,s v∗m at tT,s (dimensionless)

v∗m maximum vertical velocity (m/s)

v∗m,s maximum vertical velocity at ts (m/s)

Vc characteristic velocity (m/s)

x, y X∗/Lc, Y ∗/Lc (dimensionless)

X∗, Y ∗ horizontal and vertical coordinates (m)
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GREEK SYMBOLS
α thermal diffusivity (m2/s)

β thermal expansion coefficient (1/K)

δT ∆T/Lc (dimensionless)

δT,s ∆T,s/Lc (dimensionless)

δ̂T,s scale for δT,s (dimensionless)

δvi ∆vi/Lc (dimensionless)

δvi,s ∆vi,s/Lc (dimensionless)

δ̂vi,s scale for δvi,s (dimensionless)

∆T temperature boundary-layer thickness (m)

∆T,s temperature boundary-layer thickness at ts (m)

∆vi inner velocity boundary-layer thickness

∆vi,s inner velocity boundary-layer thickness at ts (m/s)

θ T/(ϕwLc) (dimensionless)

θw Tw/(ϕwLc) (dimensionless)

θw,s Tw,s/(ϕwLc) (dimensionless)

θw,T,s θw at τT,s (dimensionless)

ν kinematic viscosity (m2/s)

ρ fluid density (kg/m3)

τ t/(Lc/Vc) (dimensionless)

τht tht/(Lc/Vc) (dimensionless)

τs ts/(Lc/Vc) (dimensionless)

τT,s tT,s/(Lc/Vc) (dimensionless)

τvi,s tvi,s/(Lc/Vc) (dimensionless)

ϕw constant heat flux across the solid surface (oC/m)

ϕw time-averaged value of ϕwmsin(2πft) (
oC/m)

ϕwm maximum temperature gradient across the solid surface (oC/m)
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ABBREVIATIONS
BL boundary layer

NCBL natural convection boundary layer

QSS quasi steady stage

SUS start-up stage

TBL temperature boundary layer

VBL velocity boundary layer
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