The Reproduction and Recruitment of the sand dollar
Arachnoides placenta (L.) (Echinoidea: Echinodermata)
from differing habitats on the North Queensland coast

Thesis submitted by
Lucy Jessica HAYCOCK BSc (Hons)
in January 2004

for the Research Degree of
Master of Science in Marine Biology
within the School of Marine Biology and Aquaculture
at James Cook University
STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

-------------------------------------- -------- -------------------
 (Name) (Date)
ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

[Signature] [26/5/04]

Date
I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

-- ------- ----------------------
 (Name) (Date)
Acknowledgements

I wish to thank my supervisor Dr John Collins for his advise and expertise throughout this project. The support of both my partner Jason and my parents is also gratefully appreciated, and is extended to my mother Lindsey Haycock who assisted me with data collection in Mackay. Thanks also to Sue Reilly for help with histological preparations.

Sea water temperature, air temperature and rainfall data provided by the Australian Institute of Marine Science and Australian Bureau of Meteorology are cited with appreciation. Funding from this project came from an internal research account in the Marine Biology and Aquaculture Department, James Cook University, Townsville, Queensland, Australia.
Table of Contents

Chapter 1: General Introduction and Literature Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Review of the Literature</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1. Intertidal Distribution</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1.1. Aggregations and Patchiness</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1.2. Across-shore Size distributions and Directional movement</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1.3. Substrate preference</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Feeding, Burrowing and Locomotive Behaviour</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.1. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.2. Burrowing and locomotive behaviour</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.3. Feeding mechanisms</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2.4. Food preference</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3. Population Density</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4. Reproductive Biology</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4.1. Reproductive physiology</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4.2. Factors influencing breeding cycles and spawning</td>
<td>13</td>
</tr>
<tr>
<td>1.2.5. Recruitment Biology</td>
<td>14</td>
</tr>
<tr>
<td>1.2.5.1. Introduction</td>
<td>14</td>
</tr>
<tr>
<td>1.2.5.2. Larval morphology</td>
<td>15</td>
</tr>
<tr>
<td>1.2.5.3. Factors influencing larval development</td>
<td>16</td>
</tr>
<tr>
<td>1.2.5.4. Factors influencing larval supply</td>
<td>17</td>
</tr>
<tr>
<td>1.2.5.5. Settlement of recruits</td>
<td>19</td>
</tr>
<tr>
<td>1.2.5.6. Factors influencing metamorphosis and post-settlement processes</td>
<td>19</td>
</tr>
<tr>
<td>1.2.6. Growth of Newly Settled Recruits</td>
<td>21</td>
</tr>
<tr>
<td>1.2.7. Factors influencing Adult Populations</td>
<td>23</td>
</tr>
<tr>
<td>1.2.7.1. Adult mortality</td>
<td>24</td>
</tr>
<tr>
<td>1.2.7.2. Predation of adults</td>
<td>24</td>
</tr>
<tr>
<td>1.2.7.3. Parasitic and commensal associations</td>
<td>24</td>
</tr>
</tbody>
</table>
Chapter 2: Biological background of *Arachnoides placenta* and a Description of the Study Sites

2.1. Biological background 27

2.1.1. Introduction 27

2.1.2. Classification of *Arachnoides placenta* 29

2.1.3. World distribution 29

2.1.4. Australian distribution 31

2.1.5. Queensland distribution 31

2.1.6. Previous studies on *Arachnoides placenta* 31

2.1.7. Occurrence 32

2.2. The Intertidal Sandy Shore with Site Descriptions 33

2.2.1. Introduction 33

2.2.2. A common description of the intertidal sandy shore 33

2.2.3. Site descriptions 33

2.2.3.1. Mission Beach 35

2.2.3.2. Pallarenda Beach, Townsville 35

2.2.3.3. Casuarina Beach, Cape Hillsborough National Park 37

2.2.3.4. Bucasia Beach, Mackay 37

Chapter 3: Population density, spatial distribution, size frequencies and growth rate of *Arachnoides placenta*

3.1. Introduction 40

3.2. Materials and Methods 41

3.2.1. Sampling the size frequency and mean density of individuals >10mm 41

3.2.2. Statistical Analysis 42

3.3. Results 42

3.3.1. Intertidal distribution 42

3.3.2. Size frequency analysis 47

3.3.3. Growth 53

3.4. Discussion 56

3.4.1. Intertidal distribution 56

3.4.2. Temporal and spatial population density 56
3.4.3. Population size-frequency structures 60
3.4.4. Growth 63

Chapter 4: Reproductive Biology of Arachnoides placenta

4.1. Introduction 67
4.2. Materials and Methods 68
4.2.1. Sample collections and processing 68
4.2.2. Histology 69
4.2.3. Environmental parameters 69
4.3. Results 71
4.3.1. Histology of gonadal tissue 71
 4.3.1.1. Arachnoides placenta ovaries 71
 4.3.1.2. Arachnoides placenta testes 71
4.3.2. Environmental parameters 76
4.3.3. Gametogenic cycles 76
4.3.4. Oocyte / ova size frequencies 80
4.4. Discussion 82

Chapter 5: Recruitment Biology of Arachnoides placenta

5.1. Introduction 87
5.2. Materials and Methods 88
5.2.1. Sampling recruit size structure and recruit density 88
5.2.2. Statistical Analysis 90
5.3. Results 90
5.3.1. Size range of individual settlers 90
5.3.2. Recruitment 92
5.3.3. Recruit density and shoreline distribution 96
5.3.4. Recruit size and shoreline distribution 96
5.4. Discussion 101

Bibliography 106
List of Figures

Figure 2.1	Illustrated photographs and drawings of *Arachnoides placenta*	28
Figure 2.2	Global distribution of *A. placenta*	30
Figure 2.3	Location of North Queensland sampling sites	34
Figure 2.4	Intertidal shores of Mission Beach; Pallarenda Beach, Townsville and Casuarina Beach, Cape Hillsborough National Park	36
Figure 2.5	Bucasia Beach sampling sites, Mackay and *A. placenta* trails in sand	38
Figure 3.1	Sampling method used to record and collect population size frequency and mean density data of individuals (>10mm) downshore	42
Figure 3.2	Mean density of individuals from the spring line (upper limit of distribution) to the low water mark, Pallarenda Beach April-July 2001	45
Figure 3.3	Mean density of individuals m$^{-2}$ from the spring line (upper limit of distribution) to the low water mark at Pallarenda Beach, August - October 2001	46
Figure 3.4	Box plot of mean pooled size frequencies of sub-populations (≥10mm test diameter), all sites, Jan – Sept 2002	47
Figure 3.5	Population size frequencies, Pallarenda Beach, April 2001 – Jan 2002	48
Figure 3.6	Mean monthly boxplots of population size frequencies, all sites 2001-2002	49
Figure 3.7	Regression graphs of test diameter versus distance down shore Pallarenda Beach, July and Aug 2001	51
Figure 3.8	Regression graphs of test diameter versus distance down shore Pallarenda Beach, Sept and Oct 2001 and Bucasia Beach, June 2001 and March 2002	52
Figure 3.9	Estimated growth rate of newly settled recruits at Pallarenda Beach 2001 – 2002 and Lucinda, North Queensland (Hines and Kenny 1967)	53
Figure 3.10	Size range of *A. placenta* from settlement	55
Figure 4.1 Sea surface temperature, air temperature and rainfall recordings at all sites, 2001 - 2002

Figure 4.2 Histological sections of *A. placenta* ovaries in progressive stages of maturity

Figure 4.3 Histological sections of *A. placenta* testes in progressive stages of maturity

Figure 4.4 Progression of gametogenic stages in females, all sites 2001-02

Figure 4.5 Progression of gametogenic stages in males, all sites 2001-02

Figure 4.6 Oocyte size-frequency distributions for females, all sites

Figure 5.1 Sampling method used to record and collect population size frequency and density data of *A. placenta* recruits and juveniles

Figure 5.2 Oral and aboral view of newly settled *A. placenta* recruits

Figure 5.3 Size-frequency histograms of recruits, Pallarenda Beach, May 2001 – Jan 2002, and April - July 2002

Figure 5.4 Size-frequency histograms of recruits, Bucasia Beach and Cape Hillsborough National Park June 2001/2002 and March 2002

Figure 5.5 Size-frequency histograms of recruits (≤10mm), Mission Beach, May and August 2002

Figure 5.6 Mean density m^{-2} of recruits and juveniles (≤10mm), from the upper shore, Pallarenda Beach, May to July 2001

Figure 5.7 Mean density m^{-2} of recruits and juveniles (≤10mm), from the upper shore, Bucasia Beach creek end, June 2001

Figure 5.8 Regression plots of recruit size versus distance downshore, Pallarenda Beach, May – July 2001

Figure 5.9 Regression plots of recruit size versus distance downshore, Pallarenda Beach, Aug - Oct 2001

Figure 5.10 Recruit and juvenile (<10mm) size versus distance downshore, Bucasia Beach creek end, June 2001
List of Tables

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>A comparison of mean test diameters and maximum density of A. placenta populations at all sites</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2</td>
<td>Population density of other sand dollar species, including A. placenta</td>
<td>58</td>
</tr>
</tbody>
</table>
Abstract

The reproductive periodicity, recruitment and population studies of the intertidal Indo-Pacific echinoid, *Arachnoides placenta* (Linnaeus), were investigated from April 2001 to September 2002 at sites along 650km of the north Queensland coast, Australia. Three locations were sampled, comprising Mission Beach; Pallarenda Beach Townsville; and the Mackay region. *A. placenta* is a dominant macro-organism at all sites sampled, individuals of all sizes are found across the entire stretch of the beach terrace but are rarely evenly distributed, displaying a preference for pools and ripples containing wet sand. Despite patchiness a significant decrease in density downshore was observed in 11 / 17 transects laid at Pallarenda Beach, 2001 (*p* = <0.05). Significant differences in density were observed between all sites (*p* = 0.000) and even over distances of metres (*p* = 0.006). A maximum density of 88 individuals m\(^{-2}\) was recorded at Mackay in 2002.

There was also clear temporal and spatial variation in the size-frequency of the population at Pallarenda Beach and significant differences in test diameter between sites (*p* = 0.000) which clearly shows no effect of latitude on test diameter. At Pallarenda Beach test diameter was observed to increase with distance downshore in 13 / 17 transects. Test diameter at Bucasia Beach, Mackay on the contrary decreased with distance downshore. No relationship between test diameter and population size was observed.

Significant differences in population density and size-frequency data even over scales of just metres suggest that discrete differences in abiotic or biotic factors, particularly sediment grain size, moisture and protection from wave action, between sites are enough to produce significant variations between populations.

Growth of *A. placenta* from settlement demonstrates an s-shaped growth curve that is typical of a number of echinoid species. From a size of approximately 10mm growth assumes a linear phase which slows at a size of 25mm, at which size individuals are estimated to be 3 or 4 years old.

The reproductive periodicity of *Arachnoides placenta* exhibited an overall seasonal cycle with a period of gamete growth and accumulation from December to February culminating in a March to May main spawning period. Gametogenic patterns at Pallarenda Beach indicate the breeding season of *A. placenta* coincides with the start of a decline in sea water temperatures that occurs from March (26 – 28 °C) which
reaches a minimum over the months of June – August (22 – 24 °C). Partial spawning was observed in some individuals to June/July with a few spawning until September at Pallarenda Beach, indicating the continuation of spawning until temperatures reached a minimum. Over the range studied, A. placenta experienced similar annual air/sea water cycles and relatively comparable rainfall cycles. Air temperatures varied a maximum of ±8 °C from those of Townsville, possibly accounting for minimal differences in gametogenesis between sites. Spawning was only synchronous between males and females during months of the major spawning period (March to July), during which female gonads returned to the recovering condition within a month or less of spawning. From July to November no female gonads were in the late mature stage and a very slow rate of gametogenesis was observed. In males, 30-100% of individuals in all populations had ripe gonads throughout both years except June and September 2002 in Mackay. A percentage of all male gonads were always in the spent stage, indicating recovery takes longer than a month.

Significant numbers of newly settled recruits occur within the sediment from March – May at all sites, which strongly correlates with the timing of the annual gametogenic cycle of adults. The density of recruits downshore at Pallarenda Beach in 2001 demonstrate a clear patchy distribution, however a significant decrease in individuals downshore was observed in three out of six months of sampling (p = <0.05). Newly settled recruits prefer the middle to lower section of the beach terrace until a size of around 10mm is reached, when these individuals show a preference for the inhabiting the upper-middle section of the beach terrace. Such size-related positions on the beach terrace point to optimal grain-size preference possibly related to feeding and movement. There does not appear to be an adult-larval attraction during settlement.