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Reduced model of plasma evolution in hydrogen discharge capillary plasmas
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A model describing the evolution of the average plasma temperature inside a discharge capillary device
including Ohmic heating, heat loss to the capillary wall, and ionization and recombination effects is developed.
Key to this approach is an analytic quasistatic description of the radial temperature variation which, under local
thermal equilibrium conditions, allows the radial behavior of both the plasma temperature and the electron
density to be specified directly from the average temperature evolution. In this way, the standard set of
coupled partial differential equations for magnetohydrodynamic (MHD) simulations is replaced by a single
ordinary differential equation, with a corresponding gain in simplicity and computational efficiency. The on-axis
plasma temperature and electron density calculations are benchmarked against existing one-dimensional MHD
simulations for hydrogen plasmas under a range of discharge conditions and initial gas pressures, and good
agreement is demonstrated. The success of this simple model indicates that it can serve as a quick and easy tool
for evaluating the plasma conditions in discharge capillary devices, particularly for computationally expensive
applications such as simulating long-term plasma evolution, performing detailed input parameter scans, or for
optimization using machine-learning techniques.

DOI: 10.1103/PhysRevE.104.015211

I. INTRODUCTION

The ability to characterize and control the plasma condi-
tions within gas-filled capillary discharge devices, including
plasma wakefield acceleration sources [1–7], plasma waveg-
uides [8–12], and active plasma lenses [13–19], is critical to
the development and optimization of next-generation compact
particle accelerator technologies [20].

The rapid development of plasma-based accelerator tech-
niques, either laser driven [1,12,21–24] or beam driven
[3,25–27], is made possible by advances in diagnostics and
numerical modeling. Since the laser spot size and/or electron
beam radius is small compared to the capillary radius, it is
the near-axis plasma properties that are the most important
to characterize and are the focus of plasma diagnostic tech-
niques including longitudinal laser interferometry [28–31]
and plasma emission spectroscopy [31–34]. The purpose of
this work is to present a simple numerical model for eval-
uating the plasma properties on axis in plasma capillary
discharges.

Magnetohydrodynamic (MHD) simulations have been suc-
cessfully used for modeling hydrogen discharge capillary
devices [8,11,16,35–37]. MHD models, including the ap-
proach developed in this work, are generally applicable to
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collisional plasmas with atomic density �1023 m−3 (i.e.,
initial gas pressures of greater than approximately a few mil-
libars) and ionization degrees �10−3. Simulations usually
consist of a system of coupled partial differential equations
describing the mass-density, momentum, and energy evolu-
tion in one, two, or three dimensions. Reduced geometry
and simple equilibrium models have been shown to capture
the essential physics for many applications [8,11,16]. These
investigations have demonstrated that stable quasistatic con-
ditions are reached during the discharge that can be well
described by reduced MHD models.

The creation and subsequent evolution of a capillary
plasma due to an electrical discharge is largely dictated by the
local plasma temperature. During the discharge, the plasma
heats up via Ohmic heating and a radial temperature gradient
develops between the on-axis plasma and the cooler wall. In
response to the pressure gradient, the plasma density moves
away from the axis towards the boundary to reestablish a
uniform radial pressure. In quasistatic equilibrium, the bal-
ance between Ohmic heating and boundary heat loss results
in distinctive temperature and electron density profiles, which
can be exploited for guiding high intensity laser pulses [8]
and mitigated for active plasma lensing applications [17]. The
plasma temperature plays the principle role in specifying the
density of ionic states, as well as plasma transport properties,
e.g., the thermal and electrical conductivity.

In this work, the plasma dynamics are captured via a
model of the average energy evolution, i.e., a single ordinary
differential equation. This is achieved through assumptions
about the radial variation of the plasma properties based on
quasistatic conditions. Section II describes the model of a
hydrogen discharge capillary, including the assumptions made
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about the radial plasma temperature and density profiles dur-
ing different stages of the discharge. The explicit forms of the
various energy input and output mechanisms are also detailed
here. In Section III the simulation results are compared against
existing one-dimensional (1D) MHD simulations for a variety
of discharge and pressure conditions.

II. MODEL DESCRIPTION

The most commonly used gas species in gas-filled cap-
illary discharge devices is hydrogen [1,9–11,24,38]. In this
work, the discharge dynamics of a confined axisymmetric
cylindrical hydrogen plasma of radius R and length L � R
are considered. The dynamics of the plasma discharge system
are largely dictated by the local plasma temperature, and thus
the focus of this work is on the dominant energy exchange
processes that can occur. For hydrogen plasmas, these are
Ohmic heating, the thermal exchange with the capillary wall,
and the reactive energy exchanges due to ionization and re-
combination. Radiative energy losses are neglected, as the
influence of radiation cooling on the plasma dynamics for
hydrogen is insignificant for discharge currents I � 1.4 MA
(the Pease-Braginskii current) [8,39]. Z-pinch effects [40] are
also neglected, as the magnetic pressure is small compared
to the plasma pressure for the range of discharge parameters
considered (see Table I).

The system is treated as a single-fluid plasma that exists
in a state of local thermal equilibrium (LTE) between the
electrons and ionic species. Since L � R, the longitudinal
variation of the plasma properties is considered negligible and
only the radial variation is included. The radial energy balance
equation [41] is

∂ε

∂t
+ 1

r

∂

∂r
(r[ε + P]v) = Q − 1

r

∂

∂r
(rq), (1)

where r and t are the radial position and time, respectively, ε is
the total energy, P is the total pressure, v is the radial velocity,
and q is the heat flux, all defined for a single-fluid plasma. Q
represents the combined remaining sources and sinks of ther-
mal energy, which here is only Ohmic heating. Assumptions
underlying Eq. (1), and MHD models more generally, are that
(1) the characteristic length scales are much greater than the
collisional mean-free-path length, electron and ion gyroradii,
and Debye length, and (2) the characteristic time scales are
much greater than the collisional mean-free-path time and the
inverse of electron and ion gyrofrequencies. A small Debye
length implies quasineutrality, and high collisionality implies
that the electron and ion velocity distributions are close to a
Maxwell-Boltzmann distribution. These conditions are gener-
ally satisfied for hydrogen discharge capillary plasmas with
atomic density of na � 1023 m−3 (i.e., initial gas pressures
of greater than approximately a few millibars) and ioniza-
tion degree Za � 10−3. The initial breakdown of the plasma,
which occurs during the first ≈10 ns, is a complex kinetic
phenomenon which cannot be described with MHD models.
Instead of modeling the breakdown, an initial temperature
(e.g., T0 = 0.3 eV) is assumed such that the plasma is already
slightly ionized.

For many applications, the full radial variation is not
required, and a single characteristic value representing the

plasma conditions, e.g., the average value or on-axis value,
is sufficient. Averaging over the radial extent of Eq. (1) yields

∂

∂t
〈ε〉 = 〈Q〉 − 2

R
q(R), (2)

where it is assumed that there is no net exchange of material
with the capillary walls, and where the averaging is defined
via 〈φ〉 = 1

πR2

∫ R
0 2πrφ(r) dr. The particular form of each

term in Eq. (2) is detailed in Sec. II B.
A similar expression to Eq. (2), i.e., the average represen-

tation of the plasma conditions inside a discharge capillary,
was considered in Ref. [42], building upon earlier work in
Ref. [43]. The key difference is that, in this work, the radial
variation of the plasma properties is considered in evaluating
Eq. (2), which will be shown to be critical in accurately
describing the average energy evolution. A method for ap-
proximating the radial variation of the plasma temperature and
electron density is hence required.

A. Radial variation of the temperature and atomic density

This section introduces a method for determining the radial
temperature and atomic density, which is the cornerstone of
the present work. Specifying the radial behavior directly al-
lows the calculation of the on-axis plasma properties, average
plasma properties, and, importantly, the derivative terms at the
boundary which control heat flux.

The time evolution is separated into two regimes: (1)
the initial uniform regime where the plasma conditions are
approximately radially uniform and (2) the final quasistatic
regime where the plasma temperature and atomic density vary
radially so as to maintain a balance between the energy input
and output mechanisms.

1. Transition from uniform to quasistatic conditions

At early times during the discharge, the weakly-ionized-
plasma properties, such as the temperature and atomic density,
are essentially uniform radially. As the plasma continues to
heat, the axis becomes hotter than the constant-temperature
wall, creating a temperature (and hence pressure) gradient.
Ionization of the neutral species acts to absorb energy, both
slowing the temperature increase and reducing the radial tem-
perature variation. However, once the first level of ionization
is near completion the plasma temperature is free to rise
rapidly. At this point there is a corresponding rapid rise in
pressure gradient causing the plasma density to reorganize
towards uniform pressure conditions, i.e., the quasistatic state.

To accurately model the transition from the initial to qua-
sistatic conditions requires the additional calculation of the
(radially) spatially resolved density and velocity variables.
However, given that the onset of the transition tends to co-
incide with the rapid rise in temperature nearing full on-axis
ionization, the model can be vastly simplified while retaining
the important physical phenomena. It is hereafter assumed that
the radial pressure is always uniform, and that the plasma
temperature and density transition between the uniform and
quasistatic regimes occurs instantaneously at time t = t∗,
which is defined via the on-axis ionization fraction Za0(t∗) =
0.9 (see Sec. II B 1). The value of 0.9 has been chosen for
its good agreement with previously published 1D simulations
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[8,11], which are examined in Sec. III. Alternatively, the entire
plasma evolution can be simulated assuming either uniform or
quasistatic conditions to establish a range of possible values.

2. Quasistatic conditions

The quasistatic regime is characterized by a uniform radial
pressure and a plasma temperature that is described by the
steady-state energy balance equation (see Appendix A),

0 = Q + 1

r

d

dr

(
rκ

dT

dr

)
, (3)

where T is the plasma temperature and κ is the plasma thermal
conductivity. The precise form of Q depends on the expres-
sions chosen for the Ohmic heating (and radiation losses,
when not negligible) as discussed in Sec. II B 3. In principle
the exact solution to Eq. (3) could be solved at each time
step of the full average energy evolution, consistent with the
instantaneous average energy. However, a faster and more
efficient method is sought in this section.

The thermal conductivity controls the radial redistribution
of thermal energy. The total thermal conductivity κ includes
contributions from the total charged plasma species (electrons
and ions), κp, and total neutral species (atomic and molecular),
κn, via the simple mixture rule [44],

κ = κp + κn. (4)

The specific forms of the terms in Eq. (4) are given in
Appendix C. The equilibrium method introduced in Ref. [8]
employs an approximation to the Spitzer-Härm theory of fully
ionized plasmas [45] such that κ ∝ T 5/2 (and Q ∝ T 3/2). At
low temperature and hence low ionization fractions, collisions
with neutral species (as opposed to collisions between charged
particles) dominate, resulting in a κ ∝ T 1/2 dependence.

For a large proportion of the total discharge time, the
plasma temperature near the capillary axis will be multi-eV
[8,39], while the (constant) temperature of the capillary wall
is sub-eV, indicating the existence of a layer near the boundary
dominated by neutral collisions due to the low ionization
fraction. The system can then be separated into two dis-
tinct regions, i.e., the central plasma-dominated bulk and the
neutral-dominated boundary layer near the capillary wall.

To facilitate fast and efficient calculations, an analytic ap-
proximation for T (r) is sought. Assuming that

(1) Ohmic heating effects ensure that the radial plasma
temperature decreases monotonically from a maximum value
on axis to the minimum value at the boundary;

(2) a “two-region” approach can be employed, differen-
tiating the plasma-dominated bulk from neutral-dominated
boundary layer by an internal boundary temperature Tb; and

(3) Q is approximately constant with respect to radial po-
sition, the exact magnitude of which is chosen such that T (r)
in Eq. (3) is consistent with 〈ε〉 in Eq. (2) at each time step,

then an analytic expression for the radial temperature pro-
file in the range [0, R] can be derived (see Appendix A).
Treating Q as a uniform energy source under quasistatic
conditions in order to analytically define the radial plasma
temperature is called the quasistatic uniform-energy-source
temperature (QUEST) method. The QUEST method tempera-

ture profile is

T (r)=

⎧⎪⎪⎨
⎪⎪⎩

T0

[
1 −

(
1 − T n+1

b

T n+1
0

)
r2

R2
b

] 2
7

for r < Rb

Tb

[
1 −

(
1 − T

3
2

w

T
3
2

b

)
r2−R2

b

R2−R2
b

] 2
3

for r � Rb,

(5)

where T0, Tw, and Tb are the temperature on axis, at the
wall r = R, and at the internal boundary r = Rb, respec-
tively. Clearly when T0 � Tb, Tw then T (r) ≈ T0[1 − r2

R2 ]
2
7 for

r < Rb. Equation (5) assumes that T0 > Tb > Tw, i.e., that
the temperature range spans both the plasma-dominated and
neutral-dominated regions, but can be altered easily for other
situations.

The plasma-dominated regime is here defined by
κp > κn, and conversely the neutral-dominated regime by
κp < κn. Hence the internal boundary temperature Tb is lo-
cated where κp(Tb) = κn(Tb). The κ components are weakly
dependent on the atomic density, and so in the simulations
the Tb value corresponding to the initial 〈na〉 is used. For
〈na〉 = 1024 m−3, Tb ≈ 0.9 eV, and this value is used hereafter.
An order of magnitude change in na results in �5% change
in the value of Tb. The corresponding change in the average
plasma temperature calculations is �2%, indicating that the
simulation procedure is robust to the choice of Tb.

The value of Rb can be completely specified by the re-
quirement that the heat fluxes from each region, which obey
different temperature power laws, match at the internal bound-
ary, i.e., q(R−

b ) = q(R+
b ) and Tb = T (Rb). The expression for

Rb in terms of the on-axis temperature T0 and wall temperature
Tw is

Rb

R
=
⎛
⎝1 + 7

3

[
1 − ( Tw

Tb

) 3
2
]

[( T0
Tb

) 7
2 − 1

]
⎞
⎠

− 1
2

, (6)

the derivation of which is given in Appendix B. Thus the full
radial temperature profile (and Rb) is specified by T0, Tb, and
Tw. In the course of a simulation, Tb and Tw are set as input
constants, and only T0 varies as a function of time.

Example radial temperature profiles, corresponding to se-
lect average temperature values, are shown in Fig. 1. Different
behavior is demonstrated either side of Rb, owing to the
different temperature power laws controlling the thermal con-
ductivity in each region. As T0 increases, the position of the
plasma-neutral boundary Rb moves towards the capillary wall.
It should be noted that Rb < R and the heat flux at the cap-
illary boundary is dictated by the neutral-dominated thermal
conductivity regardless of how thin the neutral-dominated
boundary layer becomes.

The nonuniform plasma temperature described by Eq. (5)
implies a nonuniform plasma density under uniform pressure
conditions P(r) = 〈P〉. Assuming uniform total pressure, it
follows from the ideal gas law that

P = 〈na〉
〈

1

(1 + Za)kbT

〉−1

, (7)

na(r) = 〈na〉
(1 + Za)T

〈
1

(1 + Za)T

〉−1

, (8)
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FIG. 1. Radial temperature profiles T (r), as defined in Eq. (5),
for four average temperatures 〈T 〉. The dashed vertical lines mark the
boundary Rb between the plasma-dominated region (κ ∝ T 5/2) and
the neutral-dominated region (κ ∝ T 1/2) which occur at Tb = 0.9 eV,
represented by the dashed horizontal line.

where Za is the ionization fraction as defined in Eq. (9), and
thus the radial atomic density na(r) is fully specified by T (r)
under LTE conditions. For the trivial case that all properties
are radially uniform, i.e., during the initial uniform regime,
na = 〈na〉. The radial plasma temperature and electron density
profiles resulting from the QUEST method are compared to
those from 1D MHD simulations in Sec. III.

B. Energy balance terms

In this section, the particular forms of the energy balance
terms necessary to evaluate Eq. (2), i.e., the internal energy
ε, Ohmic heating QOhm, and boundary heat flux q(R), are
detailed.

1. Density of ionic states

A single-temperature plasma that exists in a local ther-
mal equilibrium between the electrons and heavy ionic
species is assumed. Reference [39] showed that, for a hy-
drogen discharge capillary, LTE conditions are established in
approximately 50 ns, and Refs. [8,11,35] have had success
modeling discharge capillaries assuming LTE conditions over
the entire discharge lifetime.

By assuming LTE conditions, the density of ionic states
is fully specified by the plasma temperature (T ) and atomic
density (na) via the Saha ionization equation [46]. For a
quasineutral hydrogen plasma only single-level ionization is
required, and the appropriate Saha ionization equation is

Z2
a

1 − Za
= 1

na

(
2πmekbT

h2

) 3
2

exp
(
− IH

kbT

)
, (9)

where IH is the ionization energy for hydrogen, and
Za = ne/na is the mean charge per atom which here also rep-
resents the ionization fraction. The constants me, kb, and h are
the electron mass, Boltzmann constant, and Planck constant,
respectively.

The ion density ni and neutral density nn can be found
from the quasineutrality, ni = ne, and particle conservation,
nn = na − ni, conditions, respectively.

2. Internal energy

The connection between the internal energy and the plasma
temperature, accounting for the energy stored in ionization, is
given by

ε = Cv,aT + Cv,eT + U, (10)

where Cv,a = 3
2 nakb and Cv,e = 3

2 nekb are the atomic and
electronic heat capacities for ideal gases, respectively. The
potential energy term U = neIH represents the amount of ion-
ization energy required to reach the specified density of ionic
states from a neutral state.

The time derivative of the internal energy can be rewritten
as a function of temperature directly, i.e.,

∂ε

∂t
= 3

2
nakb

[
1 + Za + T

(
1 + 2

3

IH

kbT

)
∂Za

∂T

]
∂T

∂t
(11)

≡ C′
v (T, na)

∂T

∂t
, (12)

where C′
v then represents an effective heat capacity. The cal-

culation of ∂Za
∂T is detailed in Appendix D. Note that Za and ∂Za

∂T
are simply functions of T and na.

3. Ohmic heating

The discharge current provides the energy input to the
plasma system via Ohmic heating. The Ohmic heating con-
tribution to Q in Eq. (1) is

QOhm = JE , (13)

where J is the current density and E is the electric field
strength. The connection between the electric field strength
and the current density is given by Ohm’s law, J = σE , where
σ is the electrical conductivity. The Ohmic heating is driven
predominantly by electron interactions, such that the electrical
conductivity of a plasma consisting of a mixture of electrons,
ions, and neutral species is given by [44]

1

σ
= 1

σei
+ 1

σen
, (14)

where σei and σen are the electrical conductivity in the fully
ionized and weakly ionized limits, respectively. The specific
forms of the terms in Eq. (14) are given in Appendix C.

Following the quasistatic approach in Ref. [8], it is as-
sumed that the electric field is homogeneous such that

〈QOhm〉 = 1

〈σ 〉
(

I

πR2

)2

, (15)

where I = ∫ R
0 2πrJ dr is the total current. The current ampli-

tude as a function of time is routinely measured in discharge
capillary experiments, and thus I (t ) is treated as an input
rather than calculated in an additional coupled-circuit model
[42,43].
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4. Boundary heat loss

The dominant energy loss mechanism in (enclosed) hydro-
gen discharge capillaries is the heat flux through the capillary
boundary. The heat flux is given by Fourier’s law, q = −κ ∂T

∂r ,
such that

− 2

R
q(R) = 2

R

(
κ

∂T

∂r

)
r=R

(16)

= −8

3
κ (Tw )

Tw

R2 − R2
b

[(
Tb

Tw

) 3
2

− 1

]
. (17)

Equation (16) explicitly depends on the radial temperature
gradient at the boundary, and thus can be written in terms of
Tw, Tb, and Rb via Eq. (5). The main reason to decompose the
domain into plasma-dominated and neutral-dominated regions
(see Sec. II A) is to capture this term accurately.

At the capillary boundary the thermal conductivity, and
hence the energy transfer to the wall, is dominated by neutral
collisions due to the low local temperature and ionization
fraction. This is in contrast to the plasma bulk where the elec-
tron thermal conductivity is generally much larger than the
neutral (and ion) species thermal conductivity. The melting
point of sapphire capillaries is approximately 2300 K, and
in this work Tw = 2000 K is used in the simulations. The
simulation procedure is very robust to the choice of Tw value,
with a change of 50% in Tw resulting in a �1% change in the
calculated average plasma temperature.

C. Numerical solution

Each of the transport properties described in Sec. II B and
Appendix C is fully specified by the plasma temperature and
atomic density (assuming LTE conditions). Thus the Taylor
series approximation of each of the radially varying quantities,
f (T (r), na(r)), in the neighborhood of some reference values,
T and na, is

f (T, na) = f (T , na) + (T − T )
∂

∂T
f (T , na)

+ (na − na)
∂

∂na
f (T , na) + · · · . (18)

It is assumed that the appropriate reference values, i.e., where
the dominant contribution to the average occurs, are the aver-

age plasma temperature T = 〈T 〉 and average atomic density
na = 〈na〉, such that 〈 f (T, na)〉 ≈ f (T , na) and the energy
evolution equation, Eq. (2), becomes

C′
v (T , na)

dT

dt
= 1

σ (T , na)

(
I

πR2

)2

− 2

R
q(R). (19)

Note that q(R) only depends on T indirectly through the
temperature gradient at the boundary (see Sec. II A). The
O(T − T ) and O(na − na) terms, arising from the derivatives
in Eq. (18), are more in the nature of correction terms, and
have been neglected. Thus it is expected that Eq. (19) works
best when the plasma properties are only slowly varying
functions of radial position. The validity of this approach is
expanded on in Appendix E.

An overview of the workflow for the QUEST simulation
code is given in Fig. 2. At each time step, the method de-
scribed in Sec. II A is employed to determine the radial plasma
temperature profile consistent with the average temperature.
This specifies the remaining transport coefficients and energy
balance terms described in Sec. II B. The ordinary differential
equation [Eq. (19)] is advanced using a fourth-order explicit
Runge-Kutta routine [47]. The radial behavior of the atomic
density (and thus the on-axis atomic and electron densities)
are determined from Eqs. (7) and (8), in both the uniform and
quasistatic regimes.

In comparison to the single ordinary differential equation
QUEST algorithm, the 1D MHD simulations of Ref. [8]
evolve a system of five coupled partial differential equations.
Simulations using the QUEST algorithm typically complete
in <1 s on a desktop computer. This indicates that QUEST
simulations are particularly useful for computationally expen-
sive problems, such as performing detailed input parameter
scans or investigating the long-term (10+ μs) plasma evolu-
tion, where full MHD simulations are prohibitively expensive.
It also makes optimization of discharge capillary plasma
conditions with machine-learning techniques feasible. The
simulation results are compared in the following section.

III. SIMULATION BENCHMARKS

The principle goal of the QUEST method is to reproduce
the plasma temperature and electron density results of more
complex 1D MHD simulations, in a quasianalytic and sig-

FIG. 2. Flowchart representation of the QUEST method algorithm. Flowchart symbols follow the ISO 5807 (1985) convention.
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FIG. 3. Comparison of QUEST simulation and 1D MHD simulation [8] results for electron temperature and electron density. The
simulation conditions are given by “B” in Table I. (a) Radial electron temperature profiles T (r) for select times corresponding to the vertical
lines in (d) and colored square markers in (f). (b) Radial electron density profiles ne(r) for select times corresponding to the vertical lines in
(e). (c) Discharge current profile I . (d) On-axis electron temperature T0. (e) On-axis electron density ne0. (f) Variation of the on-axis electron
temperature T0 with current amplitude I . Solid lines indicate QUEST method results, while dotted lines indicate the (digitized) simulation
results from Ref. [8] and blue crosses represent calculations using the simplified equilibrium model in Ref. [8]. The colored shaded bands in
(d) and (e) represent the range of values between assuming the uniform regime and the quasistatic regime. The shaded grey region indicates
the times at which the QUEST algorithm assumes uniform conditions, and marks the transition between the uniform and quasistatic regimes
corresponding to the discrete jump in the electron temperature and density profiles.

nificantly less computationally expensive simulation. In this
section, the QUEST simulations are compared to the previ-
ous 1D MHD investigations of Refs. [8,11] for a range of
discharge current amplitudes and initial gas pressures. After
establishing the validity of the QUEST approach, the impor-
tance of accurately representing the radial variation of the
plasma properties, particularly those close to the capillary
boundary, in accurately describing the evolution of the aver-
age quantities is demonstrated by comparison with the results
of Ref. [42]. The conditions for each simulation are detailed
in Table I.

A comparison of the plasma temperature and electron den-
sity evolution calculated with the QUEST method and with

TABLE I. Table of parameters for select plasma discharge capil-
lary simulation literature. R is the capillary radius, P is the initial gas
pressure, na is the initial atomic density, and Ip and tp represent the
magnitude and time of the discharge current peak. The discharge pro-
files in simulations B and G1–G6 have the form I (t ) = Ip sin (πt/tp).
The discharge profile in simulation C does not have an analytic form,
and has been digitized for the comparisons in the present work.

R P na Ip tp

Label (μm) (mbar) (1024 m−3) (A) (ns) Ref.

B 150 67 3.35 250 100 [8]
G1 125 35 1.75 140 120 [11]
G2 125 35 1.75 80 120 [11]
G3 125 35 1.75 45 120 [11]
G4 125 35 1.75 33 120 [11]
G5 125 17.5 8.75×10−1 33 120 [11]
G6 125 3.5 1.75×10−1 33 120 [11]
C 500 10 4.80×10−1 650 50 [42]

the 1D nonideal MHD simulations of Ref. [8] in a hydrogen
discharge waveguide study is shown in Fig. 3.

At early times (0–50 ns), represented by the grey shaded
region in Figs. 3(c)–3(e), uniform radial temperature and
density are assumed. The on-axis plasma temperature shown
in Fig. 3(a), and electron density shown in Fig. 3(b), from
Ref. [8] are very well reproduced by the QUEST method in
the uniform regime. The slow rise in the temperature for the
first 50 ns is due to substantial energy being absorbed by the
ionization process. The radial profiles in Figs. 3(a) and 3(b)
corresponding to 40 ns show good agreement. The 1D MHD
profiles exhibit some nonuniformity near the boundary but are
predominantly uniform.

At late times (75–150 ns) the results from Ref. [8] are also
very well reproduced by the QUEST on-axis temperature and
electron density in the quasistatic regime. The radial profiles
corresponding to 80 and 100 ns show consistent nonuniform
behavior between Ref. [8] and QUEST results. The analytic
temperature form in Eq. (5) varies more sharply towards the
boundary compared to Ref. [8], resulting in electron tem-
perature profiles that are more sharply peaked. However, the
overall agreement is very good. Further radial profile agree-
ment can be expected from using a temperature profile shape
that is equivalent to the equilibrium model shape in Ref. [8]
but comes at the cost of requiring a numeric rather than ana-
lytic solution.

The discrepancy in the intermediate time range of 50–
75 ns is due to treating the reorganization of the plasma from
uniform to quasistatic regimes as an instantaneous process
(see Sec. II A). Although the transition onset time of 50 ns
is approximately correct, the transition process takes approx-
imately 20 ns according to MHD simulations, rather than
being instantaneous. This is emphasized by the fact that the

015211-6



REDUCED MODEL OF PLASMA EVOLUTION IN HYDROGEN … PHYSICAL REVIEW E 104, 015211 (2021)

FIG. 4. Comparison of QUEST simulations and 1D MHD simulations [11] for on-axis electron temperature T0 and electron density ne0 as
a function of time. The simulation conditions are given by G1–G6 in Table I. Descriptions are the same as in Figs. 3(c)–3(e). The electron
density in G6 is increased by a factor of 10 to aid in visibility. The current discharge profiles are given in arbitrary units that are consistent
across all plots.

1D MHD electron density and temperature results smoothly
transition between the QUEST uniform and quasistatic regime
bands. The 1D MHD radial profiles corresponding to 60 ns
occur during this transition, and hence show behavior that is
partway between the uniform and quasistatic regimes, and is
thus not well reproduced by the QUEST simulation.

The relationship between the on-axis temperature and the
(time-dependent) current discharge amplitude is explicitly
shown in Fig. 3(f). There are two distinct temperature “paths”
corresponding to heating (lower path) and cooling (upper
path) phases, i.e., on which side of the 250 A current peak is
being sampled. A simplified equilibrium model from Ref. [8],
which is a function of the instantaneous current amplitude,
rather than being connected to the average energy evolution,
is also included in Fig. 3(f), represented by blue crosses. The
equilibrium model provides an identical relationship between
T0 and I during both the heating and cooling phases, and
demonstrates good agreement for the cooling phase, partic-
ularly near the current peak. However, naturally it does not
well represent the heating phase, and cannot describe times
after the discharge has turned off (if I = 0, then the equi-
librium temperature, etc., are also zero). Although both the
equilibrium model of Ref. [8] and the QUEST model are
based on a power-law temperature dependence of the trans-
port coefficients, it is clear that the temporal evolution of the
average energy must be included to satisfactorily describe the
full discharge current lifetime.

Figure 4 features on-axis simulation results from Ref. [11],
where the authors investigated the effect of significant changes
in discharge current magnitude and pressure on the formation
of plasma waveguides, and thus represents an ideal range of
benchmark conditions for the QUEST method. Many of the
comments in the discussion of Fig. 3 apply here too.

In cases G1–G3, G5, and G6, the onset time of the transi-
tion is well reproduced by the QUEST method. In the case of
G4, the plasma temperature (and ionization fraction) increases
very slowly and the transition threshold of Za0 = 0.9 is not
reached until 200 ns. According to MHD simulations, the
transition begins approximately 50 ns earlier than predicted
using the QUEST method, and it is not clear that quasistatic
conditions have been established by the culmination of the
discharge. This slow transition between the uniform and qua-
sistatic regimes cannot be accurately modeled by the QUEST
approach.

Overall, the QUEST calculations and MHD simulations
from Ref. [11] agree very well, particularly in the uniform
and quasistatic regimes. The average difference between the
QUEST calculations and Ref. [11] over the full discharge
profile is �5% for the on-axis plasma temperature, and �10%
for the on-axis electron density, for each condition G1–G6.
The maximum difference is �40% for both properties, and oc-
curs at the transition between uniform and quasistatic regimes.
Better overall agreement is observed for discharge conditions
that lead to higher temperatures (i.e., higher currents or lower
densities) as these tend to demonstrate sharper transitions.

In Ref. [42] a similar approach to describing the evolution
of the average plasma properties was proposed. However,
in the formulation of Ref. [42] the treatment of the radial
variation of the plasma parameters is substantially different
from the present work. A comparison of the average plasma
temperature and electron density calculated with the QUEST
method and the simulations from Ref. [42] for hydrogen is
shown in Fig. 5, and demonstrates considerable disagreement.
These differences are significant in both the magnitude and
behavior, which indicates an inherent incompatibility between
the two approaches.
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FIG. 5. Comparison of QUEST simulation results and those from
Ref. [42] for average electron temperature 〈T 〉 and electron density
〈ne〉 as a function of time. The simulation conditions are given by
“C” in Table I. Solid lines indicate the QUEST method results, while
dotted lines indicate the (digitized) simulation results from Ref. [42].

The QUEST radially averaged temperature 〈T 〉 is consid-
erably greater over most of the time range. Although Ref. [42]
explicitly includes radiative energy losses, the effect is in-
significant (less than 0.01% of the dissipated power [39]). The
larger peak average temperature indicates a difference in the
balance between Ohmic heating and wall heat loss for the two
approaches. The energy exchange with the capillary boundary
is the dominant heat loss mechanism in hydrogen capillaries,
which depends critically on the radial temperature derivative
at the boundary, as described in Sec. II B 4. A key compo-
nent of the QUEST method is the precise representation of
this boundary temperature derivative, which differs from the
formalism of Ref. [42]. Another important difference is that
the effect of ionization and recombination energy exchanges
is included in the QUEST model. The energy absorbed dur-
ing ionization (up to ≈75% of the Ohmic heating power) is
responsible for the slow temperature increase at early times,
and the release (up to ≈50% of the wall energy loss) during re-
combination is responsible for the slow temperature decrease
at late times.

The peak average electron density from Ref. [42] is the
same as the QUEST calculation when assuming uniform
regime conditions. However, the transition onset time is pre-
dicted to be approximately 35 ns, and the subsequent behavior
is calculated in the quasistatic regime. Note that the cooler
(and hence less ionized) plasma near the capillary boundary
contributes substantially to the averaging due to the high
atomic density under quasistatic conditions, reducing the av-
erage electron density. The difference in the electron density
decrease at late times is due largely to the difference in the
plasma temperature evolution predicted by the two methods,
as discussed previously.

IV. CONCLUSION

It has been shown that the on-axis plasma temperature
and electron density calculated in existing full 1D MHD sim-
ulations, which solve a complex system of coupled partial
differential equations, can be remarkably well reproduced by
the QUEST (quasistatic uniform-energy-source temperature)

method, which solves a single, simplified ordinary differential
equation for the average plasma temperature evolution. This
paves the way for investigations of computationally expensive
capillary discharge problems, such as characterizing the long-
term plasma evolution, performing detailed input parameter
scans, or for employing machine-learning-based optimization
techniques, which are infeasible using more complex simula-
tion tools.

The key to the QUEST method is in the assumptions made
about the radial temperature behavior, which then specify the
remaining plasma properties under local thermal equilibrium
conditions. The approach followed here is to split the temporal
evolution of the plasma into a “uniform regime,” where the
plasma temperature is radially uniform, and a “quasistatic
regime” where the plasma temperature has a nonuniform but
analytic representation under quasistatic conditions. Partic-
ular attention is given to the quasistatic radial temperature
representation, which is separated into plasma-dominated and
neutral-dominated regions, as it determines the heat flux at the
capillary boundary—the major energy loss process in these
hydrogen discharge capillary systems.

The near-axis plasma properties are the most relevant
to many experiments, particularly in beam-driven wakefield
acceleration. The on-axis plasma temperature and electron
density are compared to the full 1D MHD simulations of
Refs. [8,11] for a range of discharge current amplitudes
and initial gas pressures. The substantially simpler QUEST
method demonstrates good agreement, particularly at early
and late times where either uniform or quasistatic conditions
have been established. The plasma temperature and electron
density are generally within 5% and 10% of Refs. [8,11],
respectively. At intermediate times, the 1D MHD results
exhibit a mixture of uniform and quasistatic behavior; how-
ever, the QUEST method still gives results with differences
�40%. When compared to the simplified equilibrium model
of Ref. [8], the QUEST method demonstrates that modeling
the evolution of the average energy is necessary to adequately
describe the plasma conditions over the full discharge current
lifetime.

This marks the first time that a model based on the evolu-
tion of the average energy in capillary discharge devices has
been satisfactorily benchmarked against 1D MHD simulations
over the entire discharge profile, and the results here indicate
an incompatibility with previous approaches [42,43].

In Ref. [31] it was shown that evaluating the plasma tem-
perature to within a relative error of ≈100% was necessary
for agreement between plasma diagnostics based on emission
spectroscopy and laser interferometry. The demonstrated suc-
cess of the QUEST method indicates that it can be used in
conjunction with plasma emission spectroscopy techniques to
evaluate the electron density from measured emission spectra
[48,49]. Future investigations will explore the use of QUEST
simulations in plasma cell characterization experiments.
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APPENDIX A: QUEST TEMPERATURE PROFILE T (r)

Under steady-state conditions, the energy balance equation
(1) becomes

0 = Q + 1

r

d

dr

(
rκ

dT

dr

)
, (A1)

where Fourier’s law for the heat flux q = −κ dT
dr has been

employed, and κ is the plasma thermal conductivity. If
κ = κ0T n where κ0 is a constant, then for radially uniform Q
the integration can be performed analytically over the range
r ∈ [rL, rR], yielding

Q = 4κ0

n + 1

(
T n+1

L − T n+1
R

)
(
r2

R − r2
L

) , (A2)

T (r) = TL

[
1 −

(
1 − T n+1

R

T n+1
L

)
r2 − r2

L

r2
R − r2

L

] 1
n+1

, (A3)

where TL = T (rL ) and TR = T (rR) are the temperatures at
each end of the range.

Expressions for the heat flux term,

rκ
dT

dr
= −rκ

2rT −n

n + 1

(
T n+1

L − T n+1
R

)
(
r2

R − r2
L

) , (A4)

and average temperature,

〈T 〉 = n + 1

n + 2

TL(
1 − T n+1

R

T n+1
L

)
[

1 − T n+2
R

T n+2
L

]
, (A5)

follow directly. The average temperature simplifies to
〈T 〉 ≈ ( n+1

n+2 )TL when TL � TR.
In this work, a plasma-dominated region is distinguished

from a neutral-dominated region, corresponding to n = 5/2
and n = 1/2, respectively.

APPENDIX B: QUEST INTERNAL BOUNDARY Rb

The two-region method, described in Sec. II A, is de-
lineated by a boundary temperature Tb separating neutral-
dominated conditions (i.e., Tw < T < Tb, power-law index
of 1/2) and plasma-dominated conditions (i.e., T0 > T > Tb,
power-law index 5/2). Continuity of the heat flux requires
that q from the two regions match at the internal boundary
T (Rb) = Tb, i.e., that q(R−

b ) = q(R+
b ), which gives

2

7
T −5/2

b

(
T

7
2

0 − T
7
2

b

)
R2

b

= 2

3
T

− 1
2

b

(
T

3
2

b − T
3
2

w

)
(
R2 − R2

b

) , (B1)

Rb

R
=

⎛
⎜⎜⎜⎝1 + 7

3

[
1 − T

3
2

w

T
3
2

b

]
[ T

7
2

0

T
7
2

b

− 1
]
⎞
⎟⎟⎟⎠

− 1
2

, (B2)

where the radial temperature profile from Eq. (5) and heat flux
from Eq. (A4) have been employed. Thus the position of the
internal boundary Rb is specified by T0, Tb, and Tw. These
expressions assume that T0 > Tb. When this is not the case,
Rb/R = 0; i.e., the entire domain is neutral dominated.

APPENDIX C: PLASMA TRANSPORT PROPERTIES

The key transport properties in this work that control the
source and redistribution of the thermal energy within the
plasma are the electrical conductivity and the thermal conduc-
tivity. The electrical conductivity controls the Ohmic heating,
which is the main energy input, and the thermal conductivity
controls the redistribution of the thermal energy and loss to
the capillary wall, which is the main energy output. These both
depend on the collision frequency between the electrons, ions,
and neutrals.

Here, the neutral species can be atomic or molecular hy-
drogen. The cross sections for binary interactions involving
atomic or molecular hydrogen (including interactions with the
charged species) are all of a similar magnitude for the range of
plasma temperatures considered in this work [50], and are thus
approximated by a single hard-sphere scattering cross section
for binary collisions with an “effective” hydrogen neutral.
Near the cold capillary wall (Tw = 2000 K), under LTE condi-
tions, the neutral species is predominantly molecular [46], and
so the hard-sphere scattering cross section for hydrogen gas
[51] has been chosen to ensure that the thermal conductivity
at the capillary wall is described correctly.

The total thermal conductivity κ includes contributions
from the total charged plasma species, κp, and total neutral
species, κn, via the simple mixture rule [44],

κ = κp + κn (C1)

≈ nek2
bT

me
(

1
3.16νei + π

4 νen
) + nik2

bT

ma
(

1
3.9νii + π

8 νin
)

+ nnk2
bT

ma
(

π
8 νni + π

8 νnn
) , (C2)

where ma is the atomic mass, and νab represents the collision
rate of species a with b, where e, i, and n represent electrons,
ions, and neutrals, respectively, which are detailed below.
The coefficients of νei and νii are taken from Ref. [52] such
that Eq. (C2) is consistent in the fully ionized limit. The
heavy species-electron collision rates νie and νne are typically
smaller than νii and νnn, respectively, by a factor of

√
ma/me,

and are thus not included in this work.
The total electrical conductivity σ of a plasma consisting

of a mixture of electrons, ions, and neutral species is given by
[44]

1

σ
= 1

σei
+ 1

σen
, (C3)

where σei and σen are the electrical conductivity in the fully
ionized and weakly ionized limits,

σei = 1.96
nee2

meνei
, σen = nee2

meνen
, (C4)

015211-9



G. J. BOYLE et al. PHYSICAL REVIEW E 104, 015211 (2021)

where νei and νen are the electron-ion collision and electron-
neutral collision rate, respectively, detailed below. Although
electron-electron collisions are momentum conserving and
do not contribute directly to Eq. (C4), the indirect effect of
electron-electron correlations on the electron velocity distri-
bution is included in the numerical coefficient of σei, which is
taken from Ref. [52].

The electron-ion collision rate νei [8] and electron-neutral
collision rate νen [44] are given by

νei = 4

3

√
2π

me

e4ne ln λei

(4πε0)2(kbT )
3
2

, (C5)

νen = 4

3
nn

(
8kbT

πme

) 1
2

4πa2, (C6)

where a = 145 pm is the kinetic radius for hydrogen gas
[51], and ln λei is the electron-ion Coulomb logarithm [8] here
defined as

ln λei = ln

[
3

2
√

2π

(4πε0)
3
2 (kbT )

3
2

e3n
1
2
e

]
. (C7)

The Coulomb logarithm is the approximation of a diverging
collision integral, and is generally of order 10. In the sim-
ulations a floor is applied to the Coulomb logarithm, i.e.,
max(ln λei,

1
2 ln 2), to control the Coulomb collisions at low

temperatures [53].
The heavy-species collision rates including ion-ion colli-

sions νii [8], ion-neutral collisions νin, neutral-ion collisions
νni, and neutral-neutral collisions νnn are calculated via [44]

νii = 4

3

√
π

ma

e4ni ln λii

(4πε0)2(kbT )
3
2

, (C8)

νin = 4
√

2

3
nn

(
8kbT

πma

) 1
2

4πa2, (C9)

= νnn, (C10)

νni = 4
√

2

3
ni

(
8kbT

πma

) 1
2

4πa2. (C11)

where once again the kinetic radius a = 145 pm [51], and
where ln λii is the ion-ion Coulomb logarithm [8], here
defined as

ln λii = ln

[
3

4
√

2π

(4πε0)
3
2 (kbT )

3
2

e3n
1
2
e

]
. (C12)

Similar to the electron-ion Coulomb logarithm Eq. (C7),
a floor is also to the ion-ion Coulomb logarithm, i.e.,
max(ln λii,

1
2 ln 2). Note that, due to the identical masses (ig-

noring the negligible mass of the electron) of the neutral
and ion species, niνin = nnνni. The use of the hard-sphere
scattering model for all neutral collisions, along with a single
temperature, results in νin = νnn.

APPENDIX D: SAHA IONIZATION EQUATION

For a quasineutral single-level ionization plasma the appro-
priate Saha ionization equation is

Z2
a

1 − Za
= 1

na

(
2πmekbT

h2

) 3
2

exp
(
− IH

kbT

)
(D1)

≡ F, (D2)

where IH is the ionization energy for hydrogen, and
Za = ne/na is the mean charge per atom which here also rep-
resents the ionization fraction. The constants me, kb, and h are
the electron mass, Boltzmann constant, and Planck constant,
respectively.

The solution for Za is then

Za = F

2

(
−1 +

√
1 + 4

F

)
, (D3)

and the derivative with respect to temperature is

dZa

dT
= dZa

dF

dF

dT
, (D4)

dZa

dF
= −1

2
+ 1

2

(
1 + 2

F

)(
1 + 4

F

)− 1
2

, (D5)

dF

dT
= F

T

(
IH

kbT
+ 3

2

)
. (D6)

The ionization state described by Za and dZa
dT is completely

specified by the local plasma temperature T and atomic den-
sity na.

APPENDIX E: VALIDITY OF THE ZERO-ORDER TAYLOR
SERIES EXPANSION

The transport properties controlling the plasma dynamics
are functions of the local plasma temperature and atomic den-
sity. In the zero-order Taylor series approximation [Eq. (18)]
it is assumed that the appropriate reference values T and na

are the average plasma temperature 〈T 〉 and average atomic
density 〈na〉, respectively. Thus all radially varying plasma
properties are evaluated directly at 〈T 〉 and 〈na〉 to approxi-
mate the average value.

In general, the transport properties described in Sec. II B
are only weakly dependent on the atomic density, and can
be well approximated by plasma temperature power laws.
The success of the zero-order Taylor series expansion largely
depends on how well the average of these power-law functions
can be approximated as a function of the average directly, i.e.,
how close a parameter ζ (p) = 〈T p〉〈T 〉−p is to unity. From
Eq. (A3) it follows that, for TL � TR,

ζ (p, n) ≈ n + 1

n + 1 + p

(
n + 2

n + 1

)p

, (E1)

where now ζ (p, n) is a function of two variables to indicate
the dependence on radial temperature power-law index n as
well as the power to which the temperature is being raised, p.
A plot of ζ (p, n) vs p for plasma-dominated (n = 5/2) and
neutral-dominated (n = 1/2) limits is shown in Fig. 6. The
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FIG. 6. Variation of ζ (p, n) parameter, defined in Eq. (E1), with
power p for two temperature power laws n. The plasma limit corre-
sponds to n = 5/2, while the neutral limit corresponds to n = 1/2.

ζ (p, n) is generally close to unity, particularly for plasma-
dominated conditions, which contributes to the remarkable
success of the zero-order Taylor series approximation.

A comparison of the average plasma temperature evolution
calculated using (1) the zero-order Taylor series expansion
approach (see Sec. II C) and (2) the full radial variation of
the plasma temperature and associated plasma parameters
when evaluating the quantities in Sec. II B, is shown in Fig. 7
for a select range of discharge conditions. The agreement is
remarkably good considering the significant approximation
involved in the zero-order Taylor series truncation, with the
relative errors being <10%. Simulations using the truncated
Taylor series approach are approximately two orders of mag-
nitude faster than with the full radial variation, and thus
represent an extremely fast and efficient method of estimating

FIG. 7. (a) Comparison of the average temperature 〈T 〉 evolution
calculated by the zero-order Taylor series truncation (solid lines), and
by including the full radial variation (dotted lines), for the simulation
conditions G1–G4 in Table I. The vertical lines indicate the transition
time between uniform and quasistatic regimes. (b) Relative error (%)
in average temperature 〈T 〉 between the two methods in (a).

the plasma temperature and density in discharge capillary
systems.
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