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Abstract 

Remote sensing of ocean colour has been fundamental to the synoptic-scale monitoring of 

marine water quality of the Great Barrier Reef (GBR). However, polar orbiting satellites such as MODIS-

Aqua and Sentinel-3 have insufficient revisit capability for observing diurnal variability in highly dynamic 

coastal environments such as the GBR. To overcome this limitation, this work presents a physics-based 

coastal ocean colour algorithm for the Advanced Himawari Imager (AHI) on-board Himawari-8 

geostationary satellite. Despite being designed for meteorological applications, AHI offers the 

opportunity to estimate ocean colour features every 10 minutes, in four broad visible and near-infrared 

spectral bands and at 1 km2 spatial resolution. Chapter 1 situated the research in the context of relevant 

literature, identified research gaps and defined thesis objectives. In Chapter 2, coupled ocean-

atmosphere radiative transfer simulations of the AHI bands were carried out for a realistic range of in-

water and atmospheric optical properties of the GBR and for a wide range of solar and observation 

geometries. The simulations were used to develop an inverse model based on Artificial Neural Network 

techniques to estimate Total Suspended Solids (TSS), Chlorophyll-a concentration (CHL) and Yellow 

substances (YEL) directly from the top-of atmosphere spectral reflectances. In Chapter 3, the algorithm 

was validated with concurrent in situ data across the coastal GBR and the detection limits were assessed 

in Chapter 4. CHL retrievals presented relative errors up to 70% with absolute errors around 4 mg m-3 

and large negative bias of 0.47 mg m-3. Conversely, YEL was retrieved with relative errors around 57% 

and absolute errors of 3.4 m-1 and bias around -0.36 m-1. On the other hand, TSS retrievals presented 

relative errors up to 75% and absolute errors of 2 mg L-1, low positive bias of 0.014 within the validation 

range of 0.14 to 24 mg L-1. The detection limit for TSS retrievals from Himawari-8 is 0.25 mg L-1, 

comparable to those of the gravimetric method for TSS determination, of 0.4 mg L-1. Finally in Chapter 

5, the TSS algorithm was applied to resolve for the first time, diurnal-scale water quality fluctuations in 

the coastal GBR from 10-minutes Himawari-8 observations. The applications demonstrate the potential 

of more frequent observations for the improvement of monitoring and management of the water 

quality in the GBR.  

  



vi 

Table of Contents 

Statement of Contribution of Others ..................................................................................................... ii 

Acknowledgements ............................................................................................................................... iii 

Abstract .................................................................................................................................................. v 

Table of Contents .................................................................................................................................. vi 

List of Figures ......................................................................................................................................... x 

List of Tables ........................................................................................................................................ xix 

List of Symbols ..................................................................................................................................... xxi 

List of Abbreviations ........................................................................................................................... xxiii 

Chapter 1: Introduction ...................................................................................................................... 1 

 Coastal Water Quality in the GBR ................................................................................................. 3 

 Water Quality Monitoring: Current Status and Limitations ......................................................... 6 

 Ocean Colour Remote Sensing for Synoptic Water Quality Assessments ................................. 11 
 The Geostationary Point-of-View ........................................................................................ 14 
 The Himawari-8 Advanced Himawari Imager ...................................................................... 18 
 Ocean Colour Algorithms for Optically Complex Waters .................................................... 20 

 In situ Datasets to Support Algorithm Parameterization and Validation .................................. 24 

 Thesis Objectives ........................................................................................................................ 26 

Chapter 2: A Physics-based Ocean Colour Algorithm for Himawari-8 .............................................. 28 

 Theoretical Background .............................................................................................................. 29 
 Optical Properties of Aquatic Mediums .............................................................................. 29 

2.1.1.1 Inherent Optical Properties ................................................................................................ 30 
a. Absorption by Pure Water and Scattering by Pure Seawater ............................................... 32 
b. Absorption by Phytoplankton and Detritus (organic particles) ............................................. 32 
c. Absorption by Non-Algal Particles ......................................................................................... 33 
d. Scattering by Inorganic and Organic Particles ....................................................................... 33 
e. Absorption by Yellow Substances ......................................................................................... 35 

2.1.1.2 Apparent Optical Properties ............................................................................................... 36 
 Optical Properties of the Atmosphere ................................................................................ 38 

2.1.2.1 Gas absorption ................................................................................................................... 39 
2.1.2.2 Rayleigh scattering ............................................................................................................. 39 



vii 

2.1.2.3 Aerosol scattering ............................................................................................................... 41 
 Environmental Effects that were not Included in the Radiative Transfer Simulations ....... 42 

2.1.3.1 Bottom reflectance ............................................................................................................. 42 
2.1.3.2 Sun glint .............................................................................................................................. 42 
2.1.3.3 Whitecaps ........................................................................................................................... 43 
2.1.3.4 Inelastic scattering ............................................................................................................. 43 
2.1.3.5 Polarization ........................................................................................................................ 44 
2.1.3.6 Bidirectional reflectance (BRDF) ......................................................................................... 44 
2.1.3.7 Other effects ....................................................................................................................... 44 

 Forward Model: Radiative Transfer Simulations ........................................................................ 45 
 The Atmospheric Parameterization .................................................................................... 46 
 The Aquatic Parameterization ............................................................................................. 48 

2.2.2.1 Concentrations and Ranges for the Sensitivity Analysis ..................................................... 49 
2.2.2.2 Concentrations and Ranges for ANN Training and Testing ................................................ 50 

 Sensitivity analysis results ................................................................................................... 53 
 Inverse Model: Artificial Neural Networks ................................................................................. 57 

 Experimental Setup ............................................................................................................. 59 
 Data Preparation ................................................................................................................. 60 
 Training and Testing Results ............................................................................................... 60 

 The Himawari-8 Water Quality Processor .................................................................................. 65 
 Acquiring and processing Himawari-8 observations ........................................................... 65 
 Masking Himawari-8 observations ...................................................................................... 68 

2.4.2.1 Cloud masking .................................................................................................................... 68 
2.4.2.2 Land and coral reefs masking ............................................................................................. 69 
2.4.2.3 Sun glint masking ............................................................................................................... 70 

 Ancillary data ...................................................................................................................... 72 
2.4.3.1 Total Column Ozone correction factor ................................................................................ 72 
2.4.3.2 Sea Level Atmospheric Pressure ......................................................................................... 74 

 Water Quality Retrievals ..................................................................................................... 74 
 Discussion of Algorithm Development Chapter ......................................................................... 76 

Chapter 3: Algorithm Validation ....................................................................................................... 78 

 Methods ...................................................................................................................................... 79 
 Great Barrier Reef in situ dataset ........................................................................................ 79 
 Selection of Himawari-8 observations ................................................................................ 84 
 Water Quality Retrievals for Validation .............................................................................. 84 
 Testing Temporal Approaches ............................................................................................ 86 



viii 

 Statistical Descriptors and Performance Evaluation ........................................................... 86 
 Rank Experiments and Select ANN algorithm ..................................................................... 87 

 Validation Results ....................................................................................................................... 88 
 Chlorophyll-a Concentration (CHL) ..................................................................................... 88 
 Total Suspended Solids (TSS) ............................................................................................... 90 
 Yellow Substances (YEL) ...................................................................................................... 92 

 Discussion of Algorithm Validation Chapter ............................................................................... 95 
 Evaluation of temporal approaches .................................................................................... 95 
 Chlorophyll-a Retrievals from Himawari-8 .......................................................................... 95 
 Total Suspended Solids Retrievals from Himawari-8 .......................................................... 97 
 Yellow substances absorption Retrievals from Himawari-8 ................................................ 98 

Chapter 4: Detection Limits of Total Suspended Solids Retrievals from Himawari-8 ..................... 100 

 Signal to Noise Ratios of Himawari-8 bands ............................................................................ 100 
 Methods ............................................................................................................................ 102 
 Results ............................................................................................................................... 105 

 Algorithm’s Sensitivity to Noisy Input Data .............................................................................. 107 
 Methods ............................................................................................................................ 107 
 Results ............................................................................................................................... 108 

 Visual Analysis of Himawari-8 derived TSS products ............................................................... 109 
 Methods ............................................................................................................................ 110 
 Results ............................................................................................................................... 113 

 Discussion of Detection Limits Chapter .................................................................................... 118 
 Discussion of Signal-to-Noise Ratios of Himawari-8 bands ............................................... 118 
 Discussion of the Algorithm’s Sensitivity to Noisy Inputs ................................................. 119 
 Discussion of the Visual Analysis of Himawari-8 derived TSS products ............................ 120 

Chapter 5: Applications to Water Quality Monitoring in the Great Barrier Reef ........................... 122 

 Diurnal Variability of Total Suspended Solids ........................................................................... 123 
 Methods ............................................................................................................................ 125 

5.1.1.1 Modelling the Total Suspended Solids from Particulate Backscattering data .................. 126 
5.1.1.2 Time Series of Total Suspended Solids at LJCO ................................................................. 127 
5.1.1.3 Supplementary Observations ........................................................................................... 128 

 Results ............................................................................................................................... 130 
 Great Barrier Reef Maximum Diurnal Changes in Total Suspended Solids ............................. 136 

 Methods ............................................................................................................................ 136 
 Results ............................................................................................................................... 137 



ix 

 Discussion of Applications Chapter .......................................................................................... 147 
 Discussion of Diurnal Variability of Total Suspended Solids at LJCO ................................. 147 
 Discussion of GBR Maximum Diurnal Changes of TSS in the GBR ..................................... 149 

Chapter 6: Summary and Outlook .................................................................................................. 153 

 Summary of Algorithm Development ....................................................................................... 153 

 Summary of Algorithm Validation ............................................................................................ 154 

 Summary of Detection Limits ................................................................................................... 156 

 Summary of Algorithm Application .......................................................................................... 157 

 Future Research ........................................................................................................................ 158 

Chapter 7: References .................................................................................................................... 162 

 

  



x 

List of Figures 

Figure 1.1: Himawari-8 near-true colour composite of the Queensland coast and adjacent coastal 

waters including the Great Barrier Reef. A map of Australia is enclosed for reference, with the 

GBR Marine Park delineated in red. Image scanned on 27th of October 2017 at 05:00 UTC (15:00 

AEST). ............................................................................................................................................... 1 

Figure 1.2: MODIS/Aqua satellite near-true colour image of the Burdekin River flood plume on 22nd of 

February 2008. In this near-true colour image, it is possible to distinguish coastal turbid waters 

from oceanic deep blue waters. A few scattered clouds (white) and sun glint effects are visible in 

the top-left side of the image, close to Hinchinbrook Island (Image courtesy: Dieter Tracy). ...... 4 

Figure 1.3: Great Barrier Reef near Whitsundays Islands, observed with MERIS during different tidal 

cycles. Resuspension is affecting the optical properties as visible in the image of the 15th of June 

2011. Five days later (20th of June 2011), MERIS observed the same region during high tide 

conditions (Image courtesy of Thomas Schroeder). ....................................................................... 5 

Figure 1.4: MMP water quality monitoring sampling sites in the GBR Marine Park, from 2015 onwards, 

with Cape York transects added in 2017. The NRM region boundaries are represented by 

coloured catchment areas with grey lines extending these boundaries into the Marine Park. 

Image credit: Gruber et al. (2020). .................................................................................................. 9 

Figure 1.5: Waterbody boundaries (inshore, midshelf and offshore), annual and seasonal water quality 

guideline thresholds for CHL and TSS concentrations in the GBR Marine Park area. Image credit: 

Tracey et al. (2016). ....................................................................................................................... 10 
Figure 1.6: Global near-true colour composite of MODIS/Aqua satellite sensor overpass over Australia 

and East Asia on 13th October 2012. Note the inter-orbital data gaps, particularly over Australia 

and in the GBR region, as well as the intense cloud cover and bright patches of sun-glint along 

the scan track. Image credit: National Oceanic and Atmospheric Administration (2021). ......... 12 

Figure 1.7: Tidal chart for Sydney, illustrating the daily LEO satellite observation during different tidal 

stages. The red lines denote observations at low and high tide conditions (image courtesy of 

Thomas Schroeder). ...................................................................................................................... 13 

Figure 1.8: Himawari-8 spectral response functions of the visible and infrared bands (solid white lines) 

with the transmission of the atmospheric gases (grey filled line) and the ozone transmission line 

(red solid line) between 400 and 1000 nm. .................................................................................. 19 

Figure 1.9: Near-true colour of Himawari-8 full disk observation on 25th of February 2021. Image source: 

National Institute of Information and Communications Technology (2021). .............................. 20 



xi 

Figure 1.10: The Integrated Marine Observing System (IMOS) Lucinda Jetty Coastal Observatory (LJCO) 

installations in the coastal waters of the Great Barrier Reef World Heritage Area. Image courtesy 

of Dr. Thomas Schroeder. .............................................................................................................. 25 

Figure 1.11: Framework of thesis structure, with research questions associated with each data chapter.

 ....................................................................................................................................................... 27 

Figure 2.1: Conceptual model of the physics-based ocean colour algorithm developed for Himawari-8.

 ....................................................................................................................................................... 28 
Figure 2.2: The top panel presents the relationship between the NAP concentrations (mg L-1) and !"#$. 

The bottom panel presents the frequency distribution and descriptive statistics of !"#$ from in 

situ samples collected in the GBR from 2002 to 2013. ................................................................ 33 

Figure 2.3: Scatter plot between the %& coefficient at 555 nm and TSS for 92 samples taken between 

2002 and 2015 in the GBR waters. The straight solid lines indicate the mass-specific scattering 

coefficient of particles %& ∗ calculated for the GBR (blue) and for European waters (green). ... 34 

Figure 2.4: The top panel presents the relationship between absorption of YEL at 443 nm and !()* 

calculated for 429 in situ GBR samples. The bottom panel shows the frequency distribution of 

the !()* parameter and descriptive statistics. ........................................................................... 35 

Figure 2.5: Modelled spectral absorption of +, (blue solid line), +&ℎ. (green curve) +()* and +"#$ 

(orange and red solid lines, respectively) and overlaid Himawari-8 spectral response function for 

the visible and near-infrared bands (black lines). ......................................................................... 36 

Figure 2.6: Rayleigh Optical Thickness calculated for 980 and 1040 hPa atmospheric pressures. ....... 40 
Figure 2.7: Illustrative diagram of the atmospheric model setup for the radiative transfer simulations in 

this study, based on Schroeder et al. (2007b), and adapted from Ebert (2009). ........................ 47 

Figure 2.8: Histogram of AERONET /+ (551 nm) sampled at LJCO between 2009-2010 and 2013-2015. 

Descriptive statistics of /+ is provided, with the number of samples per bin in logarithmic scale.

 ....................................................................................................................................................... 48 

Figure 2.9: Scatter plots between concurrent in situ samples of CHL, TSS and YEL (logarithmic scale), 

where the solid lines indicate the upper and lower limits of variability defined for the coastal GBR 

(black solid lines) and for coastal and oceanic European waters (red solid lines). The scatterplot 

comprises data from AIMS (green dots) and from CSIRO (blue dots). ......................................... 51 

Figure 2.10: Scatter plot between stochastically generated and evenly distributed CHL, TSS and YEL, in 

logarithmic space. The parallel solid lines are the calculated upper and lower limits between each 

correlated water quality parameter. ............................................................................................. 52 

Figure 2.11: Frequency distribution of logarithmic values of CHL, TSS and YEL, containing 12,800 

randomly generated synthetic triples of water quality parameters. ........................................... 52 



xii 

Figure 2.12: Top of atmosphere radiances (*01#) at the Himawari-8 VNIR bands as a function of varying 

CHL, TSS and YEL triplets. The black dashed line represents the atmospheric signal for a totally 

absorbing ocean. Note the different vertical scale between plots. ............................................. 53 

Figure 2.13: *01# variability at the VNIR Himawari-8 bands for simultaneously varying TSS and CHL 

(SECHL_TSS). ....................................................................................................................................... 54 

Figure 2.14: *01# variability at the VNIR Himawari-8 bands for simultaneous fluctuations of CHL and 

YEL for a constant TSS of 0.5 mg L-1 (SEYEL_CHL). ............................................................................. 55 
Figure 2.15: *01#	variability at the VNIR Himawari-8 bands for simultaneous fluctuations of TSS and 

YEL for a constant CHL of 0.5 mg m-3 (SETSS_YEL). ........................................................................... 56 

Figure 2.16: *01#	distribution for three orders magnitude increases in /+ at the Himawari-8 bands. 

The radiative transfer simulations were employed for 34 = 0.08˚, 5 =180˚ and CHL of 0.5 mg m-

3, TSS of 2.0 mg L-1 and YEL of 0.5 m-1. The left, middle and right panels illustrate the 

*01#	variability for 36 of 41˚, 70˚ and 81˚, respectively. ............................................................ 56 

Figure 2.17: Artificial Neural Network Multilayer Perceptron diagram. Each neuron is connected to the 

next by a specific weight, which is adapted in the supervised learning procedure, until the cost 

function between the output and the target value are minimized. ............................................ 58 

Figure 2.18: Log-linear plot of the overall MSE for 1000 iterations of 160 ANN experiments colour coded 

by experimental set. The Set 1 experiments were designed for the simultaneous output of CHL, 

TSS and YEL, while the Set 2 for CHL, Set 3 for TSS and Set 4 for the output of YEL. .................. 61 

Figure 2.19: Variability of MSE at the 1000th iteration versus the number of hidden layer neurons for all 

sets and groups (A, B, C and D, colour coded) of ANN experiments designed. Note the different 

scale of each plot. .......................................................................................................................... 62 

Figure 2.20: Training (TRN – top panel) and testing (TST – bottom panel) density scatter plots between 

synthetic CHLRT, TSSRT and YELRT and ANN retrievals (CHLANN, TSSANN and YELANN) values in 

logarithmic scale. The colour scale describes the relative density of the matched values mapped 

between 0 to 1 (from blue to red). ............................................................................................... 64 

Figure 2.21: Flow diagram of existing processing flow for Himawari-8 L1 to L2. HSD refers to Himawari-

8 Standard Data, GBR refers to Great Barrier Reef, VNIR refers to the Himawari-8 visible and near-

infrared bands (470, 510, 640, and 856 nm). ............................................................................... 65 

Figure 2.22: Coordinate system (8, ., :) and definition of the relevant geometric parameters: 36 and 

34 are the solar and viewing zenith angles, respectively and ∆5 is the relative azimuth angle. 66 

Figure 2.23: Himawari-8 sensor Viewing Zenith Angle (34), on top-left panel, Solar Zenith Angle (36), 

on top-right panel and Relative Azimuth Angle, Δ5, (on bottom panel) over Southeast Asia and 

Oceania, at 0000 UTC on 21 December 2018. .............................................................................. 67 



xiii 

Figure 2.24: Himawari-8 near-true colour composite (of bands 640, 510 and 470 nm) in the coastal GBR 

featuring unmasked (left panel) and masked areas (right panel in black). Top panels present 

masking of biomass burning smoke plume, middle panels present cloud masking over a turbid 

water setting and bottom panels present the masking of semi-transparent and fractional clouds. 

Coral reefs (white/cyan features) were not masked in this scene. Land and islands are masked in 

grey. ............................................................................................................................................... 69 

Figure 2.25: Himawari-8 near-true colour composite (640, 510, 470 nm) in left panel; same composite 

masked for clouds (central panel); and masked for clouds, land, reefs, and shoals (right panel).

 ....................................................................................................................................................... 70 

Figure 2.26: Yearly trajectory of the Principal Point of Sun-glint (PPS) from 10 a.m. to 2 p.m. local time 

(AEST) over Australia and Southeast Asia. The markers indicate solstice and equinox periods 

(March, June, September, and December) as well as April and February for reference. ........... 71 

Figure 2.27: Unmasked Himawari-8 near-true colour composite (of bands 640, 510, 470 nm) over 

Australia and Southeast Asia (left panel, a), and associated sun glint mask (black disk) overlayed 

to the near-true colour composite (right panel, b). The location of the Principal Point of Sun glint 

(PPS) is marked with a red cross centred at the sun disk. ............................................................ 72 

Figure 2.28: Global distribution of Total Column Ozone (Dobson Units - DU) from Total Ozone Analysis 

using SBUV/2 and TOVS (TOAST), for a given day. Data source: National Oceanic and Atmospheric 

Administration (2020b). ................................................................................................................ 73 

Figure 2.29: Global NCEP/NCAR Mean Sea Level Atmospheric Pressure (hPa) distribution for a given 

day. Data source: National Oceanic and Atmospheric Administration (2020a). ......................... 74 

Figure 2.30: Schematic diagram of the Water Quality Retrieval with inversion of Himawari-8 and 

ancillary datasets. The procedure for identifying and masking out-of-range input and output 

values is described. The ‘ANN flags’ byte mask array is utilised for masking the Water Quality 

Products array. ............................................................................................................................... 75 

Figure 3.1: Frequency distribution log-linear plots for in situ CHL (a), TSS (b) and YEL (c) and summary 

statistics. ........................................................................................................................................ 82 

Figure 3.2 Spatial distributions of in situ CHL, TSS and YEL sampled between 2015 and 2018 in the GBR 

Marine Park. The present dataset includes samples collected by AIMS and CSIRO (including at 

LJCO and onboard the RV Investigator). ....................................................................................... 83 

Figure 3.3: A simplified overview of the algorithm validation procedure. ............................................. 85 

Figure 3.4: Schematic diagram of temporal aggregation employed in Temporal Approach-II. In this 

example, all 6 subsets acquired within an hour were valid for aggregation. .............................. 86 



xiv 

Figure 3.5 Boxplot of statistical metrics comparing temporal approaches TA-I (light blue boxes) and TA-

II (dark blue boxes) for concurrently available data points. ......................................................... 88 

Figure 3.6: Log-Log scatterplot between in situ and hourly derived AHI CHL for P053 ANN experiment. 

In situ CHL are colour coded in logarithmic scale. Error bars were computed as the standard 

deviation of AHI derived CHL within a 3-by-3-pixel box. The circular and cross symbol markers 

indicate in situ data collected by AIMS and at LJCO, respectively. ............................................... 89 

Figure 3.7: Simulated CHL and associated retrieval RMSE errors from ANN recalls of the independent 

testing dataset (N=100 000). The retrieval errors are demonstrated for the top 3 ANN 

experiments (P051, P053, P056) ranked in this validation exercise. ........................................... 90 

Figure 3.8: Variability of retrieved CHL for 36 between 0 and 70 degrees, >5 of 180 degrees and 34 of 

24 degrees with the top-3 performing ANN experiments. The solid horizontal lines correspond to 

the synthetic CHL values (0.4 and 5.0 mg m-3) input to the bio-optical models for the RT 

simulations. The dashed lines represent the retrievals for each ANN experiment selected. Note 

different ranges of CHL in logarithmic scale. ................................................................................ 90 

Figure 3.9: between in situ and hourly derived AHI TSS for P094 ANN experiment. In situ TSS are colour 

coded in logarithmic scale. Error bars were computed as the standard deviation of AHI derived 

TSS within a 3-by-3-pixel box. The circular and cross symbol markers indicate in situ data collected 

by AIMS and at LJCO, respectively. ............................................................................................... 91 

Figure 3.10: Simulated TSS and associated retrieval RMSE errors from ANN recalls of an independent 

testing dataset. The retrieval errors are demonstrated for the top 3 ANN experiments (P092, 

P094, P098) ranked in this validation exercise. ............................................................................ 92 

Figure 3.11: Variability of retrieved TSS for 36 between 0 and 70 degrees, >5 of 180 degrees and 34 of 

24 degrees with the top-3 performing ANN experiments. The solid horizontal lines correspond to 

the synthetic TSS values (0.2 and 2.0 mg L-1) input to the bio-optical models for the RT 

simulations. The dashed lines represent the retrievals for each ANN experiment selected. Note 

different ranges of TSS in logarithmic scale. ................................................................................. 92 

Figure 3.12: Log-Log scatterplots of AHI derived hourly YEL matchups for P0139 ANN experiment. In 

situ YEL are colour coded in logarithmic scale. Error bars were computed as the standard 

deviation of AHI derived YEL within a 3-by-3-pixel box. The circular, cross and diamond symbol 

markers indicate in situ data collected by AIMS, at LJCO, and by CSIRO at Fitzroy River mouth, 

respectively. ................................................................................................................................... 93 

Figure 3.13: Simulated YEL and associated retrieval RMSE errors from ANN recalls of an independent 

testing dataset. The retrieval errors are demonstrated for the top 3 ANN experiments (P135, 

P136, P139) ranked in this validation exercise. ............................................................................ 94 



xv 

Figure 3.14: Variability of RMSE to retrieve YEL for a range of 36 with the selected ANN experiments. 

The solid horizontal lines correspond to the synthetic CHL values (0.12 and 0.25 m-1) input to the 

bio-optical models for the RT simulations. The dashed lines represent the RMSE errors for YEL 

retrievals at 36 between 0 and 60 degrees, ∆5  at 180 degrees and VZA of 24 degrees. .......... 94 

Figure 4.1: Masked near-true colour snapshots of single Himawari-8 observations taken on 25/09/2020, 

between 10:00 and 10:50 AEST. The corresponding aggregated observation is located at the 

right-centred panel. The area in the red square delimits the subset utilised for the calculation of 

SNR. Masked pixels are denoted in black. .................................................................................. 103 

Figure 4.2: Summary of single (SNRSING) and aggregated (SNRAGG) SNR computation for the VNIR 

Himawari-8 bands. The temporal and spectral variability of SNRSING and SNRAGG were compared 

and the SNR values at 36 of 45˚ (±1˚) were selected for further detection limits analysis. ...... 104 

Figure 4.3: Time series of SNR (right axis) and the mean 36 (left axis) computed for SNRSING (a and c) and 

for SNRAGG (b and d) at two different dates and locations. The SNR of each band is colour coded, 

where each dot marker represents SNR derived from single or aggregated observation. The time 

stamp of aggregated SNR and 36 was rounded back to the nearest whole hour. .................... 105 

Figure 4.4: SNRSING and SNRAGG grouped for three ranges of 36. Error bars were computed as standard 

deviations (?) of SNR within each group of 36. ......................................................................... 106 

Figure 4.5: RMSE (in mg L-1) retrieval errors for spectrally-dependent (left panel) and spectrally-flat 

(right panel) noise levels added to the simulated testing dataset at the Himawari-8 bands. 

Radiative Transfer (RT) TSS and RMSE values are presented in logarithmic base 10 scale. The 

vertical dashed line at TSS of 0.15 mg L-1 is the detection limit from Dorji and Fearns (2018), while 

the vertical dashed orange line at 0.25 mg L-1 is the detection limit of the present method. .. 109 

Figure 4.6: True colour imagery of Himawari-8 observations scanned at 00:00 UTC (10:00 AEST) on 

04/09/2015 (left panel) and on 09/09/2017 (right panel) centred over the Great Barrier Reef and 

adjacent Coral Sea, including the continental area of Queensland, Australia. .......................... 111 

Figure 4.7: Flow diagram of Visual Assessment of noise analysis. The acronym H8 stands for Himawari-

8 observations at the visible and near-infrared bands (VNIR), L1b for level 1b observations (per 

band), ANN for Artificial Neural Networks, TSSSING for single observation-derived TSS, TSSAGG for 

aggregated observation derived TSS. .......................................................................................... 112 

Figure 4.8: Location of latitudinal and longitudinal transects between 18˚S and 19˚S and between 150˚E 

and 151˚E (magenta), in the Coral Sea and coastal GBR respectively. The transects were taken 

from TSSSING and TSSAGG (this map) products on 09/09/2017 (between 10:00 and 10:50 AEST). 

Masked areas are marked in black, and the location of Broad Sound is indicated with white arrow 

for reference. ............................................................................................................................... 112 



xvi 

Figure 4.9: Total Suspended Solids (TSS) concentration (mg L-1) derived prior to striping correction on 

04/09/2015. The TSS map on the left panel was derived from a single observation acquired at 

00:00 UTC (TSSSING) whilst the right panel map was derived from aggregated observations 

between 00:00 UTC and 00:50 UTC. Clouds, sun glint, GBR reefs and land are masked in black. 

Horizontal and vertical stripes were identified with arrows and red circle for reference. ....... 113 

Figure 4.10: Total Suspended Solids (TSS) concentration (mg L-1) derived posterior to striping correction 

on 09/09/2017. The TSS map on the left panel was derived from a single observation acquired at 

00:00 UTC (TSSSING) whilst the right panel map was derived from aggregated observations 

between 00:00 UTC and 00:50 UTC. Clouds, sun glint, GBR reefs and land are masked in black. 

The location of horizontal and vertical stripes is identified with arrows and with a red circle for 

reference. .................................................................................................................................... 114 

Figure 4.11: Transects of Himawari-8 derived TSS (mg L-1) taken in the Coral Sea (a) and coastal GBR 

waters (b) respectively. The transects were derived from TSSSING on 09/09/2017 at 10:00 AEST 

(blue dots) and TSSAGG between 10:00 and 10:50 AEST (red dots). The data gaps represent pixels 

masked for clouds, land, sun glint or ANN flags, where appropriate. Minimum, maximum and 

median TSS values (mg L-1) were presented for each transect. The annotated TSS (in black arrows) 

indicate pixel-to-pixel values and the green horizontal line represents the detection limit of the 

method. ....................................................................................................................................... 115 

Figure 4.12: Histogram of TSS values derived from valid pixels taken from TSSSING and TSSAGG products 

on 09/09/2017. The bin size used in the plots was annotated (0.001 mg L-1). .......................... 116 
Figure 4.13: Himawari-8 derived TSSAGG (mg L-1) with median spatial filter applied. The observations 

utilised for the aggregated products were scanned between 10:00 and 10:50 AEST, on 

09/09/2017. ................................................................................................................................. 117 

Figure 5.1: True colour composite of Sentinel 2 (MultiSpectral Instrument) observations at 10 meters 

spatial resolution, taken on 25/03/2017, during wet season. The Lucinda Jetty Coastal 

Observatory (LJCO) is located at the end of the 5.7 km long jetty, about 12 km from the Herbert 

River mouth. Image courtesy of the European Space Agency (ESA). ......................................... 123 

Figure 5.2: Every 5 minutes near-real time snapshots () of the Herbert River plume reaching the LJCO 

facility on the 24/02/2021, between 10:45 a.m. and 11:00 a.m. (AEST). The snapshots are 

continuously captured by a webcam installed at the top of the LJCO facility, facing north to the 

Hinchinbrook Island. Image courtesy of Thomas Schroeder. ..................................................... 125 

Figure 5.3: Time series of calibrated BB9 measurements of particulate backscattering coefficient (%%&) 

at 595 nm (green) and the associated rolling median %%& (with window of 5 minutes - blue line) 

extracted on 06/09/2017 local time (AEST). ............................................................................... 126 



xvii 

Figure 5.4: Scatterplot and computed linear relationship between gravimetric TSS and nearly 

concurrent ECO-BB9 %%& (595 nm) measured at LJCO between 2014 and 2019. The dashed lines 

represent the relationship computed in the present study (in black) and in the works of Blondeau-

Patissier et al. (2009) and Soja-Woźniak et al. (2019) (blue and green, respectively). The error 

bars were computed from the standard deviations of in situ triplicate gravimetric TSS. ......... 127 

Figure 5.5 Herbert River daily mean discharge levels between 2010 and 2020 (a) and between January 

to July 2018 (b). Figure extracted from the Water Quality Information Portal (Queensland 

Government, 2021). .................................................................................................................... 129 

Figure 5.6: Webcam images of the Herbert River plume arriving at LJCO. Hinchinbrook Island is visible 

at the left edge of the picture. Dates of images were annotated on the left side of each row, and 

times were annotated in each image. The median and standard deviation of 0!!@8 (mg L-1) is 

annotated for the time of plume arrival at LJCO. ....................................................................... 130 

Figure 5.7: Time series of 10-minute 0!!@8 (orange) and 0!!%%&(green) extracted in April (a and b) 

and May (c and d) 2018 at LJCO. BC+8 values were marked in neon-green and red. Values of 

∆0!!%%&and ∆0!!%%& were annotated. The MODISA-NAP value (purple star), Sentinel-3 OLCI 

overpass timing (orange shade), webcam-derived time of plume arrival (grey shade) and the 

hourly tidal height (blue) were included. Error bars represent the standard deviation of each TSS 

measurement. ............................................................................................................................. 132 

Figure 5.8: Scatterplots between concurrent 0!!%%&and 0!!@8 (both in mg L-1), sampled every 10 

minutes. Statistical metrics were annotated. N is the number of available pairs for a given day.

 ..................................................................................................................................................... 133 

Figure 5.9: Himawari-8 hourly derived TSS over LJCO from 8 a.m. to 4 p.m. local time (AEST) on the 

26/04/2018 (April #2). Masked areas for land in grey and for the reef matrix and clouds in black. 

A black cross marker indicates the location of LJCO. The time range annotated in each plot refers 

to the interval of observations utilised for hourly aggregation. ................................................. 134 

Figure 5.10: Same as Figure 5.9, but for May #2 (12/05/2018) time series. ........................................ 135 

Figure 5.11: Spatial distribution of ∆0!! [mg L-1] centred at LJCO for hourly TSS products computed on 

06/09/2017. ∆0!! is presented without (a) and with a spatial median filter applied (b). ....... 138 

Figure 5.12: Comparison between monthly D+8∆0!! (a) and monthly median TSS (b) at LJCO and 

surrounding areas in the GBR lagoon. ........................................................................................ 139 

Figure 5.13: Spatial distribution of the total number of ∆0!! available within a month for the GBR and 

adjacent areas. The land areas masked in grey and masked water pixels in black. .................. 140 

Figure 5.14: Example of D+8∆0!! between 18˚S and 24˚S including the major catchments to the GBR, 

indicated by the Burdekin and Fitzroy Rivers, as well as the mouth of the Herbert and the 



xviii 

Proserpine Rivers indicated. LJCO and Broad Sound and the Coral Sea are indicated in white text 

and arrows. The land and GBR reef matrix areas were masked in grey. ................................... 141 

Figure 5.15: D+8∆0!! (mg L-1) in the central GBR between 18˚S and 24˚S, for the wet season. The black 

areas represent masked pixels due to unavailable observations and D+8∆0!! lower than 0.25 

mg L-1. Land and the GBR reef areas are masked in grey. .......................................................... 143 

Figure 5.16: Same as Figure 5.15 but for the dry season months. ....................................................... 144 

Figure 5.17: D+8∆0!! (mg L-1) for a given month with the map centred at LJCO. Adjacent areas include 

Bramble, Britomart and Otter Reefs, Hinchinbrook Island, and the mouth of the Herbert River.

 ..................................................................................................................................................... 145 

Figure 5.18: D+8∆0!! at LJCO (18.52˚S, 139.46˚E) and adjacent areas, for wet and dry seasons 

between 2017 and 2018. The black areas represent masked pixels due to unavailable 

observations and D+8∆0!! lower than 0.5 mg L-1 as well as the GBR reef matrix. Land areas 

were masked in grey. ................................................................................................................... 146 

 
  



xix 

List of Tables 

Table 1.1: Comparative table of currently operational LEO and GEO satellite missions that offer 

observations over the GBR, with launch dates in ascending chronological order. Details of sensor 

specifications, such as the visible (VIS), near-infrared (NIR) and short-wave infrared (SWIR) bands 

comparable to the Himawari-8 set, mission objectives, spatial and temporal resolutions are 

included. Data sourced from the Observing Systems Capability Analysis and Review Tool (2021).

 ....................................................................................................................................................... 17 
Table 1.2: Himawari-8 Advanced Himawari Imager bands configuration utilised in this work. ............ 19 

Table 1.3: Summary of peer reviewed papers on development and implementation of ANN inversion 

algorithms for the retrieval of ocean colour products for oceanic and coastal waters around the 

globe. ............................................................................................................................................. 23 

Table 2.1: Vertical distribution of the aerosol models utilised in this work, as well as the volume and 

number of particles for each aerosol component. Due to rounding, the sum of the total number 

of particles in the continental model slightly deviates from 100%. 1)Shettle and Fenn (1979), 

2)World Climate Research Programme (1986). ............................................................................. 41 

Table 2.2: Summary of the atmospheric and geometric components for parameterization of the 

radiative transfer simulations. ...................................................................................................... 48 

Table 2.3: Descriptive statistics of in situ CHL, TSS and YEL acquired in the GBR between 2002 and 2015.

 ....................................................................................................................................................... 49 

Table 2.4: Concentrations and ranges of CHL, TSS and YEL assigned to the sensitivity experiments. .. 50 
Table 2.5: Ranges of CHL, TSS and YEL determined for radiative transfer simulations. ........................ 50 

Table 2.6: Summary of designed experiments by sets and groups and associated configurations. Four 

main groups of experiments were designed for inclusion (or not) of PCA decorrelation and added 

radiometric noise. Three sets of experiments were designed for individual retrieval of CHL, TSS 

and YEL, plus one set for simultaneous retrieval of CHL, TSS and YEL. ........................................ 59 

Table 2.7: Mean extraterrestrial solar irradiance Eø	(GC26I − 1µC − 1) adapted for the visible and 

near-infrared bands of Himawari-8. .............................................................................................. 66 

Table 3.1: Matchup statistics of the top 3 ANN experiments for CHL retrievals in ascending order of 

RMSE. The experiment’s identifiers are compiled in the first column, followed by the number of 

hidden layer neurons (HID) column. N is the number of valid matchups. Except for MAPE, all 

statistics were calculated in logarithmic base 10 scale. Units for 10RMSE are in mg m-3. .............. 89 

Table 3.2 Matchup statistics of the top 3 ANN experiments for TSS retrievals in ascending order of 

RMSE. The experiment’s identifiers were compiled in the first column, followed by the number 



xx 

of hidden layer neurons (HID) and N is the number of valid matchups. Except for MAPE, all 

statistics were calculated in logarithmic base 10 scale. Units for 10RMSE are in mg L-1. ............... 91 

Table 3.3: Matchup statistics of top 3 ANN experiments for YEL retrievals in ascending order of RMSE. 

The experiment’s identifiers are compiled in the first column, followed by the number of hidden 

layer neurons (HID) column. N is the number of valid matchups. Except for MAPE, all statistics 

were calculated in logarithmic base 10 scale. Units for 10RMSE are in m-1. ................................... 93 

Table 4.1: Visible and near-infrared Himawari-8 bands *M.&NO+P and *QRN6S with units GC− 26I −

1TC − 1, the associated percentage noise (%"RN6S), SNRAGG and SNRSING calculated for 36 =

45˚ ± 1˚ and %[+MNR	of SNRAGG relative to SNRSING. .................................................................. 107 

Table 4.2: Computed RMSE (in mg L-1) and associated %[+MNR for TSS retrievals between 0.01 and 

100.0 mg L-1. Results are shown for several levels of spectrally-flat noise (0.1 to 50%) and 

associated SNR (1000 to 2), and for spectrally-dependent noise computed for Himawari-8 in 

Table 4.1. ..................................................................................................................................... 108 

Table 5.1: Mean daily discharge levels (ML/day) for the Herbert River during the days investigated. 129 

Table 5.2: Summary data for TSS time series: values of ∆0!!%%& and ∆0!!@8, respective global 

maxima BC+8(0!!%%&) and BC+8(0!!@8) with units in mg L-1; BC+8(∆M) in hours and 

minutes; tidal range for each date; and MODISA-NAP vs. concurrent 0!!@8 values in mg L-1.

 ..................................................................................................................................................... 131 

 

  



xxi 

List of Symbols 

Symbol Description Units 

+ Absorption coefficient C!" 

+#$% Absorption coefficient of phytoplankton C!" 

+&'# Absorption coefficient of non-algal particles C!" 

+%()  Absorption coefficient of yellow substances C!" 

+* Absorption coefficient of pure water C!" 

++!  Absorption coefficient of ozone C!" 

# Area C, 

% Scattering coefficient C!" 

%# Scattering coefficient of particles C!" 

%* Scattering coefficient of pure water C!" 

%- Backscattering coefficient C!" 

%#∗  Mass specific scattering coefficient of particles C,\!" 

%]- Backscattering probability ratio dimensionless 

^ Volume scattering function C!"6I!" 

]̂ Scattering phase function 6I!" 

]̂/  Rayleigh scattering phase function 6I!" 

O Attenuation coefficient C!" 

_@* Chlorophyll-a concentration C\	C!0 

_@1 Methane dimensionless 

_1 Carbon Oxide dimensionless 

_1, Carbon Dioxide dimensionless 

) Spectral Irradiance G	C!,	QC!" 

)2  Spectral Downwelling Irradiance G	C!,	QC!" 

)3 Spectral Upwelling Irradiance G	C!,	QC!" 

Eø̀ Mean Extra-Terrestrial Solar Irradiance  GC,6I!"µC!" 

Eø Sun-Earth Distance Corrected Eø̀ GC,6I!"µC!" 

@,!11 Sulfuric acid dimensionless 

@,1 Water dimensionless 

* Spectral Radiance G	C!,6I!"QC!" 

*5+6 Spectral Radiance at the Top of the Atmosphere G	C!,6I!"QC!" 

D Total air mass dimensionless 

Da Median value of a pixel-box dimensionless 

T Mean value dimensionless 

bc Temporal aggregated observation by the mean value dimensionless 

C In situ measurement dimensionless 

",1 Nitrous Oxide dimensionless 



xxii 

" Number of elements or samples dimensionless 

d Number of neurons  dimensionless 

1, Oxygen dimensionless 

[10] Ozone concentration Dobson Units (DU) 

& Satellite product dimensionless 

$ Atmospheric pressure hPa 

$7 Standard atmospheric pressure (1013.25) hPa 

g Flux of radiant energy Joules 

[ Radiance ratio (diffuse reflectance) dimensionless 

[895+6 Remote sensing reflectance at the top of the atmosphere 6I!" 

? Standard deviation dimensionless 

! Sigmoid function dimensionless 

!:6; Spectral slope of non-algal particle absorption QC!" 

!<=> Spectral slope of yellow substances absorption QC!" 

M Time hours, minutes, or 
seconds ΔM Time difference 

/ Optical thickness dimensionless 

/' Aerosol Optical thickness  dimensionless 

/+!  Ozone Optical thickness  dimensionless 

//  Rayleigh Optical thickness  dimensionless 

0+!  Transmission due to ozone molecules dimensionless 

0!! Total suspended solids concentration C\	*!"   

4 Volume in litres, megalitres or cubic metres L,ML,C0 

j Depolarization factor dimensionless 

∆5 Relative azimuth angle degrees 

39 Solar zenith angle degrees 

3? Viewing zenith angle degrees 

3 Scattering angle degrees 

Ω Spatial aperture or solid angle 6I 

λ Wavelength TC, QC  

m7 Single scattering albedo dimensionless 

, Wind speed C6!" 

n Weight matrix dimensionless 

8⃗ Input vector dimensionless 

(8, ., :) Three-dimensional Cartesian coordinates dimensionless 

: Vertical coordinate, depth, thickness of a medium C 

.⃗@ Computed output vector dimensionless 

.⃗A Target output vector dimensionless 

()* Yellow substances absorption (443 nm) C!" 

 

  



xxiii 

List of Abbreviations 

ABI Advanced Baseline Imager 
ACTFR Australian Centre for Tropical Freshwater Research 
AERONET Aerosol Robotic Network 
AEST Australian Eastern Standard Time 
AGGOBS Aggregated Observations 
AGGTSS Aggregated Total Suspended Solids 
AGRI Advanced Geostationary Radiation Imager 
AHI Advanced Himawari Imager 
AIMS Australian Institute for Marine Sciences 
AM Aerosol Assemblage 
AMI Advanced Meteorological Imager 
ANN Artificial Neural Networks 
AODN Australian Observation Data Network 
AOP Apparent Optical Properties 
AU Astronomical Units 
L-BFGS Limited Broyden Fletcher Goldfarb Shanno 
BODB Bio-Optical Data Base 
BOM Bureau of Meteorology 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization  
CMA China Meteorological Administration 
COASTLOOC Coastal Surveillance Through Observations of Ocean Colour 
COMS Communication Ocean and Meteorological Satellite 
CSIRO Commonwealth Scientific and Industrial Research Organization 
CZCS Coastal Zone Colour Scanner 
DN Digital Numbers 
DOY Day of the Year 
DU Dobson Units 
ECO-BB9 Environmental Characterization Optics - Backscattering Instrument 
EMS Environmental Modelling Suite 
ESA European Space Agency 
ETM Enhanced Thematic Mapper 
FCI Flexible Combined Imager 
FNU Formazin Nephelometric Unit 
FY FengYun 
GBRMPA Great Barrier Reef Marine Park Authority 
GBR Great Barrier Reef 
GCOM Global Change Observation Mission 
GEO Geostationary Earth Orbit  



xxiv 

GF/F Glass Fibre Filter 
GIS Geographic Information System 
GLMIR Geosynchronous Littoral Imaging and Monitoring Radiometer  
GOCI Geostationary Ocean Colour Imager 
GOES Geostationary Operational Environmental Satellite 
HID Hidden Layer Neurons 
HITRAN High-Resolution Transmission Molecular Absorption 
HPLC High Performance Liquid Chromatography 
HSD Himawari-8 Standard Data  
IMOS Integrated Marine Observation System 
IOCCG International Ocean Colour Coordinating Group 
IOP Inherent Optical Properties 
JAXA Japan Aerospace Exploration Agency 
JCU James Cook University 
JMA Japan Meteorological Agency 
KARI Korea Aerospace Research Institute 
KIOST Korean Institute of Ocean Science and Technology  
KOMPSAT Korean Multi-Purpose Satellite 
LEO Low Earth Orbit 
LJCO Lucinda Jetty Coastal Observatory 
LMI Linear Matrix Inversion 
MAPE Mean Absolute Percentage Error 
MERIS Medium Resolution Imaging Spectrometer 
MET Meteorological 
METEOSAT Meteorological Satellites 
ML Mega Litres 
MLP Multilayer Perceptron 
MM Masking Method 
MMP Marine Monitoring Program 
MODIS Moderate Resolution Imaging Spectrometer  
MOMO Matrix Operator Model 
MSE Mean Squared Error 
MSI Multi Spectral Instrument 
MSQ Maritime Safety Queensland  
MTG Meteosat Third Generation 
MTSAT Multi-functional Transport Satellite  
NAP Non-Algal Particles 
NASA National Aeronautics and Space Administration 
NCAR National Centre for Atmospheric Research 
NCEP National Centre for Environmental Prediction 
NCI National Computing Infrastructure 



xxv 

NIR Near Infrared Radiation 
NOAA National Oceanic Atmospheric Administration 
NPP National Polar-orbiting Partnership 
NRM Natural Resource Management 
O&A Oceans & Atmosphere 
OC Ocean Colour 
OLI Operational Land Imager 
PCA Principal Component Analysis 
PPS Principal Point of Sun glint 
PSU Practical Salinity Units 
QGIS Quantum-GIS 
QGOV Queensland Government 
QLD Queensland 
RGB Red, Green, Blue 
RMSE Root Mean Squared Errors 
RT Radiative Transfer 
RTE Radiative Transfer Equation 
RV Research Vessel 
SBUV Solar Backscatter Ultraviolet Radiometer, 
SCIATRAN Radiative Transfer Model and Retrieval Algorithm 
SEVIRI Spinning Enhanced Visible and Infrared Imager  
SGLI Second Generation GLobal Imager 
SINGOBS Single Observation  
SINGTSS Single Total Suspended Solids 
SNR Signal to Noise Ratios 
SNPP Suomi National Polar-orbiting Partnership 
SWIR Short Wave Infrared Radiation 
TOA Top of the Atmosphere  
TOAST Total Ozone Analysis using SBUV/2 and TOVS 
TOVS TIROS Operational Vertical Sounder 
TRN Training Dataset 
TST Testing Dataset 
UNESCO United Nations Educational, Scientific and Cultural Organization  
UTC Coordinated Universal Time 
UV Ultra-Violet Radiation 
VIIRS Visible Infrared Imaging Radiometer Suite 
VIS Visible Radiation 
VNIR Visible and Near Infrared Radiation 
VSF Volume Scattering Function 
WCP World Climate Research Programme 
WQP Water Quality Parameters 



1 

Chapter 1: Introduction 

The Great Barrier Reef (GBR) of Australia is an iconic, biodiverse, and complex ecosystem. With 

nearly 3,000 coral reefs distributed along the Queensland coastline (~2,300 km), the GBR is large 

enough to be visible from space (Figure 1.1). Due to its intrinsic ecological value, the GBR Marine Park 

was listed as a World Heritage Site to be managed and protected for future generations (Great Barrier 

Reef Marine Park Authority, 1975, 1981). However, despite this protection, the GBR has been 

negatively affected by the direct and indirect impacts of natural and anthropogenic pressures such as 

climate change (Hughes et al., 2018a; 2018b) and declining water quality (Waterhouse et al., 2017a; 

Wolff et al., 2018; Brodie et al., 2019). 

 

Figure 1.1: Himawari-8 near-true colour composite of the Queensland coast and adjacent coastal 
waters including the Great Barrier Reef. A map of Australia is enclosed for reference, with the GBR 
Marine Park delineated in red. Image scanned on 27th of October 2017 at 05:00 UTC (15:00 AEST). 

Water quality decline is commonly associated with modifications to catchment land-use and 

seasonal freshwater runoff to the GBR (Fabricius et al., 2014; Kroon et al., 2016; Bainbridge et al., 2018; 
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Waterhouse et al., 2018). Thirty-five major rivers drain into the GBR lagoon1, comprising the largest 

external source of ‘new’ nutrients to the GBR (Bartley et al., 2017). However, the terrestrial sediment 

and nutrient concentrations annually entering the GBR have increased more than 5-fold since European 

settlement (Furnas, 2003; McCulloch et al., 2003; McKergow et al., 2005; Kroon et al., 2012).  

Acute and chronic exposure of coral reefs to excess nutrients and fine suspended sediments is 

linked to increased coral mortality rates, as well as compromised resilience and recovery following 

disturbance events (Fabricius, 2005; De'ath et al., 2012; Ricardo et al., 2015; Lam et al., 2018; Ortiz et 

al., 2018; MacNeil et al., 2019; Mellin et al., 2019; Thompson et al., 2021). Likewise, declining water 

quality negatively impact seagrass abundance (Petus et al., 2016; Wooldridge, 2017; McKenzie et al., 

2021) and may drive outbreaks of coral-eating crown-of-thorns starfish (Brodie et al., 2017; Pratchett 

et al., 2017; Matthews et al., 2020). Hence, adequate monitoring of water quality fluctuations in the 

GBR lagoon is crucial for ensuring appropriate management and protection of its ecosystems. Ocean 

colour remote sensing observations, biogeochemical modelling and in situ water quality sampling have 

been used to monitor the GBR from daily to inter-annual temporal scales (Devlin et al., 2015b; Gruber 

et al., 2020; State of Queensland and Commonwealth of Australia, 2021). However, the GBR is subject 

to high-frequency coastal processes, such as tides, winds, episodic floods, and algal blooms (Blondeau-

Patissier et al., 2018; Petus et al., 2019). Therefore, hourly to diurnal observations at relevant spatial 

resolutions are required to resolve the complex water quality dynamics and for the successful 

monitoring and management of the entire GBR. The scope of this literature review is to: 

a. Summarise the current knowledge on the dynamics of water quality in the GBR. 

b. Describe how remote sensing of ocean colour has been incorporated into the marine 

monitoring program of the GBR and to identify the needs for improved monitoring. 

c. Explore the use of geostationary remote sensing observations as an alternative for the 

advanced monitoring of the GBR at diurnal scales. 

 

 

  

 
1 The GBR lagoon is defined here as the water body between the Queensland coastline and the outer 

reefs. 
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 Coastal Water Quality in the GBR 

Declining water quality in the GBR has been largely associated with the seasonal delivery of 

freshwater runoff from adjacent catchments to the coastal waters. Catchment runoff carries a complex 

mixture of sediments, nutrients and contaminants, discharged in discrete flood events and forming 

turbidity plumes in the GBR (Furnas, 2003; Devlin et al., 2015b). The volumes of freshwater runoff are 

controlled by a range of factors that regulate the rainfall such as monsoonal variations, tropical cyclones 

and global climate variability (Lough, 2007; Waters et al., 2014). The freshwater inputs are more 

significant during the wet season (November to April inclusive), because two-thirds of the total annual 

rainfall occurs in this period (Devlin, 2005). 

The loads of sediments and other contaminants may be increased up to 100 times above 

ambient concentrations in the inshore GBR (i.e., depths lower than ~30 m) during floods (Devlin et al., 

2012a). For instance, the Burdekin River catchment is a major source of freshwater, sediment, and 

nutrient inputs to the GBR lagoon (Kroon et al., 2012). It covers around 130,000 km2, which represents 

approximately one third of the area draining into the GBR, most of which (93%) has been modified for 

uses such as beef grazing and sugar cane (Lewis et al., 2006). During average floods, the Burdekin 

discharges about 3 to 5 million ML/event, or around ~100,000 ML/day compared to base flow 

conditions (~1000 ML/day) (Lewis et al., 2006). As a result, it has been estimated that ~5 millions of 

tonnes of sediments are exported during an average flood event, a 10 times increase compared to 

estimated ‘natural’ loads (~500,000 tonnes per year) (Brodie et al., 2009). Conversely, in years of very 

large to extreme flood events, such as those followed by landfall of tropical cyclones, the Burdekin River 

may discharge more than 30 million ML of freshwater annually (Lewis et al., 2006).  

On entering the coastal waters2 of the GBR, the freshwater turbidity plumes are subject to short 

temporal scale (hourly to weekly) oceanographic processes, such as tides and winds (Wolanski, 1994; 

Xiao et al., 2019), driving diurnal to seasonal changes in the water quality parameters (Oubelkheir et 

al., 2006; Blondeau-Patissier et al., 2009). The plume may rapidly change its dispersal direction (North 

to South) within a day in response to changing winds (Devlin et al., 2001; Lewis et al., 2006). During 

calm wind conditions, the plume can move offshore and south, whereas during strong south-easterly 

winds the plumes are generally restricted near-shore and move northward (Devlin et al., 2001; Devlin 

and Brodie, 2005). Turbidity plumes may travel further than 100 km from the stream mouth, but 

derived material, such as particulate and dissolved substances may be detected nearly 200 km away 

from the terrigenous source (Devlin, 2005; Devlin and Brodie, 2005; Schroeder et al., 2012). For 

 
2Coastal waters are defined by the Australian Marine Jurisdiction as the maritime area within 3 nautical 

miles (~5km) from the mainland. However, in this work, coastal waters include those within the GBR lagoon 
subject to the above-mentioned coastal processes, particularly to tides and freshwater runoff.  
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example, the Moderate Resolution Imaging Spectrometer (MODIS/Aqua) near-true colour composite 

(Figure 1.2) shows the Burdekin River plume (light brown) nearly reaching the reef matrix, about ~50 

km from its mouth. 

 

 

Figure 1.2: MODIS/Aqua satellite near-true colour image of the Burdekin River flood plume on 22nd of 
February 2008. In this near-true colour image, it is possible to distinguish coastal turbid waters from 
oceanic deep blue waters. A few scattered clouds (white) and sun glint effects are visible in the top-left 
side of the image, close to Hinchinbrook Island (Image courtesy: Dieter Tracy). 

In addition, tidal fluxes may drive hourly to diurnal fluctuations in Total Suspended Solids (TSS) 

concentrations over a short spatial scale (few kilometres) (Bainbridge et al., 2012; Fabricius et al., 2014). 

In the wet season, parameters such as Chlorophyll-a concentration (CHL, indicative of nutrient input) 

may vary by a factor of 6 within 12 hours (Oubelkheir et al., 2014). In the dry season, semidiurnal tides 

may promote a smaller but substantial CHL variation (1.6 times), whereas TSS may increase by a factor 

of 20 at the same site in the coastal GBR (Oubelkheir et al., 2006). However, during flood events, the 

regular tidal variability and local currents may be overlaid with the high loads of freshwater discharge, 

characterising intricate hydrodynamic processes in the coastal GBR (Oubelkheir et al., 2014; Xiao et al., 

2019). 

The resuspension of particles due to tidal variability, and potentially by winds, is illustrated in 

Figure 1.3, between 15th and 20th of June 2011, during a typical dry season month in the GBR. Two 
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subsequent near-true colour observations were acquired from the Medium Resolution Imaging 

Spectrometer (MERIS) satellite sensor in the Whitsundays Islands region. On the left image (15th June 

2011), turbid waters, indicated by the mix of blue/green, are observed between the coastline and the 

outer reefs during changes of the tidal phase. Meanwhile, the right panel image (20th June 2011) 

illustrates a strong colour separation between deep blue waters and the shallower coastal waters 

(turquoise), where resuspended material is trapped inshore. 

 

 

Figure 1.3: Great Barrier Reef near Whitsundays Islands, observed with MERIS during different tidal 
cycles. Resuspension is affecting the optical properties as visible in the image of the 15th of June 2011. 
Five days later (20th of June 2011), MERIS observed the same region during high tide conditions (Image 
courtesy of Thomas Schroeder). 

The images of Figure 1.3 illustrated a marked variation in turbidity when observations are taken 

at different tidal stages, suggesting that trends in water quality may be biased by ignoring the strong 

effects of short-term coastal processes (Eleveld et al., 2014). Conversely, continuous in situ 

measurements (Oubelkheir et al., 2006; Brodie et al., 2010; Blondeau-Patissier et al., 2011; Soja-

Woźniak et al., 2019), as well as results from biogeochemical modelling (Xiao et al., 2019; Skerratt et 

al., 2019) revealed the short-temporal (hourly to daily) variability of water quality parameters, such as 
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CHL and TSS in the coastal GBR. In this context, diurnal observations at relevant spatial scales are critical 

for the accurate monitoring of water quality in the GBR. 

 Water Quality Monitoring: Current Status and Limitations 

The Australian and Queensland governments are committed to ensure the GBR water quality 

reaches a sustainable level by 2050, currently investing more than $600 million in the Reef 2050 Water 

Quality Improvement Plan (Reef Plan, hereafter) through to 2022. The Reef Plan is a major component 

of the Reef 2050 Long-Term Sustainability Plan (State of Queensland and Commonwealth of Australia, 

2018b, a). The Reef Plan was underpinned by a Scientific Consensus Statement (Waterhouse et al., 

2017b) and has been supported by a comprehensive monitoring and evaluation program – The Paddock 

to Reef Integrated Monitoring, Modelling and Reporting (Paddock to Reef, hereafter), since 2009.  

The Marine Monitoring Program (MMP) is the long-term water quality and ecosystem 

monitoring program for the inshore GBR (Haynes et al., 2005). The inshore GBR is located generally 

within 20 km from the coastline and comprises about 8% of the Marine Park. However, the ecosystems 

within this relatively small area (mangroves, coral reefs, seagrass beds) are at greatest risk from 

declining water quality (Fabricius et al., 2005; Schaffelke et al., 2005; McKenzie et al., 2021; Thompson 

et al., 2021). The Great Barrier Reef Marine Park Authority (GBRMPA) leads the management of the 

MMP program in partnership with a variety of organisations, such as the Australian Institute of Marine 

Sciences (AIMS), James Cook University (JCU) and the Commonwealth Scientific and Industrial Research 

Organization (CSIRO). 

As an integral part of the Paddock to Reef program, the MMP inshore water quality monitoring 

component aims to “assess the long-term effectiveness of the Reef Plan in reversing the decline in water 

quality of runoff originating from the GBR catchments” (Haynes et al., 2005). The MMP has been 

conducted since 2005 and was designed to measure the annual condition and long-term trends in 

inshore water quality, based on in situ sampling and remote sensing observations. Therefore, the MMP 

had assessed the properties, composition, and spatial dynamics of river plumes to understand the 

sources, transport and effects of terrestrial pollution entering the GBR (Devlin et al., 2015a; Brando et 

al., 2015; Waterhouse et al., 2018; Gruber et al., 2019; Gruber et al., 2020). Key Water-Quality 

Parameters (WQP) such as TSS, CHL and absorption of yellow substances (YEL) are monitored in situ at 

variable temporal scales, contributing towards understanding water quality and coastal processes 

(Schaffelke et al., 2005; Schaffelke et al., 2012). 

The MMP water quality program is sustained by a coastal network of permanent and event-

based monitoring stations operating since 2005 (Figure 1.4), measuring parameters such as of dissolved 
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and particulate nutrients, TSS, CHL, YEL, temperature, salinity, and Secchi depth (Gruber et al., 2020). 

In summary, 58 ambient sites are routinely monitored 5-10 times per year (wet and dry season) 

depending on the focus region, with more frequent sampling during the wet season (event-based sites). 

Meanwhile, 27 event-based water sampling sites (same measurements as routine) are monitored only 

during large flood events, spatially concentrated close to some of the main river mouths (Tully, Herbert, 

and Burdekin), but absent near others. Additionally, 15 of the routinely sampled sites are equipped with 

autonomous instruments to collect continuous records of turbidity and CHL (2007-present). 

Under the MMP, environmentally-based water quality guideline trigger values (or thresholds) 

were developed to support the ongoing strategies aimed at halting and reversing the decline of water 

quality entering the GBR (Great Barrier Reef Marine Park Authority, 2010). Figure 1.5 illustrates the 

annual and seasonal guideline thresholds for CHL and TSS within cross-shelf zones (inshore, midshelf 

and offshore) determined for the six Natural Resource Management (NRM) regions of the GBR. The 

guideline thresholds describe the maximum concentrations of water quality parameters that should 

not be exceeded for the protection and maintenance of marine species and ecosystem health (Great 

Barrier Reef Marine Park Authority, 2010). The guideline thresholds were based on annual and seasonal 

averages of historical in situ data (including CHL and TSS) collected in the GBR (De'ath and Fabricius, 

2008). 

Whilst in situ observations are crucial, the current MMP monitoring stations are coarsely 

distributed (distant 10-200 km) and mainly confined to the inshore GBR (within 20 km from the 

shoreline). Additionally, they are scarcely sampled to match the temporal and spatial scale of coastal 

processes, making it difficult to derive more accurate correlations between ecological shifts and 

biophysical drivers (Devlin et al., 2015b). Although more frequent surveys are taken annually during the 

wet season (Devlin et al., 2015a), samplings are spatially and temporally limited by the ship transit time, 

difficulties to access the sites and concerns for the safety and welfare of monitoring staff (Devlin et al., 

2010). Besides, routine in situ monitoring of the southern coastal waters of the GBR (Fitzroy and 

Burnett-Mary NRM) or in remote areas (Cape York) is largely limited or lacking.  

Monitoring water quality at an appropriate spatial scale and frequency is critical to obtain 

reliable estimates of material exported in flood plumes to coastal waters (Devlin et al., 2001). To follow 

the synoptic variability of coastal processes that regulate water quality in the GBR, it is crucial to observe 

the diurnal variability (at least hourly) at a fine spatial resolution (300 m to 1 km) with broad area 

coverage (tens to hundreds of kilometres). However, the current in situ sampling strategies are site-

specific and insufficient in numbers to completely characterize the water quality parameters and its 

variability over the whole area of the GBR. Thus, a fast, flexible, and integral approach is still required 
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to track the rapidly changing conditions in the GBR coastal waters, and satellite observations offer a 

suitable alternative. 

Annual assessments of inshore water quality currently rely on the interpretation of remote 

sensing observations and of biogeochemical modelling results to identify values exceeding the guideline 

thresholds within the GBR (Australian and Queensland Governments, 2020; Baird et al., 2020). The 

status and progress of marine water quality indicators towards achieving the goals set in the Reef Plan 

are annually evaluated and disclosed in the Reef Report Card (State of Queensland and Commonwealth 

of Australia, 2021). Although slow improvements have been observed on a regional scale, poor water 

quality continues to affect many inshore areas, with emphasis on the terrestrial export of fine 

sediments (Waterhouse et al., 2017a; Great Barrier Reef Marine Park Authority, 2019a). Hence, the 

ongoing effort in monitoring water quality is a priority for the GBRMPA to support the health and 

resilience of the coastal and inshore ecosystems of the GBR. 
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Figure 1.4: MMP water quality monitoring sampling sites in the GBR Marine Park, from 2015 onwards, 
with Cape York transects added in 2017. The NRM region boundaries are represented by coloured 
catchment areas with grey lines extending these boundaries into the Marine Park. Image credit: Gruber 
et al. (2020). 
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Figure 1.5: Waterbody boundaries (inshore, midshelf and offshore), annual and seasonal water quality 
guideline thresholds for CHL and TSS concentrations in the GBR Marine Park area. Image credit: Tracey 
et al. (2016). 
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 Ocean Colour Remote Sensing for Synoptic Water Quality Assessments 

Remote sensing observations have been employed to monitor the GBR for almost 40 years, 

offering daily observations of the entire Marine Park (344,400 km²) at fine spatial resolutions (from 

meters to a few kilometres). The first studies focused on mapping coral reefs and coastal habitats with 

meter-scale resolution sensors designed for land observations, such as with the Landsat missions 

(Claasen et al., 1984; Jupp et al., 1985; Kuchler et al., 1986). The proof-of-concept mission Coastal Zone 

Colour Scanner (CZCS) was launched in 1978, and endorsed the first synoptic investigations of water 

quality in the GBR (Gabric et al., 1990). Since then, ocean colour sensors such as MODIS/Aqua (2002-

present) and OLCI/Sentinel-3 (2016-present), have become a valuable and cost-effective source of data 

to examine daily to inter-annual dynamics of water quality (Schroeder et al., 2012; Weeks et al., 2012; 

Devlin et al., 2015b; Cherukuru et al., 2017; Petus et al., 2019; Gruber et al., 2020).  

From 2007, the use of remotely sensed imagery became part of the MMP water quality 

framework for tracking and mapping flood plumes extent, and to quantify parameters such as CHL and 

TSS (Brando et al., 2008; Devlin et al., 2008). The annual MMP reports describe the seasonal and inter-

annual spatial variability of the wet-season flood plumes, water types classification and quantification 

of the loads of particulate suspended material delivered to the GBR (Devlin et al., 2015a; Brando et al., 

2015; Petus et al., 2016; Petus et al., 2019; Gruber et al., 2020). Ocean colour sensors onboard Low 

Earth Orbit (LEO) satellites, such as the MODIS/Aqua, have provided a long-term record (2002-present) 

of daily observations utilised to monitor and map flood plumes extent, discriminate water types and to 

determine water quality conditions in the GBR (Brodie et al., 2010; McKinna et al., 2011; Schroeder et 

al., 2012; Alvarez-Romero et al., 2013; Devlin et al., 2013; Petus et al., 2014b; Devlin et al., 2015a; Petus 

et al., 2016; Fabricius et al., 2016). LEO observations from the Medium Resolution Imaging 

Spectrometer (MERIS/Envisat) have been employed for the detection and monitoring of seasonal algal 

blooms linked with riverine runoff and resuspension in the coastal GBR (Blondeau-Patissier et al., 

2014b; Blondeau-Patissier et al., 2018).  

Additional investigations have demonstrated the potential of daily ocean colour data to model 

the ecological responses to water quality changes (King et al., 2002; Devlin et al., 2012a; King et al., 

2014; Petus et al., 2014a; Thompson et al., 2014; Petus et al., 2016; Baird et al., 2016; Baird et al., 2020; 

Skerratt et al., 2020). More recently, the new generation of European ocean colour sensors, Sentinel-3 

OLCI, have been employed for seasonal and annual monitoring of GBR water quality (Petus et al., 2019). 

The qualitative technique developed by Petus et al. (2019) is an integral part of the MMP for mapping 

the frequency and exposure of the GBR ecosystems to different water types (Gruber et al., 2020).  

Nevertheless, the advantage of monitoring turbid plumes and water quality from space is still 

limited by the regular and complete acquisition of cloud-free imagery over the location of the plume, 
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which mainly depends on the satellite revisit frequency (temporal resolution), swath width and orbital 

schedule. While the Earth rotates, the LEO satellites orbit the globe from North to South poles at ~700 

km altitude. Hence, the LEO satellites complete an orbit within 90 minutes, scanning a new area 

approximately at the same local time every day. However, depending on the swath width of the scene, 

large inter-orbital gaps can yield an incomplete coverage of specific areas, especially near the equator. 

For instance, the MODIS/Aqua satellite, with a swath width of 2330 km, scans eastern Australia every 

day between 13:00 to 14:30h local time, often acquiring a rather incomplete coverage of the GBR (see 

Figure 1.6). 

 

Figure 1.6: Global near-true colour composite of MODIS/Aqua satellite sensor overpass over Australia 
and East Asia on 13th October 2012. Note the inter-orbital data gaps, particularly over Australia and in 
the GBR region, as well as the intense cloud cover and bright patches of sun-glint along the scan track. 
Image credit: National Oceanic and Atmospheric Administration (2021). 

Because of its characteristic orbital scheduling and swath, the LEO ocean colour sensors scan 

the same geographic area within one or two days at best. In addition, the time-lag between two 

consecutive and identical orbits (i.e., revisit periodicity) commonly varies between one or two weeks. 

This implies that coastal areas are observed during different tidal cycles by the LEO satellites (Figure 

1.7), which is too coarse to effectively monitor dynamic coastal processes with diurnal or sub-diurnal 

variability (Ruddick et al., 2012; Ruddick et al., 2014). 
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Figure 1.7: Tidal chart for Sydney, illustrating the daily LEO satellite observation during different tidal 
stages. The red lines denote observations at low and high tide conditions (image courtesy of Thomas 
Schroeder). 

For instance, Eleveld et al. (2014) demonstrated that TSS concentrations derived from the 

MERIS sensor are biased by tidal aliasing . The acquisition of images during the spring tides matched 

only low tidal ranges, while the acquisition during the neap tides matched only high tidal ranges, which 

frequently over or underestimated TSS at distinct sections of the estuary (Eleveld et al., 2014). 

Therefore, many short scale processes such as tidal changes in turbidity and wind-induced resuspension 

are misrepresented by the LEO daily observations (Eleveld, 2012; Eleveld et al., 2014). Consequently, 

the temporal capability of LEO satellites is insufficient to develop a comprehensive observational 

system for monitoring coastal waters (IOCCG, 2012b). 

Additionally, the ocean colour imagery may be largely affected by the presence of clouds and 

sun specular reflection (sun-glint), further extending the period between useful observations (Sirjacobs 

et al., 2011). This occasionally requires a weekly to monthly set of daily images from the same area to 

composite a cloudless view of the ocean, which would be greatly improved with more frequent 

observations, such as with hourly images. Nevertheless, an accurate description of hourly to diurnal 

scale variability of water quality for the entire GBR remains impossible to achieve with LEO observations 

only. Despite these limitations, researchers and environmental managers still rely on LEO ocean colour 

satellites for acquiring cost-effective spatial information of the global oceans. Therefore, high-

frequency fluctuations in water quality, such as with phytoplankton diel cycles, migration of flood 

plumes, tidal and wind driven resuspension have been insufficiently sampled and investigated in the 

GBR.  



14 

Enhanced spatial-temporal observations would provide a better understanding on how the 

fluctuations of coastal processes drive water quality changes in the inshore GBR. Additionally, high-

frequency water quality observations over regular spatial scales (each 1 km2 to the whole GBR) may 

provide valuable inputs to biogeochemical, hydrological, and ecological models (Steven et al., 2019; 

Baird et al., 2020; Skerratt et al., 2020; IOCCG, 2020). Assimilation of daily remote sensing observations, 

such as from MODIS/Aqua, into the eReefs model has provided reasonable and realistic evidence of 

water quality dynamics in the GBR (Jones et al., 2016; Baird et al., 2016; Xiao et al., 2019; Skerratt et 

al., 2019; Steven et al., 2019; Skerratt et al., 2020; Baird et al., 2020; Soja-Woźniak et al., 2020). A more 

frequent (minutes to hourly) and accurate dataset of near-real time spatial observations would offer a 

quantitative, prompt tool to devise guidelines for better quality water entering in the GBR. The next 

section presents an overview of the possible uses of the geostationary-orbit satellites as a new source 

of remote sensing data to provide more frequent imagery and water quality products over the GBR. 

 The Geostationary Point-of-View 

Satellites on a Geostationary Earth Orbit (GEO) are positioned at an altitude of about 35,800 

km, hovering over the equator and synchronised with the Earth’s rotation on a fixed longitude and 

viewing geometry. This allows near continuous observation of a large area of the globe, (full disk scans 

about 40% of the Earth’s surface), at higher frequency (minutes to hours) compared to the daily revisit 

of LEO platforms, particularly over the tropics (IOCCG, 2012b). This exceptional observation frequency 

increases the likelihood of obtaining clear images over the same location, as isolated clouds pass 

rapidly, and the sun-glint disk moves through time at a location (Zhao and Feng, 2020). This offers a 

significant advantage over LEO satellite observations, where atmospheric and geometric features as 

well as revisit periodicity can result in prolonged data gaps (Feng and Hu, 2016; Hu et al., 2019). 

Observing ocean colour from daily to less than hourly basis is a vast improvement, suggesting the 

potential to capture water quality fluctuations not previously possible (IOCCG, 2012b). 

The temporal dynamics of rapidly changing coastal processes, such as of turbidity plumes and 

harmful algal blooms have been effectively monitored since 2010, with hourly images from the world’s 

first Geostationary Ocean Colour Imager, GOCI-I (Ruddick et al., 2012; Minghelli et al., 2019; Wang et 

al., 2020; Jiang et al., 2020; Feng et al., 2020). Although GOCI-I coverage is limited to northeast Asia 

(Korea, China, and Japan), its success provided a useful case for the future development of global GEO 

ocean colour missions (Ruddick et al., 2012; Ruddick et al., 2014; Lou and Hu, 2014). GOCI-I was 

followed by the launch of GOCI-II in February 2020, with an expanded suite of spectral channels and 

offering only one full disk observation per day covering Australia and East Asia (Yang et al., 2018). At 

the time of writing this thesis, GOCI-II full disk observations were not publicly accessible. In addition, 

the only ocean colour mission onboard a GEO satellite expected to be launched in the next few years 
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is the NASA Geosynchronous Littoral Imaging and Monitoring Radiometer (GLMIR). However, GLMIR 

will observe the Americas only.  

GEO satellites are, however, globally employed for meteorological observations, and recent 

technological advances have leveraged their capabilities for collecting data over the oceans, allowing 

more dynamic processes to be observed from space (IOCCG, 2012b; Ruddick et al., 2014; Kwiatkowska 

et al., 2015). The next-generation (i.e., improved spatial and spectral resolution) of GEO meteorological 

sensors, such as the Himawari-8, typically provide a full disk image within 10-30 minutes at 1 km2 spatial 

resolution at the sub-satellite point, for the visible and near infrared bands (Table 1.1). In addition, they 

are equipped with an increased number of bands in the visible spectrum (2 or 3 instead of only one 

band) combined with improved radiometric sensitivity (signal-to-noise ratios) and onboard calibration 

capabilities. These advances allowed, for the first time, a near-true coloured visualization of the Earth 

from a geostationary point of view in near-real time (Miller et al., 2016).  

The next-generation of meteorological sensors onboard a GEO platform (GEO sensors, 

hereafter) offer the opportunity to explore the ocean colour with a reduced number of spectral bands, 

compared to minimum requirements (IOCCG, 1998). For instance, the spectral and radiometric 

characteristics of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument, with one 

visible band at 635 nm, have proved sufficient for monitoring the diurnal variability of coastal turbidity 

plumes (Neukermans et al., 2009; Neukermans et al., 2012b; Ruddick et al., 2012; Vanhellemont et al., 

2014; Kwiatkowska et al., 2015). This is not surprising, since turbidity plumes present a strong signal 

compared to adjacent clear waters and are easily identified from aerial photographs or from true colour 

images (Devlin et al., 2012b; Devlin et al., 2015b). Conversely, it has been proved difficult to accurately 

estimate pigment concentrations with the visible and near infrared bands of GEO sensors due to their 

limited spectral capabilities and the stringent sensitivity required to derive CHL (Murakami, 2016b; 

Lavigne and Ruddick, 2018). However, reaching a high signal-to-noise from a GEO orbit satellite may be 

improved as the integration time can be increased by temporal aggregation (more photons captured) 

to reduce noise (IOCCG, 2012b; Ruddick et al., 2014; Murakami, 2016b; Lavigne and Ruddick, 2018).  

In addition, deriving ocean colour products from GEO sensors is mainly limited by the lack of 

sufficient spectral bands that satisfy the current ocean colour algorithms (IOCCG, 2012a, b). Studies 

suggest that to estimate two or three independent ocean colour variables, at least five visible bands 

and one infrared band are necessary (Sathyendranath et al., 1989; Sathyendranath et al., 1994; IOCCG, 

1998; Lee et al., 2007). An additional challenge is imposed by the complexity of coastal waters optical 

properties, since traditional inverse methods for ocean colour parameters retrieval may not be suitable 

to isolate the optical components that impact the ocean colour (Ioannou et al., 2013). Moreover, 

accurate atmospheric correction is fundamental for the reliable retrieval of ocean colour products, 
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especially because the water-leaving signal from the ocean is weak compared with the strong signal 

from clouds and atmosphere. Accurate atmospheric correction becomes particularly difficult for GEO 

observations at high viewing angles (> 70˚ or at the edge of the full disk) due to the increased path 

length through the atmosphere (Ruddick et al., 2012). 

A non-exhaustive description of current sensors onboard LEO and GEO orbits with capabilities 

for ocean colour monitoring in the GBR is provided in Table 1.1. There are currently 6 ocean colour and 

2 land focused (LEO) sensors available for observations over the GBR, with bands matching those of the 

next-generation GEO meteorological satellite sensors. Nevertheless, the significant number of 

observations offered by a single GEO sensor (up to 48 images a day from Himawari-8, between 8 a.m. 

– 4 p.m.) exceeds the likely effort of combining and utilising ocean colour data from multiple platforms 

for diurnal assessments (Bracaglia et al., 2019; Bracaglia et al., 2020). In addition, due to the distinctive 

orbital characteristics of these multiple ocean colour sensors, same day overlapping of observations 

from multiple platforms is difficult in the GBR.  

Himawari-8 has been providing ultra-high frequent (every 2.5 minutes for target area to 10 

minutes full disk) meteorological observations over Australia and East Asia, since July 2015. Recent 

studies have demonstrated the feasibility of Himawari-8 observations for detection of TSS in coastal 

waters (Dorji and Fearns, 2018; Ding et al., 2020; Hafeez et al., 2021) and for CHL in the open ocean 

(Murakami, 2016b). The results from Himawari-8 suggest an exciting opportunity for monitoring of 

dynamic coastal processes in the GBR. However, an advanced physics-based method with extensive 

validation is needed for reliably extracting ocean colour products from a meteorological sensor in 

coastal waters (Neukermans et al., 2009; Ruddick et al., 2014; Lavigne and Ruddick, 2018). The following 

section describes the characteristics of Himawari-8 and its suitability for deriving ocean colour products 

in the coastal GBR. 
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Table 1.1: Comparative table of currently operational LEO and GEO satellite missions that offer observations over the GBR, with launch dates in ascending 

chronological order. Details of sensor specifications, such as the visible (VIS), near-infrared (NIR) and short-wave infrared (SWIR) bands comparable to the 

Himawari-8 set, mission objectives, spatial and temporal resolutions are included. Data sourced from the Observing Systems Capability Analysis and Review 

Tool (2021). 

 

 
3 OC refers to Ocean Colour, LAND to Land and MET to Meteorological missions. 

4 List of GEO meteorological sensors currently offering Full Disk observations scanning the GBR 

*Himawari-9 is on stand-by as of 2021. 

 Satellite/Sensor Agency Mission3 Launch Bands VIS 
0.4 

VIS 
0.5 

VIS 
0.6 

NIR 
0.8 

SWIR
1.6 

SWIR
2.3 

Spatial 
Resolution 

Temporal 
Resolution 

LE
O

 

AQUA/MODIS NASA OC 2002 36 0.48 0.53 0.66 0.87 1.6 2.1 0.25 – 1 km 1 - 2 days 
SNPP/VIIIRS NASA OC 2011 22 0.48 0.55 0.67 0.86 1.6 2.2 0.3 – 0.75 km 1 - 2 days 
Sentinel-2A/MSI ESA LAND 2015 13 0.49 0.56 0.67 0.86 1.6 2.2 0.01 – 0.02 km 5 days 
Sentinel-3A/OLCI ESA OC 2016 21 0.49 0.51 0.67 0.86 - - 0.3 – 1.2 km 2 days 
Sentinel-2B/MSI ESA LAND 2017 13 0.49 0.56 0.67 0.86 1.6 2.2 0.01 – 0.02 km 5 days 
GCOM-C/SGLI JAXA OC 2017 19 0.49 0.53 0.67 0.86 1.6 2.2 0.25 – 1 km 3 days 
NOAA-20/VIIRS NOAA/NASA OC 2017 22 0.48 0.55 0.67 0.86 1.6 2.2 0.3 – 0.7 km 1 - 2 days 
Sentinel-3B/OLCI ESA OC 2018 21 0.49 0.51 0.67 0.86 - - 0.3 – 1.2 km 2 days 

G
EO

4  Himawari-8/AHI JAXA MET 2014 16 0.47 0.51 0.64 0.86 1.6 2.3 0.5 - 1 km 10 min  
Himawari-9/AHI* JAXA MET 2016 16 0.47 0.51 0.64 0.86 1.6 2.3 0.5 - 1 km 10 min  
KOMPSAT-2A/AMI KARI/KIOST MET 2018 16 0.45 0.51 0.64 0.86 1.6 - 0.5 – 2 km 60 min 
KOMPSAT-2B/GOCI-II KARI/KIOST OC 2020 13 0.49 0.51 0.66 0.86 - - 0.25 – 1 km 1 day 
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 The Himawari-8 Advanced Himawari Imager 

Since the launch of Himawari-8 (in October 2014) and Himawari-9 (in 2016 and on standby) by 

the Japanese Space Agency (JAXA), more frequent observations are now available over Australia and 

East Asia. The Himawari-8/9 Advanced Himawari Imager (AHI) is the 3rd generation meteorological 

instrument onboard this GEO platform, succeeding the Multi-functional Transport Satellite (MTSAT-1R 

and 2) missions. Himawari-8 has been operational since July 2015 with an expected lifetime until 2022. 

Himawari-9 is planned to succeed Himawari-8 and operate until 2029. The Himawari-8/9 generation 

payloads were developed to provide high-frequency, high-resolution, multi-band data to enable better 

numerical weather prediction and environmental monitoring capabilities (Bessho et al., 2016). The 

Himawari-8 data is provided by the Japanese Meteorological Agency (JMA) to the Australian Bureau of 

Meteorology (BOM) and distributed to the research community through the National Computing 

Infrastructure (NCI). 

Himawari-8 is positioned at 140.7˚E longitude and offers the opportunity to observe Australia 

every 10 minutes, capturing at least 48 daily observations over the same location between 8 a.m. to 4 

p.m. AEST. The AHI instrument comprises 16 spectral bands, three of which are in the visible spectrum 

centred at 470 nm, 510 nm and at 640 nm and one near-infrared band centred at 865 nm5 (Da, 2015). 

The VNIR bands have 1 km of spatial resolution, except for the 640 nm, with 0.5 km. The remaining 12 

bands in the infrared spectrum, including the short-wave infrared (SWIR at 1.6 and 2.3µm) channels 

have 2 km spatial resolution. Figure 1.8 illustrates AHI’s spectral response functions of the VNIR bands, 

overlaid with the transmission of atmospheric gases and of ozone. In comparison, the MTSAT-2 Imager 

onboard Himawari-7 mission, operational between 2010 and 2016, had one visible band centred at 670 

nm with 1.25 km spatial resolution. Additionally, Himawari-8/9 is the first GEO meteorological imager 

equipped with a solar diffuser to perform on-board calibration and to track the radiometric stability of 

the visible and near-infrared sensors (Yu and Wu, 2016). 

Whilst the AHI instrument was designed to be a meteorological sensor, an extensive range of 

applications for monitoring and management of land and oceanic areas have the potential to be 

derived, including for ocean colour (Murakami, 2016b; Chen et al., 2019; Hsu et al., 2020; Hafeez et al., 

2021). The high temporal resolution of Himawari-8 allows the monitoring of ocean properties from sub-

hourly to annual time scales. Additionally, Himawari-8’s single wide swath (i.e., full disk) enables the 

synoptic visualization of the entire GBR lagoon and the adjacent oceanic basin without inter-orbital 

 
5For convention, the Himawari-8 visible (or VIS) bands centred at 470, 510 and 640 nm are called blue, 

green and red bands, respectively while the 856 nm is called the near-infrared (NIR) band. The names and central 

wavelengths of the VIS and NIR (VNIR) bands will be used interchangeably through the text. 
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data gaps (Figure 1.9). The VNIR bands of Himawari-8 AHI instrument (Table 1.2) enable the estimation 

of strong marine optical signals, such as those from highly turbid waters (Doxaran et al., 2005; Doxaran 

et al., 2014; Kwiatkowska et al., 2015). Although the AHI SWIR bands are of interest for atmospheric 

correction in optically complex waters (Wang and Shi, 2007; Vanhellemont and Ruddick, 2015; Ibrahim 

et al., 2019), their 2 km spatial resolution was considered too coarse for the coastal GBR.  

While the Himawari-8 VNIR bands (Table 1.2) provide inferior sensitivity compared to 

contemporary ocean colour sensors (Hu et al., 2012b; Japan Meteorological Agency, 2015), the high 

observation frequency is likely to increase accuracy of derived ocean colour products for assessments 

of long-term dynamics (Lee et al., 2012). Uncertainty assessment of Himawari-8 observations and 

derived products is, however, only possible by comparison with concurrent, continuous, and more 

frequent in situ observations, such as the IMOS/LJCO data set in the GBR (in section 1.4). 

 

Figure 1.8: Himawari-8 spectral response functions of the visible and infrared bands (solid white lines) 
with the transmission of the atmospheric gases (grey filled line) and the ozone transmission line (red 
solid line) between 400 and 1000 nm.  

Table 1.2: Himawari-8 Advanced Himawari Imager bands configuration utilised in this work. 

 

 

 

 

 

 

Band # (name) Central wavelengths 
(bandwidth) 

Spatial Resolution at 
Subsatellite point 

SNR @100% albedo 

#1 (blue) 470.64 nm (45.37 nm) 1 km 585 (641.5) 
#2 (green) 510.00 nm (37.41 nm) 1 km 645 (601.9) 
#3 (red) 639.15 nm (90.02 nm) 0.5 km 459 (519.3) 
#4 (NIR) 856.69 nm (42.40 nm) 1 km 420 (309.3) 
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Figure 1.9: Near-true colour of Himawari-8 full disk observation on 25th of February 2021. Image source: 
National Institute of Information and Communications Technology (2021). 

 Ocean Colour Algorithms for Optically Complex Waters 

Utilising spectral measurements from an aircraft, Clarke et al. (1970) demonstrated that the 

ocean colour was quantitatively associated to the phytoplankton derived CHL measured in the water. 

However, the spectral characteristics of aquatic environments may be influenced by components other 

than CHL, such as with particulate and dissolved substances from inorganic and organic origin (Morel 

and Prieur, 1977). Thus, the accurate retrieval of biogeochemical parameters from ocean colour 

satellite observations is a complex task, requiring algorithms to be developed and validated for the 

region of interest, with appropriate removal of the atmospheric signal. 

The optical complexity of diverse aquatic environments, particularly of coastal waters, lead to 

the classification of water types based on the covariance between optically active or bio-optical 

parameters (Morel and Prieur, 1977; Gordon and Morel, 1983; Morel, 1988; Werdell and Bailey, 2005). 

The aquatic environments dominated by the presence and variability of phytoplankton CHL and its 

detrital products have been classified as Case 1 waters (Morel and Prieur, 1977; Gordon et al., 1980). 
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Deep blue waters, such as in the great ocean gyres generally fall in this type (Morel and Maritorena, 

2001). However, Case 1 waters may also be present in coastal areas and on the continental shelves that 

have no runoff from rivers and estuaries, especially in arid climates (Gordon and Morel, 1983). 

Meanwhile, waters belonging to the Case 2 type are dominated by inorganic particles and organic 

substances of terrestrial origin that are not linearly correlated with the phytoplankton biomass (Morel 

and Prieur, 1977; Morel, 1980). Case 2 waters include a complex mixture of active optical constituents 

that shift the watercolour from the clear deep blue to green and brown. These waters can be found in 

coastal, estuarine and shallow regions under the influence of river runoff, bottom re-suspension, 

coastal erosion or zones highly impacted by anthropogenic activities (D'Alimonte et al., 2004). The 

water type classification has been useful to derive appropriate ocean colour inversion algorithms and 

to evaluate their performance and limitations. The development of methods for the inversion of remote 

sensing data to bio-optical parameters in optically complex Case 2 waters is a research field of high 

priority for the ocean colour community (Chapron et al., 2008; Saulquin et al., 2016). 

The ocean colour algorithms can be classified in two major groups: the empirical regression 

techniques and the model-based approaches (IOCCG, 2000). The empirical algorithms are routinely 

developed based on large optical datasets where simple or multiple regressions are applied between 

the biogeochemical parameters and the ratios of radiance reflectance (O'Reilly et al., 1998; Lee et al., 

2002). The band-ratio technique is easy to derive, implement and test due to its mathematical simplicity 

and stable results for Case 1 waters, being widely spread for the development of global scale 

operational ocean colour products, such as CHL (Lee et al., 2015). However, these algorithms are 

sensitive to regional or seasonal changes in the bio-optical composition and to the presence of 

uncorrelated particles and substances (Joint and Groom, 2000; Dierssen, 2010; Bowers et al., 2012). 

For instance, globally-tuned empirical algorithms show errors of up to 375% when applied to retrieve 

water quality parameters in the coastal GBR (Qin et al., 2007; Schroeder et al., 2018). Therefore, the 

application of empirical algorithms should be limited to waters with similar characteristics to those for 

which they were developed (Lee et al., 2002). 

More robust inversion techniques, such as the model-based approaches, were developed to 

simultaneously obtain the concentration of particles and substances beyond CHL, from ocean colour. 

These models make use of bio-optical assumptions and of radiative transfer simulations to compute 

the light propagation from the water to the sensor, i.e., the forward model, prior to inversion. The 

inversion algorithm is then stipulated based on mathematical principles to map, as accurately as 

possible, the inverse relationship between the radiance or reflectance spectra to the desired in-water 

constituents (IOCCG, 2000). Multiple model-based approaches have been developed in the past, such 

as the algebraic or semi-analytical methods, the non-linear optimization algorithms (Roesler and Perry, 
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1995; Lee et al., 1999; Maritorena et al., 2002; Brando et al., 2012), and the Artificial Neural Networks 

(Schiller and Doerffer, 1999). Detailed description of these methods are provided in IOCCG (2000).  

Empirical and semi-analytical algorithms have been recently developed for the retrieval of 

ocean colour parameters with the Himawari-8 meteorological observations (Murakami, 2016b; Dorji 

and Fearns, 2018; Ding et al., 2020). Murakami (2016b) developed an algorithm to estimate CHL, 

whereas Dorji and Fearns (2018), Ding et al. (2020) and Hafeez et al. (2021) to estimate TSS. However, 

none of these algorithms were parameterised and validated for the coastal waters of the GBR, and thus, 

they may yield large deviations making them unsuitable for applications to this region. In addition, these 

algorithms require extensive computation of the atmospheric parameters for correction prior to ocean 

colour retrievals. 

Alternatively, the direct inversion of satellite observations into water quality parameters have 

been explored using Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN) (Schroeder et al., 

2007b). MLP ANN is one of possible mathematical tools used to approximately solve non-linear complex 

problems and inspired by the architecture, self-organization, flexibility, adaptability and processing 

capabilities of the human brain (Jain et al., 1996; Hinton et al., 2012). The term MLP refers to a class of 

ANN composed of multiple layers of individual, idealised and interconnected neurons (Minsky and 

Papert, 1969). The use of MLP ANN (hereafter ANN for brevity) has surged in the past few decades due 

to an exponential increase in computing power, improved learning algorithms and availability of large 

datasets. Conversely, the development of remote sensing geophysical products with ANN has increased 

because of its efficiency and robustness in solving inverse problems. The main advantages of ANN over 

previous ocean colour inversion methods are: 

• Universal approximation capabilities – it can represent or approximate any functional 

relationship (Hornik, 1991); 

• Fault tolerance – it may provide robustness and tolerance against imprecision and uncertainty 

from noisy inputs (Torres-Huitzil and Girau, 2017); 

• Although the training may be time-consuming, the ANN algorithm is fast and can be applied 

routinely for satellite data mass production (Schiller and Doerffer, 2005). 

Therefore, ANN has been successfully applied for mapping pollutants (Leifer et al., 2012; 

Laurentiis et al., 2020), forecasting and modelling dynamic natural events such as precipitation and fire 

spread (Reichstein et al., 2019), and for ocean colour retrievals (Schroeder et al., 2007b). In the past 20 

years, studies have explored the feasibility of ANN algorithms for ocean colour water quality retrievals 

in several coastal settings (Table 1.3). These studies employed ocean colour sensors, such as MERIS 

(Juhls et al., 2019), the Sentinels 2 and 3 (Brockmann et al., 2016; Hieronymi, 2019), VIIRS (El-Habashi 
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et al., 2019), the Hyperspectral Imager for the Coastal Ocean (Pahlevan et al., 2020), and GOCI-I (Feng 

et al., 2020). 

A summary of relevant peer-reviewed publications describing MLP ANN approaches to retrieve 

ocean colour parameters from several dedicated sensors is presented in (Table 1.3). However, it is out 

of the scope of this section to compare results from these studies, only a summary of the work relevant 

for this thesis is presented. Overall, most studies concentrated their efforts in retrieving ocean colour 

parameters in the coastal waters of the Mediterranean, North Atlantic and in the North Sea. Ocean 

colour ANN algorithms have performed well in both Cases 1 and 2 waters, achieving higher retrieval 

accuracies compared to more traditional techniques, such as band-ratio algorithms (Schiller and 

Doerffer, 1999; Keiner, 1999). 

Table 1.3: Summary of peer reviewed papers on development and implementation of ANN inversion 
algorithms for the retrieval of ocean colour products for oceanic and coastal waters around the globe. 

 
 

Literature (Case 1 and Case 2 waters) Sensor Regions Applied 
Gross et al. (1999) and Keiner (1999); Gross 
et al. (2000); Dzwonkowski and Yan (2005); 
Jamet et al. (2005); Brajard et al. (2006a, 
2006b); Jamet et al. (2012) 

SeaWiFS Delaware Bay, 
California Coast, 
Mediterranean Sea, 
English Channel 

Schiller and Doerffer (1999); Buckton et al. 
(1999); Dransfeld et al. (2004); Schiller and 
Doerffer (2005); Doerffer and Schiller 
(2007); Schroeder et al. (2007b); González 
Vilas et al. (2011); D'Alimonte et al. (2012); 
Juhls et al. (2019) 

MERIS North Sea, 
Mediterranean Sea, 
Baltic Sea, 
Arctic Ocean 

Keiner and Yan (1998) Landsat-TM Delaware Bay 
Tanaka et al. (2004) OCTS Northwest Pacific (Japan) 
Ioannou et al. (2011, 2013); Chen et al. 
(2015); Yu et al. (2020) 

MODIS North Atlantic,  
Global oceanic  
and coastal waters. 

El-Habashi et al. (2017); Ahmed et al. 
(2017); El-Habashi et al. (2019) 

VIIRS West Florida Shelf 

Tian et al. (2016); Yanyan et al. (2018); Qiu 
et al. (2018); Feng et al. (2020) 

GOCI Bohai Sea 
Hangzhou Bay 
Yellow Sea 

Brockmann et al. (2016), Hieronymi et al. 
(2017); Hieronymi (2019); Toming et al. 
(2017); Marzano et al. (2020) 

Sentinel-3 
(OLCI); Sentinel-
2 (MSI) 

Baltic Sea 
Mediterranean Sea 

Krasnopolsky et al. (2018) Multiple sensors Global Oceans; 
Pahlevan et al. (2020); Hyperspectral Chesapeake Bay 
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The ANN algorithm presented by Schroeder (2005); (2007b) successfully retrieved ocean colour 

products in turbid coastal waters with the MERIS sensor bands. The one-step inversion was suitable to 

derive Case 2 TSS and YEL with comparable performance of a two-step inversion with explicit 

atmospheric correction (Schroeder, 2005). Likewise, reasonable accuracy was achieved for retrievals in 

the transition zone between coastal and open ocean waters (between Case 1 and Case 2). This is of 

great advantage for ocean colour retrievals in the GBR, which presents a wide range of concentrations 

of water quality parameters, such as particulate and dissolved materials (Furnas, 2003). Thus, a physics-

based inversion method employing ANN is well suited for the retrieval of ocean colour products in the 

optically complex coastal waters of the GBR and may be ideal for the inversion of large and more 

frequent observations such as those from Himawari-8.  

 In situ Datasets to Support Algorithm Parameterization and Validation 

Coastal waters can have complex optical variability (Morel and Prieur, 1977; Lee et al., 2002), 

requiring model-based techniques for the accurate retrieval of water quality parameters from remote 

sensing. Besides, extensive algorithm validation and parameterization are required to reliably derive 

ocean colour parameters in coastal and optically complex waters, such as in the GBR (Brando et al., 

2015). In this context, the MMP in situ water quality monitoring network has facilitated the validation 

and improvement of ocean colour products derived from remote sensing observations in the coastal 

waters of the GBR (Gruber et al., 2020). The historical record of in situ data of CHL, TSS and YEL collected 

by AIMS as part of the MMP is freely available through the Australian Observation Data Network 

(AODN) portal and has been valuable for ocean colour validation activities in the coastal GBR. However, 

in situ data collected for the MMP is not specifically tailored for ocean colour validation activities, and 

studies still report a lack of sufficient in situ validation data in several GBR coastal systems under the 

influence of freshwater runoff (Brando et al., 2015).  

A comprehensive database of coastal and open ocean in situ observations, including physical, 

chemical, and biological variables is available Australia wide through the Integrated Marine Observing 

System (IMOS). Within IMOS, the Ocean Colour Sub-facility supports the archiving of raw satellite data, 

as well as the collection of in situ observation for algorithm development and validation activities. In 

this framework, the Lucinda Jetty Coastal Observatory (LJCO, 18.52˚S, 146.39˚E) is a semi-autonomous 

facility operated by CSIRO and located in the Wet Tropics region within the coastal waters of the GBR 

World Heritage Area (Brando et al., 2010). The facility (Figure 1.10) is situated at the end of the longest 

jetty in the southern hemisphere (5.8 km), close to the Herbert River Estuary and to the Hinchinbrook 

Channel, where tides range up to 4 m (Bureau of Meteorology of Australia, 2016).  



 25 

LJCO is the only observatory in the southern hemisphere that provides a simultaneous and 

continuous time series of above water radiometry (integrated with NASA's AERONET-OC), and in-water 

optical properties, atmospheric, meteorological, and sea-state measurements. Also, sea surface 

discrete water samples are taken on fortnightly basis to derive the concentration of water quality 

parameters such as CHL, TSS and YEL. A more detailed description of the measurements can be found 

in the LJCO dedicated webpage6. The IMOS/LJCO has been operational since 2014, which coincides with 

the launch and operation of Himawari-8. More frequent and concurrent in situ data is fundamental to 

explore the full capacity of Himawari-8 through validation exercises. 

 

 

Figure 1.10: The Integrated Marine Observing System (IMOS) Lucinda Jetty Coastal Observatory (LJCO) 
installations in the coastal waters of the Great Barrier Reef World Heritage Area (29/01/2016). Image 
courtesy of Dr. Thomas Schroeder. 

 

 

 

 

 
6 http://coast-rs-1.it.csiro.au/ 
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 Thesis Objectives 

The limited capability to detect diurnal ocean colour from space has hindered the development 

of a broader understanding of coastal processes affecting water quality dynamics in the GBR. As 

described above, GEO satellites offer ultra-high temporal revisit frequencies compared to LEO satellites, 

presenting an opportunity to explore diurnal variations in ocean colour from space. Recent 

technological advances have also allowed multiple visible bands to be included in the payload of the 

next-generation geostationary meteorological sensors, with promising results for ocean colour 

monitoring at diurnal scales yielded from these developments. With modern computational 

capabilities, vast amounts of data can be explored, and advanced machine learning techniques applied 

to retrieve near-real time ocean colour products from space. Moreover, the ability to assess the 

accuracy of ocean colour remote sensing products has been significantly improved with the increased 

availability of ground truth data for validation, such as those from IMOS/LJCO.  

The aim of this thesis is to critically examine the possibility of using Himawari-8 observations to 

derive diurnal water quality products for the advanced monitoring and management of the coastal 

waters of the GBR. The thesis is organised in four data chapters, each one addressing a research 

objective relevant to this aim. The research objectives are: 

a) Development of a physics-based ocean colour algorithm for Himawari-8 

b) Validation of the algorithm against in situ data collected in the GBR 

c) Assessment of the detection limits of the method; and 

d) Application of diurnal observations from Himawari-8 to the advanced monitoring of water 

quality in the GBR. 

Figure 1.11 illustrates the conceptual framework of this thesis. Chapter 2 reports on the design 

and parameterization of a physics-based ocean colour algorithm for the coastal GBR, utilising radiative 

transfer simulations and inversion with Artificial Neural Networks. Chapter 3 assesses the ability of the 

algorithm to accurately retrieve ocean colour products from Himawari-8, compared to concurrent 

ground truth data collected in the GBR. Chapter 4 evaluates the quantitative and qualitative limitations 

of the present method associated with Himawari-8 radiometric quality and resolution. Finally, Chapter 

5 demonstrates the ability of Himawari-8 products for the monitoring of diurnal variations in water 

quality in the GBR.  
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Figure 1.11: Framework of thesis structure, with research questions associated with each data chapter. 
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Chapter 2: A Physics-based Ocean Colour Algorithm for Himawari-8 

Although several ocean colour algorithms may be available for satellite retrieval of coastal 

water quality parameters, they are either not suited for the optical complexity of the GBR or not suited 

for the Himawari-8 observations. Given the optical complexity of the GBR waters and the singularity of 

Himawari-8 as a non-ocean colour sensor, a physics-based algorithm with ANN inversion was tested. 

The one-step inversion algorithm was developed to estimate the concentration of CHL, TSS and YEL 

directly from Himawari-8 top-of-the atmosphere (TOA) observations. The specific objectives of the 

Algorithm Development chapter are to: 

• Investigate the sensitivity of the Himawari-8 bands to detect changes in CHL, TSS and YEL. 

• Generate a large dataset of simulated radiances for the training and testing of ANN inversions. 

• Train and test several ANN ocean colour inversion experiments to estimate CHL, TSS and YEL in 

the coastal GBR. 

A conceptual framework of this chapter is shown in Figure 2.1. In summary, the angular distribution 

of the TOA radiances was simulated at the visible and near-infrared (VNIR) Himawari-8 bands with an 

existing coupled ocean-atmosphere radiative transfer (RT) model (Fischer and Grassl, 1984; Fell and 

Fischer, 2001), i.e., the forward model. The RT simulations included realistic variations in water quality 

parameters, atmospheric and illumination conditions. Then, several ANN experiments were designed, 

trained, tested to retrieve CHL, TSS and YEL at the Himawari-8 bands based on the simulated TOA 

radiances, i.e., the inversion model. Finally, the ANN outputs were statistically assessed against the RT 

synthetic water quality inputs. The section 2.1 of this chapter describes the theoretical background for 

parameterization of the coupled ocean-atmosphere radiative transfer simulations. The section 2.2 

presents the radiative transfer model and sensitivity analysis results, as well as the dataset generated 

for training and testing the ANN experiments. The section 2.3 presents the development of the 

inversion algorithm with ANN for Himawari-8. 

 

Figure 2.1: Conceptual model of the physics-based ocean colour algorithm developed for Himawari-8. 
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 Theoretical Background 

The scope of this section is to present fundamental background physics required to understand 

the radiation budget between the ocean and the atmosphere and thus, to accurately retrieve water 

quality information from satellite remote sensing. Nomenclature and symbols of radiometric 

parameters follow the classic work of Mobley (1994), which adopts the recommendations of the 

Committee on Radiant Energy in the Sea of the International Association of Physical Science of the 

Ocean (Morel and Smith, 1982). For clarity, only the quantities applied in the present work are 

introduced. Detailed reviews of ocean radiative transfer can be found in Mobley (1994), Kirk (1994, 

2010), Bukata et al. (1995), and in Zaneveld et al. (2005). In addition, the reports of the International 

Ocean Colour Coordinating Group (IOCCG, 2000), as well as the National Aeronautical and Space 

Administration (NASA) protocols for radiometric measurements in (Mueller, 2003), provide a wealth of 

information on ocean colour remote sensing. 

 Optical Properties of Aquatic Mediums 

Aquatic environments contain dissolved substances and particles of organic and inorganic 

origin, such as minerals (fine suspended sediments), living organisms (phytoplankton) and products 

from the breakdown of organic matter (yellow substances and cell fragments). Depending on the 

concentration and type, these substances and particles may alter the colour of the water, and thus they 

are called optically active constituents. The optically active constituents change water colour by 

modulating the magnitude and spectral characteristics of the incident electromagnetic radiation. The 

resultant water leaving radiances, containing information about the water colour and its constituents, 

can be detected by sensors on board LEO or GEO satellites. 

Critical analysis of the inherent and apparent optical properties (IOPs and AOPs) related to the 

optically active constituents are fundamental to quantitatively define and model the aquatic 

environment. The Inherent Optical Properties (IOPs), such as absorption and scattering, characterise 

the intrinsic behaviour of each optically active constituent, regardless of the environmental and 

illumination conditions. The IOPs can be translated into the ocean colour or water quality relevant 

parameters through bio-optical models (Morel, 1988; Morel, 2001). Meanwhile, the Apparent Optical 

Properties (AOPs) describe the spectral changes in electromagnetic radiation due to changes in colour 

(i.e., IOPs), considering the environmental and illumination conditions. Therefore, from knowing the 

IOPs, the spectral characteristics of the AOPs can be derived for several illumination and environmental 

conditions, which is the task of the radiative transfer simulations employed in this work. The AOPs 

simulated at the VNIR bands of Himawari-8 were the basis for training and testing an ocean colour 

inversion algorithm with ANN. 
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2.1.1.1 Inherent Optical Properties 

The IOPs are mainly determined by the concentration and types of constituents present in the 

aquatic medium, independent of the ambient light field structure. The magnitude and spectral shape 

of IOPs can be measured with instruments in situ and in laboratory through filtration and subsequent 

analysis of discrete water samples. The relevant IOPs in the context of this work are the absorption and 

scattering (and volume scattering function) coefficients of pure water, phytoplankton, yellow 

substances and of non-algal particles or inorganic suspended matter.  

The absorption (") is the property that describes the photon removal from the incident beam 

of light while the scattering ($), is the property that describes the changes in the direction of photons 

propagation. The total attenuation of the light (%) in the water is the sum of the radiation loss by 

absorption and scattering properties of all optically active constituents, including of the pure water 

itself. The attenuation, scattering and absorption coefficients, with units per metre ['!"] are 

wavelength dependent ()), which is omitted for brevity: 

The spectral absorption coefficient "	()) is the fraction of radiant flux of photons 

(Φ	,-	."//0) that is absorbed within a specific layer of thickness 1 (Eq. 2.2): 

According to the Beer-Lambert law of extinction (Beer, 1852), the total absorption (or total 

scattering) is linearly proportional to the sum of all absorbing (or scattering) constituents within a 

medium. The total absorption coefficient " can be expanded to the individual contributions of 

phytoplankton ("#$%), non-algal or inorganic particles ("&'#), yellow substances ("%()), and the 

contribution of pure water itself ("*) (Gordon, 1989) (wavelength dependent): 

Meanwhile, the total scattering coefficient	($) describes the change in the incident radiation 

flux (Φ+) due to scattering within a layer of thickness 1, regardless of angular distribution: 

In water bodies, the total scattering is mainly a function of the contribution of pure sea water 

molecules and particles:  

%	 = " + $ Eq. 2.1 

"	 ≡
56'
6+ 51

 Eq. 2.2 

"	 = "#$% + "&'# + "%() + "* Eq. 2.3 

$	 =
56,
6+ 51

 Eq. 2.4 
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The Volume Scattering Function (VSF), or the angular distribution of the scattered radiation 

7(8, )), quantitatively describes how much of the incident radiation flux Φ	(:, λ) is deflected in a 

spatial aperture angle (0 < Ω < 180˚), relative to the direction of incidence of the radiation flux (:). 

Integrating 7(8, λ) over all scattering directions gives the spectral scattering coefficient $(λ): 

The VSF can be partitioned into the forward (0 < : < π 2	⁄ ) and back (π 2⁄ < : < π) 

scattering coefficients $-(λ) and $,(λ) respectively: 

The backscattering ($,) coefficient may be due to pure water itself, turbulence, bubbles, 

colloids, and particles (Stramski et al., 2004). However, it is mainly described by the backscattering of 

pure water ($,*) and particulate material ($,#) of organic and inorganic origin (phytoplankton and 

non-algal particles): 

Finally, the scattering phase function or 7E	(:, λ) has been widely utilised to simulate the 

scattering behaviour of several particles. The scattering phase function is a measure of the angular 

distribution of scattering regardless of its magnitude (Stramski et al., 2004) and is often approximated 

by an analytical formula, such as from Fournier and Forand (1994) for oceanic waters. The scattering 

phase function, or the ratio of the VSF to the scattering coefficient can be calculated for a specific 

wavelength (λ) and for a scattering angle (:): 

$ = $# + $* Eq. 2.5 

7	(8, )) =
56	(:, ))

6	())

1

5F	51
	['!"0G!"] Eq. 2.6 

$()) = 2HI 7(:, ))
.

/

0,- : 5:	['!"] Eq. 2.7 

$,()) = 2HI 7(:, ))
.

./1

0,- : 5:	['!"] Eq. 2.8 

$-()) = 2HI 7(:, ))
./1

/

0,- : 5:	['!"] Eq. 2.9 

$,()) = $,#()) + $,*()) Eq. 2.10 
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The parameterization of the specific IOPs relevant to this work are described in the next 

subsections. 

a. Absorption by Pure Water and Scattering by Pure Seawater  

Pure water is defined as distilled water without any particles, substances or salts dissolved in 

it. Pure water molecules strongly absorb ultraviolet (100 - 400 nm) and infrared (800 nm – 1 mm) light, 

while strongly scattering blue light (~ 450 - 500 nm) (Morel, 1974). Small quantities of water are 

transparent but with the increasing optical thickness (deep waters), pure water shows a predominant 

blue colour. Pure seawater consists of pure water molecules and dissolved salts (mainly chloride and 

sodium), with average salinity of 35 PSU for the open ocean. Salinity does not affect visible light 

absorption, however, it is shown to be relevant for scattering (Zhang et al., 2009). The absorption 

coefficient of pure water ("*) utilised in this work was defined by Pope and Fry (1997) for the visible 

bands (412-727.5 nm - Figure 2.5) and by Hale and Querry (1973) for wavelengths between 750-1000 

nm. Meanwhile, the pure seawater scattering coefficient was expressed as a wavelength dependent 

power law based in Morel (1974), defined for a global salinity average of 35 PSU: 

b. Absorption by Phytoplankton and Detritus (organic particles) 

Phytoplankton or microalgae organisms like diatoms, dinoflagellates and cyanobacteria are 

crucial for the primary productivity of the oceans (Behrenfeld and Falkowski, 1997). They are 

microscopic autotrophic cellular organisms with variable sizes (0.2 µm to 200 µm), shapes, builds and 

physiologies. Their most abundant photosynthetic pigment, chlorophyll-a, strongly absorbs visible light, 

especially in the blue and red part of the spectrum (peaks at 440 nm and 675 nm). Light absorption 

spectra may vary in magnitude and shape depending on the species and taxa (Sathyendranath et al., 

1987; Ciotti et al., 2002). Detritus is the product of the degradation of all dead particulate organic 

material, including phytoplankton cells (Bricaud et al., 1998). The spectral absorption of phytoplankton 

and detritus (sum of all organic particles), "#$%, was parameterized as: 

7E(:, )) =
7(:, ))

$
 Eq. 2.11 

$*()) = 0.00288 K 2

3//
L
!4.61

 Eq. 2.12 

"#$%()) = M#$%())	[NOP]
7!"#  Eq. 2.13 
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In Eq. 2.13, M#$% and Q#$% are tabulated coefficients (Bricaud et al., 1998), and CHL is the 

concentration of total chlorophyll-a pigment. 

c. Absorption by Non-Algal Particles 

Non-Algal Particles (NAP) are mainly found suspended near coastal waters and consist 

predominantly of minerals such as feldspars, clay, calcite, sand, quartz, and metal oxides (Mobley, 

1994). NAP may originate from atmospheric deposition, be resuspended from bottom sediments, or 

delivered by erosion and fluvial discharge. The spectral absorption of all NAP retained in a filter ("89:), 

disregarding the pigment absorption due to phytoplankton particles (through pigment bleaching), for 

a given wavelength ) is calculated as in Eq. 2.14 and in Eq. 2.15: 

In this work, the M89: = 0.0216 and Q89: = 1.0247 coefficients were taken from Babin 

(2000), and the mean slope U89: = 0.012 was adapted based on in situ average values for the GBR 

between 2002 and 2013 (Figure 2.2). 

 

Figure 2.2: The top panel presents the relationship between the NAP concentrations (mg L-1) and U89:. 
The bottom panel presents the frequency distribution and descriptive statistics of U89: from in situ 
samples collected in the GBR from 2002 to 2013. 

d. Scattering by Inorganic and Organic Particles 

TSS or suspended matter is a measure of the total dried weight of all the material retained in a 

filter after filtration of a volume of water. The retained material is a composition of all living and 

nonliving buoyant particles of organic and inorganic origin, including phytoplankton cells, bacteria, 

colloids and minerals (Babin et al., 2003a; Stramski et al., 2004). Here, the contribution of organic and 

inorganic particles was combined to derive the particulate scattering $# following the parameterization 

in Babin (2000), where $#∗  is the mass specific scattering coefficient of TSS particles:  

"89:()) = "89:(443)W!<$%&
(2!446) Eq. 2.14 

"89:(443) = M89:	XUU7$%&  Eq. 2.15 
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The average ratio between the $# coefficient at 550 nm and the concurrent TSS concentrations 

from 92 in situ GBR samples was calculated via Eq. 2.16. The resultant average $#∗ 	(Figure 2.3) calculated 

for the GBR waters (0.31 m2g-1) is comparable to the value acquired by Babin (2000) in coastal waters 

of Europe (0.5 m2g-1). 

 

Figure 2.3: Scatter plot between the $# coefficient at 555 nm and TSS for 92 samples taken between 
2002 and 2015 in the GBR waters. The straight solid lines indicate the mass-specific scattering 
coefficient of particles $#∗  calculated for the GBR (blue) and for European waters (green). 

The backscattering probability, which is derived from the VSF, may be highly variable depending 

on the wavelength and the ratio between YEL and TSS, particularly in Case 2 waters (Zhang, 2003). To 

account for the likely variations in particulate matter occurring in the GBR, the backscattering 

probability model provided by in Zhang et al. (2002) and Zhang (2003) for Case 2 waters was calculated. 

The Zhang (2003) model is a wavelength dependent function of the ratio between the organic to 

inorganic particulate matter. The fraction of organic particulate matter was represented by the YEL 

absorption at 443 nm: 

The backscattering probability was calculated and employed for selection of the scattering 

phase function, 7E(:, )). 

$#()) = $#∗ 	())[XUU] Eq. 2.16 

$E,()) = -?
@AB

C<<
	E()) Eq. 2.17 
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e. Absorption by Yellow Substances 

The yellow substances (YEL), also known as coloured dissolved organic matter, gelbstoff and 

gilvin, are composed of fulvic and humic acids resulting from the decay and bacterial degradation of 

plant material (Nelson and Coble, 2009). The YEL pool in coastal waters can originate from terrestrial 

runoff (Schroeder et al., 2012) or be associated with in situ biological activity, such as the degradation 

of phytoplankton cells (Kinsey et al., 2018). YEL strongly absorbs ultraviolet and blue visible light with 

exponential decrease towards longer wavelengths. Depending on its concentration, it modulates the 

watercolour from yellow to brown and largely influences light dynamics in surface waters (Kirk, 1994, 

2010). The spectral absorption "@AB()) is determined in the laboratory by the spectrophotometric 

reading of a filtered water sample, where the polycarbonate membrane filter has pore size of 0.2µm 

(Clementson et al., 2004). The spectral absorption coefficient "@AB()) was modelled according to 

Bricaud et al. (1981), as in Eq. 2.18 and the coefficient U@AB was derived from in situ data from the GBR 

(Figure 2.4). 

 

Figure 2.4: The top panel presents the relationship between absorption of YEL at 443 nm and U@AB 
calculated for 429 in situ GBR samples. The bottom panel shows the frequency distribution of the U@AB 
parameter and descriptive statistics. 

The modelled spectral absorption of "*, "#$%, "@AB and "89: are demonstrated in Figure 2.5 

for CHL, YEL and TSS concentrations (10 mg m-3, 0.1 m-1 and 10 mg L-1 respectively) derived from 

arbitrary in situ data from the coastal GBR. Additionally, the spectral response function for the 

Himawari-8 VNIR bands is overlayed in Figure 2.5, where the central bands in the blue (470 nm), green 

(510 nm), red (640 nm) and near-infrared (856 nm) regions. The bio-optical models presented in section 

2.1.1.1 were employed to generate a large bio-optical database for the radiative transfer calculations 

with the MOMO code and IOPs were calculated for the central wavelengths of Himawari-8 bands. The 

water quality parameters input to the bio-optical models are described in section 2.2.2. 

"@AB()) = "@AB(443)W!<'()
(2!446) Eq. 2.18 
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Figure 2.5: Modelled spectral absorption of "* (blue solid line), "#$% (green curve) "@AB and "89: 
(orange and red solid lines, respectively) and overlaid Himawari-8 spectral response function for the 
visible and near-infrared bands (black lines). 

2.1.1.2 Apparent Optical Properties 

The Apparent Optical Properties (AOPs) are the properties utilised to describe the magnitude 

and geometrical distribution of the light field (Mobley, 1994). The spectral magnitude and shape of 

AOPs change with variations on type and concentration of substances in the aquatic and atmospheric 

mediums (i.e., IOPs) and on the directional structure of the ambient light field (solar and observer zenith 

and azimuth angles). The AOPs can be derived from radiometric measurements taken in situ or from 

ocean colour satellite observations. This section briefly describes the AOPs relevant to this work, 

however, an in-depth description is found in Mobley (1994). 

Radiometry is the science that measures and characterizes the electromagnetic energy in terms 

of power or radiant flux. The radiance and irradiance quantities are convenient measures to derive the 

distribution of the radiant flux at defined spectral ranges. Radiance, or the spectral radiance P	(:, Y, )) 

is the flux of radiant energy (Z) in Joules, per unit of time (/), per unit of solid angle (Ω), coming from 

a given direction (zenith and azimuth angles,	: and Y respectively) per unit area (M) normal to the 

incident beam at a given wavelength ()), units of .	'!10G!"-'!". All other radiometric quantities 

can be derived from P	(:, Y, )). 

When the light is emitted isotropically from a source (such as from the Sun) and 

converge/incident onto a surface area, this radiant flux is called irradiance	([), or the flux of radiant 

intensity per unit area, expressed in .	'!1. The spectral irradiance [()) is the irradiance of a surface 

P	(:, Y, )) =
∆Z

∆/	∆M	∆F	∆)
 Eq. 2.19 
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per unit frequency or wavelength ()) with units of .	'!1	-'!". Considering a plane surface 

perpendicular to the beam direction, the plane irradiance is the cosine-weighted integration of the 

radiance flux over the hemisphere. The irradiance integrated from the whole upper hemisphere is 

called downwelling spectral irradiance [F 	()), while the upwelling spectral irradiance [G	()) is the one 

integrated from the whole lower hemisphere (Eq. 2.20 and Eq. 2.21). In the ocean-atmosphere system, 

the incoming sunlight (i.e., the downwelling irradiance, [F) is attenuated in its path by scattering and 

absorption processes due to the presence of air molecules and particles in the atmosphere. The 

remaining light is transmitted to the ocean layer and gets attenuated by absorption and scattering of 

water molecules, dissolved substances, and particles. The upwelling irradiance ([G) is the total 

upwelling light jointly affected by the ocean and atmosphere. 

Satellite sensors measure ocean and atmosphere radiances from altitudes of at least 700 km 

(~35,000 km for geostationary satellites). The sensors are placed at an altitude above the top of the 

atmosphere (TOA), which is the given altitude where the atmospheric pressure or mass becomes 

negligible. The TOA is also the upper limit of molecular physicochemical interactions in the atmosphere 

and its altitude depends on the parameter being analysed. For the radiative transfer simulations 

employed in this study, the TOA is located at 50 km of altitude. The sun-earth distance corrected extra-

terrestrial solar irradiance (]ø) arriving at TOA is defined as: 

where ^ is the multiplicative distance correction factor for a given day of the year (DOY) and ]ø_  is the 

mean extraterrestrial solar constant. The satellite sensors detect the TOA radiances (PCI9) for a given 

solar and viewing zenith and relative azimuth directions (:J, :K , ∆Y). Normalising PCI9 by ]ø, gives the 

TOA Remote Sensing Reflectance (`LJCI9) in units of steradian (sr-1): 

[F()) = I 5Y
1.

/

I P

.
1

/

(:, Y, )) %a0 : 0,- :5: Eq. 2.20 

[G()) = −I 5Y
1.

/

I P
.

.
1

(:, Y, )) %a0 : 0,- :5: Eq. 2.21 

]ø = ^(DOY) ∙ ]ø_  Eq. 2.22, 

`LJCI9	(:K , :J, ∆Y, )) = g
PCI9(:K , :J, ∆Y, ))

]ø())
h Eq. 2.23 
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Finally, the single scattering albedo (i/) describes the relative contribution of total scattering 

$(λ) to total attenuation %(λ): 

In mediums where the total attenuation %(λ) is largely due to scattering, i/ is near one; 

otherwise, in mediums where %(λ) is mainly due to absorption, i/ is near zero. The inputs for the 

MOMO code are the total scattering ($) and attenuation (%) coefficients, the single scattering albedo 

(iM) and the scattering phase functions (7E). The present radiative transfer simulations output PCI9 

normalised by an extraterrestrial solar irradiance of ]ø = 1 in each band. 

 Optical Properties of the Atmosphere 

Dedicated multispectral satellites measure the solar radiance reflected by the land-ocean-

atmosphere system at the TOA. According to the Earth’s global energy budget (Trenberth et al., 2009; 

Stephens et al., 2012) about one third of the total incoming solar radiation is reflected back as 

shortwave radiation (i.e., visible and infrared light). More than two-thirds of the shortwave reflectance 

arising to the satellite sensors derive from the atmosphere (Gordon, 1978), making the ocean 

reflectances modest in comparison. Consequently, ocean colour remote sensing requires the accurate 

determination of the atmospheric effects to retrieve the true ocean reflectance values. In this section, 

the optical properties of the atmosphere considered in the coupled ocean-atmosphere radiative 

transfer simulations were described. The atmospheric parameterization of the present radiative 

transfer simulations follows the one in Schroeder (2005) and in Schroeder et al. (2007a); (2007b). All 

basic definitions of inherent and apparent optical properties, such as scattering and absorption 

coefficients and phase functions, already introduced in section 2.1.1, continue to apply to the 

description of the atmospheric scatterers and absorbers.  

The optical thickness (j) expresses the magnitude of light attenuation (%) within a medium with 

of thickness (1), due to the absorbing and scattering of particles and molecules: 

The total optical thickness of the atmosphere (j) can be decomposed into its partial 

contributions due to scattering and absorption of aerosol particles (j'), the Rayleigh scattering by 

molecules (jN), the absorption by ozone molecules (jI*) and by other gases (jO), all of which are 

wavelength dependent: 

i/()) ≡
$())

"()) + $())
≡
$())

%())
 Eq. 2.24 

j()) ≝ I %())51
)

/

 Eq. 2.25 
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The parameterization of each of these components to the total optical thickness of the 

atmosphere will be briefly described in the following subsections. 

2.1.2.1 Gas absorption 

The electromagnetic radiation travelling through the atmosphere is selectively absorbed by 

gases such as oxygen (O2), water vapor (H2O), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), 

methane (CH4) and nitrous oxide (N2O). The atmospheric gases transmission (except for O3) were 

derived from the High-Resolution Transmission Molecular Absorption (HITRAN) database (Gordon et 

al., 2017) and implemented in the radiative transfer simulations via the modified k-distribution model 

of Bennartz and Fischer (2000). Ozone gas (O3) molecules are most abundant in the stratosphere and 

contribute to the absorption of electromagnetic radiation in the ultraviolet, infrared and in the visible 

spectrum, the latter which is mostly absorbing between 530 and 650 nm. Thus, the absorption of 

stratospheric ozone influences the radiance and irradiance transmissions through the atmosphere at 

the Himawari-8 visible bands, particularly at the 640 nm band. In this study, radiative transfer 

simulations were employed assuming a default ozone loading of 344 Dobson Units (DU) (Committee 

on Extension to the Standard Atmosphere, 1976). The ozone transmission at 344 DU is calculated as: 

In Eq. 2.27, l is the total air mass (l = (1 %a0 :J) + (1 %a0 :K⁄ ))⁄ , :K is the satellite viewing 

angle, :J is the solar zenith angle and jI*  is the ozone optical thickness per band. At each Himawari-8 

band, jI*  is calculated as the ozone concentration [m6] multiplied by its absorption coefficient "I*, 

following Eq. 2.28. 

2.1.2.2 Rayleigh scattering 

The Rayleigh optical thickness is predominantly due to scattering of particles or molecules that 

have radius much smaller than the wavelength amplitude (in units of nm or µm) or photon frequency 

(in Hertz – Hz) of the incident radiation. The most common application of Rayleigh scattering theory is 

to the gaseous molecular scattering in the atmosphere (Hansen and Travis, 1974). The Rayleigh optical 

thickness has inverse power dependence with wavelength: 

j = jO + jI* + j' + jN  Eq. 2.26 

XI*(), :J, :K) = W!PQ+* 	RS Eq. 2.27 

jI*()) = "I*[m6] Eq. 2.28 
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Because of the strong wavelength dependence, the Rayleigh scattering is more significant in 

shorter wavelengths of the visible spectrum, which explains why a cloud-free and clear sky is 

predominantly blue. The Rayleigh scattering largely depends on the number of molecules in the 

atmosphere, which in turn depends on the atmospheric pressure. The vertical profile of attenuation 

due to molecules or gases in the atmosphere can be computed from the approximate formula given by 

Hansen and Travis (1974): 

In equation Eq. 2.30, the wavelength amplitude ()) have units of micrometres (µm), n is the 

given sea level atmospheric pressure and n/ = 1013.25	ℎn" is the standard sea level atmospheric 

pressure (Committee on Extension to the Standard Atmosphere, 1976). Considering molecular 

anisotropy, the Rayleigh scattering phase function is computed as in Eq. 2.31, where q = 0.0279 is the 

depolarization factor (Young, 1980), and : is the scattering angle: 

Figure 2.6 demonstrates the exponential decay of the Rayleigh optical thickness with 

wavelength, for small and large atmospheric sea level pressures (980 and 1040 hPa, respectively). 

 

Figure 2.6: Rayleigh Optical Thickness calculated for 980 and 1040 hPa atmospheric pressures. 
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jN ≅ )!4./T Eq. 2.29 

jN = n
n/t . [0.008569)!4(1 + 0.0113)!1 + 0.00013)!4)] Eq. 2.30 

7EN(:) =
3

16H(1 + 2u)
[(1 + 3u) + (1 − u)%a01(:)] Eq. 2.31 

u =
q

2 − q
 Eq. 2.32 



 41 

2.1.2.3 Aerosol scattering 

Aerosols are particles or droplets suspended in the air, with size ranging from 10-3 to 10 µm, 

including haze, smoke, fumes, dust, mist, sea salt, etc., from natural or anthropogenic sources (Hidy, 

2003). Compared to atmospheric gases, the distribution of aerosol particles is spatially and temporally 

heterogeneous on global scale (Graßl, 2011). The scattering by atmospheric particles with radius larger 

than the wavelength amplitude is treated numerically with the Mie theory (Mie, 1908), considering the 

size distribution and the complex refractive index of each particle. The Mie computations are utilised 

in the present work to derive the extinction coefficient (%), the phase function (7E) and the single 

scattering albedo i/ of each aerosol component. 

Based on extensive measurements of aerosol concentrations, size distribution and optical 

properties, several aerosol models have been developed to represent variable atmospheric conditions, 

including the dependency of aerosols to relative humidity (Shettle and Fenn, 1979). An aerosol model 

is defined as a homogeneous mixture of aerosol components at defined proportions. A few basic 

aerosol components were utilised to build aerosol models for the Mie calculations, following the works 

of Shettle and Fenn (1979) and the World Climate Research Programme (1986) report. A summary of 

the vertical distribution of the aerosol models utilised in this work, as well as the volumes and numbers 

of particles for each aerosol component are presented in Table 2.1.  

Table 2.1: Vertical distribution of the aerosol models utilised in this work, as well as the volume and 
number of particles for each aerosol component. Due to rounding, the sum of the total number of 
particles in the continental model slightly deviates from 100%.  

1 Shettle and Fenn (1979), 2 World Climate Research Programme (1986) 

 

The Maritime model includes the oceanic aerosols represented by a sea salt solution in water, 

plus a small contribution of the rural aerosol component, which includes a mixture of water-soluble 

particles (70%) and dust (30%). The Continental model is a mixture of water soluble, dust-like and soot 

particles. The Stratospheric model is an aqueous solution of 75% of sulphuric acid (H2SO4) and 25% of 

water in the stratosphere (World Climate Research Programme, 1986). The particle size distribution of 

the Maritime and Continental aerosol models is represented by the sum of two-lognormal distributions, 

as in the Equation 1 of the work of Shettle and Fenn (1979). The particle size distribution of the 

Aerosol Model Components Volume [%] Particles [%] Vertical distribution 
Maritime1 Rural 

Oceanic 
10 
90 

99 
1 

Boundary layer: 0-2 km 

Continental1 Water Soluble 
Dust-like 
Soot 

29 
70 
1 

93.87 
0.0002 
6.1230 

Troposphere: 2-12 km 

Stratospheric2 H2SO4 100 100 Stratosphere: 12-50 km 
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Stratospheric model is represented by a Modified Gamma Size distribution (Deirmendjian, 1962). A 

description of the atmospheric model is provided in the following section. 

 Environmental Effects that were not Included in the Radiative Transfer Simulations 

Environmental effects, such as sun glint, bottom reflectivity, inelastic scattering, and whitecaps 

also influence the remote sensing reflectance at the satellite sensor. This section briefly outlines the 

effects potentially affecting PCI9, but not considered in the present radiative transfer simulations. 

2.1.3.1 Bottom reflectance  

The solar radiation can penetrate as deep as 200 m in very clear waters, particularly in the 

spectral transparency window of 450-600 nm (Cannizzaro and Carder, 2006). Optically shallow waters 

may be defined as those where the bottom (seagrass meadows, coral reefs and/or sand) is optically 

visible from an above water observer or a satellite sensor. In such cases, the bottom contributes to the 

reflectance signal, potentially affecting the retrieval of water quality parameters (Cannizzaro and 

Carder, 2006; Barnes et al., 2013; Reichstetter et al., 2015; McKinna et al., 2015; McKinna and Werdell, 

2018). However, with increasing water depth (~>20m) and in optically deep or turbid waters, such as 

estuarine influenced areas, the bottom reflectance can be neglected (Reichstetter et al., 2015). To 

reduce the ambiguity of retrieving PCI9 and ocean colour parameters in coastal waters, the present 

simulations were set up for a geometric ocean depth of 500 m, assuming no influence of the bottom. 

However, it should be noted that water pixels immediately adjacent to the coastline (within 1 km) and 

over shallow reefs may be influenced by the bottom reflectance. These areas are then identified and 

masked out in the Himawari-8 derived products. Conversely, in shallow (<20 m) but optically deep or 

turbid waters, the interpretation of Himawari-8 products was linked to water depth measurements, 

particularly for the validation analysis. 

2.1.3.2 Sun glint 

Sun glint is the direct solar radiation specularly reflected by the ocean surface. It affects remote 

sensing observations when the sensor is viewing a target that is directly opposite to the Sun (low 

relative azimuth angle – forward scattering), and when the solar and sensor zenith angles are 

equivalent. The glint radiance is stronger than the water-leaving radiance, covering the ocean colour 

image with a very bright patch. Therefore, glinted areas must be either glint corrected for determining 

the ocean colour parameters (Hedley et al., 2005; Steinmetz et al., 2011; Brockmann et al., 2016; 

Vanhellemont, 2019), or masked to avoid erroneous outputs. By default, the MOMO simulations 

include the effect of the specular reflectance on the water leaving radiance according to the Cox and 

Munk (1954) method. In this study, the simulated PCI9were corrected for glint effects prior to ANN 
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training (see Section 2.3.2) because a sun glint correction procedure is not available for Himawari-8 

observations. A mask was developed (section 2.4.2.3) to remove the glinted area in the Himawari-8 

derived ocean colour products. 

2.1.3.3 Whitecaps 

Whitecaps or sea foam generally result from waves breaking at the sea surface, which is largely 

dependent on the wind speed. The fractional reflectivity of whitecaps contributes to the PCI9 

predominantly between 410 nm to 670 nm (Moore et al., 2000; IOCCG, 2019; Dierssen, 2019). 

However, its effects on augmentation of reflectance are reduced for wind speeds lower than ~4 ms-1 

(Moore et al., 2000). Additionally, the relative size of wave-generated whitecaps is small (up to tens of 

meters) compared to the spatial resolution of the pixels from most ocean colour satellite sensors (1 

km2 for Himawari-8). As a result, the identification and masking of whitecaps is impractical, such as with 

sub-pixel sized clouds. A simple parameterization of whitecaps contribution dependent on wind speed 

is suggested for correction of the radiometric signal. 

2.1.3.4 Inelastic scattering 

The inelastic scattering occurs when a molecule, after receiving electromagnetic energy, emits 

energy in a wavelength longer than the incident one, by modifying its vibrational or rotational state 

(Kirk, 2010). This effect is observed in water molecules (i.e., rotational Raman scattering), and it largely 

contributes to the upwelling of shortwave visible radiation in clear oceanic Case 1 waters (Bartlett et 

al., 1998; Gordon, 1999; Gordon, 2014), particularly at 635 nm or longer. In Case 2 waters, however, 

the Raman effects are largely reduced due to the strong interaction of light with particles and 

substances. Conversely, about 1% of the incident radiation absorbed by phytoplankton is re-emitted 

(Kirk, 2010). The CHL fluorescence re-emission peaks at around 685 nm and linearly increases with CHL 

(Morel and Prieur, 1977; Gordon, 1979; Lin et al., 1984; Gower and Borstad, 1990). In fact, satellite 

detection of CHL fluorescence has been widely applied to improve understanding of phytoplankton 

physiology and estimates of primary productivity (Babin et al., 1996; Behrenfeld et al., 2009; Browning 

et al., 2014; Lin et al., 2016). However, the Himawari-8 broad visible bands, particularly in the red part 

of the spectrum (640 nm with 90 nm bandwidth), are not centred at the peak of CHL fluorescence. 

Likewise, fluorescence becomes significant from 430 nm to 580 nm, with a peak at 450 nm in waters 

with high content of YEL (Kirk, 2010). However, CHL and YEL fluorescence are less detectable in Case 2 

waters because the likely mixture with suspended minerals or TSS (from 1 mg L-1) can reduce the 

fluorescence leaving the water (Bukata et al., 2004). Therefore, it is assumed that the effects of Raman 

scattering, CHL and YEL fluorescence can be negligible at the Himawari-8 bands and for the coastal GBR 

and are not accounted for in the present algorithm. 
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2.1.3.5 Polarization 

Electromagnetic radiation from the Sun, which is naturally unpolarized, may become partially 

polarized when interacting with atmospheric particles and molecules. Ignoring the effects of 

polarization may yield between 5 and 10% errors in the simulated PCI9 (Kotchenova et al., 2006). 

However, the present radiative transfer simulations with MOMO do not consider the effects of 

polarization. 

2.1.3.6 Bidirectional reflectance (BRDF) 

The ocean surface is not isotropic, i.e., the water leaving reflectance has angular dependency 

to the illumination conditions and to the optical properties of the waters itself (Morel and Gentili, 1996). 

Bidirectionally-induced errors are as low as 1% for solar angles within 60˚ (Gordon and Franz, 2008) and 

thus, the effects of bidirectional reflectance distribution function (BRDF) were not included in the 

present radiative transfer simulations. 

2.1.3.7 Other effects 

Although a few radiative transfer models consider the curvature of the earth in the ocean-

atmosphere system (Rozanov et al., 2014; Ramon et al., 2019), the present model assumes a plane-

parallel geometry. The plane parallel geometry is a reasonable assumption for retrievals where :J <

70˚ (Ding and Gordon, 1994), which is compatible to the :J ranges of the present simulations. 

The optical characteristics of water and ice clouds are not included in the atmospheric 

parameterization and clouds were identified and masked with an algorithm developed for Himawari-8 

(Qin et al., 2019). Although large patches (> 1 km2) of surface bio-slicks (Whitney et al., 2021) and oil 

spills (Brekke and Solberg, 2005; Blondeau-Patissier et al., 2020) may be detected by the Himawari-8 

bands, these features were not considered in the present algorithm. 
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 Forward Model: Radiative Transfer Simulations 

In this chapter, a coupled ocean-atmosphere radiative transfer model was utilised to simulate the 

VNIR bands of Himawari-8 for a realistic range of in-water and atmospheric optical properties. Several 

numerical solutions are available for simulating the spectral fluxes and radiances distribution from the 

ocean based on the Radiative Transfer Equation. For instance, HydroLight (Mobley, 1989) is one of the 

most widely used models to compute the in-water light field based on radiative transfer theory. 

However, it does not account for atmospheric absorption and scattering properties, which is 

fundamental for retrieving accurate TOA radiances for inverse modelling of the satellite signal. For the 

purpose of coupled ocean-atmosphere radiative transfer simulations, there are multiple validated 

models, including: the Matrix-Operator MOdel (MOMO) (Fischer and Grassl (1984); Fell and Fischer 

(2001)); the R-System for Transfer of Atmospheric Radiation (RSTAR5b) (Nakajima et al., 2003); the 

Second Simulation of a Satellite Signal in the Solar Spectrum (S6V1) -(Kotchenova et al., 2006); the 

Coupled Atmosphere–Ocean-Discrete-Ordinate Radiative Transfer (CAO-DISORT) (Spurr et al., 2007); 

the SCIATRAN software package (Rozanov et al., 2002; Blum et al., 2012); and more recently the Texas 

A&M University Vector Radiative Transfer Model (TAMU-VRTM) (Ding et al., 2019) and the Speed-Up 

Monte-Carlo Advanced Radiative Transfer code with GPU (SMART-G) (Ramon et al., 2019). The 

differences between these models are mainly due to the availability of source code, numerical 

treatment, and configuration to a specific sensor. 

In this work, a scalar version of the MOMO code was used for simulations of the VNIR Himawari-8 

bands (at PCI9) in a coupled ocean-atmosphere system for varying in-water concentrations of CHL, TSS 

and YEL. MOMO has been validated against analytical solutions (Fell and Fischer, 2001) with deviations 

below 0.1% for solar and observation zenith angles smaller than 60˚. Additionally, MOMO shows good 

agreement when compared with other frequently employed coupled ocean-atmosphere radiative 

transfer models (Blum et al., 2012). Hence, it has been used for the algorithm development activities 

of the MERIS sensor (Schroeder et al., 2007a; 2007b; Hollstein and Fischer, 2012) and in applications to 

ocean colour remote sensing (Zhang, 2003; He et al., 2014). The main advantage of MOMO is due to 

its high computational efficiency, which allows simulating the light propagation in an optically thick 

medium, (Plass et al., 1973), such as in the aquatic environments. Thus, MOMO is convenient for the 

development of remote sensing algorithms for ocean colour retrievals. 

MOMO solves the Radiative Transfer Equation (RTE) to quantify the direction and intensity change 

of a monochromatic beam of light within a medium. In other words, MOMO calculates the unpolarised 

PCI9 distributions for selected discrete relative azimuth, solar and observation zenith angles in the 

ocean-atmosphere system. In the RTE, the intensity that leaves the system and the intensity that enters 

it must be equal to the algebraic sum of the power losses and gains due to absorption and scattering. 
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To obtain an accurate solution, the RTE must be solved numerically. MOMO uses the Doubling-Adding 

method (van de Hulst, 1963) to perform multiple scattering calculations within the atmospheric optical 

layers. In summary, to calculate the radiation in the upward and downward directions, each layer is 

subdivided in very thin optical layers, where the radiative transfer is resolved on the assumption of 

single scattering. The elementary layers with the same optical properties are summed (Doubling) for 

the inclusion of multiple scattering. Then, the layers with different optical properties are added, which 

allows to calculate the reflection and transmission properties of combined layers to compute the final 

output. MOMO’s numerical treatment is described in detail by Fell and Fischer (2001), and references 

therein. 

In the present study, the ocean-atmosphere system is stratified in several horizontally 

homogeneous plane-parallel layers where the optical properties depend on the vertical coordinate only 

(1-dimension). In each layer, the types and concentrations of aquatic and atmospheric optical 

constituents defined are considered. The inputs to the MOMO code are the total scattering ($) and 

attenuation (%) coefficients, the single scattering albedo (iM) and the scattering phase functions (7E). 

In a similar approach, the scattering and attenuation coefficients due to air molecules are adapted to 

each layer, considering the vertical profile of the atmospheric pressure.  

A first round of MOMO-RT simulations was conducted to evaluate the Himawari-8 sensors’ ability 

to detect a wide range of water quality parameters for the coastal GBR (sensitivity analysis). A second 

round of radiative transfer simulations was employed to generate a large number of outputs (>90 

million) for the training and testing of several ANN inversion experiments, without an explicit 

atmospheric correction procedure (one-step inversion). The MOMO simulations were set up for the 

Himawari-8 VNIR bands, at specific atmospheric and aquatic conditions, which are described in the next 

subsections.  

 The Atmospheric Parameterization 

The simulated atmosphere is 50 km thick and divided into 11 layers where the vertical profiles 

of pressure, temperature and humidity are given by the Committee on Extension to the Standard 

Atmosphere (1976). The attenuation by Rayleigh scattering follows the vertical profile of the 

Committee on Extension to the Standard Atmosphere (1976) and is parameterized with atmospheric 

pressures of 980 hPa and 1040 hPa. The atmosphere is split into the Boundary layer (0-2 km), the free 

Troposphere (2-12 km) and the Stratosphere (12-50 km), (Figure 2.7). In each layer, the simulations 

were performed for eight distinct aerosol assemblages (AM). Each AM is composed of the three main 

aerosol models, Maritime, Continental and Stratospheric (Table 2.1), and four values of relative 

humidity (70%, 80%, 90% and 99%). The Boundary layer and the Troposphere contain five values of 
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aerosol optical thickness (j') at 550 nm, proportionally distributed through the eight AM (Figure 2.7), 

while the Stratosphere has a fixed value of j'. 

 

Figure 2.7: Illustrative diagram of the atmospheric model setup for the radiative transfer simulations in 
this study, based on Schroeder et al. (2007b), and adapted from Ebert (2009). 

The j' ranges were set up based on in situ measurements from the sun-photometer of the 

Aerosol Robotic Network - AERONET (Holben et al., 1998; AERONET, 2020) installed at LJCO. The j'was 

evaluated with Level 2 (calibrated and quality assured) data between 2009-2010 and 2013-2015. The 

j' inputs at 550 nm ranges approximately from 0.01 to 0.7 (Figure 2.8), comprising a very broad 

variability of j' (two orders of magnitude). The general configuration of the coupled ocean-

atmospheric model is summarized in Table 2.2 along with the geometric parameters and the Himawari-

8 bands utilised in this study. The top of atmosphere radiances (PCI9) were simulated for 17 solar and 

observation angles and 25 equally spaced relative azimuth angles.  
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Figure 2.8: Histogram of AERONET j' (551 nm) sampled at LJCO between 2009-2010 and 2013-2015. 
Descriptive statistics of j' is provided, with the number of samples per bin in logarithmic scale. 

Table 2.2: Summary of the atmospheric and geometric components for parameterization of the 
radiative transfer simulations. 

 

 The Aquatic Parameterization 

The simulations were set up for realistic water quality fluctuations, represented by multiple and 

unique instances of synthetic CHL, TSS and YEL combinations. Each unique combination of synthetic 

CHL, TSS and YEL is referred to hereafter as a triplet. The triplets served as inputs to the bio-optical 

models parameterized for the GBR waters (as in section 2.1.1.1), generating a pool of IOPs for the 

radiative transfer simulations. The triplets’ values followed the ranges and concentrations of in situ CHL, 

Atmospheric Parameters 
Altitude of the plane-parallel layers  0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 8, 12, 50 km 
Relative humidity 70, 80, 90, 95, 99% 
j' for Continental and Maritime models 0.01, 0.1, 0.3, 0.5, 1.0 (550 nm) 
j' for the Stratospheric model 0.005 (550 nm) 
Atmospheric Surface Pressure 980, 1040 hPa 
Wind Speed at 10 m 1.5 m/s 
Total Column Ozone 344 DU 
Gases absorption  HITRAN database (O2, O3, H2O, N2O, CH4, CO, CO2) 
Vertical profiles  Relative humidity, Atmospheric Pressure and 

Temperature (Committee on Extension to the Standard 
Atmosphere, 1976) 

Geometric Parameters 
:J  17 angles between 0˚and 87.14˚ 
∆Y  25 angles between 0˚and 180.0˚ 
:K 17 angles between 0˚ and 87.14˚ 
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TSS and YEL acquired in the GBR (Table 2.3) and compiled from the IMOS bio-optical database7. The in-

situ dataset was acquired by CSIRO and AIMS between 2002 and 2015 during several research voyages 

and at fixed location facilities, including at LJCO. 

Table 2.3: Descriptive statistics of in situ CHL, TSS and YEL acquired in the GBR between 2002 and 2015. 

 

The derived IOPs were distributed homogeneously through the simulated ocean layer. The sea 

surface roughness was modelled for a wind speed of 1.5 m s-1, based on the wave facet model of Cox 

and Munk (1954). Although varying wind speed is suitable to better resolve sun and sky glint effects, a 

single wind speed was chosen to restrict the number of solutions. The following subsections describe 

the concentrations and ranges of synthetic CHL, TSS and YEL defined for the sensitivity analysis and for 

the simulated training and testing datasets. 

2.2.2.1 Concentrations and Ranges for the Sensitivity Analysis 

The Himawari-8 sensitivity to detect changes in CHL, TSS and YEL was tested in 6 experimental 

simulations utilising a selected number of triplets. The first three sensitivity experiments (SECHL, SETSS 

and SEYEL) tested the variability of PCI9 when changing one water quality parameter at a time, whilst 

the other two water quality parameters remained constant. For instance, the SECHL experiment 

simulated 5 PCI9 spectra from 5 triplets with varying CHL (0.01, 0.1, 1.0,10.0 and 15.0 mg m-3) 

combined to constant TSS and YEL values (5.0 mg L-1 and 0.5 m-1). 

The second round of experiments (SECHL_TSS, SEYEL_CHL and SEYEL_TSS) tested the variability of PCI9 

when simultaneously changing two water quality parameters, whilst the third one was fixed. The 

experiments encompassed a broad range (3 to 4 orders magnitude) of CHL, TSS and YEL values (Table 

2.4), roughly following the ranges of in situ data values from the coastal GBR (Table 2.3). The ranges of 

CHL, YEL and TSS were slightly adjusted in each subsequent experiment for a comprehensive analysis. 

All sensitivity experiments were simulated with an j' of 0.015 (at 550 nm) and a sea level atmospheric 

pressure of 1040 hPa. The spectral variations of simulated PCI9 were presented for :J = 41.4˚, :K = 

0.08˚, ∆Y = 180.0˚, emulating the Himawari-8 sub-satellite field-of-view while looking away from the 

sun and not affected by specular reflectance, or sun glint. 

 
7 The IMOS Bio-optical Database is available online through the Australian Ocean Data Network, A. 

(2020). Australia’s Integrated Marine Observing System (IMOS). Retrieved from https://portal.aodn.org.au/ 
(accessed on 20/02/2017). 

Water Quality Parameter Minimum Maximum Mean Std. Dev. N 
CHL (mg m-3) 0.05 15 0.7 1.3 1467 
TSS (mg L-1) 0.02 85 3.4 6.5 1425 
YEL (m-1) 0.004 2.4 0.3 0.4 417 
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Table 2.4: Concentrations and ranges of CHL, TSS and YEL assigned to the sensitivity experiments. 

 

2.2.2.2 Concentrations and Ranges for ANN Training and Testing 

In this section, a large data pool of synthetic CHL, TSS and YEL was randomly generated for the 

radiative transfer simulations. For an effective ANN inversion performance, the simulated training 

dataset needs to cover the ranges of variability observed in the GBR waters. Therefore, the ranges of 

synthetic CHL, TSS and YEL were defined based on the dispersion of in situ correlated concentrations 

of CHL, TSS and YEL (Figure 2.9), following the approach by Zhang (2003). The upper and lower limits, 

indicated by the solid black lines in Figure 2.9, were calculated by adjusting the coefficients of Eq. 2.33, 

Eq. 2.34, and Eq. 2.35, utilising the maximum and minimum values of in situ CHL, TSS and YEL from 

(Table 2.3). In general, the position of the upper and lower limits suggests that the coastal waters of 

the GBR include a wide range of bio-optical variability compared to European coastal waters. 

Additionally, the dispersion of correlated concentrations indicates a degree of dependency between 

each water quality parameter. The calculated upper and lower limits constrained the in-situ dataset to 

the combinations more likely to occur in the GBR, and the ranges were employed to determine the 

synthetic water quality parameters (Table 2.5). With this approach, the number of radiative transfer 

calculations is greatly reduced whilst realistically representing the bio-optical properties in the GBR. 

Table 2.5: Ranges of CHL, TSS and YEL determined for radiative transfer simulations. 

 

 

 

 

Experiment CHL [mg m-3] TSS [mg L-1] YEL [m-1] 
SECHL 0.01 to 15.0 5.0 0.5 
SEYEL 1.0 5.0 0.001 to 3.0 
SETSS  1.0 0.05 to 100.0 0.5 
SECHL_TSS 0.01 to 30.0 1.0 to 100.0 0.5 
SEYEL_CHL 0.01 to 30.0 0.5 0.005 to 3.0 
SEYEL_TSS 0.5 0.5 to 100.0 0.005 to 3.0 

WQP Minimum Maximum 
CHL (mg m-3) 0.01 15 

TSS (mg L-1) 0.01 100.0 
YEL (m-1) 0.002 2.5 
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Figure 2.9: Scatter plots between concurrent in situ samples of CHL, TSS and YEL (logarithmic scale), 
where the solid lines indicate the upper and lower limits of variability defined for the coastal GBR (black 
solid lines) and for coastal and oceanic European waters (red solid lines). The scatterplot comprises 
data from AIMS (green dots) and from CSIRO (blue dots). 

The synthetic CHL, TSS and YEL values were derived by specifying concentration dependencies, 

as in Eq. 2.33, Eq. 2.34, and Eq. 2.35, and evenly distributed in a logarithmic space, so each order of 

magnitude was similarly represented. First, a random CHL is selected between 0.01 and 15 mg m-3. For 

the selected CHL, a value of TSS is randomly selected between 0.01 and 100 mg L-1, according to Eq. 

2.33, and so on for YEL, according to Eq. 2.34 and Eq. 2.35. This approach was repeated until enough 

unique correlated combinations of CHL, TSS and YEL were generated within the upper and lower limits 

established, whilst avoiding duplicated simulations (Figure 2.10). The ANN inversion method can 

interpolate and derive values within the upper and lower limits, including within the gaps observed in 

Figure 2.10. Each set of triples (totalling 40) were translated into IOPs (following section 2.1.1.1) and 

associated to the 4 VNIR Himawari-8 bands, to 5 j', 2 atmospheric pressures and 8 atmospheric 

assemblages described in section 2.2.1. As a result, a total of 12,800 inputs (40 × 4 × 5 × 2 × 8), were 

generated for the radiative transfer simulations. Each input was associated to 16 sun zenith angles, 25 

relative azimuth angles and 16 observation zenith angles, yielding approximately ~ 90 million values of 
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PCI9 were computed as outputs of the radiative transfer simulations. A training and a testing subset, 

comprising 100 000 PCI9 values each, were randomly extracted from this extensive simulated dataset 

to speed up the ANN inversions. The size of the training and testing subsets followed previous attempts 

on estimating ocean colour parameters with the ANN method (Zhang et al., 2003; Ebert, 2009). Figure 

2.11 illustrates the frequency distribution of synthetic CHL, TSS and YEL values for the generated 

training dataset. 

 

 

Figure 2.10: Scatter plot between stochastically generated and evenly distributed CHL, TSS and YEL, in 
logarithmic space. The parallel solid lines are the calculated upper and lower limits between each 
correlated water quality parameter. 

 

Figure 2.11: Frequency distribution of logarithmic values of CHL, TSS and YEL, containing 12,800 
randomly generated synthetic triples of water quality parameters. 

XUUU+&(NOP) = 0.25[NOP]/.VV, XUUU'W(NOP) = 35.0[NOP]/.VV Eq. 2.33 

w[PU+&(NOP) = 0.03[NOP]/.V3, w[PU'W(NOP) = 1.8[NOP]/.V3 Eq. 2.34 

w[PU+&(TSS) = 0.002[XUU]/.T, w[PU'W(XUU) = 0.65[XUU]/.T Eq. 2.35 
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 Sensitivity analysis results 

The objective of this analysis was to verify if the VNIR bands of Himawari-8 can detect changes 

at PCI9 due to realistic fluctuations of CHL, TSS and YEL. The Figure 2.12 show the variability of 

simulated PCI9 for up to 4 order magnitude increases in CHL (SECHL), TSS (SEYSS) and YEL (SEYEL). The 

individual increases of simulated PCI9 accounted for the joint contribution of the oceanic and 

atmospheric signals. Nevertheless, the spectral signatures due to varying CHL, TSS and YEL indicate the 

potential of Himawari-8 bands for ocean colour retrievals directly from PCI9.  

 

Figure 2.12: Top of atmosphere radiances (PCI9) at the Himawari-8 VNIR bands as a function of varying 
CHL, TSS and YEL triplets. The black dashed line represents the atmospheric signal for a totally absorbing 
ocean. Note the different vertical scale between plots. 

The 3 to 4 order magnitude fluctuations of CHL and YEL were less detectable than those of TSS. 

For increasing CHL and YEL values, the reflectance signal was reduced to such extent that the PCI9 is 

mostly due to the atmospheric signal. Conversely, TSS fluctuations lower than 0.5 mg L-1 may be more 

difficult to determine from PCI9 because of the relative strength of the atmospheric signal. Yet, the 

fluctuations in TSS were pronounced, particularly for the 640 nm band and for TSS larger than 10 mg L-

1, a value which is often observed in the coastal GBR (Table 2.3) particularly during floods.  
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The experiment SECHL_TSS (Figure 2.13) simulated PCI9 for simultaneous changes of CHL and TSS 

and for a constant YEL absorption of 0.5 m-1. The visible bands were largely affected by TSS higher than 

10 mg L-1, particularly at the 640 nm, as previously demonstrated (Figure 2.12, SETSS). In this case, while 

TSS values increased from 10 to 100 mg L-1, the 640 nm PCI9 increased 3 to 4-fold (0.01 to 0.04 W sr-1 

m-2 µm-1). The visible bands were only slightly affected by CHL larger than 1 mg m-3, while the 856 nm 

band had no sensitivity to 3 order magnitude changes in CHL or TSS. 

 

 

Figure 2.13: PCI9 variability at the VNIR Himawari-8 bands for simultaneously varying TSS and CHL 
(SECHL_TSS). 

The experiment SEYEL_CHL (Figure 2.14) had a simultaneous variability of CHL and YEL and a 

constant TSS of 0.5 mg L-1. As expected, simultaneous increases in CHL and YEL largely decreased PCI9 

at the 470 nm and 510 nm bands, associated with their overlapping absorption features in the visible 

spectrum. The 470 nm band was mostly insensitive to any increases in CHL, for YEL > 0.1 m-1. As a result, 

the determination of CHL from Himawari-8 may be difficult in high YEL waters (> 0.1 m-1), such as during 

floods in the coastal GBR. The 640 and 856 nm bands were otherwise insensitive to any changes in CHL 

and YEL. 
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Figure 2.14: PCI9 variability at the VNIR Himawari-8 bands for simultaneous fluctuations of CHL and 
YEL for a constant TSS of 0.5 mg L-1 (SEYEL_CHL). 

The experiment SETSS_YEL (Figure 2.15) presented simultaneous variable concentrations of TSS 

and YEL and a constant CHL value of 0.5 mg m-3. In general, TSS is the main driver of changes at PCI9, 

particularly at the 640 nm band. However, increases in YEL (> 1 m-1) largely impacted the visible bands 

of Himawari-8. The TSS contribution can be neglected at 856 nm, indicating that the NIR band may be 

useful for atmospheric corrections in turbid coastal waters.  

All Himawari-8 bands investigated here were highly impacted by optical changes in the 

atmosphere and by the variability of the solar angles. The variations in PCI9 for increasing values of j' 

and for distinct :J (41˚, 70˚ and 80˚) are presented in Figure 2.16. The Himawari-8 VNIR bands were 

sensitive to 3-order magnitude increments in j' (from 0.01 to 1.5). The highest j' recorded at LJCO 

between 2015-2019 was 0.67, which is within the ranges of the present radiative transfer simulations. 

The PCI9 magnitudes consistently decreased as :J increased from 41˚ to 81˚. The spectral shape of 

PCI9 remained unaffected by the 3-order magnitude increments in j', a characteristic that helps the 

separation of the atmospheric and ocean signals with ANN inversion. However, the discrimination of 

several levels of j' is compromised for :J ≥ 70˚ because of the increasing atmospheric path lengths. 

The spectral inversion of the simulated PCI9 for the Himawari-8 bands with an ANN technique is 

described in the next section. 
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Figure 2.15: PCI9	variability at the VNIR Himawari-8 bands for simultaneous fluctuations of TSS and YEL 
for a constant CHL of 0.5 mg m-3 (SETSS_YEL). 

 

Figure 2.16: PCI9	distribution for three orders magnitude increases in j' at the Himawari-8 bands. The 
radiative transfer simulations were employed for :X = 0.08˚, Y =180˚ and CHL of 0.5 mg m-3, TSS of 2.0 
mg L-1 and YEL of 0.5 m-1. The left, middle and right panels illustrate the PCI9	variability for :Y of 41˚, 
70˚ and 81˚, respectively. 
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 Inverse Model: Artificial Neural Networks 

In this study, an inversion model with ANN is employed to approximate the functional 

relationship between the Himawari-8 PCI9 and the ocean colour products. There are many different 

types of ANN and machine learning algorithms, however, the focus of this study is on the Feed-Forward 

Multilayer Perceptron (MLP) (Minsky and Papert, 1969). The MLP includes layers of individual, idealised 

and interconnected computing elements called neurons. In this work, the MLP comprises an input layer, 

a hidden layer, and an output layer. The input layer has a neuron attributed for each of the input 

parameters. In the hidden layer, the artificial neurons sum up the weighted input signals, distort that 

value non-linearly and subsequently forward their output to the output layer. Each neuron is connected 

to the next layer of neurons by a weight, which are estimated during a supervised learning procedure. 

The supervised learning or training phase is where the network ‘learns’ the association between the 

simulated input patterns and the associated target outputs. This association is mathematically a highly 

non-linear regression. 

Meanwhile, the testing phase checks the generalization power of the algorithm for independent 

(unskilled) data. The feed-forward MLP does not contain feedback loops, it can approximate a set of 

input signals to the output data associating the neurons subsequently in one direction only and is 

therefore called a feed-forward network. The training procedure can be visualised in Figure 2.17 and is 

described as follows: 

• The input neurons (-+) receive the input vector ({⃗), containing simulated radiances and 

ancillary data, and propagates it to the hidden layer neurons (-$). 

• Then, each hidden neuron sums up the weighted incoming signals and applies a non-linear 

transfer function to compute an output that is passed to the output neuron (-M). 

• The cost function (i.e., mean squared errors, MSE – Eq. 2.36) between the target outputs (}⃗Z) 

and the computed outputs (}⃗M) is calculated, and the internal weights (~) of the network are 

adjusted. 

• The training of the ANN is repeated until the cost function (MSE) between output and target 

value is minimised. 

The cost function is minimised by adapting the weight matrices (~[,~\) iteratively using a 

Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm (Liu and Nocedal, 

1989). For a three-layer ANN architecture, the complete analytic function is given by Eq. 2.37, where 

lU[ =
∑(}⃗] − }⃗Z)1

Ä
 Eq. 2.36 
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U" and U1 are the transfer functions, ~[ and ~\ are the weight matrices, {⃗ is the input vector and }⃗]  

is the computed output vector. 

In this work, the transfer or activation function is linear for the output layer (U"), whereas a 

sigmoid activation function (Eq. 2.38) was employed in the hidden layer (U1): 

The number of neurons in the input and output layers are determined by the number of input 

and output parameters of the problem. However, there is no analytical method to derive the number 

of neurons in the hidden layer, requiring several experimental attempts to determine its optimal 

quantity. However, the ANN loses its power of generalization for unskilled (testing) data if too many 

neurons are chosen for the hidden layer. In other words, the ANN learns too well the training dataset 

(overfitting) and is not able to generalize the solution for an independent testing dataset. Furthermore, 

too many neurons are computationally expensive and take more time to train. On the other hand, the 

error minimization is largely limited if too few neurons are selected. Hence, for a realistic 

approximation, it is necessary to design and train multiple ANN experiments with different 

configurations and test their performance against an independent dataset. 

 

 

Figure 2.17: Artificial Neural Network Multilayer Perceptron diagram. Each neuron is connected to the 
next by a specific weight, which is adapted in the supervised learning procedure, until the cost function 
between the output and the target value are minimized. 

The success and generalization capability of the ANN approach strongly depends on the quality, 

representativeness, and size of the training data set. A simulated training dataset (from Section 2.2.2.1) 
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was utilised for training the ANN and an independent simulated testing dataset was used to test the 

generalization power for unskilled data. Only the training datasets were used to develop the method. 

Details of experimental setup and input data preparation are provided in the next section. 

 Experimental Setup 

In this work, 160 ANN experiments were devised for estimating CHL, TSS and YEL from radiative 

transfer simulated data. Four separate sets of experiments were prepared, one set designed for the 

simultaneous retrieval of CHL, TSS and YEL, and 3 other sets specifically designed for the retrieval of 

individual constituents in separate. Each set contained 40 ANN experiments equally distributed into 4 

main groups with distinctive configurations. An overview of the groups and sets of experiments are 

shown in Table 2.6. Two groups (A and B) were setup with Principal Component Analysis (PCA) as a pre-

processing step to decorrelate the PCI9 inputs. In addition, two groups (B and D) were setup with 0.8% 

of Gaussian distributed noise added to the PCI9 inputs in each band to test the ANN robustness to 

noisy inputs. The chosen percentage noise added to the synthetic PCI9 assumes a relatively lower 

radiometric sensitivity of the VNIR bands of Himawari-8 for oceanic targets, compared to those 

estimated at 100% albedo (~0.1 and 0.2%) (Japan Meteorological Agency, 2015).  Additionally, a control 

group (C) was designed without PCA and noise. Finally, each set/group of experiments were designed 

by varying the number of hidden layer neurons from 10 to 100, with increments of 10 (i.e., 10, 20, 30, 

… 100). For instance, the experiment P000 had 10 hidden layer neurons and P009 had 100. All 

experiments were trained for 1000 iterations over the entire training and testing dataset. The cost 

function (Eq. 2.36) computed over the entire training dataset was evaluated for each experiment. 

Table 2.6: Summary of designed experiments by sets and groups and associated configurations. Four 
main groups of experiments were designed for inclusion (or not) of PCA decorrelation and added 
radiometric noise. Three sets of experiments were designed for individual retrieval of CHL, TSS and YEL, 
plus one set for simultaneous retrieval of CHL, TSS and YEL. 

 

Sets (outputs) Group A:  
with PCA 

Group B: 
Noise and PCA 

Group C: 
Control 

Group D: 
Noise 

Set 1 (CHL, TSS, YEL) P000-P009 P010-P019 P020-P029 P030-P039 
Set 2 (CHL) P040-P049 P050-P059 P060-P069 P070-P079 
Set 3 (TSS) P080-P089 P090-P099 P100-P109 P110-P119 
Set 4 (YEL) P120-P129 P130-P139 P140-P149 P150-P159 



 60 

 Data Preparation 

Each ANN experiment was trained and tested with a randomly extracted subset of the radiative 

transfer simulated dataset. The training and testing dataset had each 100 000 input vectors ({⃗) 

containing the following parameters: 

• Simulated PCI9 at 470, 510, 640 and 856 nm 

• Sea level atmospheric pressure (between 980 and 1040 hPa) 

• Solar zenith angles – :J, delimited between 0˚ and 70˚ 

• Geometric parameters in cartesian coordinates ({, }, 1) 

The training and testing datasets were delimited for input vectors where :J ≤ 70˚, following 

results of sensitivity analysis (section 2.2.3). Each input vector was associated to the respective 

logarithmic concentration of the synthetic CHL, TSS and YEL (Figure 2.10), which are the target outputs 

to be approximated by the supervised learning procedure. The relative azimuth (ΔY) is the absolute 

difference between the solar and satellite azimuth angles, mapped between 0˚ and 180˚. However, at 

the centre of the satellite image, the relative azimuth is discontinuous affecting the inversions. Thus, 

the relative azimuth and satellite observation (:K) angles were transformed into cartesian coordinates 

(x, y, z), with continuous values ranging from -1 to 1:  

Additionally, the radiative transfer simulated datasets implicitly contain the contribution of sun 

glint effects, depending on the angular geometry between satellite and sensor. In this work, Himawari-

8 observations affected by sun glint were masked due to the difficulty of extracting spectral information 

of the ocean colour from glinted pixels. The simulated training and testing datasets were corrected for 

sun glint to facilitate functional approximation of the ANN inversion. First, the radiance contributions 

due to sun glint for a gas and aerosol-free atmosphere over a totally absorbing ocean were determined. 

Then, the simulated sun glint radiances were multiplied to the transmission of the ocean-atmosphere 

system and subtracted from the simulated PCI9 to be corrected. 

 Training and Testing Results 

The MSE is presented in Figure 2.18 for all sets of experiments (Set 1 to Set 4 – colour coded). 

The MSE was particularly high for Set 1 experiments (red lines), to simultaneously retrieve CHL, TSS and 

YEL. The experiments to retrieve TSS (Set 3, green lines) generally presented the lowest MSE compared 

{ = 	 0,- :K %a0 ÖY 
 

} = 	 0,- :K 0,- ÖY 
 

1 = 	 %a0 :K 

Eq. 2.40 
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to the other sets of experiments. The MSE at the 1000th iteration is shown in Figure 2.19, for each group 

and set versus the number of hidden layer neurons. As expected, the MSE generally decreased with 

increasing hidden layer neurons, particularly when adding up to 50 neurons to the network. However, 

the effects of increasing the number of neurons from 50 to 100 were negligible, indicating that 

networks with > 50 neurons may lose their generalization power when dealing with unskilled testing 

datasets.  

 

Figure 2.18: Log-linear plot of the overall MSE for 1000 iterations of 160 ANN experiments colour coded 
by experimental set. The Set 1 experiments were designed for the simultaneous output of CHL, TSS and 
YEL, while the Set 2 for CHL, Set 3 for TSS and Set 4 for the output of YEL.  
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Figure 2.19: Variability of MSE at the 1000th iteration versus the number of hidden layer neurons for all 
sets and groups (A, B, C and D, colour coded) of ANN experiments designed. Note the different scale of 
each plot. 

The separate retrieval of CHL, TSS and YEL (Sets 2, 3 and 4) resulted in lower overall MSE, 

compared to Set 1 experiments. Therefore, the following results are described for Set 2, 3 and 4 

experiments. The experiments within group A (with PCA) presented lower MSE (< 0.1) when compared 

to groups B, C and D. This stresses the importance of decorrelating the radiance input data prior to 

inversions. As expected, adding noise (groups B and D) consistently increased the MSE, particularly 

when PCA was not included (group D). However, the B and D experiments demonstrated the ANN’s 

ability of dealing with noisy inputs, which is useful for the inversion of low signal-to-noise observations, 

such as of the Himawari-8. The experiments of Set 3 (TSS) C and D groups (control and added noise, 

respectively) presented anomalous increases of MSE with increasing hidden layer neurons. These 

experiments did not include PCA decorrelation of input radiances, and their results suggested that the 

ambiguity of input information needs to be reduced for TSS retrievals. Therefore, the experiments 

within group B (noise and PCA) and with 50 hidden layer neurons were selected for checking the 

network’s performance with respect to the training and testing datasets. The Figure 2.20 presents the 

density scatterplots of CHL, TSS and YEL output from ANN training and testing (TRN and TST, 

respectively), versus the associated synthetic CHL, TSS and YEL modelled in the radiative transfer (RT) 

simulations (target outputs). 
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The synthetic CHL, TSS and YEL values (horizontal axis) are equally distributed in the logarithmic 

scale, such as in the graphics of Figure 2.10. The corresponding ANN outputs are distributed in the 

vertical axis. As expected, the training and testing outputs yielded similar RMSE and distribution of 

outputs. This result indicates that the ANN experiments show good functional approximation and are 

not overfitting to the training dataset. The majority of the CHL, TSS and YEL matched values are 

concentrated around the 1:1 line, however, the spread of values away from this trend (blue dots) 

indicate where the ANN yields larger errors. The errors in the one-step inversion may be associated to 

the increased number of solutions found by the ANN for the multiple sun and observation geometries 

and atmospheric conditions overlaid to the water leaving radiances (Schroeder, 2005). The graphics of 

Figure 2.20 indicate that CHL and YEL may be retrieved with large errors across the entire range of 

values estimated. Meanwhile, TSS concentrations above 1 mg L-1 are more accurately estimated due to 

the strong backscattering of suspended matter, potentially superimposing the signal of the 

atmosphere. However, accurate retrievals of TSS below 1 mg L-1 might be problematic, likely associated 

with the strength of the atmospheric signal compared to the radiances of moderate to clear waters. 

Note, however, that the ANN experiments illustrated in Figure 2.20 were not necessarily the best 

performance algorithms for water quality retrievals. Validation against in situ data collected in the GBR 

is necessary to verify the ANN’s ability for inversion of real Himawari-8 observations into water quality 

parameters. The validation of ANN experiments within group B is presented in Chapter 3 (Algorithm 

Validation). 



 64 

 

Figure 2.20: Training (TRN – top panel) and testing (TST – bottom panel) density scatter plots between 
synthetic CHLRT, TSSRT and YELRT and ANN retrievals (CHLANN, TSSANN and YELANN) values in logarithmic 
scale. The colour scale describes the relative density of the matched values mapped between 0 to 1 
(from blue to red). 
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 The Himawari-8 Water Quality Processor 

This section summarises all basic processing steps from acquisition of Himawari-8 to inversion and 

masking of products. The procedures described in this section were utilised in Chapters 3 to 5. 

 Acquiring and processing Himawari-8 observations 

Full disk Himawari-8 observations at Level 1 (L1) were accessed through the National Computer 

Infrastructure (NCI) mass storage data system. L1 observations include Himawari-8 Standard Data (HSD) 

uncalibrated digital numbers (DN) on a fixed grid relative to an ideal geostationary satellite viewpoint 

(Japan Meteorological Agency, 2017). With a pre-existent processing tool (Figure 2.21), the fixed grid 

was geolocated (i.e., associated to latitudes and longitudes) on a geostationary projection and 

navigation coefficients were applied to L1. Navigation errors are mostly less than 1 km at subsatellite 

point (Tabata et al., 2016). The uncalibrated geolocated array was transformed into Level 2 (L2) TOA 

radiances PCI9	(.'!10G!"µ'!") through the application of post-launch measured calibration 

coefficients. The calibration coefficients are updated in July every year and are added to the header of 

the HSD file (Japan Meteorological Agency, 2020). 

 

Figure 2.21: Flow diagram of existing processing flow for Himawari-8 L1 to L2. HSD refers to Himawari-
8 Standard Data, GBR refers to Great Barrier Reef, VNIR refers to the Himawari-8 visible and near-
infrared bands (470, 510, 640, and 856 nm). 

The 640 nm band grid was resampled from 0.5 km to 1 km to match the resolution of the 

associated VNIR bands utilised in this study. The L2 calibrated PCI9 radiances were normalised by the 

extra-terrestrial solar irradiance (]ø) for each band. ]ø was calculated as a function of the day of the 
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year, as in Eq. 2.22, and using the mean extra-terrestrial solar irradiance ]ø values based on Kurucz 

(1995) adapted for the Himawari-8 bands (Table 2.7). The resultant ̀ LJ
CI9 at the VNIR Himawari-8 bands 

were the inputs to the inversion method. 

Table 2.7: Mean extraterrestrial solar irradiance ]ø	(.'
20G−1µ'−1) adapted for the visible and near-

infrared bands of Himawari-8. 

 

 

 

 

In addition, the solar and sensor zenith angles (:J, :K, respectively) and the relative azimuth 

angle, ΔY were calculated for each pixel of the satellite image as a function of location (latitude and 

longitude) and local time, following existing procedures provided by Japan Meteorological Agency 

(2017). The relative azimuth ΔY was computed as the difference between the solar and sensor azimuth 

angles and re-mapped as a positive angle between 0˚ and 180˚ to match the configuration of the 

radiative transfer simulations. The ΔY of 0˚ refers to the forward scattering angle, as looking to the 

pixel facing the Sun, whereas a ΔY of 180˚ refers to the backscattering, as looking to the pixel with the 

sun behind the viewer’s position. The :K and :J are calculated as 90˚ minus the respective solar or 

satellite elevation angle relative to the horizon. Figure 2.22 illustrates the position of the Sun and 

satellite sensor relative to a cartesian coordinate system ({, }, 1), the respective zenith (:J, :K) and 

relative azimuth (ΔY) angles. Figure 2.23 illustrates the spatial distribution of Himawari-8 :J, :K and 

ΔY angles for a given day. 

 

Figure 2.22: Coordinate system ({, }, 1) and definition of the relevant geometric parameters: :J and 
:K are the solar and viewing zenith angles, respectively and ∆Y is the relative azimuth angle. 

Himawari -8 Bands ]ø 
470 nm 2015.3606 
510 nm 1891.1653 
640 nm 1631.5726 
865 nm 971.8778 
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Figure 2.23: Himawari-8 sensor Viewing Zenith Angle (:K), on top-left panel, Solar Zenith Angle (:J), 
on top-right panel and Relative Azimuth Angle, ΔY, (on bottom panel) over Southeast Asia and Oceania, 
at 0000 UTC on 21 December 2018. 
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 Masking Himawari-8 observations 

All pixels containing features, such as emerging surfaces (i.e., land, coral reefs), clouds, sun glint, 

dust and smoke plumes should be avoided/masked prior to validation and application of ocean colour 

products. These features encompass spectral characteristics in the VNIR, that unless excluded, may 

confound characterisation of the ocean colour spectrum. For instance, when analysing a near-true 

colour imagery, some semi-transparent clouds (i.e., cirrus) may be visually confounded to coastal turbid 

water pixels. If the pixels containing non-ocean colour features are not properly identified and masked 

out, they are likely to result in inaccurate or incorrect derived products, biasing the analysis. This section 

summarises the main features identified in the Himawari-8 observations and the masking approaches 

utilised. 

2.4.2.1 Cloud masking 

Cloud masking of Himawari-8 observations was developed by Qin et al. (2019) for the Australian 

continent and surrounding waters. The masks were developed utilising the VNIR and thermal infrared 

bands of Himawari-8 at 2 km spatial resolution and validated against data from the Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP). The algorithm was tailored to the masking of cirrus, cumulus, 

and stratus clouds, in addition to fog, saturated pixels, aerosols from dust and smoke plumes. The 

algorithm achieved a maximum accuracy of 98% when Himawari-8 pixels were completely clear or 

cloudy. However, larger errors occurred when mapping partially cloudy pixels (clouds smaller than 2 

km), which is potentially due to the discrepancy between CALIOP’s circular laser beam (70 m diameter 

at every 330 m) and Himawari-8 pixels (at 2 km). It is likely that not all sub-pixel sized clouds are properly 

masked, and a careful visual inspection of the images is required prior to validation match up.  

The 2 km resolution cloud mask was resampled to the 1 km GBR grid and the two-way confidence 

threshold of a pixel being clear or cloudy was applied to the mask. According to Qin et al. (2019), the 

minimum threshold recommended is 3 out of 15, which is sufficient to mask most cloud types and 

smoke plumes, such as those in Figure 2.24. The higher the confidence threshold applied, the better 

the masking of all potential cloudy pixels; however, due to the two-way confidence approach, the 

masking of clear pixels is proportionally increased. The confidence thresholds were tested for different 

cloud types (semi-transparent and sub-pixel size or fractional clouds), over clear and turbid waters and 

an intermediate-high conservative level (8 out of 15) was chosen. Red-Green-Blue (RGB) or near true 

colour composites of Himawari-8 visible bands (640, 510 and 470 nm) are demonstrated over turbid 

areas and for different cloud types (Figure 2.24) and with respective masking. 
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Figure 2.24: Himawari-8 near-true colour composite (of bands 640, 510 and 470 nm) in the coastal GBR 
featuring unmasked (left panel) and masked areas (right panel in black). Top panels present masking of 
biomass burning smoke plume, middle panels present cloud masking over a turbid water setting and 
bottom panels present the masking of semi-transparent and fractional clouds. Coral reefs (white/cyan 
features) were not masked in this scene. Land and islands are masked in grey. 

2.4.2.2 Land and coral reefs masking 

Pixels identified as emerged surfaces such as continental areas, islands and shoals were masked 

with a combined coarse and finer resolution mask. The coarse land mask with 1 km spatial resolution 

covered the main continental areas. The fine resolution (at 250 m spatial resolution) mask covered 
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features such as the coral reefs within the GBR Marine Park, islands and shoals (Great Barrier Reef 

Marine Park Authority, 2014). The fine and coarse resolution masks were combined into a single land-

reef mask and interpolated to a 1 km grid to match the Himawari-8 observations, as illustrated in Figure 

2.25. 

 

 

Figure 2.25: Himawari-8 near-true colour composite (640, 510, 470 nm) in left panel; same composite 
masked for clouds (central panel); and masked for clouds, land, reefs, and shoals (right panel). 

2.4.2.3 Sun glint masking  

The specular reflection of the solar radiation over the ocean (i.e., sun glint) increases the 

magnitude and flattens the spectral shape of PCI9 in all bands. Atmospheric, ocean colour and benthic 

habitat retrievals from sun glinted areas are very challenging (Wang and Bailey, 2001; Hedley et al., 

2005; Hu, 2011) and glint removal techniques are an emerging field in ocean colour remote sensing 

(Bernardo et al., 2018; Zorrilla et al., 2019; Chami et al., 2020). Alternatively, sun glint contaminated 

pixels are identified and masked, nevertheless resulting in major data loss. Geostationary observations 

are impacted by sun glint all year long, covering the ocean at diurnal scales with a circular-elliptical 

glinted area (i.e., sun disk), particularly over equatorial regions between 10˚N and 10˚S latitude 

(Emecen et al., 2006; Gardashov and Eminov, 2015). Because this study includes Himawari-8 

observations scanned between 10˚S and 22˚S, the area affected by sun glint was identified and masked 

out from each 10-minute data utilised. The sun glint mask was created by calculating the coordinates 

of the principal point of sun glint (PPS in Figure 2.26) as a function of the day of the year (solar 

inclination), local hour, latitude and longitude (Emecen et al., 2006), at 1 km spatial resolution. 
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Figure 2.26: Yearly trajectory of the Principal Point of Sun-glint (PPS) from 10 a.m. to 2 p.m. local time 
(AEST) over Australia and Southeast Asia. The markers indicate solstice and equinox periods (March, 
June, September, and December) as well as April and February for reference. 

The contour of the sun disk was buffered for a circular radius of 1300 km from the coordinates 

of the PPS. The radius size was chosen after a series of tests employed to ensure minimum coverage of 

the main sun disk area (Figure 2.27). Residual glint might be present surrounding the circular buffer due 

to increased wind speed, sea surface waves, all of which are known to increase the area influenced by 

sun glint (Cox and Munk, 1954). Furthermore, the sun disk image may present an elliptical shape 

depending on the relationship between the observation and sun zenith angles and the day of the year 

(Emecen et al., 2006). However, the present sun glint masking approach was sufficient to appropriately 

cover the coastal GBR area for validation and application of Himawari-8 observations to ocean colour 

retrievals.  
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Figure 2.27: Unmasked Himawari-8 near-true colour composite (of bands 640, 510, 470 nm) over 
Australia and Southeast Asia (left panel, a), and associated sun glint mask (black disk) overlayed to the 
near-true colour composite (right panel, b). The location of the Principal Point of Sun glint (PPS) is 
marked with a red cross centred at the sun disk. 

 Ancillary data 

Molecular absorption and scattering in the atmosphere were simulated for constant values of 

ozone concentration and mean sea level pressure. Thus, prior to inversions, the Himawari-8 

observations were normalised pixel-by-pixel with near-concurrent satellite observations of Total 

Column Ozone. The mean sea level pressure was utilised as an ancillary input to the inversion 

procedure. Uncertainties associated with the ancillary products may arise from differences in spatial 

resolution, geometries, and time of acquisition, which were not accounted for in this study. The 

ancillary data of ozone and mean sea level pressure is described in detail in the following sections. 

2.4.3.1 Total Column Ozone correction factor 

Ozone gas (O3) molecules are mostly abundant in the stratosphere and contribute to the 

absorption of solar incoming and outgoing radiances in the visible spectrum, mostly between 530 and 

650 nm (i.e., Chappuis absorption band), as well as in the ultraviolet and infrared spectral regions. Thus, 

the absorption of ozone influences the radiance and irradiance transmissions through the atmosphere 

at the Himawari-8 visible bands. In this study, radiative transfer simulations were employed assuming 

a default ozone loading of 344 Dobson Units (DU) (Committee on Extension to the Standard 

Atmosphere, 1976). However, stratospheric ozone has temporal and spatial variability and thus a 

normalization of the Himawari-8 radiances for the transmission due to observational ozone absorption 

was performed for each band prior to the ANN inversions. 
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Figure 2.28: Global distribution of Total Column Ozone (Dobson Units - DU) from Total Ozone Analysis 
using SBUV/2 and TOVS (TOAST), for a given day. Data source: National Oceanic and Atmospheric 
Administration (2020b). 

First, the ozone transmission (XI*) and ozone optical thickness (jI*) were calculated for the 

Himawari-8 observations with absorption coefficient of ozone ("I*) provided in Linke (1953) and a 

default ozone concentration [m6] of 344 DU, as utilised in the radiative transfer simulations (Eq. 2.41 

and Eq. 2.42). Then, XI*and jI*were calculated for observational [m6] derived from the Total Ozone 

Analysis from Stratospheric and Tropospheric Satellite Sources (TOAST) dataset (National Oceanic and 

Atmospheric Administration, 2020b). The correction factor (N] - Eq. 2.43) calculated for each 

Himawari-8 bands was applied to the `LJCI9 prior to inversion. 

The TOAST product with spatial resolution of 1.25 by 1 degrees and daily temporal resolution 

(illustrated in Figure 2.28) was resampled to 1 km for compliance with the grids of the Himawari-8 VNIR 

observations. Finally, the Himawari-8 observations were normalised at each band by the ratio between 

the transmission of TOAST-derived ozone to the transmission computed for 344 DU (Eq. 2.43). Since 

Total Column Ozone concentration varies with space and time, there is an unaccounted uncertainty 

related to time differences between the ozone measurement and the time of the Himawari-8 scan. 

jI*()) = "I*[m6] Eq. 2.41 

XI*(), :J, ∆ϕ) = W!PQ+*{(" ]MJ b,)c(" ]MJ ∆e⁄ )⁄ }S Eq. 2.42 

N]()) =
XI*
CI9<C

XI*
644hi Eq. 2.43 
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2.4.3.2 Sea Level Atmospheric Pressure  

As in described in section 2.1.2.2, the Rayleigh optical thickness (jN) is derived as a function of 

the sea level atmospheric pressure. The Himawari-8 bands were simulated for two sea level pressures 

of 980 and 1040 hPa. Therefore, for a realistic approximation, mean sea level atmospheric pressure 

data from NCEP/NCAR Reanalysis 2 (Kalnay et al., 1996; Kistler et al., 2001; Kanamitsu et al., 2002), 

were utilised as inputs for the inversion of Himawari-8 observations. The data is available from the 

National Oceanic and Atmospheric Administration (2020a) averaged every 6 hours (0, 6, 12, 18 UTC) 

and sampled on a regular global grid of 2.5 degrees spatial resolution. The closest concurrent sea level 

atmospheric pressure data to the Himawari-8 observation was acquired and interpolated to the 1km 

Himawari-8 GBR grid. A global map of the mean sea level atmospheric pressure is presented in Figure 

2.29 for illustration purposes. 

 

Figure 2.29: Global NCEP/NCAR Mean Sea Level Atmospheric Pressure (hPa) distribution for a given 
day. Data source: National Oceanic and Atmospheric Administration (2020a). 

 

 Water Quality Retrievals 

The inputs to the ANN were: the Himawari-8 `LJCI9 observations in the VNIR bands (470, 510, 

640 and 856 nm) corrected for ozone transmission factor, associated solar and viewing zenith and 

azimuth angles, :K , :J, ∆ϕ, transformed into cartesian coordinates (section 2.3.2), and the mean sea 

level atmospheric pressure. The retrieved WQP, associated masks and metadata were saved in a 

NetCDF file, including pixelwise associated flags for out-of-range inputs (`LJCI9) and outputs (CHL, TSS 

and YEL). The ranges of valid PCI9 inputs and CHL, TSS and YEL outputs were defined based on the 

radiative transfer simulated dataset, following Schaale and Schroeder (2013). For instance, if a certain 
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pixel’s input and/or output exceeded the simulated ranges, the pixel received a corresponding bitwise 

flag (1 for RT input flag, 2 for CHL, 4 for YEL and 8 for TSS, when deriving all WQP simultaneously). The 

input and output flags were summed for each pixel of the Himawari-8 grid. The resultant array of flags 

for out-of-range values were named ‘ANN flags’ for brevity and the associated byte flags were applied 

to the water quality products prior to analysis (Figure 2.30). 

 

Figure 2.30: Schematic diagram of the Water Quality Retrieval with inversion of Himawari-8 and 
ancillary datasets. The procedure for identifying and masking out-of-range input and output values is 
described. The ‘ANN flags’ byte mask array is utilised for masking the Water Quality Products array. 
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 Discussion of Algorithm Development Chapter 

Chapter 2 focused on developing a physics-based algorithm for estimating ocean colour 

parameters with Himawari-8 in the GBR. Coupled ocean-atmosphere radiative transfer simulations of 

the Himawari-8 bands were performed for realistic combinations of CHL, TSS and YEL, parameterized 

for the optical variability of the GBR. The simulations output the angular distribution of the normalised 

PCI9 at the Himawari-8 visible and near-infrared bands. A sensitivity analysis of the outputs revealed 

that Himawari-8 VNIR bands are suited for the detection of optical changes in the coastal GBR. 

However, the determination of CHL and YEL in the coastal GBR may be a difficult task, given their 

overlapping absorption features and the spectral resolution and positioning of the Himawari-8 blue and 

green bands, at 470 nm and 510 nm. Nevertheless, the Himawari-8 bands, particularly the 640 nm, are 

well suited to detect optical changes due to variable TSS from ~ 0.5 to 100.0 mg L-1, as previously 

suggested (Dorji and Fearns, 2018; Ding et al., 2020).  

The simulations were also valuable to investigate the influence of the atmospheric path signal at 

variable :J and for 3 orders magnitude increases in aerosol loading (j'). Simulating the angular 

distribution of PCI9 is particularly important because Himawari-8 takes continuous observations at 

every 10 minutes, comprising a large range of solar and observation zenith and azimuth changes within 

a single day. However, for Himawari-8 observations at high :J (>70˚), it might be difficult to retrieve 

CHL, TSS and YEL from PCI9 with accuracy. This is because the atmospheric path length linearly 

increases with :J, modifying the magnitude and spectral characteristics of PCI9 and masking the ocean 

colour signal. In addition, the simulations demonstrated that the Himawari-8 bands are sensitive to 

changes in j'. Aerosol particles in the atmosphere effectively absorb and scatter light in the blue-green 

visible wavelengths, masking the spectral shape and magnitude of the ocean colour and leading to 

major retrieval errors. In some extreme cases, the aerosol loading from biomass burning and dust 

storms can be confounded with the spectral characteristics of turbid coastal waters, and such pixels 

should be identified and avoided. Hence, the accurate separation of the atmospheric and marine signal 

is detrimental for the correct retrieval of ocean colour parameters.  

The radiative transfer simulations were employed to generate large and independent training and 

testing datasets for the development of an ANN inversion algorithm. The ANN training was employed 

to learn the functional relationship between the Himawari-8 `LJCI9	and the optical water quality 

parameters CHL, TSS and YEL. The testing dataset was used for verifying generalization ability of the 

ANN experiments for independent or unskilled data. The several ANN experiments were designed with 

a variable number of hidden layer neurons, added Gaussian noise and PCA decorrelation of inputs. The 

experiments designed with PCA decorrelation of radiance inputs presented improved performance 

compared to those without decorrelation, particularly for the retrievals of TSS.  
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In summary, the physics-based method developed in this chapter may be utilized for estimating 

the ocean colour water quality parameters at the Himawari-8 bands for variable optical, geometrical, 

and environmental conditions. However, a validation utilising real observations from Himawari-8 and 

in situ data of CHL, TSS and YEL collected in the coastal GBR is necessary to fully evaluate the algorithm’s 

performance and to choose the best experiment for water quality retrievals. 
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Chapter 3: Algorithm Validation 

Ocean colour algorithms are computational and mathematical tools employed to quantify water 

quality parameters from satellite observations. However, ocean colour algorithms are imperfect 

representations of a complex phenomenon and validation is a fundamental step for the assessment of 

algorithms’ performance and potential uncertainties (Bailey and Werdell, 2006). Generally, the satellite 

derived products are statistically verified against concurrent in situ measurements8. The algorithms 

within accepted levels of accuracy are typically applied to derive ocean colour products relevant for 

water quality monitoring (Schroeder et al., 2012; Brando et al., 2012; Brando et al., 2015). Ideally, the 

most suitable ocean colour algorithms can retrieve water quality parameters from remote sensing 

observations in a quantitatively accurate and reliable way (Brewin et al., 2015). However, the accuracy 

requirements of ocean colour products depend on the satellite mission objectives, the end-user 

applications, and on the optical complexity of the waters investigated (Donlon, 2011; IOCCG, 2018). 

Algorithm validation is especially challenging in optically complex waters due to the high spatiotemporal 

variability of optical properties and the scale mismatch between in situ measurements and satellite 

observations (Doerffer, 2002).  

Himawari-8 10-minute observations offer an opportunity to monitor water quality at diurnal 

scales in the GBR, given that derived products are accurately retrieved. In Chapter 2, multiple physics-

based ocean colour algorithms with ANN inversion were developed for deriving CHL, TSS and YEL from 

Himawari-8 in the coastal GBR. In this chapter, the algorithms’ performances were evaluated and the 

most appropriate was selected to estimate water quality products from Himawari-8. 

Validation protocols have been developed to set standard practices and to assist in reducing the 

uncertainties associated with the potential spatiotemporal mismatch between satellite observations 

and in situ measurements (IOCCG, 2019). The validation protocol utilised in this study follows the 

experience of previous validation exercises for ocean colour remote sensing in Australia, including in 

the coastal GBR (Schroeder et al., 2016, 2017, 2018). The above-mentioned studies described 

processing steps for extraction of satellite observations (concurrent to in situ measurements), as well 

as useful statistical performance metrics, which were implemented in this validation exercise. The 

accuracy of present retrievals was compared to the results previously obtained in the GBR, and to the 

recommended accuracy requirements for retrievals in optically complex waters (Donlon, 2011). In the 

next sections, further details of methods and results are presented.  

 
8 Satellite data are defined as ‘observations’ and in situ data as measurements throughout this thesis. 
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 Methods 

 Great Barrier Reef in situ dataset 

Measurements of TSS, CHL and YEL sampled in the GBR lagoon were selected for validation of the 

multiple ANN algorithms developed in this study. This in situ validation dataset is completely 

independent and was not utilised in the algorithm development phase. Sea surface (< 1 m) water 

samples were collected between 2015 and 2018 during several research expeditions and at fixed-

location monitoring facilities, managed by the Australian Institute of Marine Sciences (AIMS) and by the 

Commonwealth Scientific and Industrial Research Organization (CSIRO).  

The data provided by AIMS include CHL, TSS and YEL collected for the Long-Term Marine 

Monitoring Program and at the National Reference Station Yongala. The CSIRO database includes CHL, 

TSS and YEL measured fortnightly at the Lucinda Jetty Coastal Observatory (LJCO). Additionally, bio-

optical data collected during CSIRO campaigns (i.e., on the Fitzroy River estuary after Cyclone Debbie, 

from 9 to 11 April 2017) and during voyages of the RV Investigator within the GBR were also used in 

this validation exercise. The AIMS and CSIRO water quality datasets are part of the Integrated Marine 

Observing System (IMOS) Bio-Optical Database (BODB). The dataset was accessed through the 

Australian Ocean Data Network (AODN) portal (Australian Ocean Data Network, 2020), except for 

Fitzroy data from CSIRO and recent AIMS data (2018 to present). Figure 3.1 and Figure 3.2 present the 

histogram and spatial distributions (colour coded with respective concentrations) of the quality 

controlled in situ data sampled in the GBR. 

The AIMS and CSIRO laboratories use different methods to determine CHL, TSS and YEL. However, 

in this validation exercise, the datasets from AIMS and CSIRO have been combined. AIMS determined 

CHL based on the fluorometric method of Strickland and Parsons (1972), using a Turner Designs 10AU 

fluorometer with wavelengths and calibration equations specified in Jeffrey and Humphrey (1975). The 

fluorometric method measures the natural fluorescence of CHL from a filtered sea water sample. 

Detection limits are calculated and reported in each batch of data, but the optimal working range is 

from 0.05 to 5 mg m-3 for a 100 ml sample. Details of the method employed by AIMS can be found in 

Great Barrier Reef Marine Park Authority (2019b). 

The CSIRO Oceans & Atmosphere (O&A) laboratory in Hobart determine CHL using High 

Performance Liquid Chromatography (HPLC) following a slightly modified method from Van Heukelem 

and Thomas (2001), which is described in detail in Hooker et al. (2012). In summary, sea water samples 

are collected in 25 mm GF/F filters and stored in liquid nitrogen until laboratory analysis. The HPLC 

method is focused on resolving Chlorophyll-a pigments (divinyl and monovinyl), phaeopigments and 

accessory pigments (such as Chlorophyll-b and c) through chromatography (Mueller, 2003). The CHL 
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utilised in this study refers to the total chlorophyll-a, which is the sum of the divinyl and monovinyl 

counterparts. The HPLC is usually more precise and is widely preferred over the fluorometric method 

(Trees et al., 1985; Mueller, 2003; Marrari et al., 2006).  

Both CSIRO and AIMS use the gravimetric method to measure the total concentration of suspended 

solids (TSS) in seawater, which are summarised below. The method consists of measuring the dry 

weight of suspended solids from a known volume of seawater sample after it has been vacuum filtered 

on a pre-weighted membrane filter. AIMS filters the seawater samples on a polycarbonate membrane 

filter (0.4 µm pore size by 47 mm diameter), and the filters are dried overnight at 60˚C. The dry weight 

of a wet filter blank is utilised for baseline correction. After baseline correction, the result is divided by 

the volume of filtered seawater. The AIMS method was tested after a series of wet filter blank trials and 

the lowest TSS that can be accurately measured is 0.36 mg L-1. Further details on the methodology 

employed by AIMS is described in Great Barrier Reef Marine Park Authority (2019b). 

Meanwhile, CSIRO analyses three equal sets (triplicates) of surface water samples filtered under 

low vacuum onto a GF/F 0.7 µm pore size and 47 mm diameter filter for TSS determination. Prior to 

sampling and analysis, the filters are pre-washed with MilliQ water, pre-ashed at 450˚C and pre-

weighted. Post seawater filtration, 50 ml of distilled water is rinsed over the filters to remove salts and 

each filter is stored flat in a Petri dish at 4˚C until analysis. The filters are dried at 60˚C to determine the 

total weight of suspended solids. The final TSS is derived by taking the median and standard deviation 

from the TSS triplicate set. Details of the TSS method utilised by CSIRO are further described in Soja-

Woźniak et al. (2019). 

Yellow substances (YEL) or coloured dissolved organic compounds derived from the 

degradation of plant matter strongly absorb ultraviolet and short-wave visible light. AIMS and CSIRO 

laboratories estimate YEL absorption by the spectrophotometric method. Both laboratories present 

slight differences in methodology, which are briefly described. AIMS utilises a Shimadzu UV-1800 

spectrophotometer (240 to 700 nm). Water samples from a Niskin bottle are filtered in a clean syringe 

through the 0.2 µm poly-sulfone (Pall-Acropack supor membrane) filter. CSIRO, on the other hand, uses 

a GBC-916 ultraviolet/visible (UV/VIS) spectrophotometer (200 to 900 nm) for determination of YEL. 

First, the seawater sample is passed through a glass fibre filter (GF/F) prior to filtration on 

polycarbonate Millipore 0.22 µm filter. Then, the filtrate sample is placed in a 10 cm path length cuvette 

for reading in the spectrophotometer. The YEL absorbance reading is subtracted from a reading of a 

MiliQ (Millipore) water for baseline correction. The absorption coefficient at a specific wavelength (443 

nm in this study) is calculated considering the volume of water analysed (usually for a 10 ml cuvette), 

converting the absorbance reading from decadic to natural logarithm and normalizing the absorbance 

to zero at around 600-700 nm. An exponential fit is applied to the calculated YEL spectra and the YEL 
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absorption at 443 nm is then derived. Detection limits for YEL analysis are mainly determined by the 

photometric accuracy of the spectrophotometer, which can range from 0.004 to 0.013 m-1 (Nelson and 

Coble, 2009). More details of the methods used by AIMS and CSIRO are reported in Great Barrier Reef 

Marine Park Authority (2019b) and in Clementson et al. (2001); Clementson et al. (2004) for the 

methods employed by CSIRO. 

In situ data points within 1 km from coastline or reefs were excluded from the analysis to 

reduce uncertainties due to potentially strong reflectance effects from land and reefs (Bulgarelli and 

Zibordi, 2018). Samples were taken at variable isobaths (1.5 m to 40 m) with the shallowest datasets 

having TSS > 10 mg L-1, characterising optically deep waters. CHL and TSS measurements totalled 347 

each, while YEL samples totalled 149 entries, of which 17 were sampled without simultaneous 

measurements of CHL and TSS. Figure 3.1 presents histogram plots with descriptive statistics of CHL 

(a), TSS (b) and YEL (c). In situ CHL presented a two-order magnitude range from 0.02 to 4.76 mg m-3, 

and a mean of 0.59 mg m-3. Meanwhile, TSS ranged from 0.01 to 85 mg L-1 with a mean of 3.5 mg L-1 

and YEL from 0.003 to 1.77 m-1 with a mean of 0.21 m-1, both varying three orders of magnitude during 

the period analysed (2015-2018). All three WQP presented log-normal distributions, indicating that the 

most frequently occurring values are lower than the mean value of the entire dataset. 

Most data points were located within the GBR lagoon (Figure 3.2) whilst two were located 

seaward of the outer barrier reef. The data points were distributed between the central and southern 

GBR (-15˚S to -21˚S), with a few data points sampled further south in Keppel Bay, at the mouth of the 

Fitzroy River (YEL only). The in-situ data presented in Figure 3.2 were collected in different seasons 

between 2015 and 2018, and thus the spatial patterns (colour coded by concentration) may also be 

influenced by temporal variations. 
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Figure 3.1: Frequency distribution log-linear plots for in situ CHL (a), TSS (b) and YEL (c) and summary 
statistics. 
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Figure 3.2 Spatial distributions of in situ CHL, TSS and YEL sampled between 2015 and 2018 in the GBR 
Marine Park. The present dataset includes samples collected by AIMS and CSIRO (including at LJCO and 
onboard the RV Investigator). 
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 Selection of Himawari-8 observations 

Himawari-8 scans at least 48 images a day (8 a.m. to 4 p.m.), an unprecedented number of 

observations for ocean colour validation and applications. The chances of concurrently matching an in-

situ measurement against a product derived from Himawari-8 increases 24 times, compared to the 

constellation of sensors providing 1 to 2 observations per day (i.e., MODIS/Aqua, Sentinel-3, VIIRS, etc.). 

This is particularly relevant because cloud cover is one of the main limitations to ocean colour data 

availability (Sirjacobs et al., 2011; Ruddick et al., 2014). 

It is recommended that the time difference Ö/ between an in situ measurement and the 

matching satellite observation is minimised as much as possible to avoid discrepancies due to the rapid 

optical changes in coastal waters. Doerffer (2002) recommends matchups with a ∆t of ±30 minutes or 

less in coastal waters while IOCCG (2019) recommends ∆t ±1 hour or less, depending on the optical 

complexity. The high-frequent scanning schedule of Himawari-8 allows a ∆t of 10 minutes or less, 

between each measurement and observation. Additionally, multiple Himawari-8 observations can be 

combined within a timeframe (i.e., hourly) for reducing environmental noise, to eliminate potential 

outliers and to increase the sensor’s signal to noise ratios, improving estimates and validation 

performances (IOCCG, 2012b; Ruddick et al., 2014; Lavigne and Ruddick, 2018). This study took 

advantage of the intensive temporal coverage of Himawari-8 to test validating each in situ 

measurement against: 

a) the closest 10-minute Himawari-8 WQP product (temporal approach I – TA-I). 

b) an hourly composite of Himawari-8 WQP products (temporal approach II – TA-II).  

Therefore, all available Himawari-8 observations scanned within ±30 minutes from the recorded in 

situ timestamp, were acquired for validation. Some observations were not available because of 

Himawari-8 quarterly scheduled maintenance (usually at every 2:40 UTC ~ 12:40 p.m. AEST). The 

selected Himawari-8 full disk VNIR observations were acquired and extracted to the GBR area (10˚S to 

29˚S and 140˚E to 155˚E), according to section 2.4.1. 

 Water Quality Retrievals for Validation 

This section described the general procedure employed in this validation exercise, for both 

temporal approaches. The algorithms designed to retrieve CHL, TSS and YEL, with PCA de-correlation 

of radiance inputs and added noise (Group B, Set 2 to 4, see section 2.3.1) were chosen for evaluation. 

Selected and processed 10-minute Himawari-8 observations at the VNIR bands, with associated 

geometry (:K , :J, ∆Y), were subset to 3-by-3-pixel box, centred at the coordinates of each concurrent 

in situ datapoint (via nearest neighbour distance). Likewise, 3-by-3-pixel subsets of concurrent masks 

(i.e., clouds, land, and sun glint) and ancillary data (i.e., ozone and pressure) were taken. Additionally, 
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concurrent in situ measurements (CHL, TSS and YEL) and metadata (date, time, latitude, longitude, 

collector, station, water depth, distance from the coast and from reefs) were included in the validation 

dataset. The :J of Himawari-8 observations utilised in this validation exercise ranged from 12 to 55 

degrees. True colour RGB composites of selected Himawari-8 observations were visually inspected to 

eliminate matchups in waters with sharp gradients in optical properties (i.e., turbidity fronts). The 

Himawari-8 subsets were processed with the chosen ANN inversion algorithms for WQP retrievals. 

The retrieved WQP 3-by-3-pixel subsets were masked for clouds, land, and sun glint. Only those 

subsets with 2 or less pixels masked per pixel-box were considered valid for matchup. In addition, the 

WQP subsets were filtered for any occurrence of ANN flags (section 2.4.4). For a systematic approach, 

if any pixel within a subset was out-of-range, the entire matchup was discarded. This criterion was 

designed to guarantee that only entirely valid estimates were allowed for performance assessment. 

Moreover, the validation dataset was filtered to eliminate matchups where in situ TSS values were 

lower than 0.1 mg L-1. The trained and tested ANN experiments consistently demonstrated high errors 

for TSS values below this threshold (see Figure 2.20 in section 2.3.3), which might be associated with 

the relatively strong influence of the atmospheric path radiance compared to the water leaving 

radiances over optically clear waters (Dorji and Fearns, 2018). Finally, the median (spatial aggregate of 

pixels within subset) and the standard deviation of each valid subset were computed, excluding masked 

pixels. The median value of retrieved CHL, TSS and YEL were statistically compared against their 

concurrent in situ counterparts. An overview of the validation procedure is illustrated in Figure 3.3, and 

details about the temporal approaches are described in the next subsection. 

 

Figure 3.3: A simplified overview of the algorithm validation procedure. 



 86 

 Testing Temporal Approaches 

In this thesis, two temporal approaches were tested for validation, TA-I and TA-II. For TA-I, the 

closest Himawari-8 derived WQP subset product scanned within 5 minutes (∆t = ±5 min) from the in 

situ time stamp was utilised in TA-I. For TA-II, an hourly composite (i.e., the average) of 4 to 6 valid 

subset products were computed (Figure 3.4). If less than 4 single valid products were available within 

an hour, the matchup was discarded. The temporal aggregation procedure (àâ) disregarded any pixels 

masked in each valid subset. On both temporal approaches, the median value (lä) of all valid pixels 

within a subset product was used for matchup against concurrent in situ measurement. The approaches 

were statistically compared utilising the matchups available for both TA-I and TA-II. The approach with 

the best overall performance was chosen for further ranking and selection of ANN experiments. 

 

Figure 3.4: Schematic diagram of temporal aggregation employed in Temporal Approach-II. In this 
example, all 6 subsets acquired within an hour were valid for aggregation. 

 Statistical Descriptors and Performance Evaluation 

The ANN experiments were evaluated with regards to their Root Mean Squared Error (RMSE – 

or absolute error), mean Bias, Mean Absolute Percentage Error (MAPE – or relative error), and the 

coefficient of determination (R2), following Schroeder et al. (2018). Considering that in situ CHL, TSS 

and YEL present a log-normal distribution (Figure 3.1), the ANN outputs were computed in logarithmic 

scale (log10). The in-situ dataset was transformed accordingly for comparison and statistical analysis. 

Bias, R2 and RMSE were calculated in log10 space and MAPE was calculated in linear space. In Eq. 3.1 to 
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Eq. 3.4, ' refers to in situ measurements, ã refers to satellite derived products, and Ä is the number 

of samples or valid matchups. 

 Rank Experiments and Select ANN algorithm 

The final validation analysis consists in statistically evaluating the WQP retrievals from Himawari-8 

against in situ measurements for the selected temporal approach. First, for each individual WQP, the 

top 3 ANN experiments with lowest RMSE were selected and their statistical metrics were tabulated 

for comparison. The RMSE is the metric of choice for ranking the experiments because the objective of 

the ANN is to minimise the cost function, i.e., the Mean Squared Error. Scatterplots of matching in situ 

and Himawari-8 products were utilised to visually interpret the top-3 experiments. Preference was 

given for those experiments with the lowest RMSE and MAPE errors, as well as a Bias close to zero and 

highest R2. Additionally, the stability to retrieve WQP for a range of simulated scenarios was assessed 

by recalling the independent simulated test dataset with the selected ANN experiments. The RMSE was 

evaluated for bins of equally spaced logarithmic concentrations of WQP. Ideally, the computed RMSE 

values for a given concentration bin is expected to be lower than the respective concentration. 

Moreover, the experiment’s sensitivity to retrieve WQP for a range of solar zenith angles were 

investigated. Finally, the best performing ANN experiment with the lowest number of neurons in the 

hidden layer was chosen, to reduce the computational efforts for the inversion of Himawari-8 

observations over the entire GBR. 
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 Validation Results 

Figure 3.5 presents the statistical comparison between TA-I and TA-II performance for all ANN 

experiments within group B to separately retrieve CHL, TSS and YEL. The performance of TSS retrievals 

significantly improved when employing aggregated observations, with lower MAPE, RMSE and higher 

R2. Conversely, TA-II retrieved CHL with lower MAPE while YEL was retrieved with larger MAPE values. 

However, CHL and YEL were consistently retrieved with large RMSE and negative bias for both temporal 

approaches tested. 

 

Figure 3.5 Boxplot of statistical metrics comparing temporal approaches TA-I (light blue boxes) and TA-
II (dark blue boxes) for concurrently available data points. 

The performance of ANN experiments was then evaluated with TA-II given that this temporal 

approach demonstrated lower MAPE, RMSE higher R2 compared to TA-I. The statistical performance 

and the sensitivity of estimating CHL, TSS and YEL in the GBR was calculated for the top-3 ANN 

experiments. 

 Chlorophyll-a Concentration (CHL) 

Matchup statistics for in situ CHL concentrations ranging from 0.07 to 2.8 mg m-3 are 

summarized in Table 3.1 for the top 3 ANN experiments within group B. The three selected experiments 

presented similar statistical performances, with RMSE of 4 mg m-3, MAPE at 70% and mean negative 
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bias around 0.47 mg m-3. Although the experiments yielded a positive correlation between observations 

and measurements, a consistent underestimate was observed for retrieval of in situ CHL below 1 mg 

m-3 (Figure 3.6). A few retrieved CHL values presented large standard deviations (error bars in Figure 

3.6), indicating 2 orders of magnitude variations within a 3-by-3-pixel box. 

Table 3.1: Matchup statistics of the top 3 ANN experiments for CHL retrievals in ascending order of 
RMSE. The experiment’s identifiers are compiled in the first column, followed by the number of hidden 
layer neurons (HID) column. N is the number of valid matchups. Except for MAPE, all statistics were 
calculated in logarithmic base 10 scale. Units for 10RMSE are in mg m-3. 

 

 
 
 

 
 

 

Figure 3.6: Log-Log scatterplot between in situ and hourly derived AHI CHL for P053 ANN experiment. 
In situ CHL are colour coded in logarithmic scale. Error bars were computed as the standard deviation 
of AHI derived CHL within a 3-by-3-pixel box. The circular and cross symbol markers indicate in situ data 
collected by AIMS and at LJCO, respectively. 

Conversely, the recall of a simulated testing dataset (Figure 3.7) for the top 3 ANN experiments 

revealed that CHL between 0.01 and 1 mg m-3 may be retrieved with RMSE errors well above 100%, 

corroborating patterns of Figure 3.6. In addition, according to the recall of a simulated test dataset, the 

CHL retrievals at 0.4 mg m-3 were largely impacted by :J between 0˚ and 70˚ (Figure 3.8). The P053 and 

P056 experiments demonstrated reasonable retrieval stability for CHL at 5.0 mg m-3, for :J < 60˚. 

AHI Hourly aggregated CHL (mg m-3), N = 48 
ANN HID R2 MAPE RMSE 10RMSE Bias 
P053 40 0.59 70 0.60 3.9 -0.47 

P056 70 0.59 71 0.61 4.0 -0.47 
P051 20 0.62 71 0.62 4.1 -0.48 
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Figure 3.7: Simulated CHL and associated retrieval RMSE errors from ANN recalls of the independent 
testing dataset (N=100 000). The retrieval errors are demonstrated for the top 3 ANN experiments 
(P051, P053, P056) ranked in this validation exercise. 

 

Figure 3.8: Variability of retrieved CHL for :J between 0 and 70 degrees, ÖY of 180 degrees and :K of 
24 degrees with the top-3 performing ANN experiments. The solid horizontal lines correspond to the 
synthetic CHL values (0.4 and 5.0 mg m-3) input to the bio-optical models for the RT simulations. The 
dashed lines represent the retrievals for each ANN experiment selected. Note different ranges of CHL 
in logarithmic scale. 

 Total Suspended Solids (TSS) 

The performance of estimating TSS ranging from 0.14 to 24 mg L-1 is summarized in Table 3.2 

for the top 3 experiments within group B. The TSS experiments presented a positive R2 with variable 

MAPE between 75 and 80% and RMSE between 2.08 to 2.18 mg L-1. Mean bias fluctuated between 

positive and negative values as low as 0.005 mg L-1, with TSS values below 1 mg L-1 being generally 

overestimated (Figure 3.9). As for CHL retrievals of Figure 3.6, two retrieved TSS data points presented 
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large standard deviations (error bars in Figure 3.9), indicating 2 to 3 orders of magnitude variations 

within a 3-by-3-pixel box. 

Table 3.2 Matchup statistics of the top 3 ANN experiments for TSS retrievals in ascending order of 
RMSE. The experiment’s identifiers were compiled in the first column, followed by the number of 
hidden layer neurons (HID) and N is the number of valid matchups. Except for MAPE, all statistics were 
calculated in logarithmic base 10 scale. Units for 10RMSE are in mg L-1. 

 

 

 

 

 

 

Figure 3.9: between in situ and hourly derived AHI TSS for P094 ANN experiment. In situ TSS are colour 
coded in logarithmic scale. Error bars were computed as the standard deviation of AHI derived TSS 
within a 3-by-3-pixel box. The circular and cross symbol markers indicate in situ data collected by AIMS 
and at LJCO, respectively. 

Conversely, the recall of a simulated testing dataset for the top 3 ANN experiments (Figure 

3.10) revealed that TSS below 1 mg L-1 may be retrieved with up to one order magnitude errors, 

indicating poor retrievals in optically clear waters. Nevertheless, the simulated retrievals demonstrated 

that TSS larger than 1 mg L-1 may be estimated with good accuracy from Himawari-8. In addition, the 

algorithm’s performance was marginally impacted by :J < 70˚ (Figure 3.11Figure 3.8), providing 

reasonable stability for TSS retrievals between 0.2 and 2 mg L-1.  

 

AHI Hourly Aggregated TSS (mg L-1), N=46 
ANN HID R2 MAPE RMSE 10RMSE Bias 
P094 50 0.57 75 0.32 2.08 0.014 

P098 90 0.57 78 0.32 2.08 0.005 
P092 30 0.54 80 0.33 2.13 -0.011 
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Figure 3.10: Simulated TSS and associated retrieval RMSE errors from ANN recalls of an independent 
testing dataset. The retrieval errors are demonstrated for the top 3 ANN experiments (P092, P094, 
P098) ranked in this validation exercise. 

 

Figure 3.11: Variability of retrieved TSS for :J between 0 and 70 degrees, ÖY of 180 degrees and :K of 
24 degrees with the top-3 performing ANN experiments. The solid horizontal lines correspond to the 
synthetic TSS values (0.2 and 2.0 mg L-1) input to the bio-optical models for the RT simulations. The 
dashed lines represent the retrievals for each ANN experiment selected. Note different ranges of TSS 
in logarithmic scale. 

 Yellow Substances (YEL) 

The performance of estimating YEL absorption (at 443 nm) between 0.017 to 1.77 m-1 is summarized 

for the 3 best ANN experiments in Table 3.3. Although YEL experiments yielded a high and positive 

correlation (R2 ~0.7), the retrievals were largely underestimated (bias ~ -0.4 m-1), presented with large 

RMSE (~3.5 m-1) and moderate MAPE (~57%). As for CHL and TSS retrievals, two YEL data points 
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presented large standard deviations (error bars), indicating 2 to 3 orders of magnitude variations within 

a 3-by-3-pixel box.  

Table 3.3: Matchup statistics of top 3 ANN experiments for YEL retrievals in ascending order of RMSE. 
The experiment’s identifiers are compiled in the first column, followed by the number of hidden layer 
neurons (HID) column. N is the number of valid matchups. Except for MAPE, all statistics were 
calculated in logarithmic base 10 scale. Units for 10RMSE are in m-1. 

 
 
 
 
 

 

 

Figure 3.12: Log-Log scatterplots of AHI derived hourly YEL matchups for P0139 ANN experiment. In 
situ YEL are colour coded in logarithmic scale. Error bars were computed as the standard deviation of 
AHI derived YEL within a 3-by-3-pixel box. The circular, cross and diamond symbol markers indicate in 
situ data collected by AIMS, at LJCO, and by CSIRO at Fitzroy River mouth, respectively. 

The top 3 ANN experiments consistently underestimated YEL below ~0.1 m-1 (Figure 3.12), 

corroborating simulated patterns (Figure 3.13). Nevertheless, YEL larger than 1 m-1 were retrieved with 

reasonable accuracy, indicating satisfactory performance in coastal waters, particularly for in situ YEL 

collected by CSIRO in the surrounding waters of the Fitzroy River plume (diamond markers in Figure 

3.12). In addition, the YEL algorithm’s performance was slightly impacted by :J < 70˚ (Figure 3.14), 

indicating reasonable stability for YEL retrievals between 0.1 and 0.25 m-1, at variable atmospheric path 

lengths. 

AHI Hourly Aggregated YEL, N=33 
ANN HID R2 MAPE RMSE 10RMSE Bias 
P139 100 0.71 57.7 0.53 3.38 -0.368 

P135 60 0.71 56.8 0.54 3.46 -0.394 
P136 70 0.70 56.3 0.54 3.46 -0.367 
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Figure 3.13: Simulated YEL and associated retrieval RMSE errors from ANN recalls of an independent 
testing dataset. The retrieval errors are demonstrated for the top 3 ANN experiments (P135, P136, 
P139) ranked in this validation exercise. 

 

Figure 3.14: Variability of RMSE to retrieve YEL for a range of :J with the selected ANN experiments. 
The solid horizontal lines correspond to the synthetic CHL values (0.12 and 0.25 m-1) input to the bio-
optical models for the RT simulations. The dashed lines represent the RMSE errors for YEL retrievals at 
:J between 0 and 60 degrees, ∆Y  at 180 degrees and VZA of 24 degrees.  
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 Discussion of Algorithm Validation Chapter 

Chapter 3 focused on the statistical assessment of the physics-based inversion algorithms 

developed for retrieving CHL, TSS and YEL in the GBR, from Himawari-8 observations. The selected and 

quality controlled Himawari-8 observations, concurrent to in situ measurement data, were processed 

with 30 PCA-designed ANN inversion experiments. Given the exceptional number of Himawari-8 

observations available for validation, we tested the efficacy of degrading the temporal resolution for 

improved retrieval performances, as suggested by Lavigne and Ruddick (2018). This chapter discusses 

the assessment of tested temporal approaches and the individual performance of CHL, TSS and YEL 

retrievals for the ocean colour algorithms developed.  

 Evaluation of temporal approaches 

Products derived every 10 minutes and from hourly aggregates of Himawari-8 observations 

were evaluated and compared as two distinct temporal approaches for validation (TA-I and TA-II 

respectively). TA-I minimises the temporal mismatch between observations and in situ measurements, 

which is desirable for validation of coastal ocean colour products (Doerffer, 2002). Meanwhile, TA-II 

utilised hourly aggregates of 10-minute derived products to reduce signal-dependent noise (Lavigne 

and Ruddick, 2018). In general, the retrieval performances of CHL and TSS were significantly improved 

when using TA-II compared to products derived with TA-I. However, the retrieval of YEL substances 

yielded slightly higher errors when with TA-II. Nevertheless, the temporal averaging of products 

generally improved the accuracy of ocean colour retrievals from Himawari-8, as it has been previously 

suggested (Ruddick et al., 2014; Murakami, 2016b; Lavigne and Ruddick, 2018). Moreover, the 

algorithm’s performance has potentially benefited from the visual inspection of RGB composites to 

detect unmasked clouds and subsets with heterogeneous optical properties. However, due to the large 

number of matchups available, visual inspection of RGB is time consuming and subjective. Further 

automation of visual quality control is suggested for fast and objectively identification of undetected 

clouds and heterogeneous pixel-box subsets. Neural network algorithms have been increasingly 

employed to detect cloud and cloud shadow features, and suggest a potential improvement of current 

techniques based on spectral information of the infrared and thermal bands (Segal-Rozenhaimer et al., 

2020). 

 Chlorophyll-a Retrievals from Himawari-8 

The top-performance ANN algorithm for CHL was the P053 with 40 hidden-layer neurons. 

Although CHL between 0.07 to 2.87 mg m-3 were estimated with RMSE errors as high as 4 mg m-3,  

retrievals were achieved with MAPE of 70%, within the mission targets defined for Level 2 Sentinel-3 
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CHL products in Case 2 waters (Donlon, 2011). The poor performance of discriminating CHL with 

Himawari-8 in the coastal GBR may be largely due to the spectral and radiometric characteristics of the 

Himawari-8 sensor. Himawari-8-AHI offers 3 visible bands (centred at 470, 510 and 640 nm) with 30 to 

80 nm bandwidth, depending on the band. Additionally, Himawari-8 AHI’s 11-bit radiometric resolution 

is moderate compared to 14 and 12 bits from contemporary ocean colour sensors such as Sentinel-3 

OLCI and MODIS/Aqua respectively. For instance, SeaWiFS observations (at 10 bits and 20-40 nm 

bandwidth in the VNIR bands) were utilised to assess the impact of radiometric resolution on ocean 

colour estimates (Hu et al., 2001). Hu et al. (2001) reported up to ±60% errors for Case 1 waters CHL 

estimates, when the expected accuracy was of ±35%, with a two to three-fold variation of values in 

adjacent pixels. These errors are usually seen as a speckle or graininess across the image and decreased 

with increasing concentrations of CHL (Hu et al., 2012b). However, Lavigne and Ruddick (2018) reported 

relatively low (10%) radiometric errors when simulating Case 1 CHL from meteorological observations 

of the Flexible Combined Imager (FCI) on board the geostationary Meteosat Third Generation satellite. 

The authors reported that a spatial-temporal aggregation of observations was key to reduce FCI’s 

radiometric noise and improve atmospheric correction of the visible bands.  

Meanwhile, Murakami (2016b) Himawari-8 mixed band ratio algorithm (at 470/510 and 

510/640 nm) presented MAPE within 51% for CHL lower than 0.3 mg m-3. However, estimates of CHL 

between 0.3 and 3 mg m-3 are still a challenge because the Himawari-8 green band is centred at 510 

nm. In contrast, the green bands on ocean colour sensors are usually centred at around 545-565 nm to 

measure CHL’s peak reflectance (IOCCG, 2012b). Furthermore, band ratio algorithms are inappropriate 

to derive CHL in optically complex waters because of the strong influence of YEL in the green and blue 

parts of the spectrum. However, Murakami (2016b) showed that Himawari-8 red band centred at 640 

nm can be useful for estimating CHL larger than 5 mg m-3 due to backscattering of larger phytoplankton 

particles (i.e., harmful algal blooms and Trichodesmium sp.). In fact, the 10-minute Himawari-8 

observations at 1 km spatial resolution have successfully been utilised for detecting floating algae in 

inland waters and provided more observations than the hourly GOCI ones (Chen et al., 2019). Thus, 

Himawari-8 observations have the potential for ultra-high frequency algal bloom detection in the 

coastal GBR, compared to contemporary approaches (McKinna et al., 2011; 2014a; Blondeau-Patissier 

et al., 2018). 

Top of atmosphere radiances are largely affected by scattering of aerosols in the blue bands, 

which affects the retrieval of CHL at low concentrations (i.e., below 1 mg m-3). Accordingly, the present 

model might benefit from utilising an explicit atmospheric correction, as demonstrated by the ANN 

approach developed by Schroeder (2007a; 2007b). The atmospheric correction of Schroeder et al. 

(2007a) has successfully been applied in GBR waters for retrieval of water leaving radiances from 
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MODIS/Aqua and these have been widely utilised for estimating CHL in the GBR (Brando et al., 2015). 

Furthermore, an atmospheric correction including NIR and Short-Wave Infrared (SWIR) observations 

are suggested to improve CHL retrievals in clear waters, considering aerosols are spatially 

homogeneous (Lavigne and Ruddick, 2018). 

The bio-optical model used to parametrize the relationship between CHL and phytoplankton 

absorption was based on an extensive dataset sampled at diverse regions and trophic conditions in the 

global oceans (Bricaud et al., 1995). However, this parameterization might not encompass the entire 

spectrum of bio-optical variations found in the GBR lagoonal waters, adding further uncertainties to 

the retrievals. Regionalised bio-optical parameterizations between CHL and phytoplankton absorption 

based on data sampled in the GBR coastal waters have been suggested as alternatives to more 

generalized assumptions (Oubelkheir et al., 2006; Blondeau-Patissier et al., 2009; Brando et al., 2012). 

Additionally, the present validation dataset combines CHL measured by fluorimetry and by HPLC 

methods, both having distinct detection limits and accuracies, and potential impacts on retrievals need 

to be further evaluated. In summary, the algorithm developed here is not the most suitable for the 

accurate retrieval of CHL lower than 1 mg m-3 in the coastal waters of the GBR. Further validation and 

regionalised parameterizations should be included for more robust assessment of algorithm 

performance and potential applications in detecting large blooms.  

 Total Suspended Solids Retrievals from Himawari-8 

The top-performance ANN algorithm for TSS retrievals was P094 with 50 hidden-layer neurons. 

The TSS estimates presented reasonably good performance with RMSE of 2 mg L-1 and MAPE of ~75%, 

within the mission targets defined for Level 2 Sentinel-3 ocean colour products in Case 2 waters 

(Donlon, 2011). However, the validation excluded TSS lower than 0.1 mg L-1, as large errors have been 

reported for TSS at or below this threshold (Dorji and Fearns, 2018; Ding et al., 2020; Hafeez et al., 

2021). The uncertainties of estimating such low TSS concentrations can be associated with 

methodological differences between CSIRO and AIMS laboratories. Only CSIRO collected and measured 

TSS in triplicates. Triplicate in situ sampling is required to avoid potential outliers in the TSS gravimetric 

measurements and to reduce uncertainties passed to validations. Moreover, large uncertainties 

associated with radiometric and digitization noise (related to the sensor’s sensitivity) were reported for 

TSS retrievals in different studies. Neukermans et al. (2009) applied a simple red band algorithm to 

estimate turbidity and associated TSS from atmospherically corrected SEVIRI geostationary 

observations in the coastal waters of the North Sea. The authors found uncertainties exceeding 100% 

for TSS lower than 1 mg L-1, 32% for TSS between 5 and 10 mg L-1 and around 20% for TSS above 10 mg 

L-1. The largest uncertainties were reported for pixels near clouds and coastlines subject to strong 

aerosol loads.  
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Conversely, Petus et al. (2010) reported difficulty in estimating TSS lower than 0.5 mg L-1 in 

European coastal waters, which was associated with the low sensitivity of the MODIS 250 m red and 

NIR bands utilised. Dorji and Fearns (2018) applied an empirical single-band algorithm to derive TSS 

from the atmospherically corrected red band (640 nm) of Himawari-8 AHI in coastal waters off Western 

Australia. The NIR and SWIR bands were utilised for atmospheric correction and TSS estimates yielded 

similar limitations when compared to the present physics-based algorithm. The authors reported RMSE 

up to 0.68 mg L-1 when cross validated against MODIS/Aqua TSS. Meanwhile the one-step inversion 

developed in the present study retrieves TSS with RMSE around 2 mg L-1. Therefore, an explicit 

atmospheric correction with the NIR and SWIR bands may improve TSS retrievals with Himawari-8 

(Vanhellemont and Ruddick, 2015). An intercomparison between the algorithm developed here and 

the one developed in Dorji and Fearns (2018) for Himawari-8 would better demonstrate the validity of 

one-step inversion against ones developed with explicit atmospheric correction. Additionally, Dorji and 

Fearns (2017) report that differences in spatial resolution of the satellite observations yield large 

uncertainties in TSS estimates for turbid waters. The spatial resolution of TSS can be improved because 

the Himawari-8 red band (640 nm) is originally scanned at 0.5 km, allowing the resampling of the 

associated visible bands for potentially improved estimates. 

 Yellow substances absorption Retrievals from Himawari-8 

The top-performing ANN algorithm for YEL retrievals was the experiment P139 with 100 

neurons in the hidden-layer. The YEL estimates presented moderate performance with MAPE within 

50%, within the mission targets defined for Level 2 Sentinel-3 ocean colour products in Case 2 waters 

(Donlon, 2011). Improved accuracy was found for values larger than 0.3 m-1, which mostly 

encompassed samples collected by LJCO and CSIRO campaigns. Hence, potential methodological 

differences and detection limits between in situ measurements from AIMS and CSIRO laboratories 

should be assessed to better understand the performance of validations. 

Schroeder et al. (2012) successfully retrieved YEL (0.01-0.2 m-1) in the coastal GBR from 

MODIS/Aqua observations through a physics-based algorithm (aLMI from Brando et al. (2012)). The 

method included an explicit ANN atmospheric correction with variable parameterization of regional 

inherent optical properties over the GBR, yielding MAPE of 67% and RMSE of 0.057 m-1. The level of 

accuracy obtained can largely be explained by the efficacy of the atmospheric correction, which has a 

great impact on retrieval of optical properties that have strong absorption features in the blue bands. 

However, successful discrimination between CHL and YEL is likely due to the quantity and width of 

visible bands (5 between blue and green) of MODIS/Aqua sensor. As a result, YEL variations, particularly 

from endogenous sources, were less likely to be accurately estimated by utilising the limited spectral 
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set of Himawari-8. Additionally, the aLMI algorithm was tuned to seasonal and local parameterization 

of inherent optical properties, which was not fully addressed in the present study. 

Despite the YEL ANN algorithm’s moderate performance, values within 0.09 and 1.77m-1 

collected at the surrounding waters of the Fitzroy River plume (by CSIRO) were generally retrieved with 

high accuracy. This was a remarkable result given the heterogeneity of the sampling area and the 

temporal and spatial mismatch between point-sampling and hourly aggregate of 3-by-3-pixel subsets. 

This result indicates the feasibility of estimating terrestrially sourced or exogenous YEL and its 

applicability to derive freshwater plume extent maps at diurnal frequency for the entire GBR. However, 

more in situ data need to be included in validation to better encompass the range of YEL values possibly 

found in flood plumes. 

In summary, the performance of the ANN inversions parameterized for the GBR and for the 

Himawari-8 observations were reasonable when compared to the mission targets defined for Level 2 

Sentinel-3 ocean colour products in Case-2 waters (Donlon, 2011), particularly for the retrievals of TSS. 

However, CHL and YEL retrievals presented large bias and RMSE errors and are not suitable for 

applications in the coastal GBR. Further parameterization of CHL absorption in the GBR waters as well 

as an explicit atmospheric correction are fundamental to reduce uncertainties in regional retrievals. 

Nevertheless, the performance of the present algorithms is comparable to or better than the 

performance of past algorithms specifically parameterized for the GBR (aLMI) or for Himawari-8. 

However, it is necessary to validate these different algorithms (such as of Brando et al. (2015) and (Dorji 

and Fearns, 2018)) utilising the same in situ datasets for a fair intercomparison. 

Significant levels of uncertainties may arise from the in-situ data sampling, measurement 

techniques, experimental or environmental factors, and detection limits of the method of analysis. Only 

in situ observations located 1 km from the coastline were accepted for validation to avoid any potential 

bottom reflection and adjacency effects. However, in situ samples with geometrical water depths as 

low as 1.5 m were included in the validation, considering TSS values above 10 mg L-1. The impact of 

including geometrically shallow in situ measurements on validation analysis should be investigated. 

Additionally, large uncertainties may arise from the spatial representativeness of in situ data (point 

sampling) compared to a spatial aggregate of information contained in large areas represented by a 

pixel or an average of pixels. At this stage, the next most relevant analysis is to calculate the signal to 

noise ratios of the Himawari-8 bands to evaluate the detection limits of the present method due to 

uncertainties arising from the quality of the observations (radiometric noise). 
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Chapter 4: Detection Limits of Total Suspended Solids Retrievals from 

Himawari-8  

The accuracy of satellite derived ocean colour products primarily depends on the radiometric 

quality and stability of the observations (IOCCG, 2013, 2019). Meteorological satellite sensors are 

designed to detect bright targets (i.e., clouds), which are characterised by a strong spectral reflectance 

compared to the water signal (Hu et al., 2012b). As a result, the sensitivity of meteorological sensors 

are much lower than the sensitivity requirements of contemporary ocean colour satellite sensors 

(IOCCG, 2012b; Ruddick et al., 2014). Additionally, the limitations for deriving ocean colour products 

from satellite observations are determined by the accuracy of the algorithms employed and their ability 

to deal with noisy inputs.  

Chapter 3 has demonstrated that moderate retrieval performances were achieved for the 

Himawari-8 CHL and YEL algorithm in the coastal GBR. Nevertheless, TSS may be retrieved from hourly 

Himawari-8 composites with reasonable performances for coastal waters (MAPE = 75% and RMSE = 2 

mg L-1), offering an opportunity for advanced applications. Although validation against in situ data is an 

acceptable average performance metric, the limitations of the algorithm and of the satellite 

observations themselves can be characterised in more detail. The key objective of this chapter was to 

investigate the algorithms’ limitations to detect TSS fluctuations in the coastal GBR at multiple temporal 

resolutions (minutes - hours) from Himawari-8 observations. This chapter includes the calculation of 

Himawari-8 signal to noise levels; the algorithm’s sensitivity to several input noise levels and associated 

detection limits; as well as a qualitative analysis of derived TSS products for 10-minute and hourly 

observations. 

 Signal to Noise Ratios of Himawari-8 bands 

In optical sensors, the sources of noise are multiple, such as noise purely dependent on the spectral 

signal (i.e., photon noise), and the signal-independent noise associated with the electronics of the 

optical device itself (i.e., electronic noise). The degradation of the optical sensors over time results in 

systematic errors, which can be characterised and corrected by sensor calibration to ensure 

appropriate radiometric stability (see section 2.4.1). Meanwhile, the random flux of photons entering 

the detector at a certain time interval is the most significant source of photon noise in optical sensors 

(Landgrebe and Malaret, 1986; Hu et al., 2012b; Qi et al., 2017; Gillis et al., 2018; McKinna et al., 2019). 

The underlying atmospheric and environmental conditions largely contribute to the photon noise in 

remote sensing observations (Gillis et al., 2018). The photon noise is more evident at lower light levels, 

such as those coming from a cloud-free and spatially uniform ocean target (Hu et al., 2012b). Regardless 
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of the source, the photon noise at sensor level is unavoidable and impacts the derived ocean colour 

products leading to proportionate retrieval uncertainties (Gillis et al., 2018; McKinna et al., 2019). The 

Signal-to-Noise Ratio (SNR - Eq. 4.1) is a metric utilised to characterise the detector response to a signal 

over a certain target area, being a critical parameter to determine the precision of ocean colour 

products (Hu et al., 2001; 2012b). In this context, the target area is a typical cloud-free and 

homogeneous oceanic region, in which the pixel-to-pixel variations are due to the signal-dependent 

photon noise. The SNR is described as the ratio of the signal electrons (-J+O&')) to the number of noise 

electrons (-&M+J() on the detector (Hu et al., 2012b; Gillis et al., 2018): 

where -J+O&')  (Eq. 4.2, (Gillis et al., 2018)) is a function of the power density (Φ	[.'!1]) falling on 

the detector, of the photon energy (ℎê	[.0]), the exposure time (/) in seconds, the pixel area 

(M	['!1]), and of the quantum efficiency (ë) of the detector for a certain wavelength. Therefore, the 

signal is proportional to exposure time and increasing integration time over a delimited area increases 

the number of signal electrons relative to the number of noise electrons. In this context, degrading 

Himawari-8’s ultra-high temporal resolution from 10-minutes to hourly aggregated observations may 

increase the SNR to acceptable levels for ocean colour applications in coastal and turbid waters 

(Ruddick et al., 2014; Vanhellemont et al., 2014; Murakami, 2016b; Lavigne and Ruddick, 2018; Dorji 

and Fearns, 2018). Hourly composites may improve the quality of derived TSS and visually enhance 

surface features due to reduced pixelation noise, i.e., variations from pixel-to-pixel. 

In this chapter, the SNR of Himawari-8 VNIR bands were calculated from both 10-minute9 and 

hourly aggregated observations for comparison. The SNR were compared to pre-launch and typical SNR 

derived from multiple ocean colour sensors and to the Himawari-8 SNR calculated in previous studies. 

The SNR-derived percentage noise was utilised to evaluate the algorithm’s sensitivity to noisy input 

data (Section 4.2). 

 
9 Each individual Himawari-8 observation, scanned every 10-minutes, is referred throughout this chapter 

as a single observation and hourly aggregated observations simply as aggregated observations. 

UÄ` = -J+O&') -&M+J(⁄  Eq. 4.1 

-Yjklmn = (Φ ℎê⁄ ) ∗ / ∗ M ∗ ë Eq. 4.2, 
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 Methods 

The SNR were computed for the visible and near-infrared Himawari-8 observations scanned 

between 08:00 to 16:00 AEST (22:00 and 06:00 UTC) at selected dates and cloud-free areas of the Coral 

Sea. This investigation depended on concurrent cloud masking datasets, in which spatial availability was 

limited to the GBR and Coral Sea areas (10˚S, 29˚S; 140˚E, 155˚E). Only post-July 2017 observations 

were considered for this analysis, given that their calibration coefficients were corrected for coherent 

and horizontal striping noise (Japan Meteorological Agency, 2016, 2017). True colour Himawari-8 

observations were browsed through the Himawari-8 Monitor P-Tree System (JAXA, 2020) for target 

area selection. The near-true colour snapshots were carefully inspected to ensure the areas selected 

were spatially uniform and unlikely to be influenced by clouds, sun-glint, bio-optical and atmospheric 

fluctuations (Hu et al., 2012b). The following criteria were utilised for dates and area selection: 

1. True colour snapshots over the Coral Sea (offshore GBR Marine Park) were visually 

inspected to identify dates and areas where cloud coverage and sun glint were nearly 

absent during an entire day of observations.  

2. The selected cloud-free areas/dates were visually inspected to ensure that no gradients in 

optical properties were visually conspicuous and that hourly CHL values were lower than 

~0.1 mg L-1.  

3. Aerosol Optical Thickness and the Wildfire products available in the P-Tree System portal 

were checked to ensure the area selected was not subject to smoke plumes from terrestrial 

burning.  

Two areas were selected based on the above criteria, and their dates, times, latitudes, and 

longitudes were recorded for image acquisition and processing. The corresponding Himawari-8 single 

PCI9	observations were calibrated, and subsets of 51-by-51-pixels were extracted, centred at the 

coordinates of selected areas. The choice of size and location of the subsets followed Dorji and Fearns 

(2018) study, where the Himawari-8 SNR was calculated for a delimited area of the open ocean off 

Western Australia. In addition, the single observation subsets, associated masks, and geometric 

parameters were hourly aggregated (i.e., average of 5 to 6 single observation subsets within an hour). 

The single and aggregated subsets were masked for clouds (with confidence level of 8), land, reefs and 

sun glint, and their near-true colour composites were inspected for undetected features such as coral 

cays, reefs, cloud shadows and sensor artefacts (Figure 4.1). The percentage of masked pixels within a 

subset was calculated and utilised for additional quality control. Single subsets were discarded if 25% 

or more of its pixels were masked, whereas in aggregated subsets the cut-off threshold was 50%. The 

threshold was less conservative for aggregated observations because averaging several observations 
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within an hour increases the probability of a pixel being masked and likely eliminating outliers. The 

unmasked pixels were selected for calculation of the SNR for all valid single and aggregated subsets.  

A total of 61 single and 12 aggregated subsets were qualified for SNR analysis. The subsets were 

taken on 06/09/2017 (at 16.25˚S, 151˚E – with mean :K of 22.5˚) and on 25/09/2017 (at 20.60˚S, 

153.53˚E – mean :K of 28.2˚), each at different locations in the Coral Sea. True colour snapshots of 

single subsets scanned on 25/09/2017 between 10:00 and 10:50 AEST and the corresponding 

aggregated observation (10:00 - 10:50) are shown in Figure 4.1 for illustration purposes. The average 

of six observations with variable colour and brightness yielded a darker aggregated observation (right-

centred panel of Figure 4.1). Several pixels were masked within the area utilised for the calculation of 

SNR (red rectangle at the centre of each image). However, a visual inspection confirms the unmasked 

area was homogeneous and devoid of clouds, cloud shadows and associated environmental noise. The 

bright turquoise feature at the lower right corner of the images is a coral cay, which did not affect the 

SNR calculations within the subset (red rectangle area).  

   

 

   

Figure 4.1: Masked near-true colour snapshots of single Himawari-8 observations taken on 25/09/2020, 
between 10:00 and 10:50 AEST. The corresponding aggregated observation is located at the right-
centred panel. The area in the red square delimits the subset utilised for the calculation of SNR. Masked 
pixels are denoted in black. 

The SNR calculated from single and aggregated observations were named SNRSING and SNRAGG, 

respectively. In addition, given that PCI9 can significantly vary as a function of :J (Hu et al., 2012b), 

only those subsets with :J variations lower than ±1 degrees were considered valid for analysis. 

Averaging PCI9 for all valid pixels within the target area gives PZ%#+]'), and taking the standard 

deviation of PCI9 within the area gives the noise equivalent radiance (P&M+J(). The SNR of valid subsets 

was calculated at the VNIR bands of Himawari-8, following Eq. 4.3, where ì is the mean value and î is 

the standard deviation of PCI9 for all valid pixels within the subset. 



 104 

 

Figure 4.2: Summary of single (SNRSING) and aggregated (SNRAGG) SNR computation for the VNIR 
Himawari-8 bands. The temporal and spectral variability of SNRSING and SNRAGG were compared and the 
SNR values at :J of 45˚ (±1˚) were selected for further detection limits analysis. 

The diurnal variability and magnitude differences between SNRSING and SNRAGG were inspected 

at each Himawari-8 VNIR band. The spectral characteristics of SNRSING and SNRAGG were evaluated for 

three ranges of :J (20˚-30˚, 30˚-40˚ and 40˚-50˚), because noise levels are known to vary with solar 

elevation (Hu et al., 2012b). Each range of :J contained at least three available observations for 

appropriate computation of standard deviations of SNR within each group. Additionally, PZ%#+]'), 

P&M+J(, SNR and associated percentage noise were computed for :J = 45˚ ± 1˚, following the method 

of Hu et al. (2012b). The Himawari-8 percentage noise (%Äa,0W) at :J = 45˚ ± 1˚ was utilised in 

Section 4.2 to evaluate the algorithm’s sensitivity to typical input noise levels over the ocean. The 

%Äa,0W was calculated as in Eq. 4.4, where the compared value is P&M+J( and the reference value is 

PZ%#+]'). Calculating %Äa,0W and PZ%#+]')  for :J = 45˚ ± 1˚ allows consistent cross-comparison of 

estimated %Äa,0W, SNRs and uncertainties estimated from multiple sensors (Hu et al., 2012b), which 

is discussed in Section 4.4.1. 

%Äa,0W = ó
P&M+J(
PZ%#+]')

ò100% 
Eq. 4.4 
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 Results 

The diurnal variability of the SNR computed from two sets of observations sampled at different 

locations and different days is shown in Figure 4.3. A few single observations were missed due to 

intensive cloud coverage, particularly on the 06/09/2017. Nevertheless, diurnal variations of SNRSING 

and SNRAGG were evident, with highest SNR when :Jwas the lowest (<30˚). 

Figure 4.3: Time series of SNR (right axis) and the mean :J (left axis) computed for SNRSING (a and c) and 
for SNRAGG (b and d) at two different dates and locations. The SNR of each band is colour coded, where 
each dot marker represents SNR derived from single or aggregated observation. The time stamp of 
aggregated SNR and :J was rounded back to the nearest whole hour. 

The SNR values and diurnal variability were higher for aggregated observations and at the blue 

and green bands (470 and 510 nm), compared to values computed for single observations. The SNR 

calculated for both temporal resolutions at the 640 nm and 856 nm bands were at least 3 times lower 

than the SNR computed for the blue and green bands, with subtle variations across a day. The diurnal 

fluctuations of SNR between days and locations were varied, especially for the blue band and from 

SNRAGG. On the 06/09/2017 (mean :K of ~22˚), the SNRAGG in the blue and green bands were similar in 
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magnitude (Figure 4.3b). On the 25/09/2017 (at a different location with mean :K ~28˚), the blue band 

presented SNRAGG nearly twice as high as the green band (Figure 4.3d).  

The spectral variability of SNRSING and SNRAGG is shown in Figure 4.4 for three groups of :J, 

where the standard deviations (î) within each group were plotted as capped error bars. Only one 

aggregated observation was available for :J above 50˚, and thus its SNR was not included in the plots 

of Figure 4.4. A total of 61 single and 12 aggregated observations were plotted in Figure 4.4. The single 

observations typically yielded lower SNR than the aggregated observations in all bands, and SNR was 

the highest for :J < 30˚, in agreement with the data presented in Figure 4.3. The standard deviations 

(î) of SNR computed for single and aggregated observations were more pronounced for :J > 40˚ and 

at the 470 nm and 510 nm bands. The SNR calculated for :J > 40˚ at the 470 nm band presented î of 

27 and of 51 for SNRSING and SNRAGG, respectively, while the SNR computed for the 510 nm band 

presented î of 13 and 26 for SNRSING and SNRAGG, respectively. These deviations are likely associated 

with the variable atmospheric conditions of each location, which are intensified at the blue and green 

bands and at high atmospheric pathlengths. 

 

Figure 4.4: SNRSING and SNRAGG grouped for three ranges of :J. Error bars were computed as standard 
deviations (î) of SNR within each group of :J. 

The SNRAGG, the PZ%#+]')  and P&M+J(, and associated percentage noise (%Äa,0W) for aggregated 

observations with :J = 45˚ ± 1˚ were compiled in Table 4.1. Likewise, the SNRSING computed for all 

single observations with :J = 45˚ ± 1˚ and the percentage ratio (%`"/,a,	as in Eq. 4.4) between 

SNRAGG relative to SNRSING were included. The SNRAGG values compiled in Table 4.1 were twice as high 

as the corresponding SNRSING, except at the 640 nm red band with only 18% difference. Nevertheless, 

the large noise levels in the red (640 nm with ~3%) and in the NIR band (~5%), indicate that the SNRAGG 

may be mostly affected by the atmospheric signal despite the efforts in avoiding environmental 
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conditions in image selection. This is particularly evident at the NIR band, where the water leaving 

radiances are negligible in optically clear waters. 

Table 4.1: Visible and near-infrared Himawari-8 bands PZ%#+]')  and P&M+J( with units .'!10G!"ì'!", 
the associated percentage noise (%Äa,0W), SNRAGG and SNRSING calculated for :J = 45˚ ± 1˚ and 
%`"/,a	of SNRAGG relative to SNRSING. 

 

 

 

 

 Algorithm’s Sensitivity to Noisy Input Data 

This section numerically assessed the TSS algorithm’s sensitivity to the signal-dependent noise 

likely affecting the Himawari-8 bands. Additionally, the detection limits (i.e., minimum detectable 

amounts) of retrieving TSS with the current ANN algorithm (P094) were estimated. The latest GBR water 

quality guidelines suggest that annual average TSS should not exceed 2 mg L-1 in the inshore and mid-

shelf and 0.7 mg L-1 in the offshore waters of the GBR (Great Barrier Reef Marine Park Authority, 2010). 

Based on this recommendation, the detection limits of the present TSS algorithm should be lower than 

2.0 mg L-1 for relevant applications in the coastal GBR. Chapters 2 and 3 demonstrated that TSS below 

0.1 mg L-1 may be consistently retrieved with significant relative errors (> 100%). However, the 

minimum TSS that can be accurately retrieved from Himawari-8 may be larger than 0.1 mg L-1, as it has 

been previously suggested (Dorji and Fearns, 2018). Hence, the sensitivity and detection limits of 

retrieving TSS using the calculated noise levels were analysed for future applications. 

 Methods 

The current TSS algorithm (P094) was trained with spectrally-flat10 Gaussian noise (0.8%) added 

to the training dataset, assuming limited knowledge of sensor performance characteristics over oceanic 

targets. However, the noise levels calculated from Himawari-8 PCI9 observations (Table 4.1) are 

spectrally-dependent, reflecting the natural variability of the photon noise (Garcia et al., 2014; McKinna 

et al., 2019). To provide a baseline sensitivity analysis of the TSS algorithm, spectrally-flat photon noise 

of 0.1, 1.0 and 10 and 50% were added to the testing dataset. In addition, the noise associated with the 

Himawari-8 bands (from Table 4.1) were added to the testing dataset to elucidate the effects of 

spectrally-dependent noise levels on the accuracy of TSS retrievals.  

 
10 The spectrally-flat noise is equally added to the radiances irrespective of wavelength. Spectrally-

dependent noise changes its percentage as a function of wavelength. 

Band (nm) PZ%#+]')  P&M+J( %Noise SNRAGG SNRSING %`"/,a 
470  59.5 0.267 0.44 223 100  123% 
510  38.3 0.292 0.76 130 74  74% 
640  13.8 0.417 3.02 33 28 18% 
865  3.42 0.180 5.26 19 8 137% 
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The simulated testing datasets (100 000 inputs) with spectrally-flat and spectrally-dependent 

noise perturbed PCI9 were recalled for TSS retrievals (P094 ANN experiment). The retrieval stability 

was interpreted in terms of constant increments of RMSE across a wide range of TSS (0.01 to 100 mg L-

1) equally spaced in logarithmic concentrations. The proportion between the retrieval RMSE to the 

respective `XC<< (0.01, 0.1, 1.0, 10.0 and 100.0 mg L-1) were calculated as a %`"/,a, according to Eq. 

4.4, and included for each noise level. For instance, to retrieve `XC<< of 0.01 mg L-1 with a spectrally-

flat noise of 0.1%, the retrieval RMSE was of 0.03 mg L-1, which is equivalent to a 300% increase to the 

`XC<< (Table 4.2Table 4.2). Percentage ratios below 70% were regarded as good retrieval performances 

for TSS, following the mission targets (MAPE values) defined for Level 2 Sentinel-3 ocean colour 

products in Case-2 waters (Donlon, 2011). 

 Results 

 The outcomes of retrieving TSS (0.01 to 100 mg L-1) with spectrally-flat and spectrally-

dependent noise is illustrated in Figure 4.5, and results are compiled in Table 4.2. In summary, the P094 

algorithm presents good performance (%`"/,a < 50%) to retrieve TSS above 1 mg L-1, even when 50% 

spectrally-flat noise is added to PCI9 at the Himawari-8 VNIR bands. Conversely, moderate retrieval 

performances (%`"/,a of ~50%) were obtained for TSS > 0.1 mg L-1, when adding spectrally-flat and 

spectrally-dependent noise, except when adding 50% of spectrally-flat noise (%`"/,a of > 1000%). 

Meanwhile, large errors (%`"/,a > 300%) were obtained for TSS retrievals below 0.1 mg L-1, 

irrespective of noise type and level. 

Table 4.2: Computed RMSE (in mg L-1) and associated %`"/,a for TSS retrievals between 0.01 and 
100.0 mg L-1. Results are shown for several levels of spectrally-flat noise (0.1 to 50%) and associated 
SNR (1000 to 2), and for spectrally-dependent noise computed for Himawari-8 in Table 4.1. 

 

However, on a more realistic scenario with spectrally-dependent noise (Figure 4.5), constant 

increments of RMSE in logarithmic scale were only achieved for TSS above 0.25 mg L-1. Thus, a detection 

limit of 0.25 mg L-1 was chosen for obtaining reliable retrievals from Himawari-8 with the current TSS 

 `XC<< (mg L-1) bins: 
 0.01 0.1 1.0 10.0 100.0 

Spectrally-flat 
noise: 

Retrieval RMSE in mg/L (%`"/,a): 

0.1% (SNR = 1000) 0.03 (300%) 0.05 (50%) 0.24 (24%) 1.73 (17%) 12.2 (12%) 
1.0% (SNR = 100) 0.03 (300%) 0.05 (50%) 0.25 (25%) 1.74 (17%) 12.2 (12%) 
10% (SNR = 10) 0.08 (800%) 0.05 (50%) 0.45 (45%) 2.03 (20%) 13.4 (13%) 
50% (SNR = 2) 3.04 (>1000%) 1.31 (>1000%) 0.53 (53%) 5.00 (50%) 38.6 (38%) 
Spectrally-
dependent noise 

0.03 (300%) 0.04 (40%) 0.36 (36%) 1.97 (19%) 13.0 (13%) 
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algorithm. For comparison, the detection limits of TSS retrievals computed from atmospherically 

corrected Himawari-8, as in Dorji and Fearns (2018), is represented in Figure 4.5 with a vertical dashed 

line at 0.15 mg L-1. 

 

Figure 4.5: RMSE (in mg L-1) retrieval errors for spectrally-dependent (left panel) and spectrally-flat 
(right panel) noise levels added to the simulated testing dataset at the Himawari-8 bands. Radiative 
Transfer (RT) TSS and RMSE values are presented in logarithmic base 10 scale. The vertical dashed line 
at TSS of 0.15 mg L-1 is the detection limit from Dorji and Fearns (2018), while the vertical dashed orange 
line at 0.25 mg L-1 is the detection limit of the present method. 

 Visual Analysis of Himawari-8 derived TSS products 

The temporal aggregation of multiple observations within an hour increased SNR of Himawari-8 

as it has been demonstrated in section 4.1 of this chapter, and suggested in the literature (Ruddick et 

al., 2014; Vanhellemont et al., 2014; Lavigne and Ruddick, 2018). However, sensor artefacts such as 

horizontal striping (along scan track) have been observed in hourly Himawari-8 CHL products 

(Murakami, 2016b; Japan Meteorological Agency, 2017; JAXA, 2020). In March 2016, a correction for 

coherent noise was implemented to improve image quality, reducing vertical or across scan track 

striping (Japan Meteorological Agency, 2016). In July 2017, the calibration coefficients of the VNIR 

bands were updated and reduced the horizontal or along scan track striping caused by incorrect 

calibration slopes derived from Solar Diffuser (SD) observations of Himawari-8 (Japan Meteorological 

Agency, 2017). Despite the calibration updates, the stripes were not completely removed and are 

visually detectable in derived CHL products available from July 2017 on (Okuyama et al., 2018; JAXA, 

2020).  

The aim of this section was to provide an integrated assessment on the spatial variability of the 

noise and sensor artefacts affecting Himawari-8 derived TSS for future applications in the GBR and 
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adjacent areas. Patterns resulting from sensor artefacts and radiometric quality, from data acquisition 

and processing, or from environmental noise were inspected. These patterns may be identified as 

vertical and horizontal stripes or unusually sharp gradients in TSS, or as a mix of randomly scattered 

bright and dark pixels (salt and pepper noise or granulation). In this context, the Himawari-8 derived 

TSS products acquired posterior to calibration updates (after July 2017) were compared to products 

acquired prior to updates (before March 2016). Spatial differences in noise and patterns were assessed 

for TSS derived from single and aggregated observations and filtering techniques were tested for noise 

reduction and quality improvement of Himawari-8 TSS products. 

 Methods 

Himawari-8 observations scanned prior and posterior to calibration updates were selected 

(cloud and glint-free as possible), acquired and processed, according to section 2.4.1. The subset area 

included waters from the GBR and the adjacent Coral Sea (10˚S to 29˚S, 140˚E to 155˚E) for a 

comprehensive assessment of the spatial limitations of Himawari-8 in respect to noise and sensor 

artefacts over coastal and oceanic areas. The selected observations were both acquired in the same 

calendar month on dates prior and posterior to calibration updates (04/09/2015 and 09/09/2017). The 

observations were selected at identical timestamps, between 10:00 -10:50 AEST (00:00 - 00:50 UTC), 

to ensure compatible solar angles. 

The TSS products were generated at two temporal resolutions for each date selected, namely 

single TSS (TSSSING) and aggregated TSS (TSSAGG). The TSSSING maps were derived from a single Himawari-

8 observation scanned at 10:00 AEST whereas TSSAGG maps were generated from the average of six 

observations scanned between 10:00 and 10:50 AEST. TSS products ranged from 0.01 to 100 mg L-1, 

irrespective of detection limits (0.25 mg L-1) calculated in section 4.2, to allow a comprehensive 

assessment of the spatial limitations of the method. Each TSS product was masked for pixels over land 

and over the GBR reef matrix, over clouds, sun-glint (if necessary) and for pixels with ANN flags. A 

schematic diagram of the workflow is presented in Figure 4.7 and the visual assessment is explained in 

detail below. 
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Figure 4.6: True colour imagery of Himawari-8 observations scanned at 00:00 UTC (10:00 AEST) on 
04/09/2015 (left panel) and on 09/09/2017 (right panel) centred over the Great Barrier Reef and 
adjacent Coral Sea, including the continental area of Queensland, Australia. 

First, the spatial distribution of environmental and sensor noise affecting TSSSING and TSSAGG 

products were visually identified. Then on a second step, latitudinal and longitudinal transects of mask-

free TSS products taken in homogeneous waters of the coastal GBR and in the Coral Sea (Figure 4.8) 

were investigated for TSS products taken after updated calibration (2017). The spatial coherence of 

transects taken from TSSSING and TSSAGG products were compared at a pixel scale. Then, a histogram 

containing all valid (or mask-free) TSSSING and TSSAGG pixels were generated for a quantitative 

assessment of the differences between both temporal resolutions. The transects and histograms were 

extracted on 09/09/2017, posterior to calibration corrections. Finally, a boxcar median filter with a 

kernel size of 7-by-7-pixels was applied over TSSAGG as a simple technique to reduce granulated noise, 

eliminate outliers and to improve image quality (Hu et al., 2001; Park and Park, 2021). The spatial filter 

was visually evaluated for a subset of TSS in open ocean and coastal waters. 
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Figure 4.7: Flow diagram of Visual Assessment of noise analysis. The acronym H8 stands for 

Himawari-8 observations at the visible and near-infrared bands (VNIR), L1b for level 1b observations 

(per band), ANN for Artificial Neural Networks, TSSSING for single observation-derived TSS, TSSAGG for 

aggregated observation derived TSS. 

 

Figure 4.8: Location of latitudinal and longitudinal transects between 18˚S and 19˚S and between 150˚E 
and 151˚E (magenta), in the Coral Sea and coastal GBR respectively. The transects were taken from 
TSSSING and TSSAGG (this map) products on 09/09/2017 (between 10:00 and 10:50 AEST). Masked areas 
are marked in black, and the location of Broad Sound is indicated with white arrow for reference. 
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 Results 

The horizontal and vertical stripes were visually detectable at both TSSSING and TSSAGG (Figure 

4.9), irrespective of TSS concentrations, prior to striping and coherent noise was addressed. The striping 

patterns were more evident in TSSAGG, particularly the horizontal stripe located in turbid waters (within 

the red circle at the top left of the image) and the vertical stripes in open ocean waters (indicated by 

white arrows). Nevertheless, the severe granulation observed in TSSSING was noticeably reduced in 

TSSAGG, improving visual quality of observations. Additionally, the masking of areas with persistent cloud 

coverage was intensified in TSSAGG products, largely reducing noise at the cloud edges. 

 

 

Figure 4.9: Total Suspended Solids (TSS) concentration (mg L-1) derived prior to striping correction on 
04/09/2015. The TSS map on the left panel was derived from a single observation acquired at 00:00 
UTC (TSSSING) whilst the right panel map was derived from aggregated observations between 00:00 UTC 
and 00:50 UTC. Clouds, sun glint, GBR reefs and land are masked in black. Horizontal and vertical stripes 
were identified with arrows and red circle for reference. 

The maps of Figure 4.10 illustrate the TSSSING and TSSAGG products derived from observations 

acquired after calibration coefficients were corrected for striping and coherent noise (09/09/2017). The 

intensity of vertical and horizontal striping in more recent products was largely reduced, particularly in 

turbid coastal areas with TSS > ~1 mg L-1 (red circle). However, stripes are still evident in TSSSING and 

TSSAGG products over clear and open ocean areas (TSS < ~0.1 mg L-1). Nevertheless, the open ocean 
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areas offshore the GBR include TSS values between 0.01 and ~0.1 mg L-1, which are below detection 

limits of the present algorithm (0.25 mg L-1) according to section 4.2. 

 

 

Figure 4.10: Total Suspended Solids (TSS) concentration (mg L-1) derived posterior to striping correction 
on 09/09/2017. The TSS map on the left panel was derived from a single observation acquired at 00:00 
UTC (TSSSING) whilst the right panel map was derived from aggregated observations between 00:00 UTC 
and 00:50 UTC. Clouds, sun glint, GBR reefs and land are masked in black. The location of horizontal 
and vertical stripes is identified with arrows and with a red circle for reference. 

The latitudinal transect sampled between 18˚S and 19˚S in the Coral Sea (Figure 4.11a) 

presented TSSSING and TSSAGG values mostly below the detection limits of the method (0.25 mg L-1). 

However, the TSSSING (blue dots) presented spikes or different orders of magnitude values occurring 

successively on a pixel scale (or within 1 km). As a result, TSSSING differences of up to ~0.3 mg L-1 were 

observed between neighbouring pixels (indicated by plot annotations). Meanwhile the associated 

TSSAGG (red dots) presented smoother pixel-to-pixel variations and reduced amplitude between 

minimum and maximum values (~0.06 mg L-1 difference). 
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Figure 4.11: Transects of Himawari-8 derived TSS (mg L-1) taken in the Coral Sea (a) and coastal GBR 
waters (b) respectively. The transects were derived from TSSSING on 09/09/2017 at 10:00 AEST (blue 
dots) and TSSAGG between 10:00 and 10:50 AEST (red dots). The data gaps represent pixels masked for 
clouds, land, sun glint or ANN flags, where appropriate. Minimum, maximum and median TSS values 
(mg L-1) were presented for each transect. The annotated TSS (in black arrows) indicate pixel-to-pixel 
values and the green horizontal line represents the detection limit of the method. 

The longitudinal transects of TSSSING and TSSAGG taken between 151˚E and 152˚E in the coastal 

GBR are shown in Figure 4.11b. Subtle differences were observed between TSSSING and TSSAGG for TSS 

larger than 1 mg L-1. However, with increasing distance from the coast, TSS dropped below 1 mg L-1 and 

differences between TSSSING and TSSAGG were enhanced. Although most TSSSING pixels below 1 mg L-1 

were above detection limits (0.25 mg L-1), they presented poor spatial coherency compared to their 

respective TSSAGG. Thus, TSSAGG and TSSSING provide comparable results in the coastal GBR when TSS is 

above 1 mg L-1. However, TSSAGG presents better spatial coherency than TSSSING for waters between the 

coastal GBR and the open ocean, particularly when TSS is above detection limits.  

The frequency distribution of TSS values for TSSSING and TSSAGG products were presented in 

Figure 4.12, for all valid pixels sampled in the coastal GBR and Coral Sea (09/09/2017). The TSSSING and 
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TSSAGG shows a non-symmetrical log-normal distribution with central tendency around 0.1 mg L-1, and 

secondary central tendency at around 2 mg L-1. TSSSING and TSSAGG showed very similar distribution of 

values for TSS above 0.1 mg L-1. However, the number of values below ~0.1 mg L-1, and consequently 

below detection limits of the method (0.25 mg L-1) were reduced about one order magnitude by utilising 

TSSAGG products. This one order magnitude reduction in the number of pixels for TSS below 0.1 mg L-1 

may be attributed to the improved product quality associated with aggregated observations and to the 

increased number of pixels masked in the TSSAGG image. 

 

Figure 4.12: Histogram of TSS values derived from valid pixels taken from TSSSING and TSSAGG products 
on 09/09/2017. The bin size used in the plots was annotated (0.001 mg L-1). 

Finally, the median filter spatially smoothed TSSAGG and enabled the visualisation of more 

detailed ocean colour features in oceanic areas while preserving coastal features such as turbid plumes 

(as in Broad Sound). The spatial filter removed likely outliers, such as pixels due to undetected clouds 

and granulated noise, which largely improved visual quality and spatial consistency of products in areas 

of TSS below 1 mg L-1. However, the vertical and horizontal striping over the Coral Sea remained visually 

detectable even after spatially filtering the TSSAGG product.  
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Figure 4.13: Himawari-8 derived TSSAGG (mg L-1) with median spatial filter applied. The observations 
utilised for the aggregated products were scanned between 10:00 and 10:50 AEST, on 09/09/2017. 
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 Discussion of Detection Limits Chapter 

The key objective of Chapter 4 was to characterise the limitations of retrieving TSS from 

Himawari-8 in the coastal GBR. First, Himawari-8 noise levels derived from both single and aggregated 

observations were quantitatively assessed. This was achieved by calculating the SNR for each band and 

investigating the detection limits of the physics-based method for the accurate retrieval of TSS in the 

coastal GBR. Next, a qualitative analysis of Himawari-8 derived TSS products was employed to 

investigate the spatial distribution of noise at both temporal resolutions. 

 Discussion of Signal-to-Noise Ratios of Himawari-8 bands 

The SNR of Himawari-8 presented consistent diurnal variability with changing solar zenith 

angles (:J), especially in the blue and green bands (470 and 510 nm, respectively). This result has been 

previously observed from both LEO and GEO ocean colour observations (Hu et al., 2012b; Hu et al., 

2012a; Dorji and Fearns, 2018; Concha et al., 2019). Although diurnal variability in SNR may also be 

attributed to underlying atmospheric, sea surface and biogeochemical conditions, the consistent 

patterns suggest that :J and increased atmospheric path length is a predominant influence in 

modulating the SNR (Concha et al., 2019).  

The SNR calculated from aggregated observations were 10-100% higher than those from single 

observations, corroborating previous findings and recommendations (IOCCG, 2012b; Ruddick et al., 

2014; Vanhellemont et al., 2014; Murakami, 2016b; Dorji and Fearns, 2018; Lavigne and Ruddick, 2018). 

In addition, the SNR’s spectral dependence implies that a large source of input noise (3-5% in the red 

and NIR bands) may originate from the atmosphere in open ocean waters (Hu et al., 2012b). In the 

absence of biological or chemical processes, red and NIR light is predominantly and strongly absorbed 

by pure sea water. As a result, the open ocean water leaving signal in the red and NIR bands is usually 

small or overwhelmed by the atmospheric noise (Murakami, 2016b). Thus, an explicit atmospheric 

correction to the Himawari-8 visible bands may reduce the influence of environmental noise, improving 

the sensitivity to detect bio-optical changes in the ocean. 

Because it is difficult to find a target area completely isolated from environmental noise, large 

standard deviations within groups of :J may be associated with the local atmospheric, sea surface state 

and biogeochemical conditions of each site investigated (Hu et al., 2012b; Gillis et al., 2018). In addition, 

differences in SNR computed between different days and locations may be associated to differing 

observation angles (:K varied by 6˚ between subsets), which may increase atmospheric path lengths. 

Supplementary diurnal sets of cloud-free Himawari-8 observations should be investigated for a more 

consistent analysis on the variability of SNR.  
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The sensors’ sensitivity to noise largely depends on its radiometric resolution, which determines 

the quality of the observations and indicates the level of digitization noise, i.e., pixel-to-pixel differences 

(Bhatt et al., 2018). The SNR values computed for ocean colour sensors with superior radiometric 

resolution to Himawari-8, i.e., with more than 11 bits resolution, were at least 5 times greater than 

those computed here at similar PZ%#+]')  values (~61 .'10G!"ì'!"). For instance, Hu et al. (2012b) 

reported that the SNR of MODIS/Aqua and MERIS 443 nm band, with 12 bits resolution, were of 2225 

and 1060, respectively. Himawari-8’s SNR of 223 at the 470 nm band was only superior to the proof-of-

concept CZCS 8-bit ocean colour sensor with SNR of 193 at 443 nm. Additionally, Himawari-8’s SNR of 

223 at 470 nm was largely superior to the SNR of sensors designed for land applications, such as Landsat 

TM and ETM (SNR=78 at 483 nm with 8 bits) (Hu et al., 2012b).  

Therefore, Himawari-8 provides inferior SNR compared to past and currently operational ocean 

colour sensors (Hu et al., 2012b), and its sensitivity is far below minimum requirements for ocean colour 

applications, particularly over Case 1 waters (IOCCG, 2012b, a). However, due to Himawari-8’s 

moderate radiometric resolution of 11 bits or 2048 levels, the VNIR bands are less likely to saturate 

over bright targets, such as clouds (Hu et al., 2012b). Thus, Himawari-8 VNIR bands may yield enough 

sensitivity to provide a reasonable level of discretization over extremely turbid coastal waters with TSS 

up to 100 mg L-1 with the present method. Additionally, Himawari-8’s SNR could be further increased 

with the aggregation of all observations available during a day (Murakami, 2016b), providing nearly 

cloud-free daily observations across the entire GBR. However, a daily image would be insufficient to 

adequately resolve coastal water quality processes, such as those linked with tidal variability, and would 

only be useful to investigate trends and patterns in Case 1 waters, which is out of the scope of this 

thesis. 

 Discussion of the Algorithm’s Sensitivity to Noisy Inputs 

Estimating TSS lower than 0.25 mg L-1 is certainly below the detection limits of the present one-

step inversion algorithm for Himawari-8. The absence of an explicit atmospheric correction procedure 

may be associated with the algorithm limitations. For instance, Dorji and Fearns (2018) retrieved TSS 

with atmospherically corrected Himawari-8 10-minute observations and found the lower detection 

limit to be around 0.15 mg L-1. Neukermans et al. (2009) derived TSS from the Spinning Enhanced Visible 

and InfraRed Imager (SEVIRI) meteorological sensor onboard METEOSAT geostationary satellite. 

Retrieval uncertainties exceeded 200% for TSS below 1 mg L-1 and errors were associated with 

radiometric noise, digitization effects and imperfect atmosphere correction (Neukermans et al., 2009). 

Therefore, the limitations of deriving TSS from Himawari-8 with an implicit atmospheric correction were 

reasonable compared to those methods employing an explicit atmospheric correction. Nevertheless, it 
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is possible that an explicit atmospheric correction may largely benefit TSS retrievals in moderate to 

clear waters (< 1 mg L-1, Figure 4.5), further improving the present method. 

Finally, the algorithm detection limit of 0.25 mg L-1 is within the water quality guideline threshold 

value of 2 mg/L for open coastal and mid-shelf waters, as well as 0.7 mg L-1 for offshore waters (Great 

Barrier Reef Marine Park Authority, 2010). To put the present result in perspective, the detection limits 

of in situ TSS measured with the gravimetric method is ~0.4 mg L-1, for AIMS and CSIRO. This would 

mean that for an in situ TSS of 2 mg L-1 in the coastal GBR, the associated measurement uncertainty is 

nearly twice as the detection limit of TSS obtained with the present algorithm (Table 4.2).  

Relative uncertainties of the gravimetric method have been associated with the measurement 

protocol employed by different laboratories, which include differences in filter types, operator bias, salt 

rinsing, etc. (Neukermans et al., 2012a; Röttgers et al., 2014). For instance, salt crystals trapped in the 

glass fibre filters largely affect TSS measurements and salt should be removed by rinsing the filtration 

apparatus (Tilstone et al., 2002; Stavn et al., 2009). Yet, errors as large as 30% have been obtained 

employing different salt rinsing techniques, hindering the accurate determination of TSS lower than 1 

mg (Tilstone et al., 2002). Therefore, the detection limits and relative uncertainties of in situ 

measurements and Himawari-8 derived TSS are comparable for the present study. This result suggests 

that Himawari-8 offers an opportunity to accurately monitor diurnal variability of water quality in the 

coastal GBR, for TSS between 0.25 and 100 mg L-1. 

 Discussion of the Visual Analysis of Himawari-8 derived TSS products 

Himawari-8 derived TSS products were inspected at 10-minutes (TSSSING) and from hourly 

aggregates (TSSAGG) for a comparative analysis of image quality. In general, a systematic horizontal 

striping, with size generally corresponding to individual horizontal scans (500 km), was visually detected 

in the present Himawari-8 observations and derived TSS products at both temporal resolutions. The 

striping was clearly identified by unusually sharp gradients of TSS, spanning one order of magnitude 

within a few kilometres in the open ocean. The latitudinal stripes were previously identified by 

Murakami (2016a) in 8-day composite Himawari-8 derived CHL maps. The striping resulted from 

differences in detector-to-detector calibration slopes derived from solar diffuser observations of the 

visible bands (Okuyama et al., 2018; Japan Meteorological Agency, 2020). Although the calibration 

coefficients were corrected for post-July 2017 observations, the horizontal striping patterns were still 

present in derived TSS below 1 mg L-1. This result suggests that Himawari-8 observations acquired 

posterior to calibration corrections (July 2017) are more suitable for TSS retrievals in the coastal GBR 

than observations acquired prior to calibration updates. Nevertheless, striping correction needs to be 

addressed for appropriate ocean colour investigations with Himawari-8 observations in open ocean 

areas, which is not the focus of this study.  



 121 

Additionally, severe granulation was observed in TSS products derived every 10-minutes, 

potentially associated with the low radiometric performance of the Himawari-8 sensor over water 

targets (Murakami, 2016b; Dorji and Fearns, 2018). However, the visual noise was largely reduced by 

temporal integration of several individual Himawari-8 observations or products into hourly derived TSS, 

as previously suggested (Vanhellemont et al., 2014; Murakami, 2016b; Lavigne and Ruddick, 2018). 

Fortunately, granulated noise was visually undetectable in coastal and moderately turbid waters (TSS 

above 1 mg L-1) either from 10-minute or from hourly TSS products. This result may be associated with 

the increased backscattering of suspended particles, which leverages the water-leaving radiance and 

thus, the signal to noise of the image (Moses et al., 2012). Consequently, Himawari-8 derived TSS is 

more likely to be accurately observed over moderately turbid coastal waters than from the open ocean, 

corroborating the detection limits analysis (Section 4.2).  

The visual analysis was supported by latitudinal and longitudinal transects of TSS extracted in 

homogeneous waters of the coastal GBR and in the Coral Sea. The pixel-to-pixel variations in open 

ocean areas (TSS < 0.25 mg L-1) were likely related to the granulated patterns observed with visual 

inspection, due to the low sensitivity of the Himawari-8 sensor at 10-minute resolution. Noise-related 

uncertainties in TSSSING below 0.25 mg L-1 were largely reduced in TSSAGG, corroborating the previous 

analysis on Himawari-8 sensitivity (SNR) and visual inspection. Conversely, improved spatial coherency 

was observed in the coastal GBR transect for TSS above 1 mg L-1. As a result, Himawari-8 10-minute 

derived TSS can be utilised with as much confidence as TSS derived from hourly aggregated 

observations in coastal areas. Obtaining TSS at every 10-minutes in the coastal GBR improves the 

discrimination of rapid-changing water quality fluctuations within an hour. However, utilising hourly 

aggregates improves coverage of pixels potentially affected by clouds and cloud shadows, which can 

help eliminate outliers and increase accuracy of TSS products. Further visual noise reduction was 

observed in the Coral Sea after the employment of a spatial median filter on hourly aggregated TSS 

products. Despite spatial filtering may be useful to eliminate outliers due to undetected clouds and 

environmental noise, deriving TSS with Himawari-8 in open ocean waters is not recommended due to 

the persistent noise levels associated with image artefacts and detection limits of the present method.
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Chapter 5: Applications to Water Quality Monitoring in the Great 

Barrier Reef 

The diel cycles of solar irradiance and coastal processes such as tides and winds regulate the 

fluctuations of key water quality parameters in the GBR, including of phytoplankton biomass and 

particle composition (Furnas et al., 2005; Oubelkheir et al., 2006; Blondeau-Patissier et al., 2009; Soja-

Woźniak et al., 2019). However, the coastal water quality fluctuations are additionally affected by 

significant flood plume intrusions, particularly evident during wet-season (Devlin et al., 2015b; Petus et 

al., 2019), often covering the effects of diurnal processes (Ametistova, 2004; Oubelkheir et al., 2014). 

Therefore, there is a real need to monitor the state of water quality on a diurnal scale for a more 

complete understanding of baseline conditions and trends in the GBR (Steven et al., 2014; Great Barrier 

Reef Marine Park Authority, 2019a). In this context, a comprehensive and continuous monitoring 

system is imperative to effectively assess coastal water quality and its compliance to environmental 

regulations and management interventions in the GBR (State of Queensland and Commonwealth of 

Australia, 2018b). 

The Himawari-8 TSS products provide the possibility to investigate synoptic fluctuations of coastal 

water quality from 10-minutes to hourly temporal resolution and beyond. Such high temporal 

frequency may surpass current observational capabilities and provide significant advances for 

quantifying and monitoring coastal water quality in the GBR (Petus et al., 2019; Gruber et al., 2020; 

Australian and Queensland Governments, 2020). Moreover, diurnal optical properties from ocean 

colour remote sensing may be assimilated for refined parameterization and validation of 

biogeochemical models and deepen our understanding of water quality impacts to ecosystems (Jones 

et al., 2016; Skerratt et al., 2020; Baird et al., 2020).  

This chapter aims to demonstrate the usefulness of Himawari-8-derived TSS for investigating 

diurnal to seasonal scale water quality fluctuations in the GBR. As pointed out in Chapter 4, the 

developed and validated CHL and YEL products were not explored for applications in this thesis. First, 

Himawari-8 derived TSS products were compared to continuous optical properties and oceanographic 

variables measured in situ to assess their temporal coherency; Second, Himawari-8 derived TSS 

products were employed for the detection of spatiotemporal patterns of water quality to demonstrate 

its capability for prospective monitoring and management of the GBR system. 
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  Diurnal Variability of Total Suspended Solids 

In this section, the diurnal variability of TSS was investigated from Himawari-8 observations and 

from in situ measurements at the Lucinda Jetty Coastal Observatory (LJCO – 18.5˚S, 146.4˚E). The LJCO 

facility is located in the enclosed coastal waters of the central GBR, about 12 km from the Herbert River 

mouth (Figure 5.1). Water quality fluctuations at LJCO are strongly associated with the hydrodynamics 

of the Hinchinbrook tidal channel, which periodically drains a large mangrove area and the Herbert 

River (Wolanski et al., 1990; Soja-Woźniak et al., 2019). Semi-diurnal tides, wind driven circulation, 

interannual and seasonal fluctuations of freshwater discharge largely affect the seaward advection and 

evolution of the Herbert River plume (plume, hereafter) (Wolanski et al., 1990; Burrage et al., 2002). 

 

Figure 5.1: True colour composite of Sentinel 2 (MultiSpectral Instrument) observations at 10 meters 
spatial resolution, taken on 25/03/2017, during wet season. The Lucinda Jetty Coastal Observatory 
(LJCO) is located at the end of the 5.7 km long jetty, about 12 km from the Herbert River mouth. Image 
courtesy of the European Space Agency (ESA). 

The plume can fully develop during a complete tidal cycle, and waters with TSS up to ~200 mg 

L-1 may reach the LJCO facility and the mid-shelf reefs within an hour or less, particularly during wet 

season floods (Wolanski et al., 1981; Devlin et al., 2001; Ametistova, 2004; Ametistova and Jones, 2005; 

Soja-Woźniak et al., 2019). The rapid development of the plume is illustrated in the 5-minute snapshots 

of Figure 5.2, captured by a webcam installed at the LJCO facility on 24/02/2021. The plume of Figure 
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5.2 reached LJCO approximately 4 hours before the lowest tide (2 p.m.), after 250,000 ML/day were 

discharged in the Herbert River catchment (Queensland Government, 2021). The discharge followed a 

typical wet season week of intensive accumulated rainfall above 400 mm (Bureau of Meteorology of 

Australia, 2021b). In the absence of floods, TSS values can range from ~0.9 to 45 mg L-1 in the waters 

surrounding LJCO, depending on the tidal phase and local winds (Ametistova, 2004; Soja-Woźniak et 

al., 2019). 

The contrasting optical features between the brown plume and the green-blue coastal waters 

at LJCO are also detectable from airborne surveys and from remote sensing observations (Burrage et 

al., 2002; Devlin and Schaffelke, 2009; Soja-Woźniak et al., 2019), as shown in image of Figure 5.1. 

Quantitative and qualitative information about the plume evolution is now available from the 10-

minute Himawari-8 observations and TSS algorithm developed and validated in this study. Meanwhile, 

continuous in situ measurements of subsurface bio-optical properties, such as the backscattering and 

turbidity, have provided a quantitative overview of the diurnal water quality changes experienced at 

LJCO (Soja-Woźniak et al., 2019). In addition, fortnightly in situ TSS measurements have been acquired 

at LJCO for water quality monitoring and ocean colour validation activities. Although the fortnight in 

situ TSS measurements are temporally sparse for diurnal water quality assessments, they provide 

sufficient data for modelling its relationship to the bio-optical quantities and for deriving continuous 

TSS at LJCO (Soja-Woźniak et al., 2019). Continuous TSS measurements computed from bio-optical data 

allow the near-real time comparison with Himawari-8-derived TSS for an integrated assessment of their 

temporal coherency. 

In this section, the temporal correlation between diurnal TSS obtained from Himawari-8 

observations and TSS computed from bio-optical measurements at LJCO were investigated. To a lesser 

extent, the local mechanisms potentially driving the diurnal variations of TSS were examined. The 

objective was to demonstrate the applicability and advantages of utilising Himawari-8 for a 

comprehensive understanding of local fluctuations of TSS and its relationship with underlying coastal 

processes. 
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Figure 5.2: Every 5 minutes near-real time snapshots () of the Herbert River plume reaching the LJCO 
facility on the 24/02/2021, between 10:45 a.m. and 11:00 a.m. (AEST). The snapshots are continuously 
captured by a webcam installed at the top of the LJCO facility, facing north to the Hinchinbrook Island. 
Image courtesy of Thomas Schroeder. 

 Methods 

The particulate backscattering coefficient ($,#) has been recognised as a surrogate for 

particulate matter or TSS estimates, based on empirical formulations set up by Babin (2000); Babin et 

al. (2003b). The linear relationship between TSS and $,# present reasonable correlations despite 

limitations of both measurement methods (Boss et al., 2009; Soja-Woźniak et al., 2019). Soja-Woźniak 

et al. (2019) derived a highly correlated relationship between the daily averages of $,# (595 nm) and 

gravimetric TSS, from 34 pairs of measurements collected between 2014 and 2016 at LJCO. This 

relationship was reviewed here, utilising a larger dataset (2014 to 2019) of nearly concurrent in situ 

measurements of $,#(595 nm) and of gravimetric TSS at LJCO. Then, continuous TSS computed from 
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$,# measurements were compared against concurrent Himawari-8 TSS at 10-minutes temporal 

frequency in a time series analysis. 

5.1.1.1 Modelling the Total Suspended Solids from Particulate Backscattering data 

The continuous (every second) $,# (595 nm) data was acquired at LJCO with the WET Labs ECO-

BB9 instrument deployed at 3 meters depth. A rolling median (5 minutes window) filter was applied to 

eliminate potential noise-related outliers (illustrated in Figure 5.3), whilst preserving rapid optical 

changes within a 10 minute window. 

 

Figure 5.3: Time series of calibrated BB9 measurements of particulate backscattering coefficient ($,#) 
at 595 nm (green) and the associated rolling median $,# (with window of 5 minutes - blue line) 
extracted on 06/09/2017 local time (AEST). 

Fortnightly maintenance activities are scheduled for bio-fouling cleaning of the optical 

instruments and in situ sampling of water quality parameters (i.e., TSS, CHL, YEL) at LJCO. To avoid 

potential contamination due to biofouling of the BB9 instrument, the $,# measurements utilised here 

were acquired posterior to equipment cleaning and redeployment. As a result, the time difference 

between the closest available $,# to the gravimetric TSS sample was variable, generally within 3 hours. 

Each selected pair of measurements were carefully inspected to reduce uncertainties associated with 

the temporal mismatch between $,# and TSS. A linear relationship between near-concurrent pairs of 

gravimetric TSS and closest available $,# (595 nm) was employed, based on Soja-Woźniak et al. (2019) 

(Figure 5.3 and Eq. 5.1). The in situ measurements of TSS ranging from 1.3 to 22.8 mg L-1 yielded a 

positive correlation (R2 = 0.79) to $,# between 0.005 and 0.17 m-1. 

 

 

The $,# versus TSS relationship calculated in this study (black dashed line in Figure 5.3) was 

comparable to the relationships previously calculated for the GBR waters and elsewhere (Blondeau-

Patissier et al., 2009; Zhang et al., 2010; Soja-Woźniak et al., 2019). For instance, the Soja-Woźniak et 

al. (2019) relationship (dashed green line) was calculated from 34 pairs of in situ TSS and daily 

TSS = 117.94	$,# + 0.83 Eq. 5.1 
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aggregated measurements of $,# (595 nm) at LJCO, with the largest fraction of particles being of 

inorganic origin. Conversely, Blondeau-Patissier et al. (2009), presented a moderate relationship 

(dashed blue line - Figure 5.3) utilising 103 concurrent pairs of in situ $,# (at 555 nm) and TSS sampled 

in several sites within the GBR lagoon during wet and dry seasons. However, despite all slopes of Figure 

5.3 were being calculated for TSS roughly between 0.01 to 25 mg/L, the Blondeau-Patissier et al. (2009) 

relationship largely deviated from those in Figure 5.3. This result is likely related to the wide range of 

$,# values Blondeau-Patissier et al. (2009) found in the coastal GBR (up to 1.18 m-1), which is one order 

magnitude larger than the maximum $,# value recorded here (~0.17 m-1). Moreover, $,# is slightly 

wavelength dependent and slopes calculated for $,# at 555 nm may display small differences compared 

to those developed for $,# at 595 nm. 

 

Figure 5.4: Scatterplot and computed linear relationship between gravimetric TSS and nearly 
concurrent ECO-BB9 $,# (595 nm) measured at LJCO between 2014 and 2019. The dashed lines 
represent the relationship computed in the present study (in black) and in the works of Blondeau-
Patissier et al. (2009) and Soja-Woźniak et al. (2019) (blue and green, respectively). The error bars were 
computed from the standard deviations of in situ triplicate gravimetric TSS. 

5.1.1.2 Time Series of Total Suspended Solids at LJCO 

The relationship computed in section 5.1.1.1 was applied to ECO-BB9 diurnal measurements of 

$,# (at 595 nm) for deriving continuous in situ TSS (hereafter XUU,-!). The computed XUU,-!  time 

series were sampled every 10 minutes for comparison against concurrent Himawari-8-derived TSS 

(hereafter XUUop). A minimum of 4 hours of cloud-free XUUop products were required for a 

comprehensive analysis of diurnal variability within a semi-diurnal tidal cycle (Ruddick et al., 2014). The 

time series of concurrent XUU,-!  and of XUUop were extracted at the end of the 2017-2018 wet season, 

on the 25th and 26th of April (namely April #1 and April #2, respectively) and on the 11th and 12th of May 
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(namely May #1 and May #2, respectively) of 2018. The 10-minute H8-TSS products were masked for 

clouds, land, sun glint and ANN flags, and spatially smoothed with a boxcar median filter (7-by-7-pixel 

box) to eliminate any potential outliers due to undetected clouds or random noise features. Then, the 

median and standard deviation of all valid pixels within a 3-by-3-pixel subset centred at LJCO (18.5˚S, 

146.4˚E) were extracted from each XUUop product. A temporal rolling median with window of 20 

minutes was applied to the XUUoptime series to fill in data gaps due to potentially masked subsets, 

without overly smoothing TSS fluctuations. 

The H8-TSS and XUU,-!time series were visually compared, and their local maxima computed 

for assessment of temporal coherency. The TSS diurnal variability (∆XUU in mg L-1 in Eq. 5.2) at LJCO 

was calculated from XUU,-!and from XUUop every 10 minutes for comparison. The ∆XUU of each pixel 

was calculated as the absolute difference between the minimum and maximum TSS of a given location 

(in this case, at LJCO) within a day of observations. The , in Eq. 5.2 denotes the index of the location 

where the time series of TSS values was extracted. 

∆XUU+ = öminûXUU+ü − max(XUU+)ö Eq. 5.2 

A linear correlation between the XUUop and XUU,-!  was computed for statistical assessment 

of their temporal coherency. The coefficient of determination (R2), the root mean squared errors 

(RMSE) and the mean absolute percentage error (MAPE), described in section 3.1.5, were utilised. 

5.1.1.3 Supplementary Observations 

The concentration of non-algal particulate matter (NAP in mg L-1) derived from daily MODIS-

Aqua observations (MODISA-NAP) were utilised as a proxy of TSS and plotted in time series for inter-

comparison. The MODISA-NAP products were accessed through the Marine Water Quality Dashboard 

(2020) data portal and details of the product are available in the eReefs Marine Water Quality 

Dashboard (2014) data processing specification. In addition, the overpass timing of Sentinel-3 (A and 

B) satellite sensors were extracted from European Space Agency Validation Data Centre (2020) online 

tool and overlayed in time series to illustrate the temporal superiority of Himawari-8 for diurnal 

assessments. The Sentinel satellites, launched between 2016 (3A) and 2018 (3B), are positioned in the 

same orbital plane but 140˚ apart (Clerc et al., 2020; Lamquin et al., 2020; European Space Agency, 

2021). Each Sentinel-3 carries the OLCI (Ocean and Land Colour Instrument) sensor, acquiring ocean 

colour observations of the same location at every one or two days.  

The April and May time series were recorded after a low-pressure atmospheric system passed 

through the Herbert River catchment area in March 2018, leaving over 800 mm of total accumulated 

rainfall within a month (Bureau of Meteorology of Australia, 2021a). Dataset on the volume of 
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freshwater discharged by the Herbert River was acquired from the Queensland Government Water 

Monitoring Information Portal (Queensland Government, 2021) to investigate the influence of 

catchment runoff on TSS fluctuations. Daily mean discharge levels in Megalitres per day (ML/day) were 

acquired from the Herbert River gauge station at Ingham (Site n˚ 116001F at -18.63˚S, 146,14˚E), 30.5 

km from the stream mouth. During the November 2017 to April 2018 wet season, the Herbert River 

experienced the 5th major discharge event since 2010 (Figure 5.5a). The peak of freshwater discharge, 

with 500,000 ML/day, occurred in mid-March (Figure 5.5b) with a second peak of 300,000 ML/day in 

late-March. In early April, up to 50,000 ML were discharged per day (Figure 5.5b), indicating a residual 

flow of freshwater from the prevailing weeks of intense rainfall. However, discharge levels dropped 

below 6,000 ML/day for the April and May time series dates, as described in Table 5.1. 

Table 5.1: Mean daily discharge levels (ML/day) for the Herbert River during the days investigated. 

 

 

 

Figure 5.5 Herbert River daily mean discharge levels between 2010 and 2020 (a) and between January 
to July 2018 (b). Figure extracted from the Water Quality Information Portal (Queensland Government, 
2021). 

Above-water webcam snapshots at the LJCO facility (facing Hinchinbrook Island) were 

inspected to aid the interpretation of the time series. The 5-minute interval snapshots display the arrival 

of riverine plume waters at LJCO, for April and May time series (Figure 5.6). The estimated XUUop 

b)

Jan - Jul 2018

Date Mean Daily Discharge (ML/day) 
April #1: 25/4/18 5719.60 

April #2: 26/4/18 5397.16 

May #1: 11/5/18 3523.68 

May #2: 12/5/18 3391.72 
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median and standard deviation values were extracted from a 3-by-3-pixel box centred at LJCO and 

annotated in snapshots for the time of arrival of the plume. The timing of plume arrival, as identified 

by inspection of webcam images, was annotated in each time series plot (Figure 5.7) for comparison. 

In addition, the hourly tidal height measured at the Lucinda jetty by the Maritime Safety Queensland 

(2020), was overlaid to the time series to investigate the potential of tidal influences on TSS 

fluctuations. 

 

Figure 5.6: Webcam images of the Herbert River plume arriving at LJCO. Hinchinbrook Island is visible 
at the left edge of the picture. Dates of images were annotated on the left side of each row, and times 
were annotated in each image. The median and standard deviation of XUUop (mg L-1) is annotated for 
the time of plume arrival at LJCO. 

Finally, maps of XUUop were derived at hourly temporal resolution to help the interpretation 

of the spatial variability of the plume (for TSS ranging between 0.01 and 100.0 mg L-1). The hourly 

aggregated spatial maps of TSS were centred at the coordinates of LJCO (18.52˚S and 146.39˚E), where 

the time-series of XUUop 10-minute data were extracted. 

 Results 

The snapshots of Figure 5.6 revealed that the plume moved rapidly, covering LJCO and 

surrounding waters within 10 minutes. The colour change between the plume (brown) and coastal 

(green) waters were clearly distinct in the April images and otherwise subtle for the May ones. Despite 
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both time series were being recorded during neap tides, only two weeks apart, the April time series 

presented relatively larger tidal ranges (~ 2.7 m), compared to the May ones (~ 2.3 m) (Table 5.2).  

The diurnal variability of TSS (∆XUU,-!  and ∆XUUop), the global maximum ¢U'W(XUU,-!) and 

¢U'W(XUUop), and the time difference between XUUop and XUU,-!  global maximum (¢U'W(∆/)) were 

compiled in Table 5.2 for each of the dates investigated. The intra-pixel standard deviation at the 

¢U'W(XUUop) value was included between brackets for each date. In addition, the tidal range of each 

time series and the MODISA-NAP versus the concurrent XUUop values were added. 

Table 5.2: Summary data for TSS time series: values of ∆XUU,-!  and ∆XUUop, respective global maxima 

¢U'W(XUU,-!) and ¢U'W(XUUop) with units in mg L-1; ¢U'W(∆/) in hours and minutes; tidal range for 

each date; and MODISA-NAP vs. concurrent XUUop values in mg L-1. 

Overall, XUUop closely matched the XUU,-!  temporal variability (Figure 5.7), with significant 

fluctuations (∆XUUop up to 7.3 mg L-1) observed within 8 hours (Table 5.2). In addition, the ¢U'W(∆/) 

were mostly within 1 hour, with April #1 exhibiting the closest temporal match between XUUop and 

XUU,-!  (¢U'W(∆/) = 10 minutes). The intra-pixel standard deviations computed for XUUop varied within 

a day of observations, with largest values (~4 mg L-1) occurring concurrently with ¢U'W(XUUop), around 

the time of plume arrival. 

Strong diurnal variability of TSS (∆XUU,-!> 4.2 mg L-1) were observed in the April time series 

(Figure 5.7 a and b). The ∆XUUop was consistently higher (7.3 and 6.9 mg L-1) compared to the 

∆XUU,-!(6.1 and 4.2 mg L-1). In both April scenarios, the TSS reached its magnitude peak (¢U'W(XUUop) 

~9 mg L-1) during the slack tide, between 12 and 2 p.m. Meanwhile, moderate diurnal variability 

(∆XUU,-!  < 2 mg L-1) were observed in the May time series (Figure 5.7 c and d). The values of ∆XUUop 

(1.2 and 1.5 mg L-1) were comparable to those of ∆XUU,-!  (1.4 and 2.0 mg L-1, respectively). In May #1, 

the TSS global maxima, ¢U'W(XUU,-!) and ¢U'W(XUUop), occurred during the slack tide, consistent 

with the April time series. In May #2, both global maxima occurred 2-3 hours before the slack of the 

tide, followed by subtle fluctuations of TSS for the remainder of the day. 

  

 April #1 April #2 May #1 May #2 
∆XUU,-!  6.1 4.2 1.4 2.0 

∆XUUop 7.3 6.7 1.2 1.5 
¢U'W(XUU,-!) 8.8 8.1 3.4 4.2 

¢U'W(XUUop) 9.8 (±3) 9.0(±4) 3.0(±1) 2.5(±0.5) 
¢U'W(∆/)  00:10 01:10 00:40 01:00 
Tidal range (m) 2.5 2.7 2.3 2.0 
MODISA-NAP vs. XUUop 5.0 vs. 4.8 4.5 vs. 5.2 1.3 vs. 1.7 1.0 vs. 1.8 
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Figure 5.7: Time series of 10-minute XUUop (orange) and XUU,-!(green) extracted in April (a and b) and 

May (c and d) 2018 at LJCO. ¢U'W values were marked in neon-green and red. Values of ∆XUU,-!and 

∆XUU,-!  were annotated. The MODISA-NAP value (purple star), Sentinel-3 OLCI overpass timing 

(orange shade), webcam-derived time of plume arrival (grey shade) and the hourly tidal height (blue) 
were included. Error bars represent the standard deviation of each TSS measurement. 

The MODISA-NAP values closely matched the concurrent XUUop in all scenarios investigated, 

with mean absolute differences within 0.8 mg L-1 (Table 5.2). The overpass of Sentinel-3 OLCI satellite 

at LJCO on April #1 and May #1 time series (orange shade in Figure 5.7), occurred at the start of the 

ebbing tide, missing the plume arrival and TSS peaks at LJCO. 

The webcam images at LJCO (Figure 5.6) revealed the timing when the Herbert River plume 

reached the facility, indicated by a grey vertical shade in the time series of Figure 5.7. The webcam-

derived timing of plume arrival reasonably matched the ¢U'W(XUU,-!) and ¢U'W(XUUop) (except for 
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May #2). However, the visual identification of the plume arriving at LJCO was off by at least 20 minutes, 

compared to the peak of TSS computed from in situ bio-optical data. Figure 5.8 shows the scatter 

between concurrent XUUop and XUU,-!  from April and May time series of Figure 5.7. Overall, the XUUop 

was generally underestimated and moderately correlated with XUU,-!  (R2 < 0.49). However, the small 

relative differences (RMSE < 1.7 mg L-1) and absolute percentage differences (MAPE < 38%) indicate 

that XUUop values were reasonably comparable to XUU,-!  in most instances. 

 

Figure 5.8: Scatterplots between concurrent XUU,-!and XUUop (both in mg L-1), sampled every 10 

minutes. Statistical metrics were annotated. N is the number of available pairs for a given day. 

Hourly maps of Himawari-8 TSS were utilised for a spatio-temporal assessment of the April #2 

and May #2 time series (Figure 5.9 and Figure 5.10, respectively). The hourly TSS maps showed evidence 

of the riverine plume dynamics on both sides of the Hinchinbrook channel, and the heterogeneous 

spatiotemporal distribution of TSS in the GBR lagoon. The Herbert River plume characterised by orange-

red areas with TSS > ~5 mg L-1 was visually identified in April #2 and May #2 hourly maps. In April #1 

(Figure 5.9), most of the area centred at LJCO (indicated by a cross marker) were covered by plume 

waters as the tide retreated (ebbing from 8 a.m. to 2 p.m.). However, the plumes identified in May #2 

hourly maps were notably smaller and its waters seldom reached LJCO. In fact, subtle TSS fluctuations 

(∆XUU,-!< 2 mg L-1) occurred throughout the day for May #2 time series, despite marked changes in 

water colour were observed from the webcam (Figure 5.6). Nevertheless, is it possible that the 

perceived water colour changes, as seen from the webcam snapshots at 2:30 p.m., were caused by 
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riverine waters with TSS < 2 mg L-1, which is not visually detectable from the hourly TSS maps at 1 km 

spatial resolution. 

 

Figure 5.9: Himawari-8 hourly derived TSS over LJCO from 8 a.m. to 4 p.m. local time (AEST) on the 
26/04/2018 (April #2). Masked areas for land in grey and for the reef matrix and clouds in black. A black 
cross marker indicates the location of LJCO. The time range annotated in each plot refers to the interval 
of observations utilised for hourly aggregation. 

26/04/2018

TSS	[%&	'!"]
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Figure 5.10: Same as Figure 5.9, but for May #2 (12/05/2018) time series. 

 

  

12/04/2018
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 Great Barrier Reef Maximum Diurnal Changes in Total Suspended Solids 

The diurnal variability of bio-optical properties has been previously assessed at discrete in situ 

locations in the GBR (Oubelkheir et al., 2006; Blondeau-Patissier et al., 2009), including at LJCO (Soja-

Woźniak et al., 2019). Optical properties are known to fluctuate with the high-frequency coastal 

oceanographic processes and conventional ocean colour remote sensing is insufficient for providing a 

systematic overview of diurnal changes in the GBR. The first section of this chapter investigated the 

diurnal changes in Himawari-8 derived TSS products and compared these to the in situ bio-optical 

measurements at LJCO. In this section, a spatial assessment of the diurnal fluctuations of TSS was 

conducted for a year of available images GBR-wide. The key objective of this section is to critically 

evaluate the applicability of Himawari-8-derived TSS for the detection of monthly and seasonal patterns 

of diurnal variability in water quality. Maps of maximum diurnal variability of TSS were utilised to 

determine the spatial extent of TSS features, where diurnal fluctuations were above a certain threshold 

within a given month. The maximum diurnal variability maps were utilised to identify locations with 

extreme diurnal fluctuations of TSS that would otherwise be overlooked by utilising weekly to monthly 

average composites and ultimately, by LEO satellite observations. 

 Methods 

In section 5.1 of this chapter, it was revealed that TSS derived every 10-minutes from Himawari-

8 were suitable to detect diurnal water quality fluctuations at LJCO, within a 9-pixel subset area. 

However, deriving 10-minute TSS products for the entire GBR is unrealistic for routine water quality 

monitoring efforts. To speed up the processing of information and to provide useful products at a 

reporting level, hourly aggregated observations were chosen for the monthly analysis in the coastal 

GBR. All individual 10-minute Himawari-8 observations acquired between 8 a.m. and 4 p.m. and 

between August 2017 and July 2018 were extracted for the GBR area, according to processing steps of 

Figure 2.21. As a result, up to 8 hourly aggregated observations were computed for each day, and up 

to 248 hourly aggregates were computed for each month.  

An hourly aggregated observation corresponded to the temporal median of all 10-minute 

observations available within 1 hour. At least five out of six of the single observations available within 

1 hour were required for the computation of aggregates, to ensure the composites were representative 

of a certain timestamp. The single Himawari-8 observations were aggregated by taking their temporal 

median, as to eliminate potential outliers associated to undetected clouds and environmental noise 

likely present in the Himawari-8 bands. TSS products were retrieved from hourly aggregated 

observations through the application of the validated ANN inversion experiment (P094). An aggregated 

mask was computed and applied to each hourly TSS product, masking pixels due to land, clouds, and 
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sun glint. The out-of-range TSS values were masked in each hourly product, using the associated ANN 

flags computed after the inversion procedure. Values of ∆XUU were computed for each pixel-index 

(across the pixels of a given index of the image), representing the absolute difference between the 

maximum and minimum TSS observed within a day (as in Eq. 5.2). The ∆XUU computation took at least 

4 (out of 8) mask-free hourly aggregated products per pixel, per day, as the minimum number of 

observations required to resolve diurnal variations (Ruddick et al., 2014). The maximum value of ∆XUU, 

l"{∆C<<, was calculated for each pixel-index utilising all values of ∆XUU available within a given month. 

Maps of l"{∆C<< were monthly computed (between August 2017 and July 2018) and spatially 

smoothed with a 7-by-7 boxcar median filter. Any value of l"{∆C<< or median TSS below 0.25 mg L-1 

were masked out to comply with the detection limits of the algorithm. The monthly maps of l"{∆C<< 

were grouped into the wet and dry season for illustrative purposes, regardless of the year of 

observation and chronological time. In addition, for illustrative purposes, the monthly median TSS was 

calculated for comparison against l"{∆C<< at LJCO. The monthly median was calculated including at 

least 4 mask-free observations per pixel, per day, as in l"{∆C<< calculations.  

 Results 

The maps Figure 5.11 show the diurnal variability of TSS (i.e., ∆XUU) around the LJCO site within 

a given day. The non-smoothed original product (Figure 5.11a) is highly heterogeneous with a mixture 

of high and low ∆XUU in the coastal and open ocean areas, likely related to noise and adjacency effects. 

In this case, the most distinctive feature is the ∆XUU above 5.25 mg L-1, associated with the Herbert 

River plume on both sides of the Hinchinbrook tidal channel. Meanwhile, the spatially filter image 

cleared the potential outliers and generated a smoothed image (Figure 5.11b), emphasising the main 

TSS features. In this case, the main plume feature at LJCO has a distinctive dark red colour and is 

characterised by ∆XUU above 5.25 mg L-1, while a southern branch of the plume developed with ∆XUU 

below 3.25 mg L-1, illustrated in yellow and green. 
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Figure 5.11: Spatial distribution of ∆XUU [mg L-1] centred at LJCO for hourly TSS products computed on 
06/09/2017. ∆XUU is presented without (a) and with a spatial median filter applied (b). 

The spatial distribution of l"{∆C<< for September 2017 (Figure 5.12a) reveals features of large 

diurnal variability (>4.25 mg L-1) at both outlets of the Hinchinbrook Channel. Meanwhile, the computed 

monthly median smooths out the feature at LJCO observed in Figure 5.12a, only emphasising the 

northern branch of the plume with TSS above 3.25 mg L-1. While the median map indicates areas where 

TSS values are consistently high (> 3.25 mg L-1) within a month, the l"{∆C<< indicate areas where 

episodic events, such as floods, may have occurred and rapidly increased TSS values within a day. 

The l"{∆C<< was then utilised to investigate the occurrence of episodic events contributing to 

the water quality dynamics in the GBR between August 2017 and July 2018. In this section, the term 

‘TSS feature’ was roughly defined as waters with l"{∆C<< larger than 5.25 mg L-1, visually discerned as 

the dark red areas in the l"{∆C<< maps. Thus, the spatial distribution of l"{∆C<< values larger than 

5.25 mg L-1 was interpreted in the present work as the maximum TSS feature extent observed within a 

month, based on the records of diurnal variability of TSS for that month. 

 

0.25 1.25 2.25 3.25 4.25 5.25
∆"##	[&'	(!"]



 139 

  

 

Figure 5.12: Comparison between monthly l"{∆C<< (a) and monthly median TSS (b) at LJCO and 
surrounding areas in the GBR lagoon. 

The number of valid ∆XUU observations available for each pixel within a month were spatially 

represented in Figure 5.13. In general, there were marked seasonal differences, with wet season 

months presenting less available data than dry season across the entire GBR. Between 1 and 20 

observations per month were available within the GBR lagoon during the wet season. The dry season, 

otherwise, accounts for 20 to 30 days of valid observations within a month, mostly distributed in the 

central and southern GBR lagoon, and in the Coral Sea. ∆XUU observations were consistently 

unavailable (areas in black) in the northern GBR, mostly during the dry season. Consequently, the 

northern GBR may present no l"{∆C<< values at all, depending on the month evaluated. Therefore, 

the following analysis concentrated on investigating patterns of variability of l"{∆C<< in the central 

and southern coastal GBR, as depicted in Figure 5.14. This region includes the major catchments 

draining to the GBR, delineated by the Burdekin and Fitzroy Rivers, between 18˚S and 24˚S. 
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Figure 5.13: Spatial distribution of the total number of ∆XUU available within a month for the GBR and 
adjacent areas. The land areas masked in grey and masked water pixels in black. 

Dry Season

Wet Season

∆TSS Observations
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Figure 5.14: Example of l"{∆C<< between 18˚S and 24˚S including the major catchments to the GBR, 
indicated by the Burdekin and Fitzroy Rivers, as well as the mouth of the Herbert and the Proserpine 
Rivers indicated. LJCO and Broad Sound and the Coral Sea are indicated in white text and arrows. The 
land and GBR reef matrix areas were masked in grey. 

In the central-south GBR the water body adjacent to the coast, presented moderate to high (from 3.25 

to 5.25 mg L-1 and above) l"{∆C<< for all months evaluated. The locations where l"{∆C<< was 

moderate to high (3.25 to 5.25 mg L-1 and above) in both wet (Figure 5.15) and dry seasons (Figure 

5.16) were compatible with the regions of significant spring tidal ranges (> 3 m) along the GBR shelf 

waters (Pickard et al., 1977). Meanwhile, the GBR lagoon experienced moderate to low (< 3.25 mg L-1) 

l"{∆C<< during the typical wet season months (Figure 5.15 - November to April). During typical dry 

season months (May to October), a moderate (1.25 to 3.25 mg L-1) l"{∆C<< took place in the lagoon 

with patches of l"{∆C<< higher than 3.5 mg L-1. Furthermore, the dry season months presented a 

larger spatial extent of moderate to high (>2.25 mg L-1) l"{∆C<<, compared to the wet season. Low to 

moderate (1.25 -2.25 mg L-1) l"{∆C<< was observed within the reef matrix, which was more 

pronounced in dry season months. 

The TSS features, where l"{∆C<< was higher than 5.25 mg L-1 (dark red areas), were persistent 

through wet and dry seasons in some locations such as in Broad Sound (22˚S – detail in Figure 5.14). 
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The visual extent of the TSS feature was larger in May 2018 (at the end of wet season), where waters 

with l"{∆C<< above 5.25 mg L-1 were almost entirely connected across the south and central GBR. In 

Broad Sound, the TSS feature was evidently pronounced during the wet and dry seasons, presenting a 

sharp gradient between enclosed waters (of l"{∆C<< > 5.35 mg L-1) and the adjacent coastal waters 

(of l"{∆C<< lower than 2.25 mg L-1). The Broad Sound TSS feature is slightly retracted between the end 

of the dry season and the start of the wet season (September to November). At the mouth of the 

Burdekin River, the TSS feature was persistent for most of the year with moderate variation of its extent 

through the months. Meanwhile, at the mouth of the Fitzroy, the TSS feature was nearly permanent 

with little variation in its extent. Month-to-month variations of TSS feature extent were observed in 

several areas of the central-southern GBR, such as in the waters surrounding Whitsundays Islands 

(mainly around the Proserpine River at its southern side), and where the LJCO facility is located, at the 

mouth of the Herbert River. Diurnal variations were generally lower than 3.25 mg L-1 between the 

mouth of the Burdekin and the Whitsundays area.
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Figure 5.15: l"{∆C<< (mg L-1) in the central GBR between 18˚S and 24˚S, for the wet season. The black 
areas represent masked pixels due to unavailable observations and l"{∆C<< lower than 0.25 mg L-1. 
Land and the GBR reef areas are masked in grey. 
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Figure 5.16: Same as Figure 5.15 but for the dry season months. 
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The l"{∆C<< was investigated at LJCO and its adjacent areas for the typical wet and dry season 

months between 2017 and 2018 (Figure 5.18). Variable values of l"{∆C<< were present across the 

months at LJCO, regardless of the seasons. Thus, it was difficult to define wet and dry season patterns 

of diurnal variability. The TSS feature of the Herbert River, at south and north of the Hinchinbrook 

Channel, was clearly delineated by l"{∆C<< larger than 5.25 mg L-1. Both branches generally presented 

high (> 5.25 mg L-1) l"{∆C<< across all months, except for the southern branch in October, with 

l"{∆C<< reaching about 2.25 mg L-1. During the start of wet season (November to January) the 

southern TSS feature was usually constricted around the channel outlet, forming a distinctive estuarine 

plume. However, as the wet season developed (February-May), the southern branch of the TSS feature 

connected itself to waters from the southern coastal areas. In March, the TSS feature extended further 

towards the offshore areas, following intensive discharges (~ 500 000 ML/day) from the wet season 

(Figure 5.5). In May, a contiguous coastal feature of moderate-high (> 4.25 mg L-1) l"{∆C<< was 

delineated with a sharp gradient of l"{∆C<< between the enclosed coastal waters and the mid-shelf 

lagoon. From June to September, waters with l"{∆C<< of around 1.5 mg L-1 were present further 

offshore and eventually reached the reef matrix. Additionally, the southern branch of the Herbert River 

developed into a tongue-shaped plume directed southward, which was evident between June and 

September. 

 

Figure 5.17: l"{∆C<< (mg L-1) for a given month with the map centred at LJCO. Adjacent areas include 
Bramble, Britomart and Otter Reefs, Hinchinbrook Island, and the mouth of the Herbert River. 
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Figure 5.18: l"{∆C<< at LJCO (18.52˚S, 139.46˚E) and adjacent areas, for wet and dry seasons between 
2017 and 2018. The black areas represent masked pixels due to unavailable observations and l"{∆C<< 
lower than 0.5 mg L-1 as well as the GBR reef matrix. Land areas were masked in grey. 
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 Discussion of Applications Chapter 

 Discussion of Diurnal Variability of Total Suspended Solids at LJCO 

Diurnal fluctuations of TSS were investigated utilising concurrent in situ and Himawari-8 data 

at the Lucinda Jetty Coastal Observatory (LJCO). The continuous measurements of particulate 

backscattering and its computed TSS (XUU,-!), supported a near-real time comparison with the 10-

minute Himawari-8-derived TSS (XUUop) for an integrated assessment of water quality. Overall, XUUop 

agreed remarkably well (MAPE within 38%) with the concurrent XUU,-!at LJCO (Figure 5.7), despite 

methodological differences. XUUop fluctuations of up to 7 mg L-1 were observed within a day at LJCO, 

corroborating previous studies employing geostationary observations for diurnal water quality 

assessments (Neukermans et al., 2012b; Vanhellemont et al., 2014; Ding et al., 2020; Hafeez et al., 

2021). The temporal difference between XUUop and XUU,-!  global maxima ranged between 10 minutes 

to 1 hour. Likewise, Neukermans et al. (2012b) observed good correspondence between the SEVERI-

derived TSS and in situ turbidity diurnal variations, with average temporal lag of 11 minutes between 

global maxima values. 

The observed TSS fluctuations during two days of April and of May 2018 were associated with 

the Herbert River fluxes and with the local tidal dynamics. In most cases, the plume arrived at LJCO at 

the slack tide, followed by rapid (< 1 hour) and significant increases of TSS up to 7.3 mg L-1. These results 

are supported by previous findings, suggesting a persistent semi-diurnal tidal influence on the bio-

optical variability at LJCO (Soja-Woźniak et al., 2019). However, the sharp contrast between river plume 

and coastal waters (Figure 5.6), as well as the peak TSS concentrations (~9 mg L-1), indicate that the 

April plume waters were largely influenced by the residual volume of freshwater discharged from the 

prevailing wet season. The high volume discharged from the Herbert River prior to April 2018 (~500,000 

ML/day) may have overwhelmed the tidal influence at LJCO, by increasing the horizontal advection and 

vertical mixing and thus, modulating significant diurnal fluctuations of TSS. Moreover, the diurnal 

fluctuations of TSS presented in this study were recorded during neap tides on the first and third 

quarter moon, with ranges of up to 2.7 m. Therefore, greater diurnal fluctuations of TSS (> 7 mg L-1) 

may be experienced during spring tides at LJCO, with tidal ranges larger than 3 m likely increasing the 

exchange of water volumes and TSS advection (Eleveld et al., 2014). 

The 10-minute TSS and hourly maps from Himawari-8 were useful and complementary tools to 

investigate diurnal variability in the coastal GBR. The 10-minute observations from Himawari-8 were 

appropriate to track rapid (< 1 hour) and moderate (> 1 mg L-1) fluctuations in turbid coastal waters 

with the time series analysis. Meanwhile, the hourly Himawari-8 derived TSS was helpful and sufficient 

to diurnal mapping and tracking of riverine plumes in the coastal GBR. The MODIS-NAP products yielded 
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comparable results to concurrent XUUop, with minor discrepancies possibly associated with algorithm 

parameterization and atmospheric correction of MODIS-Aqua observations, as reported in Dorji and 

Fearns (2018). A comprehensive inter-comparison between concurrent MODIS-Aqua, Sentinel-3 and 

Himawari-8 derived TSS products should provide more understanding on their methodological 

differences and limitations. While Sentinel-3A and 3B and MODIS-Aqua and VIIRS may provide a 

morning and afternoon overview (Bracaglia et al., 2019; Bracaglia et al., 2020), these sensors together 

would still be insufficient to fully depict the local bio-optical diurnal variability, as represented by 

Himawari-8-derived TSS at LJCO every 10 minutes. 

Although XUUop provided unprecedented amount of data for water quality observations in the 

coastal GBR, it presented a temporal mismatch as well as a systematic underestimation of XUU,-!. The 

differences in magnitude could be attributed to the current limitations of the present method 

(discussed in detection limits), and from the limitations in utilising $,# data as a proxy for TSS. At LJCO, 

the particles are a mix of white organic marine carbonate sands and brown inorganic terrigenous muds, 

each of which exhibits a distinctive relationship against $,# (Soja-Woźniak et al., 2019). As a result, the 

functional relationship between $,# and gravimetric TSS may assume several distinctive slopes 

depending on proportion of organic to inorganic material in the dataset utilised. In fact, Neukermans 

et al. (2009) derived TSS from SEVIRI based on a reflectance algorithm with a constant coefficient to 

describe the relationship between $,# and TSS (Nechad et al., 2010). It was recognised that the 

relationship between $,# and TSS may be largely limited due to frequent variations in particle 

composition (Neukermans et al., 2009). Moreover, given the complex variability between $,# and TSS 

in the coastal GBR, a non-linear fit as presented by Thursby et al. (2015) may be an alternative solution 

to the relationship between those parameters. In addition, the accuracy to which TSS can be derived 

from $,# in highly dynamic coastal waters is possibly limited by the time difference between each pair 

of measurements. As a result, derived TSS can be over or underestimated, depending on the stability 

of local particle composition to different tidal stages. Further improvements could include limiting the 

time difference between measurements of $,# and TSS within 1 hour to avoid a mismatch due to 

sample collection at different tidal stages. 

Additionally, it was recognised that XUU,-!  presented a delayed response compared to the 

visual timing of the plume reaching LJCO from the webcam images. This temporal lag may be associated 

with a strong vertical stratification due to salinity differences induced by the plume waters while moving 

cross-shelf (King et al., 2002). The buoyant plume of freshwater may be restricted to the surface as a 

wedge, when reaching LJCO. Consequently, the $,# sensor deployed at 3 m depth miss the arrival of 

the plume waters at the surface, until more vigorous vertical mixing takes place, causing a sharp 

gradient (generally larger than 2 mg L-1) in the $,# and derived TSS. Although sub-surface $,# 
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measurements compare well to satellite derived products in open ocean waters (Bisson et al., 2019), 

this assumption may not be valid in optically complex waters. Alternative bio-optical measurements, 

such as absorption and turbidity (Neukermans et al., 2012b) can be explored and provide more clarity 

on understanding the timing of plume arrival at LJCO and the relationship to Himawari-8 derived TSS. 

Nevertheless, the present method’s main limitations were due to the low sensitivity of 

Himawari-8 VNIR bands to small changes in ocean colour. The algorithm developed in the present work 

retrieves TSS from Himawari-8 with a MAPE of 75.5% and RMSE of 2 mg L-1 compared to in situ data 

(section 3.2.2). Additionally, a sensitivity analysis suggested that Himawari-8 TSS within 0.25 mg L-1 were 

likely below the detection limits of the developed algorithm, presenting errors with up to three orders 

of magnitude difference. Thus, XUU,-!  fluctuations lower than 0.25 mg L-1 were not well discriminated 

by XUUop on some occasions, which was illustrated in the time series extracted on May #1 (11/05/2018) 

and May #2 (12/05/2018). 

The temporal difference between XUUop and XUU,-!  global maxima may be explained by the 

spatial mismatch between the in situ point sample, represented by the XUU,-!, and the 3-by-3 pixel-

box (9 km2) representing XUUop. In fact, XUUop derived from the spatial median of 9 pixels generally 

presented increased intra-pixel standard deviations with rapid increases of TSS, indicating intra-pixel 

heterogeneity likely caused by the plume arrival. It is acknowledged that the TSS retrievals are largely 

impacted by the nominal spatial resolution utilised (Dorji and Fearns, 2017), particularly in coastal 

waters with high spatial variability. The Himawari-8 640 nm band original spatial resolution is of 0.5 km 

and may be sought for improved TSS retrievals in the coastal GBR. 

 Discussion of GBR Maximum Diurnal Changes of TSS in the GBR  

In section 5.2, the spatial patterns of diurnal variability events in the GBR between August 2017 

and July 2018 were investigated. The maximum diurnal variability of TSS (l"{∆C<<) was computed to 

explore the maximum extent of TSS features in the GBR during dry and wet season months. A TSS 

feature was defined in this work as the area adjacent to the coast where the l"{∆C<< was higher than 

5.25 mg L-1, which was visually detected by a sharp edge in contrast to lower ∆XUU. The TSS range of 5 

- 15 mg L-1 was designated as the annual water quality guideline threshold for enclosed coastal waters 

of the Wet Tropics and Central Coast, respectively (Great Barrier Reef Marine Park Authority, 2010). 

However, the TSS feature represented waters where the daily variations potentially exceeded the 

annually averaged threshold values for TSS in these enclosed coastal waters. Consequently, the 

intensive presence of the TSS features (as designated in this chapter section) may indicate a water 

quality exceedance above the limits suggested for enclosed coastal waters. 



 150 

The fluctuations of l"{∆C<< may be largely associated to short lived, seasonal and intra-annual 

events known for mobilising TSS such as: tidal currents and jets (Delandmeter et al., 2017), wind driven 

resuspension (Orpin et al., 2004; Orpin and Ridd, 2012), and seasonal freshwater discharge (Schroeder 

et al., 2012; Lough et al., 2015). The short-lived events, however, might happen sporadically or during 

a few days within a month, such as the spring tides, and might be missed by observations from LEO 

satellites. Geostationary observations from the Himawari-8 meteorological satellite provided for the 

first time, at hourly temporal resolution, empirical evidence of the influence of such short-lived events 

in the GBR water quality. 

The monthly analysis of the maximum diurnal extent of TSS features exposed intricate 

spatiotemporal variations in the central-southern GBR. Seasonal variations were more pronounced in 

the southern GBR lagoon, with the dry season presenting large areas with moderate (~ 2.25 mg L-1) 

l"{∆C<<. The marked seasonal patterns in l"{∆C<< may be associated with prevailing winds and 

resultant swells, which are known to be the main mechanism for sediment resuspension in the central-

south GBR (Larcombe et al., 1995; Larcombe and Woolfe, 1999; Browne et al., 2013). The trade winds 

blow persistently from east or south-east during the dry season (April to November), potentially 

generating swells that mobilise bottom sediments and increase the concentration of suspended 

sediments in the water column. In fact, it has been shown that turbidity measurements have increased 

three orders of magnitude within an hour in an inshore site in the central GBR (Orpin et al., 2004). The 

rapid increase in turbidity was linked to a constant wind speed (> 20 km/h) and significant wave height 

(up to 80 cm) that occurred as result of an extreme weather event, which was not associated with any 

tropical cyclone (Orpin et al., 2004). In this context, dry season wind stress might be associated with 

the long-term decline in water clarity (Larcombe et al., 2001; Browne et al., 2013). 

Meanwhile, tidal variability is thought to be a minor factor influencing the resuspension of 

bottom sediments, and more associated with the periodical flushing of estuaries and bays into the GBR 

(Larcombe et al., 1995). However, tides not only affect water level and circulation, but also induce 

variations in the rates of sediment resuspension, mixing and settling, contributing to changes in water 

clarity and quality. According to Fabricius et al. (2016), tides largely modulate the spatial complexity of 

long-term values of water quality parameters (i.e., photic depth) in the coastal GBR. In this study, the 

latitudinal variations of l"{∆C<< were associated with differences in tidal ranges along the Queensland 

coast. The spring tidal ranges have a marked latitudinal gradient from the northern to the southern 

GBR. Average tidal ranges between 2-4 m are common for coastal and outer reef regions between 10˚S 

and 20˚S, while the largest tidal ranges (> 4 m) occur in the central-southern coastal GBR between 20˚S 

and 25˚S (Pickard et al., 1977).  
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In fact, the most persistent TSS features with l"{∆C<< (>5.25 mg L-1) were confined to the 

central and southern coastal GBR, including the feature at Broad Sound. Broad Sound is a highly turbid, 

funnel shaped estuary in the southern GBR (Figure 5.14) dominated by exceptional (8-10 m) tidal ranges 

(Pickard et al., 1977; Kleypas, 1996), however no major rivers flow into it. Kleypas (1996) investigated 

the diurnal variability of TSS in Broad Sound and concluded that the strong tidal ranges induced 

resuspension and advection of TSS for several consecutive tidal cycles, until neap tides allowed 

sediment resettlement. Therefore, consistent l"{∆C<< features, such as at Broad Sound and in the 

central-southern GBR (Figure 5.15), may be linked to the long-lasting resuspension effects of the semi-

diurnal tides. In addition, moderate diurnal variability of TSS was observed within the GBR reef matrix, 

with higher variations during the dry season. These TSS features are potentially related to resuspension 

resulting from short lived tidal jets (Drew, 2011). The tidal jets have been previously investigated in the 

GBR utilising field data, aerial surveys, numerical models (Wolanski et al., 1988; Wolanski and Spagnol, 

2000) and satellite data (Young et al., 1994; Delandmeter et al., 2017). The tidal jets have been 

associated with localized upwelling and nutrient exchange between the Coral Sea and the GBR lagoon 

(Thompson and Golding, 1981; Thomson and Wolanski, 1984; Wolanski et al., 1988). The location and 

occurrence of tidal jets are scarcely described due to lack of appropriate spatial and temporal resolution 

observations. However, Himawari-8 observations have the potential to identify and track such features 

at the required temporal resolution for resolving short-lived coastal processes. 

The central-north GBR received above average rainfalls during the 2017-2018 wet season, 

resulting from a low-pressure system and the subsequent passage of tropical cyclone Nora in late 

March 2018 (Bureau of Meteorology, 2018). Nora approached the west coast of Cape York peninsula, 

after crossing the Gulf of Carpentaria and made landfall on the 24th of March as a category 3 system. 

As a result, extreme rainfalls and flash floods were experienced and the Herbert River discharge peaked 

at 500,000 ML/day in March, as the 4th major discharge event since 2010. Conversely, Fabricius et al. 

(2016) point out that short-lived discharge events may have long lasting impacts and reduce photic 

depth (water clarity) for many months after rivers started flowing. The authors identified that the 

lowest levels of photic depth were recorded in May, when river flows subsided, and recovery started. 

This corroborates the present findings that May was the month with the largest extent of TSS feature 

in the central and southern GBR, after experiencing high volumes of freshwater discharge from the wet 

season. Therefore, wet season freshwater discharge may be linked to the increased spatial extent of 

TSS features during dry season months, while seasonal wind patterns may be linked to the moderate-

high diurnal variations of TSS found in the central and southern GBR lagoon. Finally, the tidal ranges 

may be associated with semi-permanent features of high diurnal variability adjacent to the coastal 

areas. Further investigation and correlation with continuous weather and oceanographic data are 
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needed for an improved understanding of the diurnal patterns of TSS in the GBR. Additional work is 

suggested to help to delineate more realistic boundaries of water quality guidelines, honestly reflecting 

the variability of coastal water quality.  

The main limitation of this analysis concerns the reduced number of available observations in 

areas such as the central and northern GBR, as well as the Coral Sea, during the wet season. The 

reduced number of observations in the northern GBR is resultant from the effects of sun glint passage 

and intensive cloud cover in the area. The principal point of sun glint and its projected sun disk is 

generally closer to the GBR and to the southern hemisphere during the summer months. In addition, 

cloud cover intensifies during the monsoonal wet season, due to more frequent storms and the passage 

of low-pressure systems, such as tropical cyclones. As a result, a significant reduction in the number of 

days where ∆XUU was available may be expected during the wet season, whereas the observational 

gap during dry season can be largely associated with persistent cloud cover. Fortunately, the sun glint 

effects can be generally neglected in the GBR when utilising Himawari-8 observations during dry season 

months. In this case, the principal point of sun glint lies north of the equator and the projected sun disk 

seldom reaches the southern hemisphere, yielding more observations for the entire GBR. Nonetheless, 

sun glint correction of Himawari-8 observations is suggested for expanding image and products 

availability in the tropics all year round. 
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Chapter 6: Summary and Outlook  

Synoptic monitoring of water quality in the extensive and optically complex GBR still is a priority 

and great challenge for environmental managers and researchers (Devlin et al., 2015b; Brodie et al., 

2019). Ocean colour sensors, such as MODIS/Aqua, VIIRS and Sentinel-3, provide a cost-effective and 

synoptic monitoring tool for daily to inter-annual water quality assessments of the GBR (Schroeder et 

al., 2012; Petus et al., 2019; Gruber et al., 2020). However, the revisit frequency of current ocean colour 

sensors onboard LEO satellites has hindered the broader understanding of water quality dynamics 

driven by diurnal coastal processes. Meteorological sensors onboard geostationary satellites acquire 

observations at a higher temporal resolution (e.g., 10 minutes) compared to LEO satellites, and have 

encouraged studies on ocean colour at diurnal scales (Neukermans et al., 2012b; Lavigne and Ruddick, 

2018; Dorji and Fearns, 2018). Himawari-8 is a next-generation meteorological sensor onboard a 

geostationary platform launched in July 2014. It provides observations over Australia every 10 minutes, 

with improved spectral, spatial, and radiometric capabilities compared to its predecessors. Although 

ocean colour remote sensing has stringent radiometric and spectral requirements, Himawari-8 offers 

an unprecedented number of observations for the advanced water quality monitoring of the GBR. An 

extensive review (Chapter 1) revealed that there are currently no advanced remote sensing methods 

that have been locally validated for the synoptic monitoring of water quality at diurnal scales in the 

GBR. 

The objective of this thesis was to develop and validate a physics-based algorithm to determine 

the diurnal dynamics of coastal water quality parameters in the GBR from Himawari-8 observations. 

The algorithm was developed with radiative transfer simulations of the Himawari-8 visible and near-

infrared bands, which served as training and testing datasets for a one-step inversion with multi-layer 

perceptron (Chapter 2). The developed inversions were applied to Himawari-8 observations for 

validation against concurrent in situ datasets of CHL, TSS and YEL in the GBR (Chapter 3). The limitations 

of the best-performing algorithm were evaluated (Chapter 4), and the algorithm was then applied to 

investigate the diurnal variability of water quality in the coastal GBR (Chapter 5). The results revealed 

spatio-temporal fluctuations of TSS not previously reported by conventional monitoring methods and 

have advanced our knowledge on water quality dynamics in the GBR. 

 Summary of Algorithm Development 

The present work made a significant contribution to the development of inversion methods for 

ocean colour remote sensing from geostationary satellites. Radiative transfer simulations of the ocean-

atmosphere system were suitable for the development of an advanced physics-based algorithm for 
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coastal water quality retrievals with Himawari-8. A large, representative, and high-quality training 

dataset is the premise of good machine learning algorithms, especially for optically complex problems 

in remote sensing, which is the case for the coastal GBR. The coupled ocean-atmosphere radiative 

transfer simulations provided a large and robust database of the top of atmosphere radiances (PCI9) 

distribution in the Himawari-8 visible and near-infrared bands. The PCI9 were simulated for a wide 

range of solar and observation angles, incorporating diurnal changes in illumination conditions, to 

match those experienced by Himawari-8. In addition, the synthetic IOPs input to the simulations were 

generated by employing bio-optical assumptions regionally tuned for the optical variability of the GBR. 

Moreover, the algorithm’s robustness to input noise was especially advantageous considering 

Himawari-8 does not meet the minimum radiometric requirements of an ocean colour sensor and 

environmental noise, particularly from the atmosphere, can largely impact the retrievals. 

The ANN algorithm developed in this work allowed the direct inversion of PCI9 to ocean colour 

products (CHL, TSS and YEL), without an explicit atmospheric correction procedure. This is of great 

advantage compared to traditional methods based on the inversion of normalized water-leaving 

reflectances, in which the accuracy of the final inversion is subject to the accuracy of the atmospheric 

correction procedure (Schroeder et al., 2007a; Brockmann et al., 2016; Hieronymi et al., 2017). Despite 

Himawari-8 spectral limitations, the ANN retrievals compared well to target outputs from simulated 

testing datasets and provided confidence in the quality of the trained algorithms. These results 

encouraged further employment of developed ANN algorithms to Himawari-8 observations and 

validation against in situ water quality data in the GBR. 

 Summary of Algorithm Validation 

The trained and tested ANN experiments were applied to cloud and glint-free hourly 

aggregated Himawari-8 observations. The derived CHL, TSS and YEL products were validated with an 

extensive database of in situ water quality parameters collected in the coastal GBR. In general, the 

retrieval performances improved by using hourly aggregated Himawari-8 observations (instead of the 

closest 10-minute observation per matchup), corroborating previous studies (Ruddick et al., 2014; 

Murakami, 2016b; Lavigne and Ruddick, 2018). The validation protocol employed careful assessment 

and quality control of in situ measurements and satellite observations, following the extensive 

experience of previous validation exercises in the GBR and in other coastal waters (Doerffer, 2002; 

Schroeder et al., 2018). Employing a rigorous validation protocol is critical considering that the in situ 

datasets were collected in optically complex waters by multiple research agencies, with potentially 

varying sampling methodologies.  
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The moderate performance to estimate CHL and YEL in the coastal GBR were largely associated 

with Himawari-8’s insufficient spectral resolution and the width of the visible bands to resolve their 

overlapping absorption features. Moreover, Himawari-8 may provide insufficient radiometric accuracy 

for CHL and YEL retrievals. Although hourly aggregated observations improved retrieval performances, 

an explicit atmospheric correction may further reduce errors in estimating CHL and YEL from Himawari-

8 in the coastal GBR (Schroeder et al., 2007b). TSS was estimated within the accuracy targets defined 

for ocean colour retrievals with Sentinel-3 in Case 2 waters (Donlon, 2011), particularly for TSS above 

0.1 mg L-1. The present algorithm compares well with those using atmospherically corrected Himawari-

8 observations (Dorji and Fearns, 2018; Ding et al., 2020; Hafeez et al., 2021), indicating the suitability 

of deriving coastal TSS with one-step inversions. Nevertheless, an explicit atmospheric correction 

procedure may improve retrievals for the lowest range of TSS (< 1.0 mg L-1), which are likely affected 

by the low radiometric performance of Himawari-8. 

The algorithm performance was largely dependent on how well the bio-optical model 

represented the local variability of the optical constituents. In this study, a conventional bio-optical 

model based on a global database of phytoplankton absorption properties (Bricaud et al., 1998) was 

employed for CHL parameterization. Thus, the bio-optical models utilised for CHL would benefit from a 

regionalised parameterization, rather than a more generalized assumption, to encompass the optical 

complexity found in the GBR. Improvements in algorithm parameterization would require a large and 

comprehensive database of in situ bio-optical measurements covering the relevant spatial and 

temporal scales of variability associated with coastal processes.  

Despite the efforts of multiple research agencies in collecting valuable water quality data, in 

situ datasets remain scarce over the GBR and tend to be focused on wet season flood events. One 

exception is the LJCO, which provides a consistent and continuous database of bio-optical and water 

quality parameters in the coastal GBR. LJCO is the only facility in the southern hemisphere that 

simultaneously collects in-water and above-water observations specifically for ocean colour validation 

activities. The fortnightly laboratory measurements of TSS, CHL and YEL at LJCO constituted about one-

third of the entire quality-controlled validation dataset available between 2014 and 2018 in the coastal 

GBR. 

However, rigorous protocols need to be followed to reduce uncertainties in in situ 

measurements used for algorithm parameterization and validation in coastal waters. For instance, 

triplicate samples are recommended for the determination of TSS with the gravimetric method, and 

High Performance Liquid Chromatography is preferred over fluorometry for deriving total CHL and 

associated pigments (Mueller, 2003; Hooker et al., 2012). In addition, validation samples should be 

taken in spatially homogeneous waters (Doerffer, 2002), which is especially difficult in coastal and 
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highly transitional waters, such as during flood plumes. Nevertheless, water quality in situ 

measurements have been made available by multiple research agencies with diverse scientific priorities 

employing distinctive sampling and analysis methods. Considerable deviations have been reported 

from individual laboratories when analysing water samples for the measurement of TSS, and a ring-test 

analysis is recommended. In addition, meticulous quality control of multiple datasets is required for an 

accurate parameterization and evaluation of ocean colour algorithms, which is usually carried out with 

the expertise of remote sensing specialists. 

 Summary of Detection Limits 

The qualitative and quantitative limitations of the algorithm developed for TSS were 

investigated at two distinct temporal resolutions: 10-minutes and hourly aggregates. A visual analysis 

revealed that TSS products presented a horizontal striping pattern associated with the instrument 

calibration and severe granulation associated with Himawari-8 radiometric quality and environmental 

noise. The granulated patterns were largely reduced in hourly composites and with the application of 

a boxcar spatial filter, particularly in areas where TSS was below 1 mg L-1. Spatial filtering improved 

visual quality while retaining consistency of products, showing mesoscale features offshore the GBR 

lagoon that were previously veiled by granulation. Additionally, the spatial filtering was efficient for the 

elimination of outliers potentially associated with undetected clouds or cloud edges. However, striping 

correction needs to be further addressed for appropriate ocean colour investigations with Himawari-8 

observations in open ocean areas (Murakami, 2016b; Okuyama et al., 2018).  

Nonetheless, coastal waters with moderate-turbid levels of TSS (> 1 mg L-1) were less affected 

by striping and granulation patterns, at both temporal resolutions investigated. The marine signal over 

coastal and turbid waters may be larger than noise levels and reasonable SNR can be achieved for ocean 

colour applications (Neukermans et al., 2009; Vanhellemont et al., 2014; Kudela et al., 2019), sparing 

the need for aggregating observations. Still, aggregating observations may be useful for decreasing data 

gaps due to transient clouds and cloud shadows (Qi et al., 2017) and may speed up the inversion of 

large Himawari-8 images for operational activities. Thus, noise reduction can be achieved with hourly 

composites of 10-minute Himawari-8 observations, while offering enough observations to capture tidal 

processes. 

The SNR of the Himawari-8 visible and near-infrared bands were quantified over a typical cloud-

free oceanic target. As expected, the SNR of hourly aggregated observations was superior compared to 

the ones calculated for 10-minute observations, confirming prior recommendations (IOCCG, 2012b; 

Vanhellemont et al., 2014; Ruddick et al., 2014). However, the Himawari-8 SNRs were at least 3 times 

lower than the baseline SNR recommended for contemporary ocean colour sensors (IOCCG, 2012a; 
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Muller-Karger et al., 2018). Still, the ANN algorithm for TSS was stable against several levels of noise 

added to the input data, which is suitable for the inversion of the low SNR Himawari-8 observations. 

The application of an explicit atmospheric correction scheme may further improve retrievals and 

reduce noise levels, especially in open ocean waters. Finally, the detection limit of estimating TSS with 

Himawari-8 (0.25 mg L-1) was comparable to the detection limits of TSS determined with the gravimetric 

method (0.4 mg L-1) by multiple laboratories. Despite current limitations, the present algorithm 

developed for Himawari-8 can be confidently applied to retrieve TSS and to investigate diurnal 

processes in the coastal GBR. 

 Summary of Algorithm Application 

Himawari-8 ultra-high temporal resolution of 10 minutes is a striking advantage, compared to 

once/twice-a-day MODIS, Sentinel-3 and VIIRS scanning capabilities. At least 48 images per day can be 

obtained from Himawari-8, which is a fifty-fold increase in observations compared to contemporary 

ocean colour sensors. This chapter assessed Himawari-8 products’ ability to quantify and monitor the 

diurnal variability of water quality in the GBR. In general, Himawari-8 TSS products compared 

remarkably well to concurrent measurements of in situ TSS derived from particulate backscattering 

measurements at LJCO. Significant hourly fluctuations of TSS (5 mg L-1) were shown at LJCO, otherwise 

underrepresented by daily in situ measurements or ocean colour observations. The diurnal fluctuations 

of TSS were primarily associated with the local tidal oscillations and with freshwater discharge from the 

Herbert River. Moreover, Himawari-8 hourly observations allowed the tracking and mapping of the 

Herbert River plume, revealing intricate coastal dynamics driving plume extent and direction. 

Additionally, the plume arrival was visually captured by a webcam installed at LJCO, providing an 

integrated assessment of plume dynamics substantially backed by Himawari-8 spatial observations. 

Although the analysis was carried in one specific site for a few instances, the results confirm 

the ability of using Himawari-8 for improved monitoring of the coastal GBR. Himawari-8 provides an 

unprecedented increase in quantitative observations at spatial scales far exceeding the monitoring 

capabilities currently employed in the GBR. In addition, the Himawari-8 inversion with the ANN 

procedure is fast, taking ~1 minute to retrieve water quality parameters for the entire GBR area, and 

allowing the near-real time dissemination of large volumes of satellite data products at operational 

levels. The second section of this chapter revealed that diurnal changes of TSS > 5 mg L-1 are a persistent 

feature in the inshore and mid-shelf GBR throughout the year. The TSS diurnal changes generally 

exceeded the guideline threshold value of 2.0 mg L-1 for the inshore and mid-shelf GBR, indicating poor 

coastal water quality all year round. However, diurnal changes of TSS were more pronounced during 
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the dry season, particularly in the southern mid-shelf GBR, most likely due to the short temporal scale 

processes, such as tides, winds, and episodic floods. 

 Future Research 

This study demonstrated the potential of a physics-based algorithm to provide accurate water 

quality retrievals from a geostationary sensor in the GBR. Nevertheless, inaccuracies related to sensor 

noise, parameterization of bio-optical models, physical and environmental effects, and the inaccuracy 

of the in-situ measurements themselves are required to be addressed for improved retrievals. 

Moreover, the accuracy of the method will be influenced by the physical effects not included in the 

simulations, such as wind-dependent whitecaps, polarization, bottom reflectance, and fluorescence. 

The inclusion of these effects in the radiative transfer simulations are likely to improve the accuracy of 

the estimated coastal water quality parameters and should be tested in future work. More specifically, 

the accuracy for deriving CHL and YEL from Himawari-8 may be improved if considering fluorescence 

(Dall’Olmo and Gitelson, 2005) and employing an explicit atmospheric correction (Schroeder et al., 

2007a). 

Although the present method does not employ an explicit atmospheric correction, the NIR 

band (865 nm) of Himawari-8 was chosen for the algorithm. However, the sensitivity analysis 

demonstrated that turbid waters such as over flood plumes (TSS ~ 100 mg L-1), or during blooms of 

Trichodesmium (McKinna et al., 2011) may contribute to the PCI9 in the NIR band. Alternatively, the 

Himawari-8 short-wave infrared (SWIR) bands (1610 and 2257 nm) could be added for improved 

retrievals because no signal from the ocean is detected at this band (Ruddick et al., 2014; Vanhellemont 

and Ruddick, 2015). The Himawari-8 SWIR bands scans at a 2 km spatial resolution (whereas VNIR bands 

at 1 km) and may be too coarse to resolve the atmospheric signal in coastal waters. However, it has 

been demonstrated that the Himawari-8 SWIR bands improve the atmospheric correction and 

subsequent TSS retrievals over turbid waters at 2 km spatial resolution (Dorji and Fearns, 2018; Ding et 

al., 2020; Hafeez et al., 2021). In addition, the use of SWIR bands could be especially critical for 

atmospheric correction if water quality retrievals in clear and open ocean waters are to be explored 

from Himawari-8. 

Future methods should consider including the effects of whitecaps, sun glint, bottom 

reflectance, CHL and YEL fluorescence, BRDF, polarization and the detection of large algal blooms. Swell 

waves and resultant whitecaps and bubbles may largely affect ocean colour retrievals at fine scale 

spatial resolutions (< 30 m) (Stramska and Petelski, 2003; Dierssen, 2019). A simple parameterization 

based on wind-speed (Cox and Munk, 1954) is suggested to account for whitecaps at the Himawari-8 

bands at 0.5 to 1 km spatial resolution. Sun glint daily covers large areas of the tropical oceans from the 
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geostationary point of view, masking the spectral variability from the ocean. The effects of sun glint at 

the Himawari-8 PCI9 are already considered in the radiative transfer simulations employed in this 

study. Therefore, a sun glint correction is suggested (IOCCG, 2012b) for accurate retrievals near the 

edges of the sun disk and for reduced data gaps, allowing more observations to be available during 

summer in the entire GBR. 

Although Himawari-8 broad VNIR bands are centred near the YEL and CHL fluorescence peaks, 

increased spectral and radiometric resolutions are required to accurately estimate fluorescence from 

PCI9 (Ahn et al., 2012). A different version of the MOMO code includes inelastic scattering calculations 

(Hollstein et al., 2010; Bismarck and Fischer, 2013). This could be employed for assessment of inelastic 

scattering effects on the performance of water quality retrievals from Himawari-8. Likewise, a version 

of the MOMO code which accounts for the polarization is available, and including its effects could 

improve water quality retrievals (Hollstein and Fischer, 2012). Moreover, floating mats of macroalgae, 

such as Sargassum and Ulva have been successfully tracked and mapped with Himawari-8 (Chen et al., 

2019). A parameterization of the model-based algorithm for detecting different species of algal blooms 

in the coastal GBR is suggested. 

It has been previously demonstrated that Himawari-8 derived TSS compared reasonably well 

against TSS concurrently derived from MODIS/Aqua and Landsat-8/OLI sensors (Dorji and Fearns, 

2018). An inter-comparison exercise against concurrent products from Sentinel-3 OLCI sensor would 

further enlighten the strengths and limitations of the present algorithm developed for Himawari-8. In 

addition, the relationship between TSS and turbidity (as an alternative to particulate backscattering) 

can be established from continuous measurements at LJCO and serve for deriving continuous TSS to 

validate Himawari-8 products. 

This study briefly demonstrated that the inshore and mid-shelf GBR may experience very rapid 

fluctuations in water quality associated with underlying coastal processes and weather events. 

However, a multivariate statistical analysis between Himawari-8 TSS and concurrent oceanographic 

observations would help to determine the drivers of short temporal scale water quality fluctuations in 

the GBR (Bierman et al., 2011; Kitsiou and Karydis, 2011; Ha et al., 2020). For instance, diurnal 

measurements of tidal ranges, wind speed and direction, salinity, turbidity, and absorption, etc., are 

available at LJCO for this task. In addition, the Herbert River discharge is measured 13 km upstream the 

river mouth and would be a useful dataset to elucidate the influence of freshwater plumes at LJCO. 

Himawari-8 provides a sufficiently large (2015-2021) dataset and with enough temporal 

resolution to investigate diurnal to inter-annual trends and patterns of water quality in the GBR. High-

frequency dynamics of water quality could be explored with Hovmöller diagrams of Himawari-8 TSS 
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(every 10 minutes) across a specific latitude or longitude. Himawari-8 derived TSS is comparable to and 

provides superior temporal coverage to GOCI (every 1h) derived TSS (Ding et al., 2020).  

This study provides evidence that the Marine Water Quality Metric based on annual averages 

of TSS need to be reviewed for more accurate assessments of water quality in the GBR. Concerns have 

been previously expressed by the Reef Plan Independent Science Panel (Reef Plan ISP) about the spatial 

and temporal insensitivities of the metric associated with annually averaging data over large areas. This 

is not surprising, considering daily ocean colour observations may introduce significant bias on 

calculating long term trends (Eleveld et al., 2014) and may not reflect the actual coastal dynamics of 

the GBR. The water quality metric currently used for the Reef Report Card is derived from a 

biogeochemical model that assimilates daily atmospherically corrected surface reflectance from 

Sentinel-3A (Australian and Queensland Governments, 2020). In this context, the water quality 

products derived at diurnal scale from Himawari-8 offer an opportunity to: reassess the current 

methodology employed for tracking and mapping flood plumes (Petus et al., 2019); to calculate the 

frequency that the GBR’s ecosystems are exposed to freshwater discharge and pollutants (Alvarez-

Romero et al., 2013; Gruber et al., 2020); and to increase the data available for validation and 

assimilation into biogeochemical and ocean colour models currently being employed for the GBR (Baird 

et al., 2016; Baird et al., 2020). 

Himawari-8 has been useful for monitoring and tracking large patches of harmful algal blooms 

in Lake Taihu in China, at diurnal scales, with comparable performance to GOCI and MODIS/Aqua (Chen 

et al., 2019). The floating algae index derived every 10 minutes from Himawari-8 revealed more 

frequent events than those observed by GOCI at hourly temporal resolution. Thus, Himawari-8 ultra-

high frequency measurements have the potential to improve coastal monitoring at scales relevant for 

environmental management and emergency response. Nevertheless, a tailored parameterization of 

the bio-optical models are required to contemplate the macroscopic optical properties of distinctive 

algal blooms (Ebert, 2009). In addition, Himawari-8 bands may be sufficient to estimate terrestrially 

sourced YEL, offering the opportunity to map the freshwater extent into the GBR (Schroeder et al., 

2012) at diurnal scales. 

In summary, this thesis has demonstrated the potential of Himawari-8 observations for 

mapping and quantifying the water quality over the entire GBR at diurnal to seasonal scales. It is 

remarkable that accurate and relevant information could be extracted from Himawari-8, considering it 

is not a dedicated ocean colour sensor and presents challenging limitations for marine retrievals. 

However, the results presented in this thesis are a clear and significant improvement on the scarce 

information provided by contemporary ocean colour sensors such as MODIS/Aqua, VIIRS and Sentinel-

3. Additionally, the algorithm presented in this study can be directly employed to Himawari-9 
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observations, which is identical to and planned to succeed Himawari-8 by 2029. Similarly, the Advanced 

Meteorological Imager (AMI) on board the GEOKOMPSAT-2A as well as the GOCI-II (GEOKOMPSAT-2B) 

are currently observing Australia and East Asia with a payload comparable or superior to Himawari-8/9. 

The next-generation Himawari mission (Himawari-10) is in the planning phase and additional channels 

in the visible range, as well as improved sensitivity and spatial resolution are a possibility. Based on the 

lessons learned here and on recent efforts in the field (Neukermans et al., 2009; IOCCG, 2012b; Ruddick 

et al., 2014; Kwiatkowska et al., 2015; Murakami, 2016b; Lavigne and Ruddick, 2018), the 

recommendations for the next-generation GEO meteorological sensors to improve their ocean colour 

applications would include: 

• Additional bands in the visible spectrum, such as 412 and 443 nm for resolving the 

overlapping absorption features of CHL and YEL and between 660-710 nm for retrieval 

of CHL and fluorescence and absorption in turbid waters 

• Sufficient SWIR bands for turbid water atmospheric correction with compatible spatial 

resolution to the visible bands 

• Narrower bandwidths (~10 nm) for the visible channels 

• Increased nominal spatial resolutions (~300 m) for coastal waters 

• Higher radiometric sensitivity (i.e., SNR 1000: 1) and resolution (> 12 bits) 

• Solar diffuser to perform on-board calibration and to track the radiometric stability of 

the visible and near-infrared sensors 

• Extended lifetime (~10 years) and mission continuation to provide measurements for 

long-term assessments of trends and patterns 

These characteristics would largely advance the capabilities of ocean colour algorithms 

developed for geostationary sensors, allowing more accurate retrievals in coastal waters at diurnal 

scales. Hopefully, a constellation of geostationary satellites with sufficient capabilities for ocean colour 

remote sensing will be progressively available and a synergistic approach could exponentially increase 

the data coverage for water quality monitoring in the GBR. In this context, the present study provides 

an advanced algorithm and a prospect of potential applications to be developed when ocean colour 

sensors onboard geostationary platforms become a reality for Australia. 
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