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Abstract  26 

Algal turfs are an abundant and highly productive component of coral reef ecosystems. 27 

However, our understanding of the drivers that shape algal turf productivity across studies 28 

and among reefs is limited. Based on published studies we considered how different factors 29 

may shape turf productivity and turnover rates. Of the factors considered, depth was the 30 

primary driver of turf productivity rates, while turnover was predominantly related to turf 31 

biomass. We also highlight shortcomings in the available data collected on turf productivity 32 

to-date; most data were collected prior to global coral bleaching events, within a limited 33 

geographic range, and were largely from experimental substrata. Despite the fact turfs are a 34 

widespread benthic covering on most coral reefs, and one of the major sources of benthic 35 

productivity, our understanding of their productivity is constrained by both a paucity of data 36 

and methodological limitations. We offer a potential way forward to address these challenges.  37 
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1.0 Introduction 48 

Globally, millions of people directly rely on highly productive, shallow-water coral 49 

reef ecosystems (Moberg and Folke 1999; Woodhead et al. 2019). This productivity is 50 

harnessed by people in the form of fishable biomass (Teh et al. 2013; Samoilys et al. 2017; 51 

Lau et al. 2019; Robinson et al. 2019b), with fishes acting as conduits that shunt primary 52 

productivity up the food chain (Russ and St. John 1988; Rogers et al. 2018; Morais et al. 53 

2020). It is posited that primary productivity and its utilisation by herbivorous fishes are two 54 

of the eight core ecosystem processes that are fundamental to the functioning of coral reefs 55 

(Brandl et al. 2019). If the goal of coral reef scientists and managers is to sustain the 56 

functioning of coral reef ecosystems into the future, especially in productive states that 57 

continue to provide key services to people (Hughes et al. 2017; Bellwood et al. 2019a), then 58 

understanding the nature of primary productivity in these ecosystems is clearly important.   59 

The highly productive nature of coral reefs is epitomised by the diminutive algal turfs, 60 

small <2 cm tall multispecies assemblages of algae (Fig. 1b), that cover the hard substratum 61 

in these ecosystems (Adey 1998; Connell et al. 2014; Tebbett and Bellwood 2019). Indeed, it 62 

has been widely suggested that these algal turfs are the major contributors to benthic 63 

productivity on coral reefs (e.g. Adey and Steneck 1985; Carpenter 1985; Hatcher 1988; 64 

Klumpp and McKinnon 1989). Productivity is considered herein as the biomass (g Carbon) 65 

produced by algal turfs in a given area over a given time (m-2 day-1). This contribution of 66 

algal turfs to productivity is set to increase as global climate change, and a suite of other 67 

stressors, reduce coral cover on reefs, leading to an inevitable increase in algal turf cover 68 

(Holbrook et al. 2016; Brown et al. 2017; Ellis et al. 2019; Koester et al. 2020; Vercelloni et 69 

al. 2020). However, while the highly productive nature of algal turfs piqued the interest of 70 

formative reef scientists (e.g. Odum and Odum 1955; Wanders 1976; Hatcher 1981; Adey 71 
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and Steneck 1985; Carpenter 1985; Russ 1987), we currently lack a full understanding of 72 

how algal turf productivity varies across previous studies and different coral reefs.  73 

A broad suite of drivers have been linked to the productivity of algal turfs (Klumpp 74 

and McKinnon 1989; Hatcher 1990). These potential regulators of algal turf productivity are 75 

likely to include light availability (Carpenter 1985; Klumpp and McKinnon 1989), 76 

hydrodynamic activity (Roff et al. 2019), nutrients (Williams and Carpenter 1988; Sura et al. 77 

2019) and sediment loads (Tebbett et al. 2018a). All such drivers vary among reefs. In 78 

addition to these drivers, the methods employed for quantifying algal turf productivity (e.g. 79 

the substratum algal turfs were grown on) may also shape our understanding of this process. 80 

However, to-date, the studies that have quantified algal turf productivity on coral reefs have 81 

not been considered together in a comparative framework, limiting our understanding of how 82 

and why algal turf productivity varies across studies and among coral reefs. This comes at a 83 

time when anthropogenic activity is altering the strength of many biophysical drivers on the 84 

world’s reefs (Harborne et al. 2017; Hughes et al. 2017; Williams et al. 2019; França et al. 85 

2020), with algal turfs set to play an ever more central role in the functioning of coral reef 86 

ecosystems into the future (Bellwood et al. 2019b; Tebbett and Bellwood 2019).  87 

Considering the rapidly changing nature of reefs, it is surprising that we currently lack 88 

a clear understanding of how and why the productivity of a core group of benthic primary 89 

producers varies among reefs and across past studies. The aim of this study, therefore, is to 90 

gather available data on coral reef algal turf productivity and assess how it varies among 91 

coral reef locations. In doing so, we will explicitly consider how the available data in this 92 

research field, and the methods employed to quantify algal turf productivity to-date, may 93 

have shaped our understanding of algal turf productivity. To achieve these aims, this study 94 

will utilise a robust analytical framework to bring together data from disparate studies and 95 

provide an insight into the cross-study drivers of algal turf productivity on coral reefs.  96 
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2.0 Methods 97 

2.1 Productivity database compilation 98 

 To assess how algal turf productivity varies across coral reefs we first had to compile 99 

a database of productivity measurements from previous studies. This was achieved by 100 

undertaking an extensive search of the literature. Initially, we undertook a formal search in 101 

Google Scholar using the search terms ‘("algal turf" OR "epilithic algal") AND (production 102 

OR productivity OR growth) AND "coral reef"’. This search yielded 4010 results in April 103 

2020 (not including patents or citations). To check how comprehensive Google Scholar was 104 

we also ran this search through Scopus and Web of Science. These two search engines only 105 

yielded a total of 1945 and 78 results, respectively. We initially filtered the 4010 studies 106 

returned by Google Scholar for any potentially relevant studies based on the title and abstract, 107 

yielding a pool of 105 potentially relevant studies. To ensure that our search was 108 

comprehensive, and that we did not overlook any, more cryptic, studies, we also undertook 109 

two general searches of the literature in Google Scholar using the search terms ‘algal turf 110 

productivity’ and ‘algal turf productivity coral reefs’ and filtered the 1000 most relevant 111 

studies in each case. This process yielded an additional 26 potentially relevant studies. Based 112 

on our prior knowledge in this research field there were also 5 additional studies that we were 113 

aware of and thought may contain relevant information on algal turf productivity. These 5 114 

additional studies were added to the pool of potentially relevant studies for a total of 136 115 

studies. It is important to note that these 5 additional studies were not found in the searches 116 

because they were relatively old and published in unusual journals, conference proceedings 117 

or in a PhD thesis. These studies would have been overlooked without extensively reading 118 

the relevant literature.  119 
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Each of the potentially relevant studies was then evaluated against a specific set of 120 

criteria to determine if it could be included in our analysis. These criteria were: a) that 121 

quantification of productivity was performed in-situ on the reef; b) details of the sampling 122 

month/depth/specific location were provided; c) the study quantified ‘productivity’ directly 123 

(N.B. data on ‘yield to herbivores’ [i.e. the amount of algal biomass removed by herbivores] 124 

was not included; see Russ, [1987] for details of how productivity and yield to herbivores 125 

differ) in g Carbon m-2 day-1 (or in a form that could be converted into this unit of measure); 126 

d) the substratum that turfs were grown on had been conditioned to some extent on the reef; 127 

and e) the algal community examined fell within the general definition of small <2 cm tall 128 

multispecies assemblages of algae on a hard benthic substratum, i.e. algal turfs (Steneck and 129 

Dethier 1994; Connell et al. 2014; Tebbett and Bellwood 2019).  130 

We applied the above criteria to ensure that: a) algal turf productivity was reflective 131 

of natural conditions on the reef and the relevant drivers at the study location (i.e. 132 

productivity was not measured under laboratory conditions where these drivers were altered); 133 

b) suitable information was available to assess potential drivers underpinning the productivity 134 

values recorded (especially depth and sampling month); c) we did not confuse ‘yield to 135 

herbivore’ measurements as ‘productivity’ measurements; d) we focused on the units most 136 

widely used for primary productivity on coral reefs (Hatcher 1988; Klumpp and McKinnon 137 

1992; Russ and McCook 1999); e) values were not biased by initial algal turf settlement 138 

dynamics (Diaz-Pulido and McCook 2002; Fricke et al. 2011); and f) we only examined 139 

‘algal turfs’ rather than macroalgae or productivity of entire reef communities. It should be 140 

noted that our definition of ‘algal turfs’ includes non-algal cyanobacteria (see Borowitzka et 141 

al. 1978; Diaz-Pulido and McCook 2002) and the methods commonly used to quantify algal 142 

turf productivity (e.g. scraping algal biomass from coral blocks) is likely to include 143 

contributions from endolithic algae and cyanobacteria in the surficial layers of the substratum 144 
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matrix (e.g. Odum and Odum 1955; Tribollet et al. 2002). After this filtering process we were 145 

left with a pool of just 17 studies (14 were derived from the initial formal search, 2 from the 146 

general search and 1 study that we were aware of). Our search and filtering procedures were 147 

based on PRISMA protocols (Moher et al. 2009) with a flow-diagram provided in the 148 

supplementary material (Fig. S1).  149 

 From our pool of relevant studies, we then extracted data on algal turf net primary 150 

production (g Carbon m-2 day-1). Where possible we also extracted data on turnover or 151 

calculated this based on standing biomass estimates provided in the studies. Here turnover 152 

was considered as the ratio of production (g C m-2 day-1) to standing biomass (g C m-2) 153 

measured in % day-1 (Odum and Odum 1955). From each study, data were sourced from 154 

tables or, where necessary, extracted from graphs using webplot digitizer (Rohatgi 2019) (full 155 

details of data extraction procedures for each study are reported in supplemental Table S1). In 156 

addition, all mean ± SE values used in the dataset are provided in Table S3 and the raw data 157 

extracted from each study is presented in Figure S2.  158 

 159 

2.2 Explanatory variable compilation 160 

 In addition to extracting productivity and turnover data from each study, we also 161 

extracted information on available, relevant, variables to assess why and how productivity 162 

data vary. Firstly, we extracted information on the water depth in which each observation was 163 

quantified. Water depth was considered because it is a key environmental gradient that is 164 

strongly correlated with light availability (Roberts et al. 2019), hydrodynamic exposure 165 

(Fulton and Bellwood 2005), sediment loads (Purcell 2000) and herbivory (Cooper et al. 166 

2019), all of which have been linked to algal turf productivity levels (Carpenter 1985, 1986; 167 

Tebbett et al. 2018a; Roff et al. 2019).  168 
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Secondly, seasonal influences were considered by quantifying the sampling month for 169 

each observation reported in the study. Seasonal influences were standardised between 170 

northern and southern hemispheres as the month since first winter month (i.e. December = 1 171 

in northern hemisphere locations, June = 1 in southern hemisphere locations). The yearly 172 

seasonal cycle has previously been related to algal turf productivity as both temperature and 173 

day length (light availability), vary during this cycle which influences productivity (Carpenter 174 

1985) as well as herbivory (Van Rooij et al. 1998; Longo et al. 2019).  175 

Thirdly, hydrodynamic exposure of the study location (windward, leeward or 176 

protected [lagoonal]) was noted based on information reported in each study. Again, 177 

hydrodynamic exposure has previously been linked to algal turf productivity (Roff et al. 178 

2019), and it influences other factors such as algal turf sediment loads (Tebbett et al. 2017a), 179 

herbivory (Bejarano et al. 2017), turbidity/light availability (Whinney et al. 2017) and mass 180 

transfer to algal turfs (Carpenter and Williams 2007). 181 

Fourthly, the reef identity was recorded. This reef identity factor accounted for the 182 

lack of spatial independence present in the dataset due to multiple measurements coming 183 

from the same reefs. This reef identity factor also concatenated the range of broader-scale 184 

drivers (e.g. sea surface temperature, water clarity, proximity to land, sediment loads, 185 

herbivore abundance, hydrodynamic exposure and light availability) that vary among reefs 186 

(e.g. Cheal et al. 2012; Fabricius et al. 2014; Assis et al. 2018; Tebbett et al. 2018b; Heenan 187 

et al. 2020) and could influence algal turf productivity levels over broader spatial scales. 188 

While concatenating these variables into a single categorical factor loses information on what 189 

specific variables may be important, it can effectively account for the lack of spatial 190 

independence in the database. In addition, limitations with the data, and the high degree of 191 

co-linearity among explanatory variables, precluded the consideration of these broader scale 192 

factors in more detail. 193 
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Fifthly, the study identity was recorded. As above, this study identity factor accounted 194 

for the lack of independence present in the dataset due to multiple observations from the 195 

same studies. In addition, the study identity factor concatenated the potential effects of a 196 

range of ‘study-level’ factors (e.g. the quantification method, study substratum, and the 197 

conditioning time of substrata) that could influence productivity values. Notably, different 198 

methods have been used to quantify algal turf productivity including respirometry techniques 199 

and caging techniques, therefore, differences between these techniques, may have shaped 200 

productivity estimates. The surfaces algal turfs are grown on, as well as how long 201 

experimental surfaces are conditioned for, can also substantially influence their community 202 

composition (Harlin and Lindbergh 1977; Borowitzka et al. 1978; Hixon and Brostoff 1985) 203 

with potential impacts on the community’s productivity. While noting this factor, we also 204 

specifically recorded the year each observation was taken, as well we the substratum (natural 205 

coral reef benthos, block/tile cut from a dead coral skeleton, or artificial tile) from which 206 

algal turf productivity was quantified, to facilitate more nuanced insights into the algal turf 207 

productivity research conducted to-date. 208 

Finally, standing biomass of the algal turfs in g C m-2 was extracted for each 209 

observation (details of how are provided in Table S1). Unfortunately, this factor could only 210 

be quantified for turnover data because it was not available for all productivity observations. 211 

While standing biomass is inextricably linked to turnover estimates it represents an important 212 

explanatory variable because it provides information on the efficiency of algal turf 213 

productivity as biomass increases. Essentially, if turnover is related in some way to algal turf 214 

biomass this suggests that the factors associated with changes in algal turf biomass impact the 215 

productivity efficiency of turfs.  216 

 217 
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2.3 Boosted regression trees 218 

To examine the relative importance of each explanatory factor in predicting algal turf 219 

productivity or turnover, as well as to examine the nature of the relationship between key 220 

explanatory variables and productivity/turnover, we used XGBoost (Chen and Guestrin 221 

2016), an Extreme Gradient Boosted Regression Tree. We used this method because Gradient 222 

Boosted Regression Trees are a machine learning technique that can yield fast, accurate, 223 

predictions while efficiently modelling nonlinearity and multilevel interactions in data that 224 

may not be suitable for more traditional analysis (Elith et al. 2008). XGBoost in particular, 225 

utilises an algorithm that has been specifically designed to be efficient, flexible and robust, 226 

outperforming algorithms used by other Gradient Boosted Regression Trees (Chen and 227 

Guestrin 2016). For the XGBoost models we used Gamma distributions and treated algal turf 228 

productivity estimates (g C m-2 day-1) or turnover (% day-1) as the dependent variable and 229 

examined these against the potential explanatory variables.  230 

Prior to running the XGBoost models to make predictions, two tuning steps were 231 

performed following Morais and Bellwood (2018). Firstly, the models were fitted repeatedly 232 

with combinations of model parameters (learning rate, maximum tree depth, gamma and 233 

subsampling rate) that were varied systematically. The combination of parameters that 234 

yielded the minimum root mean square error (rmse) was subsequently recorded (productivity 235 

model: learning rate = 0.4, maximum tree depth = 7, gamma = 0.1, and subsampling = 0.5; 236 

turnover model: learning rate = 0.2, maximum tree depth = 7, gamma = 0, and subsampling = 237 

0.5), while all other parameters were kept at their default values. During the second round of 238 

tuning, we fitted the models repeatedly with combinations of parameters drawn randomly 239 

from a uniform distribution bounded by the recorded parameters from the first tuning round ± 240 

10 %. Again, we recorded the parameters that resulted in the lowest rmse (productivity 241 

model: learning rate = 0.413, maximum tree depth = 8, gamma = 0.093, and subsampling = 242 
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0.543; turnover model: learning rate = 0.188, maximum tree depth = 6, gamma = 0.003, and 243 

subsampling = 0.493), however, the second tuning step did not improve rmse substantially in 244 

either case as it only changed from 0.329 to 0.333 and from 2.288 to 2.172 for the 245 

productivity and turnover models, respectively.  246 

The accuracy and precision of our tuned XGBoost models were subsequently 247 

evaluated using a cross-validation procedure. To do this, the productivity and turnover 248 

datasets were randomly split into training and testing datasets. The training datasets were 249 

used to refit the models to generate coefficients for prediction and were based on 80 % of the 250 

data. The testing datasets were used to contrast with predictions from the training dataset and 251 

were based on the remaining 20 % of the data. We calculated a bias metric by subtracting 252 

each algal turf productivity/turnover value predicted by the respective XGBoost model from 253 

its actual value (an accurate model has a bias value at or close to zero). Precision of the 254 

models was assessed using prediction R2 values which were calculated by fitting a linear 255 

regression model between the raw data values and the predicted values and recording the R2 256 

from this regression. These cross-validation steps were repeated 1000 times in each case.  257 

Finally, predictions of algal turf productivity as well as turnover were calculated using 258 

our tuned and cross-validated XGBoost models across all explanatory variables. To generate 259 

a distribution of algal turf productivity and turnover predictions we bootstrapped the models 260 

for 1000 iterations and subsequently sampled the median predicted value ± 95 % highest 261 

density intervals. The relative importance of different predictor variables, in accounting for 262 

variation of algal turf productivity and turnover estimates, were assessed against the expected 263 

importance of variables given chance alone (i.e. if all variables were equally involved in 264 

explaining variation within the dataset then each variable would account for 20 % or 16.7 % 265 

of the variability explained by the productivity or turnover XGBoost models, respectively). 266 
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All XGBoost modelling was performed in the software R (R Core Team 2019) using the 267 

XGBoost (Chen et al. 2019) package. 268 

2.4 Methodological considerations 269 

In addition to assessing how and why algal turf productivity observations vary among 270 

coral reefs, we wanted to further consider how the methods used to quantify algal turf 271 

productivity could have shaped our understanding. Specifically, we wanted to consider the 272 

implications of quantifying algal turf productivity on experimental tiles/coral blocks, rather 273 

than natural reef substrata. Especially, considering recent research that has linked the 274 

accumulation of sediment in algal turfs to the growth of turfs (Clausing et al. 2014; Tebbett et 275 

al. 2018a; Tebbett and Bellwood 2020). We initially sourced data on sediment accumulation 276 

in natural algal turfs (n = 20) and in algal turfs on conditioned coral blocks (n = 43) from 277 

Tebbett et al. (2018a). Note the data contained within this previous study represented a direct 278 

comparison between natural reef substrata and coral blocks as all sediments were collected 279 

from the same location (Lizard Island), in the same habitats (the reef flat between Palfrey and 280 

South Island), at the same sites (two sites), during the same sampling period. 281 

Initially, we specifically tested for differences in sediment loads in algal turfs on 282 

natural substrata versus coral blocks using a Bayesian generalised linear model (GLM) with a 283 

Gamma distribution and log link. Substratum identity (natural or block) and site identity were 284 

fitted as interacting fixed effects. The GLM was based on weakly informative priors, 3 285 

chains, a warmup of 500 iterations, a thinning value of 3 and 3000 iterations. Model 286 

convergence, fit and assumptions were assessed using trace plots, autocorrelation plots, rhat 287 

plots, posterior predictive checks, effective sample sizes and residual plots. These tests 288 

suggested the chains were well mixed and had converged on a stable posterior, and that no 289 

patterns were present in the residuals. We then predicted potential algal turf productivity (mm 290 
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growth day-1), as a function of sediment load, on coral blocks and natural reef substrata. To 291 

do this we utilised a Bayesian model, relating potential algal turf productivity to sediment 292 

loads, formulated in Tebbett and Bellwood (2020), and fed each sampled sediment load to 293 

this model to estimate productivity (mm growth day-1) for that specific sediment load. It 294 

should be noted that the term ‘productivity’ applies to increases in mass, however, in the case 295 

of this model the term ‘productivity’ is applied to increases in turf length. All statistical 296 

analyses were performed in the software R (R Core Team, 2019) using the rstan (Stan 297 

Development Team 2018) and rstanarm (Goodrich et al. 2018) packages.  298 

 299 

3.0 Results 300 

3.1 Dataset 301 

After examining the relevant literature on coral reef algal turf productivity our final 302 

dataset consisted of 214 productivity estimates and 155 turnover estimates from 17 and 11 303 

studies, respectively. While we placed no spatial or temporal limitations on the inclusion of 304 

studies in this dataset there were some noticeable patterns. Firstly, despite observations being 305 

distributed around several of the world’s coral reef regions, the vast majority (54 % and 63 % 306 

of productivity and turnover observations, respectively) were from the Great Barrier Reef 307 

(Fig. 1a). Secondly, the restricted temporal distribution of these observations was marked, 308 

with 80 % and 94 % of productivity and turnover data, respectively, collected prior to 1990 309 

(Fig. 1c). Finally, most of the productivity and turnover observations (92% and 98 %, 310 

respectively) were based on experimental substrata (coral blocks or artificial tiles), rather 311 

than studying natural reef substrata (Fig. 1d).  312 
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 313 

Figure 1 a) The distribution of algal turf productivity and turnover observations from coral 314 

reefs around the world in our dataset. b) A short productive algal turf community on a 315 

shallow-water coral reef at Orpheus Island on the Great Barrier Reef (photograph: CHR 316 

Goatley). c) The temporal distribution of algal turf productivity and turnover observations in 317 
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our dataset. d) The frequency by which algal turf productivity and turnover were examined 318 

on different substrata in our dataset.  319 

 320 

3.2 Drivers of algal turf productivity and turnover 321 

The formulated XGBoost models resulted in a median bias that was close to zero 322 

(0.26 and 0.349 for the productivity and turnover models, respectively) suggesting that the 323 

models were relatively accurate. Furthermore, the median R2 of the final models were 0.69 324 

and 0.87 (for the productivity and turnover models, respectively), suggesting that the models 325 

were relatively precise. These XGBoost models revealed that some of the explanatory 326 

variables were far more important than others in accounting for patterns in algal turf 327 

productivity and turnover. In terms of productivity, depth was the single most important 328 

variable and explained 47.0 % (median) (39.2 % - 55.0 %; upper and lower 95 % highest 329 

density intervals) of the variation in productivity accounted for in the XGBoost model (Fig. 330 

2a). In addition, study site (reef) explained more variation in algal turf productivity than 331 

expected by chance, accounting for 24.1 % (19.3 % - 30.3 %) of the variation explained. 332 

Standing algal turf biomass was the single most important variable for explaining turnover 333 

patterns, with this variable accounting for 51.5 % (46.3 % - 58.1 %) of the variation in 334 

turnover explained by the XGBoost model (Fig. 2b). The remaining explanatory variables all 335 

remained below the relative importance level expected by chance in both productivity and 336 

turnover models.  337 

 338 
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 339 

Figure 2 The relative importance of potential explanatory variables in accounting for a) algal 340 

turf productivity and b) turnover estimates from coral reefs. Black dots indicate the median 341 

relative importance value, while the range presented represents the 95% highest density 342 

intervals based on bootstrapping predictions 1000 times. The vertical black line indicates the 343 

relative importance expected for each variable by chance. 344 

 345 

 346 

 With the key explanatory variables identified, partial dependency plots provided an 347 

insight into how these variables related to algal turf productivity and turnover (Figs. 3, 4). In 348 

terms of the relationship between productivity and the key explanatory variables there was a 349 

clear decrease in algal turf productivity as depth increased. Notably, productivity remained 350 

relatively high down to 5 m, a depth which aligns well with the end of the reef crest habitat 351 

and the beginning of the reef slope habitat, before decreasing sharply and remaining 352 

relatively low down to 15 m (Fig. 3a). While the general nature of this relationship between 353 

depth and productivity appeared to be similar across sites (e.g. Fig. 3a), there was a distinct 354 

difference in the magnitude of productivity levels among sites (Fig. 3). Specifically, predicted 355 

productivity values from the reef in Tague Bay, St Croix (the only Caribbean site in this 356 

dataset) were approximately twice the productivity values from all other reef sites, which 357 
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were generally very similar (Fig. 3b). Therefore, while decreases in algal turf productivity 358 

with depth appear to be a universal pattern, the magnitude of the productivity values may be 359 

dependent on the site in question.  360 

 361 

 362 

 363 

Figure 3 Partial dependency plots of the relationship between algal turf productivity and the 364 

key explanatory variables that accounted for more variability than expected: a) water depth 365 

and b) study site. All other variables were kept at their mean values and the most common 366 

category of categorical variables were used for plots (note in panel (a) that Davies Reef and 367 
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Tague Bay Reef were both equally common in the dataset [n = 55]). The black line (a) and 368 

the black points (b) represent the median predicted values, the coloured ribbons (a) and the 369 

point ranges (b) denote the 95% highest density intervals, and the green points (b) represent 370 

100 randomly selected predicted values for each reef based on an extreme gradient boosted 371 

regression tree model (n = 1000 model iterations).  372 

 373 

 374 

 375 

The relationship between algal turf turnover rates and standing biomass was inverse in 376 

nature. Turnover rates appear to be very high at low standing biomass levels but decreased 377 

markedly across the range of algal turf biomass levels examined (Fig. 4). However, the most 378 

precipitous decrease occurred at the lowest algal turf biomass levels (<10 g C m-2), with 379 

turnover rates decreasing by more than half across this range alone (Fig. 4). This pattern 380 

suggests that algal turf productivity rates and standing biomass levels do not scale linearly, 381 

with a marked decrease in the ability of turfs to replace existing biomass as standing biomass 382 

increases.   383 

 384 

 385 
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 386 

Figure 4 Partial dependency plot of the relationship between algal turf turnover and the key 387 

explanatory variable (standing algal turf biomass). All other variables were kept at their mean 388 

values and the most common category of categorical variables were used for the plot. The 389 

black line denotes the median predicted values, while the coloured ribbon denotes the 95% 390 

highest density intervals, based on an extreme gradient boosted regression tree model (n = 391 

1000 model iterations).  392 

 393 

 394 

3.3 Methodological considerations 395 

 There were marked differences in the sediment loads accumulated in algal turfs on 396 

natural substrata compared to conditioned algal turf-covered coral blocks (Fig. 5a). Sediment 397 

loads were more than 10-fold higher in natural algal turfs (2031.1 [1292.9 – 3238.4] g m-2; 398 

median ± 95% highest posterior density intervals) relative to algal turfs on coral blocks 399 

(188.9 [68.5 – 527.9] g m-2) (Fig. 5a; Table S2). The Bayesian model used to test these 400 

differences revealed that substratum type did influence sediment load as the 95 % credibility 401 

intervals did not overlap one (Table S2). There was no evidence that site had any effect on 402 
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these sediment loads (Table S2). The differences in accumulated sediment loads translated to 403 

clear differences in algal turf productivity when we used a second Bayesian model to predict 404 

potential algal turf productivity on each substratum (Fig. 5b). Predicted potential algal turf 405 

productivity was more than two-fold higher on conditioned coral blocks (0.44 ± 0.02 mm 406 

day-1) relative to natural substrata (0.19 ± 0.01 mm day-1). Together, these results suggest that 407 

algal turfs grown on coral blocks/tiles accumulate lower sediment loads, potentially yielding 408 

higher algal turf productivity rates.  409 

 410 



 

21 
 

 411 

Figure 5 Differences in a) sediment loads, and b) estimated productivity, of algal turfs 412 

growing on natural substrata and coral blocks. Black points and range represent the mean 413 

predicted values and 95% credibility intervals; coloured dots represent 1000 random draws 414 

from the posterior distribution of Bayesian models to show the uncertainty around the 415 

estimates. The sediment data was sourced from (Tebbett et al., 2018a).  416 

 417 

 418 
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4.0 Discussion 419 

Algal turfs are a key component of coral reef ecosystems and can underpin their high 420 

productivity (Adey and Goertemiller 1986; Hatcher 1988; Steneck 1997) and fuel 421 

herbivorous trophic pathways (Russ and St. John 1988; Kelly et al. 2017; Morillo-Velarde et 422 

al. 2018). While algal turf productivity may be shaped by a range of factors (e.g. Carpenter 423 

1985; Klumpp and McKinnon 1989; Roff et al. 2019), of the factors we considered, water 424 

depth was by far the most important in structuring this productivity on coral reefs. Moreover, 425 

our consideration of algal turf turnover revealed that algal turf productivity and standing 426 

biomass do not scale linearly together in a one-to-one relationship. This suggests that the 427 

efficiency of algal turf productivity decreases as standing biomass increases, i.e. higher 428 

biomass reduces the capacity of algal turfs to replace existing biomass. However, it is 429 

important to note that in undertaking this meta-analysis we also revealed a distinct paucity of 430 

data on algal turf productivity rates from many coral reef regions around the world. 431 

Furthermore, we highlighted that the methods employed to assess algal turf productivity on 432 

reefs may have shaped our understanding of this process. The implications of these 433 

methodological limitations need to be carefully considered when quantifying algal turf 434 

productivity on coral reefs in the future. 435 

4.1 Productivity 436 

4.1.1 Depth 437 

The depth at which algal turfs exist on coral reefs clearly has a marked influence on 438 

their productivity. In this respect, our meta-analysis strongly supports the conclusion of 439 

previous studies that have highlighted a decrease in turf productivity with depth (e.g. Klumpp 440 

and McKinnon 1989; Carpenter 1990; Russ 2003), as well as variation in other qualities of 441 

algal turf communities such as turf yield-to-herbivores, cover and community composition 442 
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(Brokovich et al. 2010; Fricke et al. 2014; Magalhães et al. 2015). The clear decline in algal 443 

turf productivity as water depth increases is likely to be driven by a variety of key factors 444 

including light availability (Brokovich et al. 2014; Fricke et al. 2014; Roberts et al. 2019), 445 

wave-driven hydrodynamic activity (Fulton and Bellwood 2005), herbivory rates (Cooper et 446 

al. 2019) and algal turf sediment loads (Purcell 2000), that all correlate with water depth on 447 

coral reefs to varying extents. Of these factors, light availability is likely to be one of the 448 

most important. This is because, the rate of algal turf productivity is constrained as light 449 

levels decrease because algal turf photosynthesis rates are closely tied to irradiance levels 450 

(Carpenter 1985; Klumpp and McKinnon 1989). Interestingly, previous studies have 451 

highlighted that algal turfs are well adapted to high light intensity as rates of photosynthesis 452 

increase steadily with irradiance levels, showing few signs of photo-inhibition (Carpenter 453 

1985; Klumpp and McKinnon 1989). This lack of photo-inhibition may underpin how algal 454 

turf communities maintain their highest productivity levels at the shallowest water depths.   455 

While depth mediated light availability appears to shape algal turf productivity rates 456 

directly (Carpenter 1985; Klumpp and McKinnon 1989), it may also influence productivity 457 

rates indirectly by shaping the community composition of algal turfs. Specifically, different 458 

algal species make up the algal turf community across depth gradients, potentially due to 459 

different tolerances for light levels (Anderson et al. 2005; Fricke et al. 2014; Magalhães et al. 460 

2015). In addition, herbivory is known to decrease substantially as depth increases 461 

(Brokovich et al. 2010; Cooper et al. 2010), and this factor can also shape the community 462 

composition of algal turfs (Scott and Russ 1987; Hixon and Brostoff 1996; McClanahan 463 

1997). This is important because the nature of algal turf communities, in terms of the species 464 

that inhabit them, as well their structure and diversity, is likely to influence biomass and 465 

productivity levels, as per-unit biomass and productivity differs between algal species and 466 

functional groups (Rogers and Salesky 1981; Steneck and Dethier 1994; Bruno et al. 2006; 467 
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but see Williams and Carpenter 1990). As such, variation in algal turf community 468 

composition across depth/light gradients could also influence net productivity rates.  469 

 470 

4.1.2 Site effects 471 

Apart from factors associated with the depth at which algal turfs exist, there was some 472 

variability in productivity among sites. There are two notable points that can be drawn from 473 

these results. Firstly, there appeared to be remarkably little variation in algal turf productivity 474 

among the vast majority of reef sites. This suggests that the broader scale factors that vary 475 

among reefs such as temperature, light intensity and nutrient inputs may not have a 476 

substantial influence on algal turf productivity for many reefs. However, secondly, algal turf 477 

productivity from the Tague Bay Reef site was approximately two-fold higher than all other 478 

sites. These data suggest that a factor, or factors, operating at Tague Bay Reef led to far 479 

higher productivity levels at this site. Tague Bay, is located on Saint Croix in the Caribbean, 480 

and it has been suggested that Caribbean reefs function quite differently from other reef 481 

systems due to factors such as lower species and functional diversity, geographic isolation, 482 

and more severe anthropogenic impacts (Bellwood et al. 2004; Roff and Mumby 2012; Bruno 483 

et al. 2019; Siqueira et al. 2019). Unfortunately, determining which factors may be 484 

accounting for these higher productivity levels is difficult, as Tague Bay is the only site from 485 

the Caribbean in our dataset, and all productivity values at this location were quantified on 486 

the same experimental substrata, using the same methods. Therefore, it is unclear if these 487 

productivity estimates were driven by a methodological difference between the studies at this 488 

site vs other studies, a factor associated with the reef in Tague Bay, or a broader Caribbean 489 

phenomenon.  490 

 491 
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4.2 Turnover 492 

Turnover was clearly related to algal turf biomass, highlighting a loss of productivity 493 

efficiency as biomass increased. Importantly, variation in algal turf biomass is associated 494 

with variation in the length and density of turf filaments (i.e. an alteration of the algal turf 495 

canopy structure) (Purcell 2000; Tebbett and Bellwood 2020), as well as the community 496 

composition of algal turfs (Scott and Russ 1987; Hixon and Brostoff 1996; Harris et al. 497 

2015). Essentially, algal turfs exist on a gradient from short productive algal turfs (SPATs) to 498 

long sediment-laden algal turfs (LSATs) (Goatley et al. 2016; Tebbett and Bellwood 2020). 499 

SPATs are maintained by the constant grazing pressure of herbivorous fishes, as well as other 500 

herbivorous organisms, which remove algae, reduce sediment loads (Carpenter 1986; Steneck 501 

1997; Goatley et al. 2016; Steneck et al. 2018; Humphries et al. 2020), and constrain the 502 

community of algal species to ones that tolerate high grazing (Sammarco 1983; Scott and 503 

Russ 1987; Hixon and Brostoff 1996; McClanahan 1997). However, when the strength of 504 

herbivory is reduced, through factors such as herbivore removal (Heenan et al. 2016; Steneck 505 

et al. 2018), or the accumulation of sediments that weaken herbivore feeding pressure 506 

(Tebbett et al. 2017b; McAndrews et al. 2019), this can result in an increase in algal turf 507 

length/biomass (Goatley and Bellwood 2013; Fong et al. 2018; Humphries et al. 2020) and/or 508 

changes in algal taxonomic composition (Scott and Russ 1987; Hixon and Brostoff 1996), 509 

resulting in LSATs.  510 

Across this gradient in algal turf condition from SPATs to LSATs, a number of 511 

aboitic factors within the turf canopy varies, including flow speeds and mass transfer 512 

(Carpenter and Williams 1993, 2007), light levels available for photosynthesis via self-513 

shading (Williams and Carpenter 1990) and sediment loads (Purcell 2000; Latrille et al. 514 

2019). As turf biomass increases this suite of factors may act together to reduce productivity 515 

in the basal portion of the turf community because these factors limit light and the exchange 516 
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of nutrients. This results in a turf community that is reliant on the apical portion of filaments 517 

for most of the production, i.e. the filament sections that are above the sediment layer and 518 

exposed to high water flow and light. As such, reductions in algal turf turnover rates may be 519 

driven by changes in the conditions within the turf community as biomass increases.  520 

In addition to the abiotic factors described above, the community composition of the 521 

algal turf may be related to the productivity efficiency of the entire turf community as per-522 

unit productivity rates can differ between algal species (Rogers and Salesky 1981; Steneck 523 

and Dethier 1994; Bruno et al. 2006; but see Williams and Carpenter 1990). However, 524 

unfortunately, our understanding of the specific nature of the relationships between sediment 525 

accumulation, canopy structure, productivity and algal turf community composition are 526 

currently limited (reviewed in Tebbett and Bellwood [2019]), making it difficult to determine 527 

the relative importance of community composition changes, compared to abiotic conditions 528 

within the turf canopy, in driving variation in turnover. However, exploring these 529 

relationships in more detail offers fertile ground for further future research.  530 

4.3 Methodological considerations and future studies 531 

Despite evidence that algal turf coverage has increased on coral reefs in recent 532 

decades (Toth et al. 2014; Holbrook et al. 2016; Ellis et al. 2019; Kennedy et al. 2020; 533 

Koester et al. 2020), and algal turfs are likely to be an abundant benthic covering on coral 534 

reefs in the future (Bellwood et al. 2019a; Tebbett and Bellwood 2019), the paucity of 535 

available data on their productivity is concerning. Unfortunately, beyond the foundations laid 536 

by the pioneering research of formative reef scientists (e.g. Carpenter 1986; Klumpp and 537 

McKinnon 1992; Steneck 1997; Russ and McCook 1999) there appears to have been 538 

remarkably little quantification of algal turf productivity in-situ on coral reefs within the last 539 

three decades, within the scope of our meta-analysis. It is important to note that this result is 540 
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not because of our search parameters and paper filtering methods, as the same units of 541 

measure (g C m-2 day-1) are just as applicable to studies of productivity today as they were 542 

historically. Unfortunately, the exact reason behind the limited quantification of algal turf 543 

productivity in-situ on coral reefs in recent decades is unclear. It may be due to logistics 544 

(limited access to respirometery chambers or field time/access). However, it probably reflects 545 

a shift in emphasis, with attention focussed on documenting declines rather than 546 

understanding the system.    547 

Regardless of the reasons behind the limited quantification of algal turf productivity, 548 

the amount of available data is sobering. Especially, considering the extent to which coral 549 

reef research has grown recently, the technological advances that have assisted this research, 550 

the strength and frequency of environmental disturbances (e.g. global coral bleaching events) 551 

that are now shaping this ecosystem (Cheal et al. 2017; Hughes et al. 2018; Williams et al. 552 

2019), and the inevitable increase in algal turf area on reefs (Bellwood et al. 2019a; Tebbett 553 

and Bellwood 2019; Vercelloni et al. 2020). If we are to understand the functioning of coral 554 

reef systems into the future, it appears to be a logical imperative to enhance our knowledge 555 

about the productivity of one of the most widespread primary producers; algal turfs. To 556 

stimulate further research into the quantification of algal turf productivity on coral reefs, this 557 

may require the development of new technologies that are both relatively cheap and easy to 558 

use in the field (see below for further discussion), as well as greater collaboration between 559 

research groups with access to such technologies, or with access to areas where turf 560 

productivity has not been quantified. In addition, exploring potential links between algal turf 561 

productivity and other reef processes, that are viewed as inherently valuable (e.g. fishable 562 

biomass [Lau et al. 2019; Woodhead et al. 2019]), may help highlight the importance of turfs 563 

on coral reefs, and in-turn, encourage the study of turfs in other research fields.       564 
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Furthermore, it must be noted that our understanding of algal turf productivity to-date 565 

appears to have been shaped substantially by the methods used, especially the use of 566 

experimental substrata, and their interactions with sediments. Overwhelmingly, artificial tiles 567 

or coral blocks have been used to quantify in-situ algal turf productivity (>92 % of 568 

observations in our dataset used these methods). Such tiles or blocks can be readily deployed, 569 

removed and quantified, and offer exact replicate units. However, these surfaces only 570 

represent ‘potential productivity’ at a location as they are not natural. Indeed, experimental 571 

surfaces such as coral blocks accumulate far lower sediment loads than the natural 572 

surrounding reef substratum (Fig. 5). This may be due to: 1) the elevation of tiles/blocks 573 

above the substratum making them more exposed to hydrodynamic activity, 2) ‘edge effects’ 574 

and/or 3) enhanced fish grazing (Duran et al. 2018; Latrille et al. 2019; Tebbett et al. 2020). 575 

The influence of these factors is likely to be relatively consistent across tiles, meaning that 576 

the patterns of algal turf productivity reported in prior studies are valid in relative terms. 577 

However, in terms of absolute productivity levels, we may have systematically overestimated 578 

productivity values for coral reef algal turfs. There is a clear need to estimate algal turf 579 

productivity on natural reef substrata more widely.  580 

In terms of estimating algal turf productivity in-situ on natural reef substrata this may 581 

involve the use of specially designed incubation chambers (e.g. Miller et al. 2009; Tait and 582 

Schiel 2010; Murphy et al. 2012; Dellisanti et al. 2020), boundary layer approaches (McGillis 583 

et al. 2011; Takeshita et al. 2016), or PAMs (Silveira et al. 2015). Indeed, the use of the 584 

Community In Situ Metabolism ‘CISME’ units appears to offer a particularly promising 585 

avenue for future research (Murphy et al. 2012; Dellisanti et al. 2020). However, it must be 586 

noted that the methods outlined above can be limited by constraints associated with expense, 587 

technical difficulties, and time. All would hamper our ability to quantify productivity 588 

efficiently across broader spatial scales. To address this issue, and expand this research field 589 
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further, such methods may be used to establish relationships between easily measured 590 

universal traits (sensu Bellwood et al. 2019b), such as algal turf length/density or 591 

accumulated sediment load, and algal turf productivity rates. Essentially, mechanistic 592 

relationships could be established between these traits and algal turf productivity, allowing 593 

for the estimation of productivity from more-easily, and cheaply, measured universal traits 594 

(as for the length and biomass production relationships established in reef fishes e.g. Morais 595 

and Bellwood [2020]). If such relationships were established, this would allow productivity 596 

on natural reef substrata to be widely estimated and studied, allowing more nuanced insights 597 

into the functioning of coral reefs going forward. 598 

 599 

5.0 Conclusions 600 

In this study we identified water depth and standing algal turf biomass as important 601 

drivers that shape algal turf productivity and turnover on coral reefs, respectively. This 602 

strongly supports the conclusions of past studies (e.g. Klumpp and McKinnon 1989; 603 

Carpenter 1990; Russ 2003). However, we also uncovered potential limitations in our 604 

understanding of these ecosystem processes, and our approaches to measuring them. This 605 

comes at a time when climate change is changing the status-quo for coral reefs (Hughes et al. 606 

2017; Williams et al. 2019), and when more people than ever before are depending directly 607 

on the productivity that coral reefs provide (Newton et al. 2007; Teh et al. 2013; Hicks et al. 608 

2019). Into the future it appears likely that people will have to inceasingly depend on algal 609 

turf-covered reefs (Bellwood et al. 2018; Tebbett and Bellwood 2019), particularly as many 610 

reefs already support algal turf cover of >50% (Vroom 2011; Harris 2015; Aued et al. 2018; 611 

Bierwagen et al. 2018; Emslie et al. 2019). As such, renewed research into the quantification 612 

of algal turf productivity, particularly on natural reef substratum, will be important. This 613 
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research will help us to understand how coral reefs will function in the future and the extent 614 

to which they can continue to provide the services that people require.   615 
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