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A B S T R A C T   

Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle 
production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on 
tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The 
existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of 
backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle 
components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, 
feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven 
review identified the following knowledge gaps in the published literature on northern Australian beef cattle 
production cycle: 

1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and 
productivity of beef cattle; 

2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of 
fibrous and phosphorus deficient pasture feedbase during backgrounding; 

3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early devel-
opment of rumen papillae and enhance early weaning of calves; 

4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle 
for carcass and meat eating quality traits prior to feedlotting; 

The review concludes by recommending future research in whole genome sequencing to target specific genes 
associated with meat quality characteristics in order to explore the development of breeds with superior genes 
more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phos-
phorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for 
backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable 
production of beef with a healthy composition, tenderness, taste and eating quality.   

Introduction 

Beef production in Northern Australia is reliant on an extensive 
grazing system in a geographical region dominated by prolonged 
droughts and highly variable rainfall (Mwangi et al., 2022). Thus, sus-
tainable and profitable beef herd productivity is driven by strategies that 
adequately manage recovery, response and resilience to persistent 
drought. Bowen and Chudleigh (2021a) suggested key strategies for 
improving and sustaining extensive livestock production systems that 
are drought resilient and more profitable across northern Australia’s 

beef enterprises. These include drought-preparedness (Rolfe et al., 
2021), optimal steer sale age, breeder body condition and herd struc-
ture, effective phosphorus supplementation (Bowen et al., 2020) and 
improvement in steer nutrition through tropically adapted perennial 
legume grass pastures (Mwangi et al., 2021a; Mwangi et al., 2021b). 
Fordyce et al., (2021) defined the primary business measure of live-
weight production for beef cows in northern Australia and reported that 
liveweight production in breeding beef cows was primarily governed by 
available nutrition and mating outcome. Bowen & Chudleigh (2021b) 
utilised a farm-management economics framework to conduct a 
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contemporary assessment of the profitability and resilience of alterna-
tive livestock enterprises in the semiarid rangelands of northern 
Australia. They reported that meat sheep and rangeland meat goat en-
terprises produced the greatest rate of return on total capital where 
existing small ruminant enterprises in the semiarid rangelands of 
Queensland were profitable and resilient alternatives. Based on 
contemporary prices, they also found that meat sheep and rangeland 
meat goat enterprises produced the greatest rate of return on total 
capital. (Pearson, Filippi and Gonzalez, 2021) investigated the rela-
tionship between satellite-derived vegetation indices and liveweight 
changes of beef cattle in northern Australia. Their results suggested that 
the remote monitoring of pasture availability, liveweight and liveweight 
change of breeding herds under extensive grazing conditions could be 
used to increase productivity and land management in extensive beef 
production (Pearson, Filippi and Gonzalez, 2021). However, in order to 
specify management guidelines for sustainable grazing of regional land 
types retired from cultivation, Paton et al., (2021) suggested the need for 
assessing the productivity and sustainability of beef production from 
brigalow grazing lands, sown pasture growth and carrying capacity. 

In 2021, the Organisation for Economic Co-operation and Develop-
ment (OECD) projected that an 11% global population increase by 2030 
will support a 14% increase in global meat consumption (OECD/FAO, 
2021). A projected two million tonne increase in global beef consump-
tion by 2024 has major implications for the Australian beef industry 
which contributes 4% of global beef production (MLA 2020)(MLA 
2021). Genetic and nutritional improvements throughout the Australian 
beef production cycle will underpin the industry’s ability to meet pro-
jected demand. As one of the major global meat producers, in 2020 
Australia was the seventh highest beef producing country, and the sec-
ond highest exporter of beef after Brazil (MLA, 2020), (MLA 2021). The 
beef cattle industry makes a significant contribution to the Australian 
economy, accounting for 23% of total gross farm production value in 
2019–2020, and 23% of total export value (MLA, 2020). In 2019–2020 
the gross value of the Australian beef cattle herd accounted for 23% of 
total farm value, at $15.1 billion (MLA, 2020). At present, the national 
beef cattle population is 23 million head, occupying approximately 50% 
of Australian farms, and 75% of agricultural land (MLA, 2020). The 
national beef cattle herd is largely distributed in northern Australia 
across Queensland, and Western Australia and the Northern Territory, 
which hold 43% and 16% respectively (MLA 2021). In 2017, the 
Queensland beef herd comprised 1.1% of the global beef population, and 
in 2018 it accounted for 8% of beef exports globally (DAFF 2021; MLA 
2020,2021b). Cattle in northern Australia are bred for ectoparasite and 
heat resistance, and predominant breeds include Brahman, Drought-
master, and Santa Gertrudis, which are well suited to the harsh envi-
ronmental conditions but produce a different meat compared to breeds 
used in temperate operations (Greenwood, Gardner and Ferguson, 
2018). There are over 10,000 beef production operations in Northern 
Australia, accounting for approximately 60% of the national cattle herd 
(Greenwood, Gardner and Ferguson, 2018). Regardless of the increased 
geographical size of Northern beef systems, their net production value is 
similar to their Southern counterparts, which utilise more productive 
sown pastures and increased market access. A significant increase in the 
Eastern Young Cattle Indicator from 428c/kg to 1,031c/kg since 2011 
has been largely driven by climate factors and strong demand in the 
restocker market, fuelled by beef producers trying to rebuild their herds 
following drought, despite a significant proportion of Australia 
remaining drought declared (Australian Government - Department of 
Agriculture 2021; MLA 2021; Nason, 2021). 

Australian beef production systems occupy over 200 million hectares 
(PricewaterhouseCoopers 2021), ranging from extensive pasture based 
systems in semi-arid and tropical rangelands, to intensive systems on 
irrigated pastures and feedlots (Yapp et al., 2001). Variation in annual 
rainfall characterises beef production in the Northern beef industry 
which relies on summer rainfall, in contrast to the Southern beef in-
dustry with year-round rainfall (Keywood, Emmerson and Hibberd, 

2016). Despite differences in rainfall seasonality, both industries rely on 
climate as the single most important productivity factor (The Australian 
Beef Sustainability Framework, 2021). Challenges in the Northern beef 
industry stem from a limited ability to finish cattle and meet critical 
mating weight within the ideal timeframe, poor reproduction rates, poor 
feed conversion rates, variable water availability (DAFF 2021), and poor 
quality nutrition. Nutrition is affected by phosphorus and nitrogen 
deficient soils (Hopkins & Sullivan, 2021; Bowen et al., 2020) and un-
improved native pastures (Chilcott et al., 2020). The Australian drought 
conditions are likely to intensify in frequency, length and portion of land 
covered, reducing land to an unproductive desert-like mass, which poses 
a challenge to future beef production (DAFF 2021). 

Meat & Livestock Australia, an independent research and develop-
ment body, has extensively funded research into genetic improvements 
in the beef cattle industry. Findings are regularly made available to 
producers to help them meet production targets, turn off a high quality 
product, and meet consumer demands in a range of markets (MLA 
2021). Increased access to technologies allows beef producers to 
implement management strategies based on proven science, leading to 
increased sustainability and product consistency. The Estimated 
Breeding Values (EBV), a tool used by beef producers to make more 
informed decisions about sire selection by objectively predicting the 
heritable traits that will be passed onto progeny (Yapp et al., 2001), has 
been in use by the beef industry. As bulls contribute 50% to their 
progeny’s genetics, it is important to select sires based on predicted 
genetic potential rather than phenotypic appearance only. The use of 
EBV in Australian beef production prioritises achieving high carcass 
weight and quality, based on seven estimated traits: carcass weight (kg), 
eye muscle area (sq. cm), rib fat (mm), rump fat (mm), retail beef yield 
(%), intramuscular fat (IMF) (%) and shear force (kg) (MLA 2021). In 
combination with artificial insemination, it allows producers to insem-
inate a large number of cows with the same bull’s semen, which directly 
influences both the number of females served and the genetics used 
(MLA 2021). Crossbreeding with Bos taurus cattle in northern beef en-
terprises has been found to influence pre- and post-weaning growth, 
feedlot performance, and meat tenderness (FutureBeef, 2018). 

The selection and management of genetically superior breeding stock 
that are well adapted to the environment whilst maintaining meat 
quality specifications, strongly influence productivity in the northern 
beef industry (FutureBeef, 2018). Nutritional strategies play a crucial 
role in animal performance and meat quality, and the inclusion of 
improved legumes in pasture-based grazing systems prior to feedlot 
finishing, has been found to improve the flavour, tenderness and juici-
ness of meat (Mwangi et al., 2019). Nutrition is a largely limiting factor 
in the northern beef industry, and the use of hormonal growth promo-
tants (HGP) is a widely adopted practice which speeds up liveweight 
gain so that animals can be sold at a younger age (FutureBeef, 2019). 
However, the use of HGP is banned in the European Union and Tas-
mania, and treated cattle are noted to be of a variably reduced eating 
quality, based on Meat Standards Australia sensory testing (Business 
Queensland, 2021; MLA, 2019). 

The primary objective of this paper is to review the published liter-
ature of the northern Australian beef cattle production cycle compo-
nents of maternal nutrition, foetal development, bull fertility, post-natal 
weaning, backgrounding, feedlotting, rumen microbes and carcass 
quality as influenced by genetics and nutrition. The aim is to identify 
knowledge gaps for future research aimed at improving beef production. 

Maternal nutrition, foetal development & bulls 

Northern Australian native pastures are characterized by poor 
nutritive value, low digestibility and high fibre content (Suybeng et al., 
2019; Suybeng et al., 2020; Suybeng et al., 2021a; Suybeng et al., 
2021b). McCosker et al., (2020) monitored the reproductive perfor-
mance of commercial northern Australia beef breeding herds and found 
that substantial opportunities to increase reproductive performance 
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exist, if the causes of variation are able to be identified and alleviated. 
Investigations of puberty, foetal development and associations with 
heifer- and steer-production traits (Johnston et al. 2009), reproductive 
performance (Allen et al., 2020; Burns et al., 2013), early mating fertility 
(Cullen et al., 2016) and prediction of mortality and conception rates of 
tropical beef cattle genotypes in northern Australia (Mayer, McKeon and 
Moore, 2012) all depend on maternal nutrition. (Roberts et al., 2016) 
reported that feeding improved pastures during the fifth and sixth 
months of gestation extended female progeny production. Their study 
also revealed that protein supplementation during late gestation pro-
duced heifers that were heavier from the onset of weaning to their 
calving period, and returned higher pregnancy rates than heifers from 
unsupplemented cows. (Funston, Larson and Vonnahme, 2010) 
demonstrated that supplementation during the last trimester improved 
heifer productivity by reducing pubertal age and increasing pregnancy 
rates. Pre-partum protein supplementation of first lactation heifers 
resulted in an increased re-conception rate (Schatz, 2015). 

Rodríguez et al. (2021) administered inorganic copper to pregnant 
cows in late gestation resulting in an increase in progeny liveweight and 
average daily gain (ADG) until 75 days of age with no difference in 
finished steer carcass traits. Phosphorus supplementation compensates 
for increased bone reserve mobilisation in lactating cows, as production 
decreases if reserves are depleted (Dixon et al., 2020). Whilst supple-
mentation aims to increase production, nutritional restriction could 
boost production when applied at the right stage of foetal development 
(Funston, Larson and Vonnahme, 2010). 

Roberts et al. (2016) also found that supplementing cows in late 
gestation with less alfalfa produced progeny with increased body con-
dition score that were 10 kg heavier at 5 years of age compared to their 
peers fed higher amounts of alfalfa. In contrast to Roberts et al. (2016), 
many other studies have reported that nutritional restriction had a 
detrimental effect on the placenta vasculature, architecture, organo-
genesis (Funston, Larson and Vonnahme, 2010; Long et al., 2021), foetal 
growth and birth weights (Funston, Larson and Vonnahme, 2010); 
(Vonnahme, Tanner and Hildago, 2018). (Vonnahme, Tanner and Hil-
dago, 2018)found that the placenta and foetus within multiparous cows 
express an increased capacity to cope with nutritional restriction and 
stress than first-calf heifers. This is due to the function of altered uterine 
vasculature resulting from previous pregnancies enhancing the cow’s 
ability to support future foetuses. The effect of maternal nutrition on 
reproductive traits of bull calves revealed a significant impact on total 
sperm defects (Polizel et al., 2021). This suggests that pre-partum sup-
plementation strategies can be implemented to manipulate bull calf 
fertility and epigenetic factors that alter progeny gene expression. 

Offering pre-pubertal bulls an enhanced plane of nutrition can lead 
to improved metabolic state that subsequently initiates an increase in 
the secretion of gonadotrophins and advances the onset of puberty 
(Kenny & Byrne, 2018). The beneficial effects of this unrestricted diet for 
6 months or longer are not reversed by a moderate dietary restriction 
(Kenny & Byrne, 2018). It was found that feeding approximately 130% 
of maintenance energy and protein from 10 to 30 weeks of life led to an 
increase in testicular weight and production of sperm at 74 weeks, 
compared to bulls fed 100% of a maintenance energy and protein ration 
(Thundathil, Dance and Kastelic, 2016). Further research by (Thunda-
thil, Dance and Kastelic, 2016) suggested that supplementing bulls 
during puberty does not compensate for nutrient restriction early in life, 
which is a key determinant of pubertal age, size of testis when sexual 
maturity is reached, and sperm production capacity. 

Residual feed intake (RFI) is a moderately heritable trait that ex-
presses the difference between actual feed consumed and predicted feed 
intake based on maintenance and growth; the lower the RFI value the 
more efficient the animal is ( Heida et al., 2021; Johnson et al., 2019; 
(Terry et al., 2021). Wang et al. (2012) reported that a large proportion 
of the bulls selected for RFI may fail to meet the minimum requirements 
for sperm motility. Johnson et al. (2019) found that bulls with a higher 
RFI had a larger scrotal circumference (SC) and corresponding sperm 

production as well as attaining puberty early when compared with low 
RFI bulls (Komatsu et al., 2015). 

Post-natal to weaning phase 

It is essential for calves to receive 1.5 L of colostrum within the first 
12 hours of life, because it contains immunoglobulins, fat, proteins, 
minerals and vitamins necessary for immune system development and 
vigour (Homerosky et al., 2017; Kessler, Bruckmaier and Gross, 2020). 
dos Santos et al., (2017) found that neonatal calves with poor vigour and 
an inability to suckle had subsequent poor weight gain and increased 
mortality risk. Increased suckling frequency in the first thirty days of life 
has been linked to higher ADG (Pires et al., 2021). Since the early 1990s 
(Miller et al. 1990; (Kerridge, Gilbert and Coates, 1990); McCaskill 
1990; McLean et al. 1990; Kerridge 1990; (Wardsworth et al., 1990)) 
right through to 2020 (Bowen et al. 2020), low cost strategies for 
overcoming phosphorus deficiency in grazing systems based on both 
native and sown pastures in northern Australian beef production sys-
tems had been explored as a means of improving post-natal growth and 
average daily gains of beef cattle weaners. Wang et al. (2019) reported 
that conventional weaning based on age, typically from 180 to 210 days 
of age, decreases efficiency of production in the beef cattle industry 
(Wang et al., 2019). Weaning stress may have detrimental effects on the 
appetite of calves, ultimately affecting feed consumption, immune sys-
tem and weight gain (Wang et al., 2019). Mattioli et al. (2020) inves-
tigated the effect of pre-weaning dam mineral supplementation 
including selenium, copper, zinc and Vitamins A and E. They demon-
strated that supplementation prevented a decrease in the total antioxi-
dant status of calves, improved antibody response and subsequent calf 
productivity at weaning (Mattioli et al., 2020). 

A key factor in the feed intake and weight gain of calves is di-
gestibility of solid feed (Wang et al., 2019). Calves weaned on the basis 
of age may not have complete rumen development and thus poor 
roughage digestibility (Wang et al., 2019). Wang et al. (2019) reported 
that calves consuming 750grams of solid feed per day had a greater 
antioxidant capacity, compared to those consuming 500grams. This 
increased antioxidant capacity can translate into enhanced ADG, dry 
matter intake, and feed efficiency. Improving the digestibility of 
pre-weaning calves through nutrient absorption by enhancing the 
development of rumen papillae has been investigated by Malau-Aduli 
et al., (2020) and Diao, Zhang and Fu, (2019). Strategies to improve 
rumen papillae development include but are not limited to, increasing 
available volatile fatty acids such as butyrate, altering the particle size of 
the diet and supplementation with probiotics (Malau-Aduli et al., 2020; 
Diao, Zhang and Fu, 2019; McCurdy et al., 2019). 

Recent research into the effects of supplementing encapsulated cal-
cium butyrate to pre-weaning calves (Malau-Aduli et al., 2020; 
McCurdy et al., 2019) evaluated ADG, chest girth, wither height, body 
length and body condition score and found that supplemented calves 
weighed on average, nine kilograms more and had an ADG that was 0.1 
kg higher than the unsupplemented group (Malau-Aduli et al., 2020). 
The bodyweight (BW) of calves is moderately influenced by maternal 
genetic predisposition of the dam because the maternal heritability of 
BW is 0.42 in beef cattle (Cortés-Lacruz et al., 2017). Calves of low birth 
weight have been found to be significantly slower in postpartum growth 
compared to calves of high birth weight (Cortés-Lacruz et al., 2017; 
(Greenwood and Cafe, 2007)). Approximately half of the difference in 
ADG during feedlotting has been explained through calves of low birth 
weight versus a high birth weight (Greenwood and Cafe, 2007). 

Backgrounding 

Backgrounding is a post-weaning feeding and growing program that 
produces cattle suitable to enter feedlots at approximately 280–400 kg 
(Mwangi et al. 2021a; Peel, 2003; Thomson & White, 2006). Back-
grounding nutrition strategies support frame and muscle development 
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as opposed to fattening (Mwangi et al. 2021b), and facilitate year-round 
supply of stocker cattle to feedlots (Gaughan et al., 2018; Groves, 2020). 
Poor management practices at calf processing and weaning may lead to 
increased disease incidence in feedlots (Groves, 2020). Bovine Respi-
ratory Disease (BRD) negatively impacts carcass traits including ribeye 
area, marbling, tenderness, ADG, and final carcass weight (Vaughn 
et al., 2019; (Terry et al., 2021). Amat et al. (2020) found that treating 
calves with a single intranasal probiotic containing Lactobacillus strains 
increased their resistance and resilience to BRD pathogens (Holman 
et al., 2015). Limiting feed intake and restricting energy can prolong 
backgrounding, increases carcass weight potential by encouraging 
compensatory growth during finishing (Mwangi et al., 2019), but results 
in lower marbling (Johnson & DiCostanzo, 2017). However, if feed 
limitation causes weight loss, compensatory growth does not occur 
(Mwangi et al., 2019). Nutritional management during backgrounding 
influences ADG in stocker cattle, and programs metabolism and skeletal 
muscle characteristics and development in feeder cattle, impacting meat 
yield and quality (Vaughn et al., 2019). 

Chibisa & Beauchemin (2018) found that the inclusion of early 
maturing corn silage up to 90% of dry matter intake (DMI) in back-
grounding diets was a low cost feed alternative for barley silage with no 
loss to production and quality. Starch content of feed often exceeds small 
intestinal absorptive capacity, which has led to the formulation of diets 
that will increase ruminal starch fermentation, but increased dietary 
fermentable energy is linked to an increased risk of metabolic disorder 
development (Brake & Swanson, 2018). High-quality proteins like glu-
tamic acid have been found to aid small intestinal starch digestion, and 
could be a beneficial inclusion in corn-based diets that would provide 
opportunity to increase intramuscular fat deposition (Brake & Swanson, 
2018; Moriel, 2018). Van der Wal, Zeltwanger and DiCostanzo, (2019) 
found that including a molasses-based urea supplement in back-
grounding diets increased DMI but had no effect on ADG, resulting in 
decreased FCE. Therefore, sugar supplementation may replace corn in 
pasture based backgrounding to increase DMI of long fibre roughage. 

Feed conversion ratio (FCR) expresses the amount of feed required to 
produce 1 kg of liveweight (Heida et al., 2021; (Terry et al., 2021)). A 
feedlot study by (Fox, Tedeschi and Guiroy, 2001) found that a 10% FCR 
increase results in a 43% increase in profit, whilst a 10% ADG increase 
resulted in an 18% profit increase. A fibre utilisation study found that 
dietary inclusion of exogenous fibrolytic enzymes (EFE) increased bac-
terial attachment and stimulated microbial populations to enhance the 
digestion of cellulose, xylan and corn silage (Adesogan et al., 2019), but 
its effect is limited by enzyme degradation and individual variation 
(Arriola et al., 2017). Another trial included expansion-like proteins, 
which induced cell-wall relaxation, disrupted and weakened cellulose 
fibres, thus enhancing hydrolysis using cellulases and hemicellulases 
(Cosgrove, 2000; Georgelis, Nikolaidis and Cosgrove, 2014; Kim et al., 
2012; Silveira & Skaf, 2016). The combined use of EFE and expansins 
increased cellulose and hemicellulose hydrolysis to 5 times more than if 
used singularly (Bunterngsook et al., 2015; (Kim et al., 2012); (Liu, Ma 
and Zhang, 2015)). 

Feedlots 

Dietary Protein 

Cowley et al. (2019) proposed that by including minimum crude 
protein (CP) content and consequently overfeeding nitrogen, a low-cost 
and low-risk finishing diet would be produced. In North America, 
wet-corn distillers grain by-products were included as a cheaper source 
of protein and energy in finishing diets to replace cottonseed and soy-
bean meal. The low rumen degradable protein (RDP) content of corn 
was subsidised by non-protein nitrogen (NPN) supplementation gener-
ating a major surplus of protein. Reports show that Australian finishing 
diets involve wheat or barley base with protein supplied by cottonseed, 
or less commonly by canola meal and lupins (Cowley et al., 2019). Dry 

Distillers Grains (DDG) are high in NDF and low in lignin content, thus 
providing readily digestible fibre, however, vary in other nutritional 
composition. Although good sources of protein, calcium, phosphorus 
and sulphur, DGGs require supplementation due to containing some 
undesirable components and a minimal soluble carbohydrate fraction 
(Cowley et al., 2019). A summary of the different nutritional properties 
of different grain types is presented in Table 1. Corn was the most 
commonly used in North America. 

High protein DDGs (>34% CP) are produced by the removal of fibre 
or reducing non-fermentable components. This enhances amino acid 
digestibility. However, CP content has a negative correlation with 
phosphorus content, necessitating inorganic phosphorus supplementa-
tion (Buenavista, Siliveru and Zheng, 2021). 

Low-oil DDGs have reduced digestible and metabolisable energy 
(ME) and amino acid digestibility, but a higher protein and fibre con-
tent. Up to 200 g of low-oil DGGs has been used to replace every kg of 
barley grain without detrimental effects on carcass quality and growth 
performance (Buenavista et al., 2021). Replacing soybean meal with 
300 g/kg of de-oiled wet DGs improved overall feedlot performance 
including DM and CP intakes. Additional positive effects of decreasing 
the acetate: propionate ratio, maintaining the ruminal pH and pre-
venting sub-acute ruminal acidosis (SARA) were observed by Carvalho 
et al., (2021). They further showed that the acetate:propionate ratio 
could also be reduced by supplementing a mix of extracts of baccharis, 
tamarind, cashew nut shell liquid which also enhanced DM, NDF and 
OM digestibility. 

Slow-release urea (SRU) can be used to replace a portion of plant 
RDP by providing NPN (Salami et al., 2020; Salami et al., 2021). Salami 
et al. (2021) showed that SRU was superior to urea in producing mi-
crobial crude protein (MCP) and reduced the risk of ammonia toxicity. 
Although SRU had no effect on overall DM or CP intake, the positive 
effects on LWG and FE reduced the days on feed to slaughter and feed 
associated costs by 6% by reducing the inclusion rate of vegetable pro-
tein sources (Salami et al., 2020; Salami et al., 2021). 

Growth promoters increase deposition of lean muscle mass, protein 
accretion and hormone mediated cellular proliferation alongside 
reducing protein degradation. Cumulatively, this increases dietary re-
quirements for MP during compensatory growth in the early finishing 
period (Cowley et al., 2019). Beta agonists are thought to increase the 
requirements of CP by modifying protein metabolism on a cellular level 
as well as NPN requirements by upregulating protein synthesis (Cowley 
et al., 2019). 

Microbes 

The rumen microbiome can cause up to 20% variation in production 
(Paz et al., 2018). A study found that approximately 34% of microbial 
taxa is relatively heritable (h2 ≥ 0.15) (Li et al., 2019). These traits were 
found to be associated with FCR, ADG and DMI (Li et al., 2019). Pro-
biotics such as Yeast compete with lactate-producing bacteria for 
available sugars supplied by concentrate rich diets, supporting the 
growth of lactate-utilising bacteria and subsequently increasing the 
rumen pH. Through this mechanism, yeast has been used to treat cattle 
with SARA (Amin & Mao, 2021). Additionally, the inclusion of yeast in 
diets had a positive correlation with DMI, weight gain and FE and pro-
moted the growth of cellulolytic bacteria that breakdown fibre rich feeds 

Table 1 
Variation in nutritional characteristics of different grain-type sources of Dry 
Distillers Grains.  

Source Characteristics 
Corn Highest rumen undegradable protein; net energy 
Wheat Lowest rumen undegradable protein; highest crude protein 
Barley Lowest crude protein; highest neutral and acid detergent fibres 
Sorghum Highest ether extract, rumen undegradable protein    
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(Amin & Mao, 2021). 

Trace Minerals 

The inclusion of trace minerals like zinc in association with chro-
mium and methionine has been shown to enhance feed utilisation effi-
ciency and positive effects on meat characteristics (Lee et al., 2020; 
Vellini et al., 2020). Vellini et al. (2020) suggested that supplementing 
cattle with amino acid chelated minerals resulted in increased ruminal 
amylase and cellulase activity while reducing methane production. 
Additionally, Lee et al. (2020) found that rumen boluses and dietary 
supplementation of 1–5 times the required amount of copper, cobalt, 
selenium and iodine resulted in greater DMI and ADG than in unsup-
plemented animals. Vitamin B12 is synthesised from Co and is involved 
in gluconeogenesis via propionate metabolism, thus decreased Co sup-
ply increases the propionate half-life which may decrease the DMI (Lee 
et al., 2020). A study by (Akanno et al., 2019) examined the sorting of 
animals on feedlot arrival according to their molecular breeding values 
and reported significant influences on lean meat yield and marbling. 
Allowing targeted feeding resulted in a more consistent final carcass 
product across each animal (Akanno et al., 2019). 

Carcass Quality 

Meat quality is influenced by nutrition and genetics, which can be 
manipulated to achieve desirable eating quality traits including 
tenderness, flavour and juiciness, meat yield, and marbling score (Fel-
derhoff et al., 2020); Malau-Aduli & Holman 2015a; Malau-Aduli & 
Holman 2014; Malau-Aduli et al. 2000a; Malau-Aduli et al. 2000b; 
Malau-Aduli et al. 2000c; Malau-Aduli et al. 2000d). Cooke et al. (2020) 
reported significant genetic correlations between muscle lipid content 
and marbling score, in which Bos taurus cattle had greater intramuscular 
and subcutaneous fat than Bos indicus cattle, and B. indicus demon-
strated a reduced capacity to synthesise lipids resulting in lower 
marbling scores (Cooke et al., 2020). A comparison of meat quality in 
Limousine, Charolais, and Angus bulls showed that Limousine bulls had 
the highest protein and lowest fat contents, Charolais rated the best in 
colour, taste, and aroma, and Angus meat was rated the best for con-
sistency (Sakowski et al., 2001; Malau-Aduli et al. 1997; Malau-Aduli 
et al. 1998). There is an emphasis on pH as it is a major determining 
factor of carcass quality, with the desired pH range of 5.4–5.8 
(Muižniece & Kairǐsa, 2020). Heifers were found to have a more desir-
able meat pH (86 % of carcasses) when compared to bulls (65% of 
carcasses), however, there were no differences between pH across 
different age groups (Muižniece & Kairǐsa, 2020). 

SCD, FASN, FABP4 and SREBPs are four genes which have become 
strong candidates for influencing the fat deposition and carcass 
composition in Eastern Asian cattle breeds and Australian temperate 
breeds ( Lee & Park, 2016; Komatsu et al. 2012; Raza et al., 2018; 
Komatsu & Malau-Aduli 2014; Malau-Aduli et al. 2015). Selection for 
enzymes such as fatty acid synthase (FASN) is reported to increase fat 
deposition in adipose tissue (Raza et a. 2018; Lee & Park 2016; 
Malau-Aduli et al. 2016; Malau-Aduli & Kashani 2015; Malau-Aduli & 
Holman 2015a; Malau-Aduli & Holman 2015b). Selection of these genes 
in northern Australian composite breeds could potentially improve 
intramuscular fat and eye muscle area thus improving meat quality. 

Supplementation with organic sources of selenium, zinc, copper, and 
manganese resulted in an improvement in growth performance, health 
status, carcass quality, and overall meat quality due to higher levels of 
antioxidants in the meat (Rossi et al., 2020). Corn finished beef has been 
shown to contain greater amounts of oleic and total monounsaturated 
fatty acids, but lesser polyunsaturated fatty acids and omega-3 (Lafre-
niere et al., 2021; Malau-Aduli et al. 1997; Malau-Aduli et al., 1998). 
Essential oils were evaluated as an alternative to monensin beef cattle 
diets and their effect on feed intake, performance, carcass characteristics 
and ruminal fermentative parameters (Torres et al., 2021). They were 

found to be ineffective in protecting the liver against abscesses, but 
carcass dressing percentage, ribeye area, and subcutaneous fat thickness 
values increased (Torres et al., 2021). Arginine and lysine supplemen-
tation can have positive effects on serum amino acids, growth perfor-
mance and carcass traits in which feedlot steers (Teixeira et al., 2019) 
and lot-fed sheep (Malau-Aduli et al. 2019) developed more muscle and 
leanness from lysine, whereas arginine only contributed to increased 
moisture content of steaks and decreased serum glutamate as well as 
decreased lysine after 87 days of feeding (Teixeira et al., 2019). 

Conclusion: Knowledge Gaps 

From the published literature, it is evident that there is a relationship 
between foetal pancreatic and small intestine enzyme activities. Novel 
and innovative research is needed on the long term effects of maternal 
supplementation and alteration of foetal enzymes on post-natal growth 
performance and tropical beef cattle productivity. Similarly, the role of 
phosphorus supplementation in nutritional bovine physiology to reduce 
production losses in phosphorus-deficient pasture areas of tropical 
northern Australia needs further investigation. Exogenous fibrolytic 
enzymes and expansion-like proteins are currently used as short-term 
treatments to increase fibre utilisation of poor quality roughages. 
Further research is needed to establish its long-term effects on northern 
Australian beef cattle production, especially during prolonged droughts. 
Early calf weaning for faster and subsequently heavier turn-off weights 
through enhanced rumen papillae development at the pre-weaning stage 
can be targeted through supplementation with probiotics. This could 
potentially increase available butyrate, thus promoting rumen devel-
opment, and in turn, enhance growth and productivity (Malau-Aduli 
et al., 2020). Yeast is another probiotic that requires further research 
into maximising the benefits of productivity when incorporated into 
ruminant diets. Dry distiller’s grains represent a readily digestible 
source of fibre for feedlot rations, however, further investigation is 
required to maximise efficacy. Whole genome sequencing to target 
specific genes associated with meat quality characteristics (Pewan et al. 
2021a; (Pewan et al., 2021b) (Pewan et al., 2020a); (Pewan et al., 
2020b) are needed to further develop tropical cattle breeds with supe-
rior genes more suited to the North Australian beef industry (Mwangi 
et al. 2019). Specifically, the effects of FABP4, FASN, SCD and SREBP 
genes on intramuscular fat and carcass quality (Takahashi et al. 2016; 
Malau-Aduli et al. 2015; Kashani et al. 2015a; Kashani et al. 2015b) in 
northern Australian composite breeds needs to be researched further. 
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