
Array 13 (2022) 100116

A
2
(

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

Modeling and simulating in-memory memristive deep learning systems: An
overview of current efforts
Corey Lammie a, Wei Xiang b, Mostafa Rahimi Azghadi a,∗

a College of Science and Engineering, James Cook University, Queensland 4814, Australia
b School of Engineering and Mathematical Sciences, La Trobe University, Victoria 3086, Australia

A R T I C L E I N F O

Keywords:
Device modeling
Circuit simulation
Memristors
In-Memory Computing
Deep Learning

A B S T R A C T

Deep Learning (DL) systems have demonstrated unparalleled performance in many challenging engineering
applications. As the complexity of these systems inevitably increase, they require increased processing
capabilities and consume larger amounts of power, which are not readily available in resource-constrained
processors, such as Internet of Things (IoT) edge devices. Memristive In-Memory Computing (IMC) systems
for DL, entitled Memristive Deep Learning Systems (MDLSs), that perform the computation and storage of
repetitive operations in the same physical location using emerging memory devices, can be used to augment
the performance of traditional DL architectures; massively reducing their power consumption and latency.
However, memristive devices, such as Resistive Random-Access Memory (RRAM) and Phase-Change Memory
(PCM), are difficult and cost-prohibitive to fabricate in small quantities, and are prone to various device non-
idealities that must be accounted for. Consequently, the popularity of simulation frameworks, used to simulate
MDLS prior to circuit-level realization, is burgeoning. In this paper, we provide a survey of existing simulation
frameworks and related tools used to model large-scale MDLS. Moreover, we perform direct performance
comparisons of modernized open-source simulation frameworks, and provide insights into future modeling
and simulation strategies and approaches. We hope that this treatise is beneficial to the large computers and
electrical engineering community, and can help readers better understand available tools and techniques for
MDLS development.
1. Introduction

Traditionally, Machine Learning (ML) and Deep Learning (DL) sys-
tems are trained and deployed using hardware platforms adopting the
von Neumann computing architecture. While in recent years, Graphics
Processor Units (GPUs) have been used to massively parallelize and
accelerate the performance of these workloads [1], they are still prone
to performance bottlenecks caused by the amount of data being moved
back and forth between physically separated memory and processing
units. IMC is a novel non-von Neumann approach, where certain com-
putational tasks are performed in the memory itself [2], which has the
potential to alleviate this bottleneck.

IMC systems can be realized by arranging memory devices in cross-
bar architectures, where they can be used to perform various log-
ical and arithmetic operations [3]. These memory devices can be
fabricated using legacy charge-based memory technologies, such as
Static Random-Access Memory (SRAM), or emerging memristive device
technologies, such as RRAM, which are introduced and discussed in
Section 2. Memristive devices, in particular, have shown great promise

∗ Corresponding author.
E-mail address: mostafa.rahimiazghadi@jcu.edu.au (M. Rahimi Azghadi).

to facilitate the acceleration and improve the power efficiency of
ML and DL systems, as they can be passive, re-programmable, and
non-volatile [3–8].

As depicted in Fig. 1, crossbar architectures constructed using mem-
ristive RRAM devices can be used to efficiently implement various in-
memory computing operations, including Multiply-Accumulate (MAC)
and VMMs operations. Previous works in the literature have exploited
physical properties of memristive devices to realize a variety of com-
monly used operations and components of neuromorphic architec-
tures [9–13]. Traditionally, IMC systems have been used to implement
brain-inspired asynchronous neuromorphic architectures [14], realiz-
ing artificial synapses using memristive devices. However, they are
also capable of accelerating VMMs, the most dominant operations in
DNNs, in (1), which makes them more appealing for deep learning
systems [15,16].

Currently, several memristive device technologies, including RRAM
and PCM, which are depicted in Fig. 2, are being actively researched [3].
However, despite continuous ongoing efforts, they are prone to various
vailable online 20 December 2021
590-0056/© 2021 The Authors. Published by Elsevier Inc. Th

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.array.2021.100116
Received 22 July 2021; Received in revised form 28 October 2021; Accepted 30 N
is is an open access article under the CC BY-NC-ND license

ovember 2021

http://www.elsevier.com/locate/array
http://www.elsevier.com/locate/array
mailto:mostafa.rahimiazghadi@jcu.edu.au
https://doi.org/10.1016/j.array.2021.100116
https://doi.org/10.1016/j.array.2021.100116
http://creativecommons.org/licenses/by-nc-nd/4.0/


Array 13 (2022) 100116C. Lammie et al.
Fig. 1. (a) A modular memristive crossbar tiled architecture containing parameters from two linear and unfolded convolutional layers; both key components of traditional CNNs.
Unique colors denote mapped parameters from different layers. (b) In a modular crossbar tile that is used to perform the VMM operation in-memory, SLs can be used to isolate
columns of devices (BLs), in which inputs are applied to as WL voltages. BLs currents are read out using ADCs, that can be linearly related to vector–matrix product elements.
Source: This figure is adapted from [17].
device non-idealities, which limit their accuracy and reliability to use
in practical engineering settings [18]. Consequently, many large-scale
simulations encompassing device and circuit non-idealities have been
conducted using synaptic memristive connections for brain-inspired
asynchronous neuromorphic systems [19–21] and DL systems [9].
While these simulations were traditionally performed using general
purpose Simulation Program with Integrated Circuit Emphasis (SPICE)-
based simulators, as the complexity of the underlying systems and
neuromorphic architectures being simulated has increased, customized
simulation frameworks have been developed. These frameworks are
used to rapidly prototype novel network architectures as a preliminary
step prior to circuit-level validation and layout using mature Computer-
Aided Design (CAD) tools; for eventual circuit-level realization and
large-scale fabrication.

In contrast to conventional SPICE-based simulation, modern CAD
simulation frameworks adopt modern software engineering method-
ologies. Moreover, they are able to accurately model non-ideal device
characteristics, peripheral circuitry, and modular crossbar tiles while
being interfaceable using high-level language APIs. We confine the
scope of this paper to MDLS, i.e., memristive IMC systems for DL system
deployment, and provide a survey of existing simulation frameworks
and related tools used to model large-scale MDLS.

The rest of the paper is structured as follows. In Section 2, pre-
liminaries related to modeling and simulating in-memory MDLS are
presented. In Section 3, existing CAD tools for in-memory MDLS are
over-viewed. In Section 4, comparisons of modern simulation frame-
works for in-memory MDLS are made, and two MDLS architectures are
simulated. In Section 5, we provide an outlook for MDLS simulation
frameworks. Finally, in Section 6, the paper is concluded.

2. Preliminaries

Memristors, commonly referred to as the fourth fundamental circuit
element, are two-terminal passive circuit elements characterized by a
relationship between the charge, 𝑞(𝑡) ≡ ∫ 𝑡

−∞ 𝑖(𝜏)𝑑𝜏 and the flux-linkage
𝜑(𝑡) ≡ ∫ 𝑡

−∞ 𝑣(𝜏)𝑑𝜏 [22]. Memristors are capable of non-volatile storage.
We depict typical unipolar and bipolar switching 𝐼-𝑉 characteristics,
and schematics of popular memristive device technologies in Fig. 2.

Unfolded convolutional layers and linear (dense) layers within DL
systems can be implemented using a series of MAC and VMM opera-
tions, which can be computed in-memory using memristive crossbar ar-
2

rays, as depicted in Fig. 1, by encoding weights as
resistance/conductance values, and inputs as WL voltages. Tiled cross-
bar architectures contain several modular crossbar tiles connected
using a shared bus. These are also connected to additional circuitry
used to realize batch-normalization, pooling, activation functions, and
other computations that cannot be performed, or are not efficient,
in-memory. Modular crossbar tiles consist of crossbar arrays with
supporting peripheral circuitry. We refer the reader to [12] for a
comprehensive description and overview of IMC accelerators for DL
acceleration.

In Fig. 2, typical switching modes and schematics of popular mem-
ristive device technologies are depicted. Memristors differ from elec-
trical resistors, as they have a voltage or current-dependent resistance
state, which is dependent on the electric properties of the materials us-
ing which they are constructed. As depicted in Fig. 2(c), RRAM devices
are comprised of Metal–Insulator–Metal (MIM) stacks. The resistive
state of RRAM devices can be modulated by creating and disrupting
Conductive Filaments (CFs), used to refer to localized concentrations of
defects that allow current to flow between top and bottom electrodes.

As depicted in Fig. 2(d), typical PCM devices have a mushroom
shape (amorphous region), where the bottom electrode confines heat
and current. By crystallizing the amorphous region, different resistive
states can be obtained [3]. As shown in Fig. 2(e), CBRAM devices are
comprised of a thin solid state electrolyte layer sandwiched between
oxidizable and inert electrodes. The resistive state of CBRAM devices
can be modulated by driving redox reactions in the filament (solid state
electrolyte layer) [23]. Finally, Fig. 2(f) shows the device structure of
STT-MRAM, which contains two ferromagnetic layers and one tunnel
barrier layer. The resistance of STT-MRAM devices can be modulated
by modifying the orientation of a magnetic layer in a magnetic tunnel
junction or spin valve using a spin-polarized current [24].

As memristive devices can only be programmed to positive re-
sistance states, weights can either be represented using a dual-array
scheme, a dual row scheme, where double the number of rows are
required, or a current-mirror scheme, that is capable of operation using
a singular device to represent each weight [25].

As can be observed in Fig. 1, in a 1-Transistor 1-Memristor (1T1R)
arrangement, SLs can be used to individually select memristive devices.
After mapping and programming weights, to perform a MAC operation,
inputs are scaled and encoded as voltages, prior to being presented to
WLs. Currents from each BL are read-out using ADCs, either in parallel

using one ADC per column, or sequentially, using time-multiplexing.



Array 13 (2022) 100116C. Lammie et al.

r
u
p
r
S
b
b
m
w
f
s
p

3

Fig. 2. Typical (a) unipolar and (b) bipolar switching modes of memristive devices and schematics of popular device technologies: (c) RRAM, (d) PCM, (e) CBRAM, and (f)
STT-MRAM.
Table 1
Comparison of conventional simulation frameworks for MDLS simulation. †Not natively supported.

Simulation
framework

Prog.
language(s)

GPU Pre-trained
DNN
conversion

TF/
PyTorch
Intg.⋄

Inference Training Peripheral
circuitry

Supported devices Open-
source

NVMSpice [29] Not specified
(SPICE-like)

✓† ✓† Non-volatile memories
and legacy NAND flash.

NVSim [30] C++, C ✓† ✓† ✓ Non-volatile memories
and legacy NAND flash.

✓

NVMain, NVMain
2.0 [31,32]

C++, System
Verilog, Python

✓† ✓† Non-volatile memories
and hybrid non-volatile
plus DRAM memory
systems.

✓

MNSIM [33] Not specified ✓† ✓† ✓ Non-volatile memories. ✓

TxSim [34] Python ✓ ✓ ✓ ✓ ✓ Non-volatile memories
and legacy NAND flash.

PipeLayer [35] C++ ✓† ✓ ✓ ✓ ✓ Non-volatile memories.

Non-ideal Resistive
Synaptic Device
Characteristic [36]

Python ✓ ✓ ✓ ✓ ✓ Non-volatile memories
and legacy NAND flash.

Inference Accuracy
Using Realistic
RRAM Devices [37]

Python ✓ ✓ ✓ RRAM.

RxNN [38] C++ ✓ ✓ ✓ ✓ Non-volatile memories.
Finally, BL currents can be correlated with desired deterministic output
elements using linear regression. By time multiplexing the presentation
of inputs, or duplicating modular crossbar tiles, VMMs operations can
be performed in (𝑛), or (1), respectively.

CAD tools can be used to convert traditional DNNs to equivalent
epresentations using modular tiled architectures. These tools can be
sed to simulate the inference and training of MDLS, and to estimate
ower/area/latency of end-to-end implementations when various mem-
istive devices are integrated within Complementary Metal–Oxide–
emiconductor (CMOS) processes. Models are used to simulate the
ehavior of peripheral circuitry and memristive devices, which can be
roadly categorized as empirical or analytical (functional). Empirical
odels are based on, concerned with, or verified by experimental data,
hereas analytical models are based on analysis or logic derived from

undamental physics of the device. In this paper, we do not emphasize
pecific memristive device and crossbar circuit models, as these have
reviously been surveyed in other works [26–28].

. Overview of existing CAD tools

In Tables 1 and 2, we present an overview of existing conventional
and modernized simulation frameworks that can be used to simulate
3

MDLS and IMC systems utilizing non-volatile memory and legacy NAND
flash devices for comparison. We categorize modernized simulation
frameworks as those that support pre-trained DNN conversion and TF
and/or PyTorch integration. General SPICE [39] simulation tools, such
as PSPICE and LTSPICE, are not compared. Although they are the most
commonly used tools for analog circuit simulation [40], they are diffi-
cult to parallelize and prohibitively slow; even when simulating large
crossbar arrays using significant approximation methodologies [41,42].
Consequently, specialized and/or parallelizable CAD tools with direct
integration with modern ML frameworks, such as PyTorch [43] and
Tensorflow [44], are more commonly used to simulate MDLS.

Tables 1 and 2 demonstrate that while most mature conventional
SPICE-based simulation frameworks, such as NVMSpice, NVSim, and
NVMain, are Central Processor Unit (CPU) bound, and do not natively
support pre-trained DNN conversion, inference, and training modeling,
they do support a large variety of device types. In addition, they are
primarily focused on the high-precision and high-speed simulation of
non-volatile memories and legacy NAND flash devices. In contrast,
modernized recently developed frameworks, such as DNN + NeuroSIM,
MemTorch, and the IBM Analog Hardware Acceleration Kit, abstract
performance-critical operations on GPUs, integrate directly with pop-
ular ML frameworks, and have well documented APIs. Moreover, they



Array 13 (2022) 100116C. Lammie et al.

a
c
c
o
l

4

l
t
i
i
i
b
E
I

Table 2
Comparison of modernized simulation frameworks for MDLS simulation. ‡Models are shared using Google Drive without APIs. ⋄TF/PyTorch integration.

Simulation
framework

Prog.
language(s)

GPU Pre-trained
DNN
conversion

TF/
PyTorch
Intg.⋄

Inference Training Peripheral
circuitry

Supported devices Open-
source

RAPIDNN [45] C++, SPICE ✓ ✓ ✓ ✓ Single-level memristive
devices.

PUMA [46] C++ ✓ ✓ ✓ ✓ Non-volatile memories
and legacy NAND flash.

DL-RSIM [47] Python ✓ ✓ ✓ ✓ ✓ Non-volatile memories.

Tiny but
Accurate [48]

MATLAB ✓ ✓ ✓ ✓ Non-volatile memories. ✓‡

Ultra-Efficient
Memristor-Based
DNN [49]

C++, MATLAB ✓ ✓ ✓ ✓ Non-volatile memories ✓‡

MemTorch [50,51] Python, C++,
CUDA

✓ ✓ ✓ ✓ ✓ Non-volatile memories
and legacy NAND flash.

✓

NeuroSim and
derivatives [52–55]

C++, Python ✓ ✓ ✓ ✓ ✓ ✓ Non-volatile memories
and legacy NAND flash.

✓

IBM Analog
Hardware
Acceleration
Kit [56]

C++, Python,
CUDA

✓ ✓ ✓ ✓ ✓ ✓ Non-volatile memories. ✓
Fig. 3. Comparison of modern simulation frameworks that support pre-trained DNN conversion and TF/PyTorch integration. †Support and Accuracy. ⋄Degree of Coverage.
a
d
b
N
f
l
c
r

dopt modern software engineering methodologies, and are able to ac-
urately model non-ideal device and circuit characteristics, peripheral
ircuitry, and crossbar tiles. They are also directly interfaceable with
ther tools using accessible, general-purpose high-level programming
anguages; a paradigm shift from conventional SPICE-based simulation.

. Comparison of modern simulation frameworks

While modernized simulation frameworks superficially appear simi-
ar, upon closer inspection, they are complimentary in nature. To make
his clearer, in Fig. 3, we compare modern simulation frameworks,
.e., those that support pre-trained DNN conversion and TF/PyTorch
ntegration in more detail, using radar charts. As it is shown, there
s not a large overlap amongst the simulation frameworks which have
een compared: RAPIDNN, PUMA, DL-RSIM, Tiny but Accurate, Ultra-
fficient Memristor-Based DNN, MemTorch, DNN + NeuroSIM, and the
BM Analog Hardware Acceleration Kit.
4

Although many of these simulation frameworks are still under
ctive development, and are not fully mature, they clearly adopt
ifferent design and usability approaches. For instance, both Tiny
ut Accurate and Ultra-Efficient Memristor-Based DNN are built upon
VSim, whereas all other simulation frameworks are either written

rom scratch in lower level languages, or extend upon existing high-
evel GPU-accelerated computing libraries to abstract performance
ritical operations. Moreover, while RAPIDNN, PUMA, Tiny but Accu-
ate, Ultra-Efficient Memristor-Based DNN and DNN + NeuroSIM can be

used to generate power/area/latency reports, MemTorch and the IBM
Analog Hardware Acceleration Kit support a large number of different
layer types, and can be used to accurately model device non-idealities
in a robust and modular manner. By adopting different design and
usability approaches, all simulation frameworks can be beneficial and
complement each other to be used by a variety of users with different
requirements.

To determine the usability and performance of each modernized
simulation framework, when possible, we used each framework to



Array 13 (2022) 100116C. Lammie et al.

m
1
D
s
i
s
r
a
m
i
h

o
i
m
w
i
H
t
A

4

i
s
w
s
a
t
s
c
s

4

R
w
e
v
1
o
w

M

g
s
r
N
v
A

4

a
l
a
l
d
r
d
b

4

M
c
u
l
t

simulate the training routine of the VGG-8 [57] network architecture,
and the inference routine of the GoogLeNet [58] network architecture.
Both training and inference routines were evaluated using the CIFAR-10
dataset. Two separate network architectures were used for evaluation,
as larger and more complex networks could not be reliably trained
using existing simulation frameworks with Compute Unified Device
Architecture (CUDA) support when utilizing a single GPU, even with
32 GB of Video Random-Access Memory (VRAM). Moreover, not all
simulation frameworks supported convolutional layers with non-zero
groups (connections between inputs and outputs), meaning that many
ResNet-based architectures could not be implemented.

When possible, weights from linear and convolutional layers were
mapped onto modular 1T1R crossbar tiles of size (16 × 16) using a
differential weight mapping scheme, and device-to-device variability
was modeled by sampling 𝑅ON and 𝑅OFF from normal distributions with

ean values of 10 kΩ and 100 kΩ, and standard deviation values of
000 and 10,000, respectively, i.e., ̄𝑅ON = 10 kΩ, and ̄𝑅OFF = 100 kΩ.
evices were assumed to have a finite number (6) of conductance

tates, and ADCs were assumed to operate at a 6-bit resolution. For
nference routine simulations, 10 runs were conducted, and mean and
tandard deviation values were reported across all runs. For training
outine simulations, mean and standard deviation values were reported
cross all training epochs. All codes used to perform comparisons are
ade publicly-accessible,1 and can be modified to perform compar-

sons using different hardware technologies, network architectures, and
yper-parameters.

The RAPIDNN, PUMA, and DL-RSIM simulation frameworks are not
pen-source, so they could not be evaluated and directly compared
n more detail. Similarly, while full precision and quantized trained
odels are available for the DL-RSIM and Tiny but Accurate frame-
orks, codes used to simulate inference routines are not. Consequently,

n Fig. 4, training routines of DNN + NeuroSim and the IBM Analog
ardware Acceleration Kit are compared, and in Fig. 5, inference rou-

ines of MemTorch, DNN + NeuroSim, and the IBM Analog Hardware
cceleration Kit, are compared.

.1. Simulation configurations

All simulations were conducted using a High Performance Comput-
ng (HPC) cluster with the following run-time hardware configuration
et using the Simple Linux Utility for Resource Management (SLURM)
orkload manger: 1 node and 8 CPU cores (Intel Xeon 6132 series CPU

ockets), 100 GB DDR4 3200 MHz Random-Access Memory (RAM),
nd one PCI-E 32 GB Volta V100 GPU. torch.cuda.Event and
imer.time() were used to determine the execution time of various
imulation components. We reiterate that all scripts provided in 1

an be used to benchmark all simulation frameworks using different
oftware, hardware, and environmental configurations.

.1.1. MemTorch
Using MemTorch,2 modular crossbars tiles of (16 × 16) generic

RAM devices arranged using a differential weight mapping scheme
ere simulated. For each device, device-to-device variability was mod-
led by sampling 𝑅ON and 𝑅OFF from normal distributions with mean
alues of 10 kΩ and 100 kΩ, and standard deviation values of 1000 and
0,000, respectively. Devices were assumed to have a finite number (6)
f evenly-spaced conductance states. The operating resolution of ADCs
as set to 6-bits.

1 https://github.com/coreylammie/Modeling-and-Simulating-In-Memory-
emristive-Deep-Learning-Systems.
2 https://github.com/coreylammie/MemTorch.
5

4.1.2. NeuroSim
Using DNN_NeuroSim_V2.1,3 modular crossbars tiles of (16 × 16)

eneric RRAM devices arranged using a differential weight mapping
cheme were simulated. Each device was set to have an ̄𝑅ON∕ ̄𝑅OFF
atio of 10, with a device-to-device variation of 10%. This was done, as
euroSim did not have the functionality to directly set ̄𝑅ON and ̄𝑅OFF
alues. The weight precision of each device and operating resolution of
DCs were set to 6-bits.

.1.3. IBM analog hardware acceleration kit
Using the IBM Analog Hardware Acceleration Kit (denoted using

ihwkit4 in short-form), modular crossbar tiles could not be simu-
ated, as they were not supported. Instead, singular tiles arranged using

differential weight mapping scheme were used to map weights of
inear and convolutional layers. In lieu of support for generic RRAM
evice modeling with arbitrary ̄𝑅ON and ̄𝑅OFF values and ̄𝑅ON∕ ̄𝑅OFF
atios, devices characterized in [59] were simulated with a device-to-
evice variation of 10%. The weight precision of each device could not
e directly set. The operating resolution of ADCs was set to 6-bits.

.1.4. Baseline
In addition to simulating training and inference routines using

emTorch, DNN_NeuroSim_V2.1, and the IBM Analog Hardware Ac-
eleration Kit, baseline training and inference routines were simulated
sing the native PyTorch ML library for comparison. For all base-
ine implementations, the exact same hyper-parameters were used.
orch.cuda.amp was used to quantize all network parameters to

16-bits to improve performance.

4.2. Training routine comparison

In Fig. 4, the performance of training routines for the VGG-8 net-
work architecture using the CIFAR-10 dataset are compared. For Neu-
roSim and the IBM Analog Hardware Acceleration Kit, default non-
linear weight update parameters were used. All networks were trained
for 256 epochs with a batch size of 128 using Stochastic Gradient De-
scent (SGD) with momentum and cross-entropy loss. An initial learning
rate of 0.1 was used with fixed momentum value of 0.9. Optimizers
that support adaptive learning rates were not used, as these were
not supported by DNN_NeuroSim_V2.1. Instead, during training, the
learning rate was decayed by one order of magnitude at epochs 100,
200, and 250 (these schedules were determined empirically), to prevent
stagnation.

The functionality of each simulation framework has previously been
investigated and validated [51,55,56]. Consequently, training and test
set losses and accuracies were not reported or compared, as they have
no bearing on the performance of each simulation framework. As can
be seen in Fig. 4, the IBM Analog Hardware Acceleration Kit consumed
the most RAM and GPU VRAM. While DNN_NeuroSim_V2.1 consumed
more RAM than the baseline implementation, interestingly, it con-
sumed notability less VRAM. This can be largely attributed to the large
number of operations being performed on CPU and/or sequentially on
GPU, rather than in parallel, and can be used to explain the relatively
large elapsed time per training epoch reported by DNN_NeuroSim_V2.1,
as depicted in Fig. 4(c).

To quantify the performance trade-off between GPU VRAM usage
and training time, Fig. 4(f) was constructed. The baseline training
routine clearly exhibits the best performance trade-off. Our findings
suggest that DNN_NeuroSim_V2.1 is capable of simulating the training
routine of larger and more complex network architectures, however, it
does not fully utilize CUDA, and is much slower than other simulation
frameworks. In contrast, the IBM Analog Hardware Acceleration Kit

3 https://github.com/neurosim/DNN_NeuroSim_V2.1.
4 https://github.com/IBM/aihwkit.

https://github.com/coreylammie/Modeling-and-Simulating-In-Memory-Memristive-Deep-Learning-Systems
https://github.com/coreylammie/Modeling-and-Simulating-In-Memory-Memristive-Deep-Learning-Systems
https://github.com/coreylammie/MemTorch
https://github.com/neurosim/DNN_NeuroSim_V2.1
https://github.com/IBM/aihwkit


Array 13 (2022) 100116C. Lammie et al.
Fig. 4. Comparison of training routines of DNN + NeuroSim and the IBM Analog Hardware Acceleration Kit, for the VGG-8 network architecture, using the CIFAR-10 dataset.
Fig. 5. Comparison of inference routines of MemTorch, DNN + NeuroSim, and the IBM Analog Hardware Acceleration Kit, for the VGG-8 network architecture, using the CIFAR-10
dataset.
fully utilizes CUDA, and is comparable in performance to the native
torch library. However, the IBM Analog Hardware Acceleration Kit
consumes a large amount of VRAM, is unable to simulate modular
crossbar tiles, and is consequently unable to simulating the training
6

routine of larger and more complex network architectures.
4.3. Inference routine comparison

In Fig. 5, the performance of inference routines for the GoogLeNet
network architecture using the CIFAR-10 dataset are compared. In-

ference was performed using a batch size of 128. As can be seen in



Array 13 (2022) 100116C. Lammie et al.
Fig. 5(c), the IBM Analog Hardware Acceleration Kit is capable of
simulating inference routines significantly faster than the MemTorch
and DNN_NeuroSim_V2.1 simulation frameworks. This is while con-
suming more VRAM and approximately the same amount of RAM.
We largely attribute this to the fact that the IBM Analog Hardware
Acceleration Kit is unable to simulate modular crossbar tiles, which are
difficult to parallelize using CUDA. When modular crossbar tiles are
not simulated, when sufficiently small WL voltages are used to encode
inputs, conventional VMMs can be used to determine output currents
when 1T1R crossbars are modeled.

MemTorch and DNN_NeuroSim_V2.1 consume a similar amount of
RAM and VRAM, however, MemTorch is approximately one order of
magnitude slower than DNN_NeuroSim_V2.1, despite having a higher
GPU utilization. We believe this is largely attributed to MemTorch’s
inefficient default weight-mapping scheme, as depicted in Fig. 5(c)
and (d). This is especially evident when simulating large CNNs with
many small convolutional layers, such as GoogLeNet. MemTorch stores
convolutional kernels in a staggered arrangement, and does not share
adjacent modular crossbar tiles between layers. DNN_NeuroSim_V2.1
utilizes proprietary weight mapping and data flow schemes [60], which
significantly improves performance. We note that both
DNN_NeuroSim_V2.1 and MemTorch under-utilize VRAM during in-
ference, and both perform some operations sequentially and/or on
CPU.

As can be seen in Fig. 5(d), our findings suggest that the IBM
Analog Hardware Acceleration Kit is able to utilize VRAM to the
greatest extent, however, it is unable to simulate modular crossbar tiles.
DNN_NeuroSim_V2.1 is able to simulate inference routines significantly
faster than MemTorch, however, it is not as customizable, as it utilizes
proprietary weight mapping and data flow schemes, which cannot be
easily modified.

5. Outlook

It is evident that MDLS and memristive simulation frameworks are
becoming increasingly useful and popular. While the reliable, large-
scale operation of reconfigurable MDLS is still arguably an open prob-
lem [61], modernized simulation frameworks and tools enable re-
searchers from a variety of disciplines to rapidly and accurately model
the behavior and operation of MDLS without specialized circuit-level
SPICE simulation expertise. This is in addition to the ability to work
in tandem with existing modernized ML libraries. As these simulation
frameworks and the models used to simulate non-ideal circuit and
device characteristics mature and grow in popularity, the development
cycle and production of innovative device technologies and MDLS
architectures will also continue. These new devices and architectures
can be conveniently integrated into the existing tools, facilitating their
quick large-scale adoption.

An increasing number of simulation frameworks have been im-
proved using measurements from experimental data, validating their
reliable and accurate operation. In future, we expect CAD tools to
(i) support the end-to-end characterization of memristive devices, (ii)
be natively integrated within more mature and standardized MDLS
design-flows, and (iii) be capable of programming future physical
re-programmable memristive circuits [62–64]. Such IMC simulation
frameworks will be instrumental to the design of next generation of
Artificial Intelligence (AI) hardware [56].

6. Conclusion

In this paper, we presented a survey of current simulation frame-
works and related tools to model and simulate IMC MDLS. In addition,
we presented a detailed comparison of modern simulation frameworks
that support pre-trained DNN conversion and TF/PyTorch integration.
This was performed by directly comparing the training and infer-
7

ence routines of two popular CNN architectures using open-source
modernized simulation frameworks. Furthermore, we provided an out-
look/perspective into the future of CAD tools for modeling and sim-
ulating MDLS. We demonstrated that modern simulation frameworks
are complimentary in nature, and can be used by a variety of users
with different requirements to facilitate current research efforts in the
domains of IMC and unconventional computing.

CRediT authorship contribution statement

Corey Lammie: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Resources, Data curation, Writing
– original draft, Writing – review & editing, Visualization, Funding ac-
quisition. Wei Xiang: Writing – review & editing, Supervision. Mostafa
Rahimi Azghadi: Conceptualization, Methodology, Validation, Writ-
ing – review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Corey Lammie acknowledges the James Cook University (JCU)
DRTPS and an IBM PhD Fellowship. Mostafa Rahimi Azghadi acknowl-
edges a JCU Rising Star ECR Fellowship.

References

[1] Chellappa R, Theodoridis S, van Schaik A. Advances in machine learning and
deep neural networks. Proc IEEE 2021;109:607–11.

[2] Verma N, Jia H, Valavi H, Tang Y, Ozatay M, Chen L-Y, Zhang B, Deaville P.
In-memory computing: Advances and prospects. IEEE Solid-State Circuits Mag
2019;11:43–55.

[3] Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E. Memory devices
and applications for in-memory computing. Nature Nanotechnol 2020;15:529–44.

[4] Joshi V, Le Gallo M, Haefeli S, Boybat I, Nandakumar SR, Piveteau C, Dazzi M,
Rajendran B, Sebastian A, Eleftheriou E. Accurate deep neural network inference
using computational phase-change memory. Nature Commun 2020;11:2473.

[5] Hu M, Graves CE, Li C, Li Y, Ge N, Montgomery E, Davila N, Jiang H,
Williams RS, Yang JJ, Xia Q, Strachan JP. Memristor-based analog computa-
tion and neural network classification with a dot product engine. Adv Mater
2018;30:1705914.

[6] Azghadi MR, Lammie C, Eshraghian JK, Payvand M, Donati E, Linares-
Barranco B, Indiveri G. Hardware implementation of deep network accelerators
towards healthcare and biomedical applications. IEEE Trans Biomed Circuits Syst
2020;14:1138–59.

[7] Ielmini D, Wong H-SP. In-memory computing with resistive switching devices.
Nat Electron 2018;1:333–43.

[8] Rahimi Azghadi M, Chen Y, Eshraghian J, Chen J, Lin C, Amirsoleimani A,
Mehonic A, Kenyon A, Fowler B, Lee J, Chang Y. Complementary metal-oxide
semiconductor and memristive hardware for neuromorphic computing. Adv Intell
Syst 2020;2:1900189.

[9] Liu X, Zeng Z. Memristor crossbar architectures for implementing deep neural
networks. Complex Intell Syst 2021.

[10] Shahsavari M. Unconventional computation from digital to brain-like neuromor-
phic: Memristive computing. Éditions universitaires européennes; 2017.

[11] Azghadi MR, Linares-Barranco B, Abbott D, Leong PHW. A hybrid cmos-
memristor neuromorphic synapse. IEEE Trans Biomed Circuits Syst 2017;11:434–
45.

[12] Mehonic A, Sebastian A, Rajendran B, Simeone O, Vasilaki E, Kenyon AJ.
Memristors—From in-memory computing, deep learning acceleration, and spik-
ing neural networks to the future of neuromorphic and bio-inspired computing.
Adv Intell Syst 2020;2:2000085.

[13] Lammie C, Eshraghian JK, Lu WD, Azghadi MR. Memristive stochastic com-
puting for deep learning parameter optimization. IEEE Trans Circuits Syst II
2021;68:1650–4.

[14] Zidan MA, Chen A, Indiveri G, Lu WD. Memristive computing devices and
applications. Cham: Springer International Publishing; 2022, p. 5–32. http://dx.

doi.org/10.1007/978-3-030-42424-4_2.

http://refhub.elsevier.com/S2590-0056(21)00054-0/sb1
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb1
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb1
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb2
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb2
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb2
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb2
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb2
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb3
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb3
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb3
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb4
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb4
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb4
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb4
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb4
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb5
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb6
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb7
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb7
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb7
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb8
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb9
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb9
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb9
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb10
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb10
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb10
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb11
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb11
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb11
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb11
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb11
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb12
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb13
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb13
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb13
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb13
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb13
http://dx.doi.org/10.1007/978-3-030-42424-4_2
http://dx.doi.org/10.1007/978-3-030-42424-4_2
http://dx.doi.org/10.1007/978-3-030-42424-4_2


Array 13 (2022) 100116C. Lammie et al.
[15] Lammie C, Krestinskaya O, James A, Azghadi MR. Variation-aware binarized
memristive networks. In: 2019 26th IEEE international conference on electron-
ics, circuits and systems (ICECS). 2019, p. 490–3. http://dx.doi.org/10.1109/
ICECS46596.2019.8964998.

[16] Sun Z, Huang R. Time complexity of in memory matrix vector multiplication.
IEEE Trans Circuits Syst II 2021.

[17] Lammie C, Rahimi Azghadi M, Ielmini D. Empirical metal-oxide RRAM device
endurance and retention model for deep learning simulations. Semicond Sci
Technol 2021;36:065003.

[18] Zidan MA, Strachan JP, Lu WD. The future of electronics based on memristive
systems. Nat Electron 2018;1:22–9.

[19] Bichler O, Roclin D, Gamrat C, Querlioz D. Design exploration methodology for
memristor-based spiking neuromorphic architectures with the xnet event-driven
simulator. In: 2013 IEEE/ACM international symposium on nanoscale architec-
tures (NANOARCH). 2013, p. 7–12. http://dx.doi.org/10.1109/NanoArch.2013.
6623029.

[20] Demirag Y, Frenkel C, Payvand M, Indiveri G. Online training of spiking
recurrent neural networks with phase-change memory synapses. 2021, CoRR
abs/2108.01804.

[21] Boulet P, Devienne P, Falez P, Polito G, Shahsavari M, Tirilly P. N2s3, an
open-source scalable spiking neuromorphic hardware simulator. 2017.

[22] Chua L. Memristor-The missing circuit element. IEEE Trans Circuit Theory
1971;18:507–19.

[23] Kund M, Beitel G, Pinnow C-U, Rohr T, Schumann J, Symanczyk R, Ufert K,
Muller G. Conductive bridging ram (cbram): an emerging non-volatile memory
technology scalable to sub 20nm. In: IEEE internationalelectron devices meeting,
2005. IEDM technical digest. 2005, p. 754–7. http://dx.doi.org/10.1109/IEDM.
2005.1609463.

[24] Khvalkovskiy AV, Apalkov D, Watts S, Chepulskii R, Beach RS, Ong A, Tang X,
Driskill-Smith A, Butler WH, Visscher PB, Lottis D, Chen E, Nikitin V, Krounbi M.
Basic principles of STT-MRAM cell operation in memory arrays. 2013;46:074001.

[25] Wang Q, Wang X, Lee SH, Meng F-H, Lu WD. A deep neural network accelerator
based on tiled RRAM architecture. In: 2019 IEEE international electron devices
meeting (IEDM). 2019, p. 14.4.1–4. http://dx.doi.org/10.1109/IEDM19573.2019.
8993641.

[26] Khalid M. Review on various memristor models, characteristics, potential
applications, and future works. Trans Electr Electron Mater 2019;20:289–98.

[27] Woods W, Taha MMA, Dat Tran SJ, Bürger J, Teuscher C. Memristor panic —
A survey of different device models in crossbar architectures. In: Proceedings
of the 2015 IEEE/ACM international symposium on nanoscale architectures
(NANOARCH´ 15). 2015, p. 106–11. http://dx.doi.org/10.1109/NANOARCH.
2015.7180595.

[28] Mohammad B, Homouz D, Elgabra H. Robust hybrid memristor-CMOS mem-
ory: Modeling and design. IEEE Trans Very Large Scale Integr (VLSI) Syst
2013;21:2069–79.

[29] Fei W, Yu H, Zhang W, Yeo KS. Design exploration of hybrid CMOS and
memristor circuit by new modified nodal analysis. IEEE Trans Very Large Scale
Integr (VLSI) Syst 2012;20:1012–25.

[30] Dong X, Xu C, Xie Y, Jouppi NP. NVSim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory. IEEE Trans Comput-Aided Des
Integr Circuits Syst 2012;31:994–1007.

[31] Poremba M, Xie Y. NVMain: An architectural-level main memory simulator
for emerging non-volatile memories. In: 2012 IEEE computer society annual
symposium on VLSI. 2012, p. 392–7. http://dx.doi.org/10.1109/ISVLSI.2012.82.

[32] Poremba M, Zhang T, Xie Y. NVMain 2.0: A user-friendly memory simulator to
model (non-)volatile memory systems. IEEE Comput Archit Lett 2015;14:140–3.

[33] Xia L, Li B, Tang T, Gu P, Yin X, Huangfu W, Chen P-Y, Yu S, Cao Y,
Wang Y, Xie Y, Yang H. MNSIM: Simulation platform for memristor-based
neuromorphic computing system. In: 2016 design, automation test in europe
conference exhibition (DATE). 2016, p. 469–74.

[34] Roy S, Sridharan S, Jain S, Raghunathan A. TxSim:Modeling training of deep
neural networks on resistive crossbar systems. 2021, arXiv:2002.11151 [cs, eess,
stat].

[35] Song L, Qian X, Li H, Chen Y. PipeLayer: A pipelined reram-based accelerator
for deep learning. In: 2017 IEEE international symposium on high performance
computer architecture (HPCA). 2017, p. 541–52. http://dx.doi.org/10.1109/
HPCA.2017.55.

[36] Sun X, Yu S. Impact of non-ideal characteristics of resistive synaptic devices on
implementing convolutional neural networks. IEEE J Emerg Sel Top Circuits Syst
2019;9:570–9.

[37] Mehonic A, Joksas D, Ng WH, Buckwell M, Kenyon AJ. Simulation of inference
accuracy using realistic RRAM devices. Front Neurosci 2019;13.

[38] Jain S, Sengupta A, Roy K, Raghunathan A. RxNN: A framework for evaluating
deep neural networks on resistive crossbars. IEEE Trans Comput-Aided Des Integr
Circuits Syst 2021;40:326–38.

[39] Nagel LW, Pederson D. SPICE (Simulation program with integrated circuit
emphasis). Technical Report UCB/ERL M382, Berkeley: EECS Department,
University of California; 1973.

[40] Gielen G, Rutenbar R. Computer-aided design of analog and mixed-signal
integrated circuits. Proc IEEE 2000;88:1825–54.
8

[41] Song L, Zhang J, Chen A, Wu H, Qian H, Yu Z. An efficient method for evaluating
RRAM crossbar array performance. Solid-State Electron 2016;120:32–40.

[42] Uppala R, Yakopcic C, Taha TM. Methods for reducing memristor crossbar sim-
ulation time. In: 2015 national aerospace and electronics conference (NAECON).
2015, p. 312–9. http://dx.doi.org/10.1109/NAECON.2015.7443089.

[43] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M,
Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch:
An imperative style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A, dAlché Buc F, Fox E, Garnett R, editors. Advances
in neural information processing systems 32. Curran Associates, Inc.; 2019, p.
8024–35.

[44] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M,
Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R,
Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I,
Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P,
Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-scale machine
learning on heterogeneous systems. 2015.

[45] Imani M, Samragh Razlighi M, Kim Y, Gupta S, Koushanfar F, Rosing T. Deep
learning acceleration with neuron-to-memory transformation. In: 2020 IEEE
international symposium on high performance computer architecture (HPCA).
2020, p. 1–14. http://dx.doi.org/10.1109/HPCA47549.2020.00011.

[46] Ankit A, Hajj IE, Chalamalasetti SR, Ndu G, Foltin M, Williams RS, Faraboschi P,
Hwu W-mW, Strachan JP, Roy K, Milojicic DS. PUMA: A programmable
ultra-efficient memristor-based accelerator for machine learning inference. In:
Proceedings of the twenty-fourth international conference on architectural sup-
port for programming languages and operating systems, ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery; 2019, p. 715–31. http://dx.doi.
org/10.1145/3297858.3304049.

[47] Lin M-Y, Cheng H-Y, Lin W-T, Yang T-H, Tseng I-C, Yang C-L, Hu H-W,
Chang H-S, Li H-P, Chang M-F. DL-RSIM: A simulation framework to enable
reliable ReRAM-based accelerators for deep learning. In: Proceedings of the
international conference on computer-aided design, ICCAD ’18. New York, NY,
USA: Association for Computing Machinery; 2018, p. 1–8. http://dx.doi.org/10.
1145/3240765.3240800.

[48] Ma X, Yuan G, Lin S, Ding C, Yu F, Liu T, Wen W, Chen X, Wang Y. Tiny but
accurate: A pruned, quantized and optimized memristor crossbar framework for
ultra efficient DNN implementation. In: 2020 25th Asia and South Pacific design
automation conference (ASP-DAC). 2020, p. 301–6. http://dx.doi.org/10.1109/
ASP-DAC47756.2020.9045658.

[49] Yuan G, Ma X, Ding C, Lin S, Zhang T, Jalali ZS, Zhao Y, Jiang L, Soundarajan S,
Wang Y. An ultra-efficient memristor-based DNN framework with structured
weight pruning and quantization using ADMM. In: 2019 IEEE/ACM international
symposium on low power electronics and design (ISLPED). 2019, p. 1–6. http:
//dx.doi.org/10.1109/ISLPED.2019.8824944.

[50] Lammie C, Azghadi MR. MemTorch: A simulation framework for deep memristive
cross-bar architectures. In: 2020 IEEE international symposium on circuits and
systems (ISCAS). 2020, p. 1–5. http://dx.doi.org/10.1109/ISCAS45731.2020.
9180810.

[51] Lammie C, Xiang W, Linares-Barranco B, Azghadi MR. MemTorch: An open-
source simulation framework for memristive deep learning systems. 2021, arXiv:
2004.10971 [cs].

[52] Chen P-Y, Peng X, Yu S. NeuroSim: A circuit-level macro model for benchmarking
neuro-inspired architectures in online learning. IEEE Trans Comput-Aided Des
Integr Circuits Syst 2018;37:3067–80.

[53] Peng X, Huang S, Luo Y, Sun X, Yu S. DNN+NeuroSim: An end-to-end bench-
marking framework for compute-in-memory accelerators with versatile device
technologies. In: 2019 IEEE international electron devices meeting (IEDM). 2019,
p. 32.5.1–4. http://dx.doi.org/10.1109/IEDM19573.2019.8993491.

[54] Peng X, Huang S, Jiang H, Lu A, Yu S. DNN+NeuroSim V2.0: An end-to-
end benchmarking framework for compute-in-memory accelerators for on-chip
training. IEEE Trans Comput-Aided Des Integr Circuits Syst 2020;1.

[55] Lu A, Peng X, Li W, Jiang H, Yu S. NeuroSim simulator for compute-in-memory
hardware accelerator: Validation and benchmark. Front Artif Intell 2021;4.

[56] Rasch MJ, Moreda D, Gokmen T, Le Gallo M, Carta F, Goldberg C,
El Maghraoui K, Sebastian A, Narayanan V. A flexible and fast pytorch toolkit for
simulating training and inference on analog crossbar arrays. In: 2021 IEEE 3rd
international conference on artificial intelligence circuits and systems (AICAS).
2021, http://dx.doi.org/10.1109/AICAS51828.2021.9458494.

[57] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. In: International conference on learning representations.
2015.

[58] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V,
Rabinovich A. Going deeper with convolutions. In: 2015 IEEE conference on
computer vision and pattern recognition (CVPR). 2015, p. 1–9. http://dx.doi.
org/10.1109/CVPR.2015.7298594.

[59] Gong N, Idé T, Kim S, Boybat I, Sebastian A, Narayanan V, Ando T. Signal and
noise extraction from analog memory elements for neuromorphic computing.
Nature Commun 2018;9:2102.

http://dx.doi.org/10.1109/ICECS46596.2019.8964998
http://dx.doi.org/10.1109/ICECS46596.2019.8964998
http://dx.doi.org/10.1109/ICECS46596.2019.8964998
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb16
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb16
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb16
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb17
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb17
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb17
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb17
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb17
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb18
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb18
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb18
http://dx.doi.org/10.1109/NanoArch.2013.6623029
http://dx.doi.org/10.1109/NanoArch.2013.6623029
http://dx.doi.org/10.1109/NanoArch.2013.6623029
http://arxiv.org/abs/2108.01804
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb21
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb21
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb21
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb22
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb22
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb22
http://dx.doi.org/10.1109/IEDM.2005.1609463
http://dx.doi.org/10.1109/IEDM.2005.1609463
http://dx.doi.org/10.1109/IEDM.2005.1609463
http://dx.doi.org/10.1109/IEDM19573.2019.8993641
http://dx.doi.org/10.1109/IEDM19573.2019.8993641
http://dx.doi.org/10.1109/IEDM19573.2019.8993641
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb26
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb26
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb26
http://dx.doi.org/10.1109/NANOARCH.2015.7180595
http://dx.doi.org/10.1109/NANOARCH.2015.7180595
http://dx.doi.org/10.1109/NANOARCH.2015.7180595
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb28
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb28
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb28
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb28
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb28
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb29
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb29
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb29
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb29
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb29
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb30
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb30
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb30
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb30
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb30
http://dx.doi.org/10.1109/ISVLSI.2012.82
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb32
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb32
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb32
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb33
http://arxiv.org/abs/2002.11151
http://dx.doi.org/10.1109/HPCA.2017.55
http://dx.doi.org/10.1109/HPCA.2017.55
http://dx.doi.org/10.1109/HPCA.2017.55
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb36
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb36
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb36
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb36
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb36
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb37
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb37
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb37
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb38
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb38
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb38
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb38
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb38
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb39
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb39
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb39
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb39
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb39
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb40
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb40
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb40
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb41
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb41
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb41
http://dx.doi.org/10.1109/NAECON.2015.7443089
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb43
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb44
http://dx.doi.org/10.1109/HPCA47549.2020.00011
http://dx.doi.org/10.1145/3297858.3304049
http://dx.doi.org/10.1145/3297858.3304049
http://dx.doi.org/10.1145/3297858.3304049
http://dx.doi.org/10.1145/3240765.3240800
http://dx.doi.org/10.1145/3240765.3240800
http://dx.doi.org/10.1145/3240765.3240800
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045658
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045658
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045658
http://dx.doi.org/10.1109/ISLPED.2019.8824944
http://dx.doi.org/10.1109/ISLPED.2019.8824944
http://dx.doi.org/10.1109/ISLPED.2019.8824944
http://dx.doi.org/10.1109/ISCAS45731.2020.9180810
http://dx.doi.org/10.1109/ISCAS45731.2020.9180810
http://dx.doi.org/10.1109/ISCAS45731.2020.9180810
http://arxiv.org/abs/2004.10971
http://arxiv.org/abs/2004.10971
http://arxiv.org/abs/2004.10971
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb52
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb52
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb52
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb52
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb52
http://dx.doi.org/10.1109/IEDM19573.2019.8993491
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb54
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb54
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb54
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb54
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb54
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb55
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb55
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb55
http://dx.doi.org/10.1109/AICAS51828.2021.9458494
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb57
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb57
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb57
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb57
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb57
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb59
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb59
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb59
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb59
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb59


Array 13 (2022) 100116C. Lammie et al.
[60] Peng X, Liu R, Yu S. Optimizing weight mapping and data flow for convolutional
neural networks on processing-in-memory architectures. IEEE Trans Circuits Syst
I Regul Pap 2020;67:1333–43.

[61] Qin Y-F, Bao H, Wang F, Chen J, Li Y, Miao X-S. Recent progress on
memristive convolutional neural networks for edge intelligence. Adv Intell Syst
2020;2:2000114.

[62] Cong J, Xiao B. mrFPGA: A novel FPGA architecture with memristor-
based reconfiguration. In: 2011 IEEE/ACM international symposium on
nanoscale architectures. 2011, p. 1–8. http://dx.doi.org/10.1109/NANOARCH.
2011.5941476.

[63] Ho PWC, Almurib HAF, Kumar TN. Configurable memristive logic block for
memristive-based FPGA architectures. Integration 2017;56:61–9.

[64] Tolba MF, Fouda ME, Hezayyin HG, Madian AH, Radwan AG. Memristor FPGA
IP core implementation for analog and digital applications. IEEE Trans Circuits
Syst II 2019;66:1381–5.

Corey Lammie is currently pursuing a Ph.D. in Computer Engineering at James
Cook University (JCU), where he completed his undergraduate degrees in Electrical
Engineering (Honors) and Information Technology in 2018. His main research interests
include brain-inspired computing, and the simulation and hardware implementation
of Spiking Neural Networks (SNNs) and Artificial Neural Networks (ANNs) using
ReRAM devices and FPGAs. He has received several awards and fellowships including
the intensely competitive 2020–2021 IBM international Ph.D. Fellowship, a Domestic
Prestige Research Training Program Scholarship (the highest paid Ph.D. scholarship
in Australia), the 2020 Circuits and Systems (CAS) Society Pre-Doctoral Grant, and
the 2017 Engineers Australia CN Barton Medal awarded to the best undergraduate
engineering thesis at JCU. Corey has served as a reviewer for several journals and
conferences including the IEEE Internet of Things Journal and the IEEE International
Symposium on Circuits and Systems (ISCAS).
9

Wei Xiang is currently Cisco Chair of AI and Internet of Things and Founding Director
of Cisco-La Trobe Centre for AI and Internet of Things. He is also Director of Higher
Degree Research Program at SmartSat CRC. Prior to joining in La Trobe, he was
Foundation Chair and Head of Discipline of Internet of Things Engineering at James
Cook University, Cairns, Australia. Due to his instrumental leadership in establishing
Australia’s first accredited Internet of Things Engineering degree program, he was
selected into Pearcy Foundation’s Hall of Fame in October 2018. He is an elected Fellow
of the IET in UK and Engineers Australia. He received the TNQ Innovation Award in
2016, and Pearcey Entrepreneurship Award in 2017, and Engineers Australia Cairns
Engineer of the Year in 2017. He has been awarded several prestigious fellowship titles,
including a Queensland International Fellowship, an Endeavor Research Fellowship, a
Smart Futures Fellow, and a JSPS Invitational Fellow. He is the Vice Chair of the IEEE
Northern Australia Section.

Mostafa Rahimi Azghadi received the Ph.D. degree in electrical and electronic
engineering from The University of Adelaide, Adelaide, SA, Australia, in 2014. From
2012 to 2014, he was a Visiting Ph.D. Student with the Neuromorphic Cognitive
System Group, Institute of Neuroinformatics, University and Swiss Federal Institute
of Technology (ETH), Zürich, Switzerland. He is currently a Senior Lecturer with the
College of Science and Engineering, James Cook University, Townsville, QLD, Australia,
where he is researching neuromorphic engineering and brain-inspired architectures
and developing custom hardware and software solutions for a variety of engineering
applications ranging from medical imaging to precision agriculture. Dr. Azghadi was
a recipient of several national and international awards and scholarships, such as the
2020 JCU Award for Excellence in Innovation and Change, the Queensland Young Tall
Poppy Science Award in 2017, and the South Australia Science Excellence Awards in
2015. He was a recipient of the Doctoral Research Medal and the Adelaide University
Alumni Medal in 2014.

http://refhub.elsevier.com/S2590-0056(21)00054-0/sb60
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb60
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb60
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb60
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb60
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb61
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb61
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb61
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb61
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb61
http://dx.doi.org/10.1109/NANOARCH.2011.5941476
http://dx.doi.org/10.1109/NANOARCH.2011.5941476
http://dx.doi.org/10.1109/NANOARCH.2011.5941476
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb63
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb63
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb63
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb64
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb64
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb64
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb64
http://refhub.elsevier.com/S2590-0056(21)00054-0/sb64

	Modeling and simulating in-memory memristive deep learning systems: An overview of current efforts
	Introduction
	Preliminaries
	Overview of existing CAD tools
	Comparison of modern simulation frameworks
	Simulation configurations
	MemTorch
	NeuroSim
	IBM analog hardware acceleration kit
	Baseline

	Training routine comparison
	Inference routine comparison

	Outlook
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


