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(Chapter 3). In Chapter 2, I found that the variation in relative abundance of reef fishes is 

strongly niche structured (above i), and that this deterministic niche structure is eroded on 

reefs with high temporal variability in coral cover (above ii). in contrast, geographical 

variation in coral cover variability has no detectable relationship to diversity patterns such as 

richness and evenness. In Chapter 3, I confirmed the robustness of inferences about the 
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the relative importance of deterministic niche versus stochastic components of the species 
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proximate and ultimate drivers of variation in relative abundance of reef fishes, as well as the 
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Chapter 1: General introduction 

 

1.1 Thesis overview 

 

Species-rich communities typically consist of a small number of highly-abundant species 

and many rare species, i.e., the frequency distribution of species abundances (species-

abundance distribution, hereafter SAD) is approximately lognormal (Preston 1948; Sugihara 

1980; Hubbell 1997; Magurran & Henderson 2003; McGill et al. 2007; Ulrich et al. 2010; 

Sæther et al. 2013; Connolly et al. 2014; Matthews & Whittaker 2015). However, SADs are 

not static. Depending on the community dynamics underlying SADs, the extent to which 

species are common or rare can vary substantially over space and time (Fung et al. 2016; 

Engen et al. 2017). The extent to which variation in SADs are driven by persistent 

differences in species’ intrinsic traits, responses to environmental fluctuations, and 

demographic stochasticity (chance variation in the fates of individuals) has important 

implications for understanding biodiversity maintenance, ecosystem functioning, and to 

anticipate how species-rich community structure, including alpha- and beta-diversity patterns, 

may respond to changing environmental regimes or management interventions (McGill et al. 

2007; Sæther et al. 2013; Matthews & Whittaker 2015). 

 

In the last few decades, there has been a proliferation of process-based models proposed 

to explain the drivers of variation in SADs (Hubbell 1997; McGill et al. 2007; Chisholm & 

Pacala 2010; Kalyuzhny et al. 2015; Engen et al. 2017). These process-based models differ 

from phenomenological statistical distributions (e.g., Fisher et al. 1948; Pielou 1975; Šizling 

et al 2009; White et al. 2012; Mathews et al. 2014; Connolly et al. 2017) whose parameters 

do not necessarily correspond to directly measurable ecological quantities, such as 

demographic rates. However, process-based models vary in the extent to which they 

explicitly represent the details of demographic and ecological differences among species. 

Some models explicitly characterize such differences on a species-by-species basis, such as 

accounting for species differences in competition for resources or differences in how 

particular species’ demographic rates respond to environmental conditions (Ellner et al. 

2016). Other models omit species-specific attributions: for example, in neutral community 

dynamics theory, all species are assumed to have the same birth and death rates, and 
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equivalent per-capita dispersal propensities and competitive abilities (Hubbell 1997; Volkov 

et al. 2007) Between these two extremes, community dynamics theory developed by Engen 

and coworkers (Engen & Lande 1996; Engen et al. 2002; Lande et al. 2003; Sæther et al. 

2013) allows for species differences by specifying distributions for demographic rates and 

responses to environmental fluctuations, without attributing particular values to particular 

species. 

 

Species-by-species modelling approaches allow more mechanistic detail in explanations 

of community structure and dynamics, including application of, e.g., “modern coexistence 

theory” (hereafter MCT) (Ellner et al. 2016), but they are intractable in species-rich systems, 

due to what is called the “many body problem” in statistical mechanics (Volkov et al. 2007). 

The problem in the language of ecology might be expressed as follows: the number of 

parameters needed for species-by-species community dynamics models increases faster than 

the amount of information available, as the number of species increases. Specifically, the 

number of between-species interaction terms and covariance parameters (which describe how 

correlated different species’ responses to environmental fluctuations are) in species-by-

species models typically increases with the square of the number of species in the 

community, precluding estimation of those parameters from either experimental 

manipulations, or from fits of models to time series data (i.e., the “curse of dimensionality”) 

(Ives et al. 2003; Ovaskainen et al. 2017). Moreover, in the ecological context, much of the 

species pool of high-diversity assemblages consists of rare species, for which even baseline 

demographic rates like birth and death rates may be difficult to obtain (Hubbell 1997, 2001; 

Volkov et al. 2007; Chisholm & Pacala 2010). By contrast, the more high-level modelling 

approaches can only be used to explain aggregate community patterns, such as SADs, but 

they cannot explain why particular species are more abundant or widespread than others in 

detail (Kalyuzhny et al. 2015; Connolly et al. 2017) 

 

To date, “static” SADs have been used commonly for testing predictions from both 

phenomenological and process-based models. However, many models, both 

phenomenological and process-based, describe SAD patterns almost equally well (McGill et 

al. 2007; Ulrich et al. 2010; Connolly et al. 2014). This lack of discrimination has raised 

concerns about testing between alternative models for community structure by identifying the 

best-fitting model for SADs (McGill et al. 2007). Recent studies suggest that analysing 

temporal dynamic patterns of SADs can provide critical information about the underlying 
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processes that cannot be otherwise obtained from analysing static SADs (Sæther et al. 2013; 

Fung et al. 2016; Engen et al. 2017). For instance, one might be able to identify the dynamic 

drivers of SAD by examining the temporal correlations in species-abundance patterns (Fung 

et al. 2016; Engen et al. 2017).  

 

One dynamical approach is to decompose the overall variance in SADs into separate 

contributions of community processes: specifically, the role of deterministic differences 

between species (e.g., interspecific variation in long-term mean abundances due to 

differences in demographic traits), the role of environmental stochasticity that induces 

fluctuations in relative species abundance, and the roles of demographic stochasticity (i.e., 

chance variation in the fates of individuals, regardless of species) and sampling effects due to 

e.g., local aggregation. This variance partitioning approach (hereafter, “variance partitioning 

of relative species abundance”, VPRSA) was developed by Engen and co-workers as an 

extension of their stochastic-dynamic theory of community structure (Engen & Lande 1996; 

Engen et al. 2002; Lande et al. 2003). Although VPRSA can be readily applied to 

commonly-collected survey data  (Sæther et al. 2013), it has received far less attention in the 

literature compared to alternative community dynamics theories, such as neutral theory for 

tropical tree and coral reef communities (Hubbell 1997, 2001; Volkov et al. 2007; Bode et al. 

2012; Fung et al. 2016). 

 

The VPRSA approach is especially useful for analysing temporal dynamics of SADs in 

species-rich assemblages. For instance, there has been an extensive debate about the 

importance of niche versus “neutral” processes (i.e., pure demographic stochasticity) in 

structuring high-diversity assemblages like tropical coral reefs (Hubbell 1997; Dornelas et al. 

2006; Volkov et al. 2007; Chisholm & Pacala 2010; Engen et al. 2017). In marine systems 

and coral reefs in particular, this debate has largely been informed by the analysis of static 

rather than dynamic SADs (Connolly et al. 2005; Dornelas et al. 2006; Volkov et al. 2007; 

Bode et al. 2012). However, even when the overall shape of SADs are static, or when species 

richness and evenness (i.e., alpha-diversity) are constant over time, the temporal correlations 

in species abundances (i.e., temporal beta-diversity) may vary substantially depending on 

how much the variation in a SAD is driven by long-term species differences, versus for 

instance differential responses to environmental fluctuations (Fung et al. 2016; Engen et al. 

2017). By analysing temporal autocorrelation in relative abundances, VPRSA is therefore 
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capable of estimating whether, and to what extent, the patterns of commonness and rarity in 

species-rich communities are structured by deterministic versus stochastic processes. 

 

On coral reefs, the relative importance of niche structure, neutral processes, and 

environmental fluctuations in driving SAD and diversity patterns are not well understood 

(Roughgarden 1974; Connell 1978; Anderson et al. 1981; Chesson & Warner 1981; Hubbell 

1997; Connolly et al. 2005; Dornelas et al. 2006; Volkov et al. 2007; Bode et al. 2012). 

Proximately, the overall variance in SADs depends on deterministic, species-differentiated 

trait values that maintain relative abundances over time, as well as on the varying effects of 

environmental and neutral fluctuations that generate additional variance in species 

abundances (see Box 1. for definitions and terms). Ultimately, across reefs, the relative 

importance of these drivers can vary with macro-ecological environmental variables, such as 

mean and variability in coral cover, latitude, and cross-shelf position. However, the 

relationships among environmental variables and the variance components of reef community 

structure as described above are unclear. 

 

The broader ecosystem consequences of the processes that drive dynamics of species’ 

relative abundances are not well understood either. For instance, most previous studies 

suggest that community-level stability (e.g., temporal stability in community total abundance) 

is strongly determined by species richness and evenness via the “portfolio effect” (see Box 1. 

for definitions and terms) (Doak et al. 1998; Tilman 1999; Hooper et al. 2005; Hector et al. 

2010; Thibaut & Connolly 2013; Schindler et al. 2015). The evidence for such diversity-

dependent stabilizing effects comes overwhelmingly from manipulative experiments, in 

which the dynamics of species’ relative abundances are controlled (Campbell et al. 2011; 

Gross et al. 2014). By contrast, in nature, diversity typically covaries with other properties of 

ecological communities, such as relative abundance, along environmental gradients 

(Sankaran & McNaughton 1999; Srivastava & Vellend 2005; Wardle 2016). When these 

naturally-occurring assemblages are compared, evidence for a consistently stabilizing effect 

of diversity is much more ambiguous (Wardle 2016; Blüthgen et al. 2016). The extent to 

which the proximate and ultimate determinants of species’ relative abundances discussed 

above may influence or obscure the relationship between diversity and stability is not known. 
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1.2 Thesis outline 

 
The overall aim of this thesis is to develop and implement novel applications of the 

VPRSA approach to understand the drivers of regional-scale variation in species abundances 

in reef fish assemblages of the Great Barrier Reef, and their consequences for community 

stability. Specifically, I will:  

1. Estimate the relative contributions of neutral process, species’ responses to 

environmental variability, and persistent niche-related differences among 

species to patterns of commonness and rarity.  

2. Determine how much those contributions of community structuring process 

vary at the regional scale, and how much of that variation can be explained by 

coral cover dynamics and environmental gradients of latitude and cross-shelf 

position.  

3. Test whether and how the relative contribution of community structuring 

processes influences the diversity-stability relationship.  

4. Because the VPRSA approach was explicitly derived from a process-based 

theory that makes important simplifying assumptions about community 

dynamics, I also evaluate the robustness of inferences about community 

structure drawn from VPRSA to violation of those simplifying assumptions. 

 

Chapter 2 focuses on the first two aims. Therein, I test whether coral cover 

fluctuations, as a proxy for disturbance dynamics, affect reef fish diversity patterns and the 

importance of “niche structure” (see Box 1). I find that relative abundances in reef fish 

assemblages are, in general, highly deterministically structured, with on average 80% of the 

variance in relative species abundances attributable to persistent species differences in 

average abundances. However, this deterministic niche structuring is eroded on reefs where 

fluctuations in coral cover are higher. In contrast, aggregate properties of community 

structure, such as species richness and unevenness, are comparatively insensitive to coral 

cover fluctuations; instead, they respond to more conventional macroecological variables 

such as latitude and cross-shelf position. Separate analyses of three species-rich functional 

groups indicates that the disproportionate importance of deterministic species differences, 

and the macroecological variation in these species-abundance variance components, are due 

to broadly consistent responses across functional groups, rather than by macroecological 
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changes in functional composition, although the strengths of these relationships vary 

somewhat among functional groups. My findings suggest that the long-term impacts of 

disturbance regime on reef community dynamics might have been underestimated in previous 

studies, because most of those studies have focused on short-term changes in community 

structure [e.g., comparing before-and-after change in composition and relative abundance in a 

short time period; (Wilson et al. 2006; Hughes et al. 2018b), or a time snapshot of 

community structure across spatial gradient; (Sandin et al. 2008; Ruppert et al. 2018)] and 

have focused on differences between static measures (such as richness, evenness, and static 

species-abundance distribution) rather than temporal variations in relative abundance 

patterns. 

 

Chapter 3 tests, for the first time as far as I am aware, the robustness of estimates 

from VPRSA to relaxation of important simplifying assumptions of the original underlying 

theory from which VPRSA was derived (aim 4 above). Specifically, I apply VPRSA to 

simulated community data that violate several of these assumptions. I also evaluate a 

random-effects approach of VPRSA to estimating variance components for time series that 

are spatially replicated but relatively short in duration, in order to determine whether 

parameter estimates obtained in this way are better than those obtained by estimating 

variance components independently for each time series. I show that estimated variance 

components are robust to violations of the original VPRSA assumptions, and that adopting a 

random-effects approach to estimating these variance components is an effective way to 

leverage spatial replication when time series are short. Moreover, I show that estimates of the 

variance components of community structure are robust, even when the interpretation of 

these diversity components in terms of particular parameters of the stochastic-dynamic theory 

may not hold. This chapter concludes that VPRSA indeed provides a much more robust 

estimate of the relative importance of deterministic and stochastic processes in high-diversity 

assemblages than one might assume based on the assumptions of the original theory from 

which the approach was derived. 

 

In Chapter 4, I test whether and how the relative contribution of stochastic and 

deterministic processes influences the diversity-stability relationship on coral reefs (aim 4 

above). Specifically, based on the analytical framework of Chapter 2 and Chapter 3, I 

develop a “niche structure index” to measure the relative determinism/stochasticity of 

community structure by estimating the relative contribution of intrinsic species differences 
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versus environmental and demographic stochasticity (i.e., the VPRSA approach). If the 

community is highly structured by species differences in intrinsic traits, then the value of the 

niche structure index is higher. Conversely, a lower value of the niche structure index 

represents increased stochasticity in community structuring and increased temporal 

community turnover. Equipped with this index, I test the simultaneous effect of changes in 

alpha-diversity (measured by species richness and evenness) and temporal-beta diversity 

(measured by niche structure index, NSI) on community stability. Specifically, the 

simultaneous effects of richness, evenness, and the niche structure index are incorporated 

within an expanded diversity-stability framework (see Box 1), providing an integrated 

assessment of the broader ecosystem consequences of alpha- and temporal beta-diversity 

change. In this chapter, I show a strong stabilizing effect of species richness and evenness, 

which occurs by reducing the synchrony in abundance fluctuations rather than by reducing 

average population variability. Also, the niche structure index affects community stability, 

but this effect occurs by mediating average population variability rather than synchrony. This 

chapter is the first regional-scale documentation of the diversity-stability relationship on coral 

reefs and, importantly, it suggests that regional variation in community structuring processes 

has a stabilizing effect that is comparable in magnitude to those of richness and evenness. 
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Table 1.1 Definitions and Terms 
 
Variance components of community structure 
Throughout the thesis, "variance components of 
community structure” refer to the following factors 
that can change the relative species abundance of a 
community through time. Specifically, components 
are classified as follows: 

1. Heterogeneity in species’ intrinsic traits and 
carrying capacities: this encompasses any 
factors that tend to maintain species’ relative 
abundances through time (i.e., that generate 
persistent differences in species' long-term 
mean abundances, for instance due to niche 
packing or other persistent demographic 
differences between species). This is termed 
"persistent species differences" or “niche 
structure” in the chapters. 

2. Environmental stochasticity or species’ 
responses to environmental perturbations:  any 
external stochastic perturbations to population 
growth rates that cause species’ relative 
abundances to deviate from their expected 
deterministic trajectories towards their 
respective carrying capacities. 

3. Demographic stochasticity: random variation in 
births and deaths of individuals. Unlike 
environmental stochasticity, the variance 
induced by demographic stochasticity is 
inversely proportional to population size (i.e., it 
has proportionately larger effects on small 
populations, and decreases rapidly in 
importance as population size increases). 

4. Sampling stochasticity: variation in observed 
species abundances due to random sampling 
effects. Like demographic stochasticity, this 
process is also proportionately larger for 
smaller populations  

The latter two sources of stochasticity (i.e., 
demographic and sampling stochasticity) are not 
distinguished from each other in this study because 
their effects on relative species abundance 
dynamics are not statistically distinguishable for 
data such as that analysed in this thesis. 

 
Diversity-stability relationship 

1. Community stability: temporal stability is 
measured as the inverse of coefficient of 
variation (CV) in aggregate multispecies 
abundance (Tilman 1999, Tilman et al. 2014). 

2. Portfolio effect: an analogy of portfolio 
selection in finance (Markowitz 1952; Doak et 
al. 1998), generally indicating that the 
variability of an aggregate property of 
fluctuating components decreases in volatility 
with increasing number of different 
components. Also termed "statistical 
averaging" in previous studies (Doak et al 
1998; Cottingham et al 2001). 

3. Temporal mean-variance scaling of population 
variability: the tendency for temporal variance 
in a species' abundance to increase with its 
mean abundance in time series. Specifically, 
this tendency follows a power scaling function 
(i.e., Taylor’s power law), with a scaling 
exponent between 1 and 2, so that both 
temporal variance and coefficient of variation 
of abundance tend to increase with mean 
abundance (Tilman 1999; Kilpatrick and Ives 
2003). Tilman 1999 demonstrates that species 
diversity tends to increase temporal variance in 
species abundance fluctuations, whereas it 
decreases temporal variance in community 
total abundance (i.e., diversity decreases 
population stability but increases community 
stability). 

4. Synchrony/asynchrony of population 
fluctuations: a measure of how different 
species’ abundances are correlated with each 
other over time (e.g., Loreau and de 
Mazancourt 2008, Gross et al. 2014). It varies 
from zero for perfectly compensating 
fluctuations (total community abundance is 
constant through time) to unity when all 
species' fluctuations are perfectly positively 
correlated. 
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Chapter 2: Increasing environmental volatility erodes niche structure, 

but not diversity, in coral reef fish assemblages 
 

2.1 Introduction 

 

The problem of how deterministic and stochastic factors shape patterns of 

commonness and rarity of species has engaged ecologists for over a century, and this problem 

remains enigmatic, particularly for species-rich systems (Preston 1947; MacArthur 1957; 

Pielou 1975; Engen and Lande 1996; Hubbell 2001; Magurran and Henderson 2003; 

Sugihara et al. 2003; Tilman 2004; McGill et al. 2007; Chisholm and Pacala 2010; Saether et 

al. 2013; Connolly et al. 2014; Kalyuzhny et al. 2015). Research into this problem was 

revolutionized by the development of neutral theory of biodiversity, which attributes 

variation in species abundances to only demographic stochasticity (chance variation in births 

and deaths of individuals) and dispersal limitation, and thus offers a tractable set of models 

that can be confronted directly with abundance data in highly speciose systems (Hubbell 

2001; Volkov et al. 2007; Rosindell et al. 2011; Chust et al. 2013). However, neutrality alone 

has proved inadequate to explain numerous important features of patterns of commonness 

and rarity in nature, including temporal drift in species abundances (McGill et al. 2005; 

Dornelas et al. 2014; Engen et al. 2017), spatial patterns of community similarity (Dornelas et 

al. 2006; Connolly et al. 2017), and the overall extent of heterogeneity in species’ abundances 

(Connolly et al. 2014).  

 

More recently, several extensions to neutral theory have been developed which might 

be collectively termed “quasi-neutral theory”. Quasi-neutral models assume species to have 

the same demographic rates on average, but species differences are implicitly allowed by 

modelling their dynamics independently of one another (Volkov et al. 2007), or by allowing 

their demographic rates to fluctuate in different ways (Kalyuzhny et al. 2015). Such implicit 

species differences can give species a demographic advantage as they become rare, 

facilitating population recovery, reducing extinction rates and supporting higher levels of 

biodiversity than neutral models (Chesson 2000; Kalyuzhny et al. 2015). Consequently, 

species differences in response to stochastic fluctuations maintain the variance in the 

distribution of commonness and rarity through time, although species’ dominance within that 

distribution can interchange. 
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Empirically, coral reefs have been a focal system for tests of neutral theory as well as 

assessments of the importance of species/niche differences, due to their high levels of 

biodiversity. An early test of neutral theory applied to coral assemblages showed that neutral 

model failed to account for the high variability in patterns of community similarity (Dornelas 

et al. 2006). That test was subsequently challenged by another neutral model (Volkov et al. 

2007), although that alternative neutral model has also now been shown to perform poorly 

(Connolly et al. 2017). Both reef coral and reef fish assemblages appear to have more 

heterogeneity in species abundances (i.e., many rare species coupled with common species 

that are highly numerically dominant) than neutral models can produce (Connolly et al. 2009, 

Connolly et al. 2014). However, these analyses do not reveal the extent to which this 

heterogeneity is due to persistent, deterministic differences in species’ abundances (i.e., a 

tendency for some species to be substantially more common than others), versus interspecific 

differences in responses to environmental fluctuations that amplify the variability in species’ 

relative abundances.  

 

In particular, coral reefs are profoundly influenced by stochastic environmental 

disturbances (Connell 1978; Karlson & Hurd 1993; Hughes et al. 2018b), which induce 

substantial changes in species composition and relative abundance over space and time. 

Differences in species’ susceptibility to those disturbances and differences in their rates of 

recovery from them suggest that environmental stochasticity could play an important role in 

determining patterns of commonness and rarity on reefs (Karlson & Hurd 1993). On the other 

hand, there is also evidence for persistent differences in species’ mean abundances over quite 

long time periods: for example, Acropora cervicornis and Acropora palmata remained 

substantially more abundant than other coral species throughout the Pleistocene in Barbados 

(Bode et al. 2012). Indeed, both species differences and environmental stochasticity have 

been invoked as major drivers of biodiversity maintenance on coral reefs (e.g., Connell 1978; 

Anderson et al. 1981; Chesson & Warner 1981; Dornelas et al. 2006). Consequently, the 

existing body of knowledge calls for a framework for the analysis of commonness and rarity 

that can determine the relative contributions of the stochastic and deterministic factors, rather 

than a comparison of models that strictly omit one or the other. 

 

 To undertake evaluations of the relative importance of factors such as deterministic 

species differences versus environmental fluctuations to species abundances and biodiversity, 
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some recent studies have turned to the analytical framework of modern coexistence theory 

[MCT: (Chesson 2000; Ellner et al. 2016; Usinowicz et al. 2017)]. These are detailed models 

of species interactions in which particular features that promote coexistence can be turned on 

or off to evaluate their effects on species abundances or on overall species richness. 

However, MCT requires detailed, species-level information about the demographic rates of 

species, and the precise nature of density-dependence, rendering the approach unfeasible for 

many high-diversity systems like coral reefs, where time series are commonly limited to 

counts of individuals through time (Dornelas et al. 2006; Sweatman et al. 2005; Blowes et al. 

2019), and estimates of individual demographic rates are limited to only a small subset of the 

assemblage on reefs (Madin et al. 2014; Alvarez-Noriega et al. 2016; Dornelas et al. 2017). 

 

An alternative to MCT is to employ a stochastic-dynamic theory of biodiversity 

which allows use of the temporal evolution of relative abundances (i.e., temporal beta 

diversity) in order to partition the variation in species abundances into the contributions of 

long-term differences in species’ mean abundances (i.e., species traits that tend to cause 

species to have high or low local abundances), the contribution of environmentally-induced 

fluctuations in species’ demographic rates, and the contribution due to other factors, such as 

demographic and sampling stochasticity (Engen and Lande 1996;  Engen et al. 2002; Lande 

et al. 2003; Saether et al. 2013). This approach cannot be used to draw some inferences that 

are possible with MCT: for instance, partitioning a species’ low-density growth rate into 

contributions of different coexistence mechanisms, such as the storage effect or relative 

nonlinearity of competition (Chesson 2000; Adler et al. 2007). However, it has the advantage 

of requiring information about abundances only, not individual demographic rates, and thus 

can be employed in many contexts where MCT cannot. 

 

Despite the potential utility, the variance-partitioning approach mentioned above 

(hereafter VPRSA, for “variance partitioning of relative species abundances”) has not been 

employed in species-rich coral reef systems. Here, I apply the VPRSA approach to quantify 

the extent to which patterns in commonness and rarity are due to stochastic fluctuations in 

species’ relative abundance, versus long-term differences in mean abundances of species 

(hereafter “deterministic species differences” or “niche structure”) among coral reef fishes on 

the Great Barrier Reef. I also test how those contributions vary at the regional scale in 

response to environmental gradients, and to the dynamics of coral cover. I compare the 

broad-scale, macroecological variation in the relative importance of these dynamic diversity 
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components with the variation in two classical, static diversity measures: species richness and 

evenness. My goals are (i) to determine, broadly, how deterministically-structured versus 

stochastically-structured reef fish assemblages are, and (ii) to estimate the magnitude of 

regional-scale variation in deterministic vs. stochastic components of community structure, in 

relation to variation in static biodiversity measures such as species richness and evenness 

over comparable spatial scales. This allows me to move beyond tests of neutral theory, by 

quantifying the relative importance of deterministic and stochastic factors that influence 

species’ relative abundances.  

 

In addition to the above objectives, I also aim (iii) to understand whether and how 

these community characteristics respond to differences in the temporal dynamics of local 

coral cover, as well as how they vary with latitude and with distance from the coastline along 

the continental shelf. By comparing the community structure of reefs across gradients in coral 

cover dynamics, latitude, and cross-shelf position, I aim to determine how the underlying 

forces that regulate coral reef biodiversity may be reshaped by the rapidly changing 

disturbance regime that these ecosystems are experiencing. Finally, I (iv) test whether the 

results from (i, ii and iii) are consistent when species-rich functional groups of fishes are 

analysed separately, in order to determine whether any ecologically significant 

macroecological variation in community structuring processes is driven by consistent 

relationships within functional groups, or whether they instead indicate shifts among 

functional groups. My expectation is that persistent, deterministic species differences will 

explain a smaller, but still substantial, proportion of the variation in species abundances 

within functional groups, compared to the fish assemblage as a whole. 

 

 

2.2 Methods 

 

 

2.2.1 Long-term fish community data and environmental covariates on the Great Barrier Reef 

 

I use data from the Australian Institute of Marine Science Long-Term Monitoring 

Program (LTMP), which consists of extensive visual surveys of reef benthos and reef fish 

communities encompassing more than 20 years and 10 degrees of latitude on the Great 
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Barrier Reef (Sweatman et al. 2005). The surveys themselves are hierarchically structured, in 

which 3 sites are selected usually on the NE faces of 40 reefs, and 5 permanent transects are 

laid within each site (see Halford and Thompson 1996 for a detailed description of the survey 

protocol). Here I extract and compile the community dynamics data from 1994 to 2004 (11 

years) for analysis, because this time window contains annual surveys of each reef (the 

frequency of reef surveys and study sites changed after the 2004 rezoning of the Great Barrier 

Reef Marine Park). 

 

The statistical analyses focus on counts of fish identified to species and percentage cover 

of live coral at each survey reef. Fish species are counted visually for a prescribed list of 

species representing 10 families, including the parrotfishes, damselfishes, surgeon fishes, 

butterflyfishes, and some others. All species examined here are largely non-cryptic and easily 

identified underwater, and thus cryptic species groups, such as gobies, were excluded. A full 

list of species observed each year are included in the appendices of each LTMP status report 

(Sweatman et al. 2005). Corals were identified to relatively broad taxonomic and 

morphological categories, but I consider only total hard coral cover in the analyses in this 

paper. I pool fish community and coral cover data at the scale of the entire reef, summing 

abundances over all 15 transects laid on each reef. Percentage cover is similarly averaged 

across transects and sites within reefs. I adopt this approach to reduce stochastic sampling 

error, thereby obtaining more precise estimates of the community structure statistics that are 

of interest in this study. 

 

Because the small-sized fish taxa (mainly Pomacentridae) were surveyed in narrower 

transects than other, larger fish taxa (Halford and Thompson 1996), I use subsampling to 

rescale the abundances of large-sized species to standardize sampling effort. Each fish 

counted on the wider transects is given a 20% probability of appearing in the sub-sample 

(because the small-fish transects cover only 20% of the area of large-fish transects). It is the 

sub-sampled data that are used for the analyses. 

 

For each reef, I extract the temporal average (11-yr mean), standard deviation (SD) and 

coefficient of variation (CV) in coral cover as proxies for disturbance-induced coral cover 

variability. I also extract each reef’s latitude and cross-shelf position, where latitude is 

measured by degrees from the equator and cross-shelf position is the standardized distance to 

the nearest continental shelf boundary (i.e., 0 represents the shelf boundary and 1 represents 
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the coast, respectively). I use latitude and cross-shelf position to represent major 

environmental gradients because community structure on the Great Barrier Reef is known to 

vary strongly along both gradients, and because they serve as good proxies for other 

variables, such as mean and variability in temperature, and variation in terrestrial input 

(Harriott & Banks 2002; Mellin et al. 2010). 

 

2.2.2 Partitioning variance in relative species abundance: theoretical framework 

 

I use the partitioning approach of Engen et al. (2002) to quantify the contribution of 

deterministic species differences, relative to environmental and demographic stochasticity, in 

driving the “total variance” in relative species abundances. These variance components can 

be estimated by how the correlation in a community’s log-abundances decays over time, i.e., 

the temporal autocorrelation in relative species abundance (Engen et al. 2002): 

  (eq. 2.1) 

where  represents the correlation coefficient of log species-abundances of a community at 

time lag t (i.e., it is a measure of community similarity between species’ log-abundances in 

two different years). This quantity is modelled as an exponential function of time lag t. That 

is, for all pairs of years on a reef, I estimate the correlation coefficient between these two 

samples, and then analyse how the strength of this correlation decreases as a function of the 

time elapsed between the two samples (here, time lag or interval between two samples ranges 

from 1 to 10 years). Parameter  represents asymptotic similarity. For a community with no 

persistent niche structure in abundance (e.g., where all species have the same mean 

abundance, and variation in species abundances is due entirely to their different responses to 

environmental fluctuations, alongside demographic stochasticity),  would be zero. For a 

community in which environmental fluctuations play no role,  would be large (and in the 

absence of demographic or sampling stochasticity as well, it would tend to unity). Parameter 

"# is the intercept (i.e., the expected correlation in species’ log-abundances for a time lag of 

zero), and thus  represents variation that is inversely proportional to population size 

(including demographic stochasticity of neutral process, and sampling effects due to variation 

at scales smaller than the site scale, such as aggregation).   measures the strength of 

density-regulation in the system: it would be larger in assemblages that revert quickly toward 
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their long-term mean relative abundances after a disturbance (see section 2.2.3 of this 

chapter, as well as Engen et al. 2002, 2011 for further explanation and derivation of eq. 2.1). 

 

The correlation coefficients  are estimated by fitting the bivariate Poisson-

lognormal distribution to all possible pairs of surveys at each site, and these correlation 

coefficients are then modelled as a function of the amount of time separating the samples 

following eq. 2.1. This distribution assumes that the two surveys represent random samples 

of individuals from two communities whose species abundances follow lognormal 

distributions with correlation coefficient "$. That is, the correlation coefficient parameter 

estimates the true underlying correlation in species’ log-abundances between the 

communities at the two sampling times, taking account of the fact that each abundance 

distribution in the data represents an incomplete sample from the community (Engen et al. 

2002). This model is justified because the static species-abundance distributions of these reef 

fish assemblages have been shown to be well-described by the Poisson-lognormal 

distributions (Connolly et al. 2014). As a further check, I conducted parametric bootstrap 

tests (N=100 for each fitted bivariate Poisson-lognormal distribution) to verify that the 

bivariate Poisson-lognormal is an adequate distribution for these data (Appendix A; Figure 

A1). 

 

After fitting eq. 1 to the pairwise correlation coefficients as a function of time lag 

according to eq. (1), variance components of relative species abundance can be estimated as: 

 (eq. 2.2) 

    (eq. 2.3) 

       (eq. 2.4) 

where  represents the proportional variation in relative abundance that is due to persistent 

niche differences among species,  represents the proportional variation in relative 

abundance due to species’ responses to environmental fluctuations, and  represents the 

proportional (residual) variation in relative abundance due to other processes, such as neutral 

demographic stochasticity and sampling error. 

 

2.2.3 Stochastic community dynamics model of reef fish communities 
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Originally, the partitioning approach described above was explicitly derived from a 

stochastic theory of community dynamics. This theory characterizes the temporal dynamics 

of abundance of S species according to the stochastic Ornstein-Uhlenbeck process (Lande et 

al. 2003):  

  (eq. 2.5) 

                      (eq. 2.6) 

where  represents the abundance of species i on a logarithmic scale,  is the intrinsic 

population growth rate of species i,  measures the strength of density-dependence,  

scales the magnitude of environmental fluctuations in the growth rate (i.e., larger implies 

larger fluctuations), and  models the fluctuations themselves as a Brownian motion 

(Wiener) process. Eq. (2.6) specifies that intrinsic growth rates, , vary among species 

according to a normal distribution with mean  and variance . Eq. 2.5 can be interpreted 

as a continuous-time analogue of discrete-time Gompertz-type community dynamics (Ives et 

al. 2003; Dennis & Ponciano 2014). 

 

Analysis of the model in eqns (2.5)-(2.6) shows that each species’ abundance 

fluctuates around a species-specific equilibrium “carrying capacity”, %
&'
( , and both the 

carrying capacities, and the abundances themselves, follow lognormal distributions among 

species. Notably, the stationary distribution of species’ abundances in the community remains 

lognormal, even in the presence of some violations of the model’s simplifying assumptions, 

such as the incorporation of correlations in species’ responses to environmental fluctuations, 

and of inter-specific interactions (Sæther et al. 2013). The model is therefore consistent with 

the reef fish data in this study whose species-abundance distributions are well-described as 

discrete, random samples of individuals from lognormal abundance distributions (i.e., 

Poisson-lognormal distributions: Connolly et al. 2014). In addition, previous work suggests 

that the Gompertz form of density-dependence is appropriate for these data (Thibaut et al. 

2012). For this model, the total variance in relative species abundance (hereafter ) can 

be analytically partitioned into additive components as follows: 

 (eq. 2.7) 
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and thus the proportional variance components , pe, and pd  would be equal to , 

 and , respectively. 

 

 I acknowledge that some of the assumptions of the stochastic dynamics model in eq. 

(2.5) are somewhat restrictive. Most notably, it assumes that the strength of density 

regulation and the magnitude of environmentally-induced fluctuations (on a logarithmic 

scale, i.e., proportional variance in population growth rate due to environmental fluctuations) 

are the same for all species, and it also assumes that there are no species interactions, nor 

covariation in species’ responses to environmental fluctuations. All of these assumptions are 

likely to be violated to some degree in my study system. For a community undergoing 

Gompertz-type dynamics, the lognormal stationary distribution of abundances is quite robust 

to these simplifying assumptions (Engen and Lande 1996; Ives et al. 2003). However, the 

robustness of variance components estimates has not yet been investigated, so I address this 

issue in considerable detail in Chapter 3. 

 

2.2.4 Estimating species richness and unevenness of reef fish community 

 

I also use the Poisson-lognormal distribution to estimate (time-averaged) richness and 

unevenness of reef fishes as follows. I fit this distribution to each of the 440 species-

abundance distributions (40 reefs × 11 years), using the method of maximum likelihood 

(Pielou 1975; Engen 1978; Connolly et al. 2005; Saether et al. 2013). Fitting this distribution 

yields maximum likelihood estimates of the standard deviation of log-abundance  for the 

underlying community from which the data are a sample. The skewness of a lognormal 

distribution is a function of only this parameter, implying that the skewness (i.e., the 

unevenness) of abundances in the fish community from which the data are a sample is a 

monotonically increasing function of  (i.e., larger values indicate more uneven 

communities) (Saether et al. 2013). This can be seen as a generalization of the evenness 

metric based on the variance in log abundances among species (Smith and Wilson 1996), 

which makes the evenness metric more robust to incomplete sampling (i.e., the  parameter 

is independent of sampling effort: Connolly et al. 2009; Saether et al. 2013). Additionally, 

Poisson-lognormal fits can be used to estimate the total number of species in the community, 

by producing an estimate of the probability that a species is present in the community but not 
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observed in the sample, . An estimate of total community richness is simply the number of 

observed species divided by  (Connolly et al. 2005; Saether et al. 2013). 

 

I estimate the variance of the species abundance distribution for each year, and then I 

calculate the mean of these values ( ) across years for each reef to use as my reef-scale 

measure of unevenness. Similarly, I use the mean (across years) of the estimated total 

community richness for each reef as my reef-scale estimate of species richness. 

 

2.2.5 Parameter Estimation of variance partitioning of relative species abundance 

 

To estimate the three variance components that completely partition the variation in 

relative abundances of fishes over time for each reef, I fit a mixed-effects version of eq. (2.1) 

to the data set. This approach outperforms fitting each reef individually, for simulated data 

with time series lengths, sample sizes, species richness levels and )$*$+,-  values comparable to 

those of these data (see Chapter 3). Specifically, I fit a family of nonlinear mixed-effects 

models, in which each of the fitted parameters ( , , ) may be fixed constants for all 

reefs or they may randomly vary among reefs according to latent normal distributions 

(Appendix B; Table B1). These models are parameterized by Template Model Builder 

(TMB) in R (Kristensen et al. 2016). I fit models with different combinations of the three 

temporal autocorrelation function parameters as fixed versus random, and I ranked model fits 

by AIC. I then checked for numerical stability of the model fits (i.e., I confirmed that the 

model’s random effects parameter estimates were valid), and I chose the best-fitting model 

(by AIC) that yielded a numerically stable fit as our basis for inference. Specifically, I used 

fixed and reef-level random effects estimates to calculate variance components for each reef 

according to eqs 2.2-2.4. 

 

2.2.6 Explaining regional variation in community structure 

 

I use ordinary least-squares (OLS) regression to investigate the extent to which 

variation among reefs in coral dynamics (mean, standard deviation [SD] and coefficient of 

variation [CV] of coral cover at each reef), latitude, and cross-shelf position explain variation 

in fish community structure (variance components of community structure, species richness, 
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and evenness). I choose latitude and cross-shelf position as my abiotic explanatory variables 

because many factors likely to affect community structure on coral reefs, such as 

temperature, turbidity, and nutrient loading vary strongly with one or both of these spatial 

variables. SD and CV of coral cover were both right-skewed, so they were log-transformed to 

reduce the heterogeneity of leverage values associated with the different reefs in our analysis 

(model selection yielded the same best-fitting models when they were untransformed, and r2 

values are higher, making the results below conservative with respect to the conclusions 

drawn). log(SD) and log(CV) of coral cover were very strongly collinear (r ~ 0.9), and model 

selection always preferred models using SD rather than CV when analogous models were 

compared (e.g., AIC favours a multiple regression model with interactive effects of log(SD) 

and mean coral cover over a model with interactive effects of log(CV) and mean coral cover), 

so I have not presented results for the models using log(CV). None of the remaining 

explanatory variables were highly correlated with one another (Appendix A; Table A1). I 

used AIC and adjusted R2 for model comparisons. 

 

Lastly, because the reef-level proportional variance components are estimated from 

fits of another statistical model, rather than being directly observed, I also performed a 

sensitivity analysis to test the robustness of my results to parameter uncertainty. Specifically, 

I estimated the uncertainty in my estimates of proportional variances by parametric bootstrap, 

resampling random effects values for my 40 reefs 10000 times from the variance-covariance 

matrix of the fitted nonlinear mixed-effects model based on TMB. Then, each bootstrap set of 

reef-level proportional variance component values were re-analysed using the OLS 

regressions repeated on each of the bootstrapped data sets. I evaluated the robustness of my 

model selection procedure by quantifying the percentage of bootstrapped data sets for which 

each model was selected as the best model by AIC. 

 

2.2.7 Sensitivity analysis of community structure across trophic/functional groups 

 

Reef fish community data were separated into major trophic/functional groups: 

herbivores, planktivores and benthic invertivores. These trophic groups were classified 

according to previously published functional classifications of reef fishes, supplemented by 

communication with experts in the field (see Appendix A; Table A3 for details). Of these 

functional groups, only three (i.e., herbivores, planktivores, and benthic invertivores) were 



 29 

sufficiently species-rich to analyse separately. I repeated all of the analyses conducted on the 

overall dataset, as described above, for each of the groups. I then compared the distribution of 

reef-scale estimates of variance components for the three trophic groups with each other, and 

with those for the mixed (i.e., the whole data, regardless of functional groups) assemblages, 

to estimate the magnitude of the difference between variance components. These 

comparisons were performed by paired t-test with Bonferroni correction for multiple 

comparisons. 

 

To examine the potential influence of coral cover dynamics on variance components of 

relative species abundance within functional groups, I fitted relationships between variance 

components and coral cover dynamics using OLS regression. In the full model, temporal 

mean and standard deviation (SD) in coral cover, and trophic group were considered as 

explanatory variables. AIC was used for model selection, beginning with a model including 

all main effects and interactions. 

 

2.3 Results 

 
The model of temporal autocorrelation of community similarity in which all three 

parameters ( , , ) had both fixed and random components was numerically unstable: 

that is, the estimates from methods of Laplace approximation and importance sampling did 

not converge (Appendix B; Figure B1). Of the remaining models, the best-fitting model by 

AIC included random effects on ". and "#, but not / (Appendix B; Table B1). This model 

exhibited good statistical behaviour (Appendix B; Figure B2), so I used it to calculate 

variance components for all analyses below. 

 

Overall, variation in the commonness and rarity of reef fishes is highly deterministically 

structured on the Great Barrier Reef (Figure 2.1). Deterministic (intrinsic) species differences 

explain a larger proportion of variation in reef fish community structure (01 = 0.76, on 

average [parametric bootstrap 95% CI: 0.73-0.8]), compared to environmental stochasticity 

(07 = 0.17 on average [parametric bootstrap 95% CI: 0.14-0.2]). Only ~0.07 [parametric 

bootstrap 95% CI: 0.06-0.07] of the variance was attributable to other sources of variance, 

such as demographic stochasticity and sampling error (Figure 2.1E).   
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Nevertheless, there is substantial variation in these variance components of community 

structure among coral reefs: the relative importance of deterministic species differences in 

driving reef fish abundances varies strongly with coral cover dynamics (Figure 2.2). 

Specifically, the importance of the environmental stochasticity variance component was 

higher on reefs with more variable coral cover, especially when mean coral cover was high, 

while the species difference variance component changed in a compensatory direction 

(Figure 2.2). The interactive effects of the mean and standard deviation of coral cover explain 

about 40% of the variation in these two relative variance components of fish assemblage 

structure (R2=0.39, P<0.001 for the variance component of species differences, and R2=0.4, 

P<0.001 for the variance component of environmental stochasticity; Table 2.1).  Model 

selection favours this interactive model over all alternatives considered (Table 2.1; also 

P=0.001 for both models of species difference and environmental stochasticity being selected 

in 1000 times bootstrap tests). 

 

In marked contrast to the dynamic quantities represented by the proportional variance 

components, coral cover variables explain very little variation in time-averaged richness and 

evenness of the fish assemblages (R2~0 in all cases; Table 2.1). Instead, these quantities vary 

strongly and interactively with latitude and cross-shelf position, which together explain 55% 

and 71% of the variation in richness and evenness, respectively. Specifically, species richness 

increases and unevenness decreases (i.e., evenness increases) towards the equator, but the 

increases in richness and decreases in unevenness are much steeper on the inner shelf than the 

outer shelf of the Great Barrier Reef (Figure 2.3). Model selection strongly favours this 

interactive model over the alternatives considered, for both richness and evenness (Table 

2.1). 

 

The among-reef patterns of fish community structure are similar across 

trophic/functional groups that contain more ecologically-similar species, suggesting these 

patterns are not produced by shifts in the relative dominance of different trophic/functional 

groups, but rather represent parallel responses across functional groups. In line with the 

patterns of mixed (the whole data, regardless of functional groups) assemblages described 

above, deterministic species differences remain the most important factor driving patterns of 

relative species abundance in trophic/functional groups: surprisingly, it explains ~65-80% 

(i.e., approximately the same magnitude) of the variance in relative species abundance of 

trophic groups, comparable to that of the mixed assemblage (Appendix C; Figure C1). By 
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contrast, environmental stochasticity explains only ~5-25% of variance in relative species 

abundance of trophic groups (Appendix C; Figure C1), again similar to the original analysis. 

Demographic and sampling stochasticity together explain much less species-abundance 

variations (~2-12%) of trophic groups (Appendix C; Figure C1). The above variance 

components are statistically significantly different from each other for some combinations of 

between-group difference, but the magnitude of this between-group variation is relatively 

small (Appendix C; Table C1-Table C3). As in mixed assemblages, coral cover dynamics, 

but not latitude or cross-shelf position, explain the relative importance of deterministic versus 

stochastic variance components across trophic/functional groups (Appendix C; Figure C2, 

Table C4). Latitude and cross-shelf position explain the richness pattern of trophic groups 

among reefs, as in mixed assemblages, but only latitude explain the evenness pattern of 

trophic groups among reefs (Appendix C; Figure C3-C5, Table C4). 
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Figure 2.1 Map showing reefs included in all analyses, along with frequency 

distributions of explanatory and response variables. On the map, red circles show 

locations of the 40 reefs used in this study. (A-B) Frequency distribution of the temporal 

mean and standard deviation in coral cover that are proxies for environmental volatility 

across study sites. (C-D) Frequency distribution of (time-averaged) species richness and 

unevenness of reef fish communities across study sites. (E) Frequency distribution of the 

proportional variance in relative species abundances attributable to deterministic intrinsic 
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species differences that produce differences in long-term mean abundances (red bars; n=40), 

to environmentally-induced stochastic fluctuations in species’ growth rates (blue bars; n=40), 

and to residual effects such as demographic stochasticity and sampling effects such as local 

aggregation (green bars; n=40). Color-coded, dashed lines indicate the mean value of the 

corresponding variance component. 

 

 
Figure 2.2 Relationship between coral cover dynamics and variance components of reef 

fish community structure. (A-C) Relationships between the reef-scale coral cover variables 

(temporal SD and mean of coral cover for each reef) and the relative importance of variance 

components in structuring fish species-abundances across reefs (n=40 reefs). The 

relationships are plotted using parameter estimates for the lowest-AIC models, with 

interactive effects of the mean and SD of coral cover as explanatory variables, and variance 

components of fish community structure as response variables (Table 1). The red bands 

represent the 95% C.I. of the proportional variance attributable to persistent species or niche 

differences, while the blue band represents the 95% C.I. of the proportional variance 

attributable to environmental stochasticity. To illustrate the interactive relationships, the 1st, 

median and 3rd quartiles of mean coral cover are fixed in panels (A), (B), and (C), 

respectively, and the fitted relationship between SD of coral cover and variance component 

values are plotted for the corresponding value of mean coral cover. (D) The relationship 

between observed and predicted values from the corresponding OLS regression models 

whose fits are plotted in panels (A-C). The solid line is the unity line (observed=predicted). 
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Figure 2.3 Richness and unevenness depend on latitude and cross-shelf position. (A-C) 

Relationship between time-averaged fish species richness and the interaction of latitude with 

cross-shelf position. (E-G) Relationship between time-averaged unevenness and the 

interaction of latitude with cross-shelf position. Grey bands are the 95% confidence intervals 

predicted from the lowest-AIC models for richness and unevenness (n=40 reefs; Table 1). To 

better illustrate the interactive relationships, the 1st, median, and 3rd quartiles of cross-shelf 

positions are fixed in panels (A, E), (B, F), and (C, G), respectively, and the relationship 

between richness or unevenness as a function of latitude are shown for the corresponding 

value of cross-shelf position. Note that variable cross-shelf position increases towards the 

coast. (D, H) The relationship between observed and predicted values from the OLS 

regression models corresponding to the fitted relationships in (A-C) and E-G), respectively. 

The solid line is the unity line (observed=predicted). 

 

 

Table 2.1 OLS regression models for proportional variance components, richness, and 

unevenness. For explanatory variables, ‘mC’ and ‘log(sdC)’ represent the long-term (11-yr) 

mean and log-transformed standard deviation in annual coral cover fluctuations, respectively. 

‘Lat’ and ‘Shelf’ represents latitude and cross-shelf position, respectively. ‘Intercept’ 

represents the regression model that contains only an intercept (i.e., no explanatory 

variables). Cross symbols indicate models that include main effects and interactions, whereas 

plus symbols denote models including only main effects (i.e., additive effects of the 

explanatory variables). 
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Response variable Explanatory variable adjR2 AIC ΔAIC 

Species differences log(sdC)×mC 0.39 -80.93 0 

Species differences log(sdC) 0.19 -71.64 9.29 

Species differences mC 0.16 -70.28 10.65 

Species differences log(sdC)×mC+Lat×Shelf 0.34 -75.66 5.27 

Species differences log(sdC)+Lat×Shelf 0.19 -68.83 12.1 

Species differences mC+Lat×Shelf 0.12 -65.59 15.34 

Species differences Lat×Shelf 0 -59.87 21.06 

Species differences Lat 0 -62.24 18.69 

Species differences Shelf 0 -63.78 17.15 

Species differences Intercept 0 -64.2 16.73 

Environmental stochasticity log(sdC)×mC 0.4 -77.47 0 

Environmental stochasticity log(sdC) 0.19 -67.43 10.04 

Environmental stochasticity mC 0.16 -65.91 11.56 

Environmental stochasticity log(sdC)×mC+Lat×Shelf 0.35 -71.96 5.51 

Environmental stochasticity log(sdC)+Lat×Shelf 0.18 -64.39 13.08 

Environmental stochasticity mC+Lat×Shelf 0.12 -61.05 16.42 

Environmental stochasticity Lat×Shelf 0 -55.55 21.92 

Environmental stochasticity Lat 0 -57.97 19.5 

Environmental stochasticity Shelf 0 -59.4 18.07 

Environmental stochasticity Intercept 0 -59.85 17.62 

Richness log(sdC)×mC 0 332.25 32.91 

Richness log(sdC) 0 330.47 31.13 

Richness mC 0.01 329.39 30.05 

Richness log(sdC)×mC+Lat×Shelf 0.54 303.61 4.27 

Richness log(sdC)+Lat×Shelf 0.54 301.18 1.84 

Richness mC+Lat×Shelf 0.55 299.83 0.49 

Richness Lat×Shelf 0.55 299.34 0 

Richness Lat 0.1 325.51 26.17 

Richness Shelf 0.24 318.69 19.35 

Richness Intercept 0 328.96 29.62 

Unevenness log(sdC)×mC 0.02 107.83 47.38 

Unevenness log(sdC) 0.03 105.65 45.2 

Unevenness mC 0.02 106.16 45.71 

Unevenness log(sdC)×mC+Lat×Shelf 0.69 63.80 3.35 

Unevenness log(sdC)+Lat×Shelf 0.7 60.58 0.13 

Unevenness mC+Lat×Shelf 0.7 60.45 0 

Unevenness Lat×Shelf 0.71 60.78 0.33 



 36 

Unevenness Lat 0.27 94.14 33.69 

Unevenness Shelf 0.22 96.93 36.48 

Unevenness Intercept 0 106.03 45.58 

 

 

2.4 Discussion 

 

Across the Great Barrier Reef, patterns of commonness and rarity in reef fish 

assemblages are, in general, highly niche-structured, with approximately 76% of the variance 

in relative species abundances attributable to persistent, deterministic species differences 

(i.e., to differences among species in long-term mean abundance). However, this proportion 

is strongly dependent on coral cover dynamics, decreasing as volatility in coral cover 

increases. That relationship is most pronounced when average coral cover is high, whereas, 

when coral cover is low, reef fish communities may shift to an alternative pattern of relative 

abundances that is more resistant to environmental fluctuations (e.g., due to changed 

functional composition). Such resistant fish communities may have fewer species that depend 

strongly on living corals (e.g., coral feeders; Coker et al. 2014), or fewer species that are 

influenced by lagged effect of coral cover declines on recruitments (a previous study showed 

about 60% of fish species were affected in this way; Jones et al. 2004). By contrast, the reef 

fish diversity measures of species richness and unevenness are comparatively insensitive to 

coral cover dynamics. Instead, they respond to the more classical macroecological variables 

of latitude and distance from the coast along the continental shelf. Broadly, these 

relationships remain when trophic/functional groups are considered separately: all indicate 

patterns of commonness and rarity that are driven mainly by persistent species differences, 

and variance components of relative species abundance respond to coral cover, latitude, and 

cross-shelf position in similar ways.  

 

Despite the well-documented ecological importance of episodic disturbances on coral 

reefs, my findings suggest that deterministic niche structure plays a major role in allowing 

species to be consistently common or rare through time. This has important implications for 

the debate about the relative importance of niche vs. neutral processes in structuring high-

diversity assemblages (Hubbell 1998; Dornelas et al. 2006; Volkov et al. 2007; McGill 2010; 

Chisholm and Pacala 2010; Connolly et al. 2014; Mathew and Whitaker 2014; Kalyuzhny et 

al. 2015; Fung et al. 2016; Engen et al. 2017). For marine systems in general and coral reefs 
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in particular, the niche-neutrality debate has been largely informed by the analysis of static 

rather than dynamic species-abundance distributions (Dornelas et al. 2006; Volkov et al. 

2007; Connolly et al. 2014). Here, by analysing temporal dynamics of species-abundance 

distributions, I am able to evaluate the importance of deterministic species differences, 

relative to stochastic fluctuations in population growth rates, in driving patterns of 

commonness and rarity on coral reefs. Indeed, in the context of the relative importance of 

niche structure, the proportion of variance in species abundance that is attributable to what I 

term “deterministic (intrinsic) species differences” is an estimate of the extent to which the 

variance in species abundances is driven by differences in the long-term equilibrium mean 

abundances of different species. Differences in species’ niche or trait characteristics may also 

lead them to respond differently to environmental fluctuations (e.g., quasi-neutral dynamics 

and MCT; Chesson 2000; Lande et al. 2003; Miller et al. 2011; Thibaut et al. 2012), and such 

effects might be captured by the variance component of environmental stochasticity in our 

analysis (Engen et al. 2002). Thus, the term for proportional variance of species differences is 

likely to be a conservative estimate of the contribution that differences in species 

characteristics make to their relative abundance.  

 

This chapter is also the first regional-scale study, from any system, that evaluates 

whether and how the relative importance of variance components in relative species 

abundance changes regionally in response to biotic and abiotic environmental variables. The 

evaluation suggests that much of this geographical variation is potentially explainable: for 

these data, nearly half the variation in deterministic niche structure of fish communities over 

10 degrees of latitude can be explained by just two explanatory variables linked to coral 

cover dynamics (Table 2.1). Although stochastic fluctuations in population growth make a 

comparatively small contribution to overall variation in relative abundances of reef fishes, 

this contribution varies systematically across the Great Barrier Reef in a manner that is also 

closely linked to coral cover dynamics (Figure 2.2). Importantly, increased volatility in coral 

cover is associated with increased importance of stochastic fluctuations in population growth 

rates in structuring reef fish abundance patterns. In other words, reefs with high coral cover 

volatility also have increased fish community turnover and thus temporal beta-diversity. The 

deterministic component of species relative abundances is reduced, particularly when coral 

cover is high (Figure 2.2C). Conversely, coral cover has a much weaker, statistically non-

significant relationship with alpha-diversity measures such as species richness and 

unevenness (Table 2.1). This suggests that the effects of volatility in coral cover on fish 
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assemblages may be masked by apparent stability in the kinds of macroecological variables 

typically used in regional-scale analyses, which are overwhelmingly based on static 

snapshots rather than time series. This finding underscores the importance of utilizing 

dynamic aspects of community structure for anticipating how those communities may 

respond to changed disturbance regime and volatility in environmental fluctuations (Mathews 

and Whittaker 2015; Helmut et al. 2017; Engen et al. 2017). 

 

Surprisingly, I found that latitude and cross-shelf position, which can serve as proxies 

for a range of regional-scale environmental gradients (such as mean and variability in annual 

temperature and solar radiation, as well as turbidity, nutrient enrichment, and concentrations 

of environmental toxins) (Wolanski & Bennett 1983; Bellwood & Hughes 2001; Fabricius et 

al. 2008; Malcolm et al. 2010b; Schiller et al. 2015) explained almost none of the regional-

scale variation in the relative importance of deterministic species differences. This suggests 

that longer-term macroevolutionary, microevolutionary, and community assembly processes 

affect patterns of commonness and rarity in a consistent fashion. This is true for high-

diversity tropical reefs as well as lower-diversity subtropical reefs, and on high-turbidity, 

nutrient-enriched inshore reefs as well as offshore reefs that are much less influenced by 

coastal processes. In other words, species-rich reef fish communities along the Great Barrier 

Reef are structured in similarly predictable ways, despite the well-established, substantial 

differences in species composition that occur along these north-south and cross-shelf 

gradients (Hoey & Bellwood 2008; Emslie et al. 2010, 2012; Cheal et al. 2012; Hoey et al. 

2013; Goatley et al. 2016). 

 

In marked contrast, the two alpha-diversity measures explored here, i.e., richness and 

unevenness, were relatively insensitive to coral cover dynamics (Table 2.1), but they varied 

strongly with latitude and cross-shelf position (Figure 2.3). The relatively poor relationships 

between alpha-diversity and coral cover dynamics found here is consistent with some 

previous studies of reef fish communities, which have also found that diversity does not 

always respond to external disturbances (Wilson et al. 2009; Bellwood et al. 2012). Patterns 

of species richness have long been known to covary with both latitude and cross-shelf 

position (Hoey & Bellwood 2008; Malcolm et al. 2010a; Bennett 2011; Bode et al. 2011; 

Cheal et al. 2012; Mellin et al. 2019), variables that are strongly associated with important 

environmental gradients on the Great Barrier Reef. The stronger latitudinal gradient for 

inshore locations may partially reflect the latitudinal distribution of coastal impacts (Devlin 
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& Brodie 2005; Fabricius et al. 2016), which tend to be greater in the southern half of the 

Great Barrier Reef than the northern half, as well as the fact that the continental shelf is wider 

further from the equator, potentially reducing dispersal between nearshore and offshore reefs 

(Bode et al. 2011). However, to my knowledge, this chapter is the first study to document 

latitudinal and onshore-offshore gradients in evenness, which are actually stronger than those 

for richness (R2=0.71 versus R2=0.55) on coral reefs. This is particularly striking since the 

measure of unevenness used here is the (averaged) total variance in species’ relative 

abundances, which is what is partitioned by the variance components (eq. 7). That is, total 

variability in species abundances responds to macroecological-scale environmental gradients, 

while the proportion of that variability attributable to persistent species differences versus 

stochasticity responds instead to coral cover dynamics. 

 

This chapter leverages a unique, regional-scale, highly spatially-replicated time series 

of relative abundances of fishes at species level on the Great Barrier Reef to reveal that 

patterns of commonness and rarity are structured disproportionately by deterministic factors. 

This implies that it is characteristics of species that determine whether they tend to be 

common or rare in a particular environment. Moreover, this dominance of deterministic 

structure holds from the high-diversity north to the lower-diversity south, and from turbid, 

nutrient-enriched inshore reefs to reefs close to the outer shelf, of the Great Barrier Reef, 

even though which species have high versus low abundances differs profoundly among those 

environments (Williams 1982; Russ 1984b, a; Hoey & Bellwood 2008; Emslie et al. 2010, 

2012). However, the deterministic structure is eroded on reefs with large fluctuations in coral 

cover (Figure 2.2). In this system, regional variation in the volatility of coral cover over this 

period was driven substantially by episodic disturbances, particularly cyclones and crown-of-

thorns starfish outbreaks (De’ath et al. 2012), whose frequency or severity may be linked to 

anthropogenic environmental change (Wooldridge & Brodie 2015; Cheal et al. 2017).  

 

Moreover, as climate change accelerates, coral bleaching may overtake other 

disturbances as a key driver of increased coral cover volatility (Hughes et al. 2018a, 2019; 

Wolff et al. 2018) by causing mass mortality and potentially driving a shift to coral species 

with more “weedy” (i.e., fast growth and high fecundity) demographic characteristics 

(Pandolfi et al. 2011; Hughes et al. 2018b). Consequently, accelerating anthropogenic 

impacts could erode niche structure of reef assemblages in coming decades, most 

dramatically on the reefs with the highest levels of average coral cover. Moreover, the 
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marked differences in how the deterministic and stochastic factors of community structure 

respond to environmental gradients and coral cover dynamics imply that setting conservation 

priorities based principally on classical measures of alpha-diversity or species composition, 

without explicitly considering the drivers of species’ relative abundance dynamics, might fail 

to detect important changes in the processes structuring ecological assemblages (see 

examples in Mathews and Whittaker 2015; Helmut et al. 2017). Given that biodiversity and 

community structure are maintained by a combination of deterministic and stochastic factors, 

dynamic partitioning of relative species abundance as demonstrated here may help to provide 

an early warning of longer-term threats to biodiversity (e.g., decreased deterministic niche 

structure) that are not apparent from richness or evenness alone. 
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Chapter 3: Robustness test for variance partitioning of relative species 

abundance from simulated community time-series data 
 

3.1 Introduction 

 

In Chapter 2, I found that reef fish assemblages on the Great Barrier Reef are, in general, 

highly niche structured, with over 75% of the variance in relative species abundances, on 

average, attributable to deterministic species difference (i.e., among-species differences in 

long-term mean abundance), and less than 25% attributable to environmental, demographic, 

or sampling stochasticity. Moreover, I found that the relative importance of these variance 

components differs among reefs, depending on the local dynamics of coral cover. These 

inferences were all based on applying the variance partitioning of relative species abundance 

(VPRSA) method, which is derived from Engen and Lande’s stochastic-dynamic theory of 

biodiversity (Engen & Lade 1996; Engen et al. 2002; Lande et al. 2003; also see General 

Introduction). However, the VPRSA approach makes some important simplifying 

assumptions that may commonly be violated in real communities, including the LTMP data 

(Chapter 2), so it is important to evaluate whether inferences about proportional variance 

components are sensitive to those assumptions. 

 

The assumptions of VPRSA flow from the fact that the approach is derived from a 

model in which the temporal abundance dynamics of S species follows the Ornstein-

Uhlenbeck process (Engen et al. 2002; Dennis & Ponciano 2014): 

  (eq. 3.1) 

  (eq. 3.2) 

where the subscript i indexes the species, and  represents the log abundance of species i, 

such that log-abundances of species fluctuate around their deterministic equilibrium values, 

which are determined by species-specific intrinsic growth rate ( ) and a common density 

dependent parameter ( ). Intrinsic growth rates are perturbed by environmental stochasticity, 

which is modeled as Wiener (Brownian) process noise ( ) with variance		)7-. Intrinsic 

growth rate  varies among species according to a normal distribution with mean  and 

variance . 
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Simplifying assumptions of this model include that: (i) species’ intrinsic growth rates 

vary according to a normal distribution, (ii) the strength of intra-specific density dependence 

is the same for all species (note that assumptions i and ii together, given the log-scaling of 

abundance in eq. 3.1, imply a lognormal distribution of equilibrium population sizes), and 

(iii) the responses of species’ intrinsic growth rates to environmental stochasticity 

(environmental variance) are assumed to be independent and equal in magnitude (i.e., they 

fluctuate from year to year with the same variance; because of the log-scaling of abundance 

in this model, this implies that fluctuations in population growth have a variance that is 

proportional to the mean). Samples from communities whose abundances follow these 

assumptions generate a static species-abundance pattern that follows a Poisson-lognormal 

distribution, consistent with what is commonly observed in data (McGill et al. 2007; Saether 

et al. 2013). Importantly, the assumptions also allow the variance in relative species log-

abundances to be partitioned into components explained by species differences in intrinsic 

rate of increase, species’ responses to environmental stochasticity, and variance due to other 

factors, such as demographic and sampling stochasticity, when time series of species-

abundance distributions are available. 

 

The partitioning, which I term VPRSA, can be expressed as follows: 

.  (eq. 3.3) 

where  represents the overall variance in log-abundance values among species and the 

three terms in the middle of the equation follow the notation of eqs. (3.1-3.2) and Engen et al. 

(2002). The first of these terms (denoted Vr) on the right-hand side of eq. (3.3) is the variance 

in species’ equilibrium abundances (i.e., the variance in their equilibrium carrying capacities, 

measured on a log scale). I term this the “deterministic species differences” or “intrinsic 

species differences” variance component. It can be conceived of as the variance due to niche 

or trait differences among species (Engen et al. 2002; Engen et al. 2011). The second term 

(Ve) is the variance in species’ relative abundances due to their responses to environmental 

fluctuations, and I term this the “environmental stochasticity” variance component. The last 

term (Vd) represents the remaining variance in log-abundance that is not explained by the 

other two terms, and incorporates the effects of sampling stochasticity, as well as small-scale 

spatial variation and demographic stochasticity. I term this “demographic/sampling 
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stochasticity”. These variance terms can be used to derive proportional variance estimates by 

dividing the variance terms of Vr, Ve and Vd by the overall variance  in eq. 3.3. By doing 

so, as per Chapter 2, proportional variances from VPRSA provide an estimate of the relative 

importance of deterministic versus stochastic factors in shaping patterns of commonness and 

rarity (Engen et al. 2002; Lande et al. 2003; Engen et al. 2011). 

 

The community dynamics model of eqs. (3.1)-(3.2) implies a particular analytical form 

of temporal autocorrelation in log-abundance of species. That is, the correlation coefficient of 

the bivariate Poisson-lognormal distribution of abundances decays exponentially with the 

amount of time separating the two species-abundance samples (Engen et al. 2002): 

  (eq. 3.4) 

where  is the correlation between species’ log-abundance values separated by time lag ,  

and the parameters  and  are linked to the variance components in eq. (3) as follows: 

        (eq. 3.5) 

  (eq. 3.6) 

    (eq. 3.7)  

 

In addition to the statistical challenge of obtaining well-behaved estimates of the 

autocorrelation parameters, it is not clear whether eqs. (3.4)-(3.7) constitute reasonable 

estimates of variance components when the assumptions of the underlying stochastic 

community dynamics model (eqs. 3.1-3.3) are violated. When some assumptions are violated, 

the interpretation of these variance components in terms of particular parameters of the 

original stochastic-dynamic theory may not hold. For instance, the deterministic “intrinsic 

species difference” component captures the proportional variance in log-abundance due to 

species differences in equilibrium abundance, but this will no longer be directly proportional 

to variance in intrinsic growth rates (as in the Vr term of eq. 3.3) when species interactions or 

among-species heterogeneity in density-dependence is present. 

 

Some of the theory’s underlying assumptions are more reasonable than others. For 

instance, the assumption of Gompertz-type density dependence is consistent with many 

previous studies, which have found that this model characterizes the functional form of 

density dependence well and performs better than, or as well as, other forms such as the 

2
totals

( )0 e dt
tr r r r-

¥ ¥= - +

tr t

0r r¥
2

r totalV r s¥= ×

( ) 2
0e totalV r r s¥= - ×

( ) 2
01d totalV r s= - ×



 44 

Ricker or Logistic forms (MacNally et al. 2010; Knape and de Valpine 2011; Thibaut et al. 

2019). More specifically, in a closely-related previous study focusing on reef fish functional 

group dynamics on the Great Barrier Reef (Thibaut et al. 2012), the Gompertz-type density 

dependence was found to fit data better than other forms of density dependence. Another 

assumption is that of a normal distribution of intrinsic growth rates. Because of the log-

scaling of species abundances in eq. (3.1), this implies a lognormal distribution of geometric 

growth factors. A strongly right-skewed distribution of this quantity, such as a lognormal, is 

consistent with the few studies of variation in population growth at the assemblage-level, 

which show that most species are relatively slow growing, with a long tail of few fast-

growing species. (e.g., the freshwater fish: Wang et al. 2019; fishery species: Myers et al. 

1999). 

 

In contrast, the assumptions of equal strength of density dependence, and equal 

proportional magnitude of environmentally-induced fluctuations in abundance, seem unlikely 

to hold in nature (Thibaut et al. 2012; Mori et al. 2013; Bonin et al. 2015). Between these 

extremes, the assumptions that interspecific interactions are negligible, and that species 

respond independently to environmental fluctuations, are common in biodiversity models, but 

controversial. For instance, there is some evidence that between-species interactions tend to 

be weak, particularly for high-diversity systems (e.g., Freckleton & Lewis 2006; Thibaut et 

al. 2012; Gellner and McCann 2016), and species’ responses to fluctuations tend to be 

relatively independent on average (e.g., Lande et al. 2003; Loreau 2010). The lognormal 

shape of the static species abundance distribution has been shown to be robust to violation of 

these assumptions (Engen & Lande 1996; Saether et al. 2013). However, whether variance 

components estimated from the temporal evolution of such species-abundance distributions 

are equally robust is unknown. 

 

VPRSA is a potentially powerful way to draw inferences about the importance of 

deterministic versus stochastic drivers of species abundance for high-diversity assemblages, 

where most species are too rare for species-by-species approaches to be effective. However, 

to date it has been applied by fitting the bivariate Poisson-lognormal to all pairs of times at an 

individual site, and then fitting eq. (3.4) by least squares (hereafter the ‘Individual Maximum 

Likelihood’, or IML, approach) (Engen et al. 2002, 2018). An important limitation this 

approach is that time-series data from assemblage surveys are usually too noisy and short to 

obtain reliable estimates in this fashion. A potential solution is to use multiple time series 



 45 

(i.e., spatial replicates of short time series) from the same community type as random effects 

in a single analysis, instead of estimating parameters independently for each time series. The 

rationale is that, if one can assume that replicates of time series across space represent similar 

community dynamics, then VPRSA can benefit from leveraging information across multiple 

communities. 

 

Here, I simulate different scenarios of community dynamics to test the robustness of 

variance components estimated from VPRSA, and I also investigate the potential to leverage 

multiple time series via random effects modelling to obtain more reliable estimates of 

variance components for short time series (hereafter “Mixed-Effects Model” or MM: the 

approach adopted in Chapter 2). Specifically, I conduct VPRSA analysis using both MM and 

IML on simulated community dynamics data that systematically violates the assumptions of 

VPRSA, and I compare estimated variance components with approximate “true” variance 

components based on the analytical solutions and (known) underlying parameters of the 

simulated communities. R codes, including IML, MM approaches and Gompertz community 

dynamics simulations, are open access at https://github.com/TsaiCH/simsEngenVPRSA. 

 

3.2 Methods 

 

3.2.1 Community dynamics model 

 

I use state-space models that incorporate different assumptions about community 

dynamics to produce simulated data, which I then analyse using the VPRSA approach 

applied in the previous chapter (Chapter 2). This allows me to evaluate both the performance 

of my mixed model (MM) versus the independent maximum likelihood (IML) approach, and 

to evaluate the robustness of VPRSA estimates to violation of the assumptions of the 

community dynamics model from which it was derived. The R code for simulations of 

community dynamics, and VPRSA estimation, is available and open access at 

https://github.com/TsaiCH/simsEngenVPRSA. 

 

First, I simulate the abundance dynamics of species i=1..S in a community according to 

the discrete-time multivariate Gompertz model (Ives et al. 2003): 

 (eq. 3.8) ( ), 1 , , , , ,exp 1 log logi t i t i ii i t ij i t d t e tj i
N N a b N b N e e+ Ï

é ù= + - - + +ë ûå
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where  is the abundance of species i at time t,  is the species-specific intrinsic growth 

rate, and  and  are coefficients related to intra- and inter-species density dependence, 

respectively. -1 is the strength of intra-specific density-dependence, while larger values of 

indicate stronger inter-specific interactions. Here, I constrain these values to be between 0 

and 1 ( <0 represents strongly over-compensatory interactions, where increases in Nt 

produce decreases in Nt+1, whereas bii=1 indicates density-independent dynamics. 

Additionally, the species-specific intrinsic growth rates ( ) are assumed to vary among 

species according to a normal distribution (sensu  in eqs.1-2).	:;,$ and :7,$ are species-

specific process noises of demographic and environmental stochasticity, assumed to follow 

normal distributions (see definitions as follows). 

 

Let  and take the natural logarithm of both sides of eq. (3.8) in order to 

facilitate expressing the Gompertz-type community dynamics in matrix form. By doing so, 

the community dynamics model becomes an order-one multivariate autoregressive model 

with two components of process noise as follows: 

 (eq. 3.9) 

 (eq. 3.10) 

 (eq. 3.11) 

where  is a vector containing log abundance for each species i at time t,  is a vector 

containing species-specific intrinsic growth rates (ai), and  is the interaction matrix where 

the diagonal ( ) and off-diagonals ( ) are coefficients in related to intra- and inter-specific 

density dependence (keeping in mind that the intra-specific density-dependence is -1, 

whereas the intra-specific density dependence is ). is a vector of random variables 

containing species’ responses to environmental fluctuations (i.e., the perturbations to the 

intrinsic growth rate due to environmental stochasticity) and follows a multivariate normal 

distribution (MVN) with zero means and variance-covariance matrix  (eq. 3.10).  is a 

vector of random variables containing perturbations due to demographic stochasticity. These 

quantities also follow a multivariate normal distribution (MVN) with zero means and variance 

matrix (by definition, the covariances of this matrix are all zero). Because less abundant 

species are more prone to demographic stochasticity than abundant species, I follow previous 
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work and model the demographic variances in log-abundance (the diagonal in ) as 

inversely proportional to the square root of species abundance (eq. 3.11) (Lande et al. 2003; 

Boettiger 2018). That is, the diagonal elements of  follow: 

  (eq. 3.12) 

 

Finally, let  represent a vector containing the expected relative species abundance in a 

random sample of the species-abundance distribution, such that: 

 (eq. 3.13) 

where c is a measure of sampling intensity. Hence the (simulated) sampled species 

abundances Yt will be a Poisson sample of : 

 (eq. 3.14) 

The final model of community dynamics represents a discrete-time multivariate state-space 

model with normally-distributed equilibrium log-abundances, normally distributed process 

noise, and Poisson-distributed observation error. I therefore model the sampled abundance 

values yt as following a Poisson-lognormal distribution (Engen & Lande 1996).  

 

3.2.2 Simulating empirically constrained community dynamics data 

 

Simulated data were constrained to have similar numbers of locations (“reefs”), time 

series lengths, species richness, and numbers of individuals as the LTMP data analysed in 

Chapter 2. Specifically, I generated 100 simulated data sets, each of which consisted of 40 

simulated time series (“reefs”) sampled annually for 11 years, to correspond to the time series 

for the 40 annually-sampled reefs in the LTMP. For each reef, true total species richness was 

fixed at S=100 in all simulations. The level of “true” total richness used in simulations is 

close to the upper bound of estimated total richness at the reef scale in the LTMP (see Figure 

2.1 in Chapter 2). Then, for each year at each reef, I simulated a Poisson random sample with 

a mean of 1500 individuals (i.e., the sampling intensity c was set so that the sum of the 

Poisson mean abundance across all species was equal to 1500), since this was close to the 

median sample size in the LTMP. If any simulated samples had fewer than 40 observed 

species (i.e., species with sampled abundance greater than zero), that sample was discarded, 

and a new random sample was taken from the community for that reef and year. This 
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threshold of 40 observed species was used to prevent unrealistically low representation of the 

community (in the LTMP data, no reefs had fewer than 40 observed species in any year). 

Simulations where this occurred were extremely rare (approximately 2% of simulations), so it 

is unlikely that this culling process has biased the conclusions of my analyses. 

 

For each simulated data set, the communities on all reefs were assumed to have the same 

community dynamics parameters for eqs. (3.9-3.11), except for the strength of environmental 

stochasticity (i.e.,  in eq. 1 and the diagonal [)7-] of  in eq. 10). This last quantity was 

varied systematically, in order to produce a data set in which the relative importance of 

deterministic species differences versus environmental stochasticity varied widely among 

reefs, which could then be used to evaluate how well the IML and MM methods resolved 

these differences. Specifically, the environmental variance term (i.e.,	)7-) was varied from 

0.025 to 0.5 in equal sized-increments across the simulated reefs (e.g., one reef had )7- =
0.025, another had )7- = 0.0372, and so on up to )7- = 0.5). This created a true distribution 

of variance components among reefs that was uniform and extended almost all the way to 

zero, and thus deviated markedly from the Gaussian distribution assumed by the MM model 

(Figure C1). Consequently, it represented a particularly stringent test of random-effects 

estimates from that model. For the effect of deterministic, intrinsic species differences (cf. eq. 

3.1-3.2 and eq. 3.9), the species-specific intrinsic growth rates were modelled as varying 

among species according to a normal distribution with mean =1.5 and standard deviation 

sr = 0.25, based on a meta-analysis of global fishery stock assessments (Myers et al. 1999). 

Demographic stochasticity was simulated as process noise ( ), where the demographic 

variances (the diagonal of  in eq. 3.11) were scaled by the value );- = 0.5 (this value is 

used as comparable with the magnitude of environmental stochasticity, though realised 

demographic stochasticity scales with species abundances). Other parameter values varied 

among simulation scenarios, as specified below. 

 

3.2.3 Scenarios of simulated community dynamics data 

 

I simulated five scenarios of community dynamics, which are empirically constrained as 

described above, to test the robustness of variance components (i.e., the relative importance 

of deterministic versus stochastic factors in eq. 3.3) estimated by VPRSA. The values of )7- 

and );- specified above for all simulations, and the additional parameters specified in 
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scenarios (i)-(v) below, were chosen so that the simulations produced frequency distributions 

of  )$*$-@  (variance of log-abundance in the communities), and sample completeness (measured 

as the fraction of the species pool observed at each site in each year) that were similar to 

those produced when the Poisson-lognormal was fitted to the LTMP data (Figure C1, also see 

Chapter 2). In addition, to ensure a stationary distribution of population sizes (i.e., all species 

coexisting, and fluctuating around their species-specific equilibrium abundances), the 

complex norm of eigenvalues of interaction matrix B were constrained to be less than one. 

This constrained the overall strength of interspecific competition in scenario (iii) (i.e., if 

interactions were too strong, species would be unable to coexist). 

 

The details of parameters and scenarios of simulated community data are as follows:  

(i) Baseline: These simulations were run to conform with the assumptions of the 

stochastic community-dynamic theory from which VPRSA was derived. 

Specifically, intra-specific density dependence was the same for all species 

(bii=b), the interaction matrix B contained no inter-specific density dependence 

(i.e., the off-diagonals of  were zero in eq. 3.9) and responses to 

environmental fluctuations were independent and equal in variance (i.e., the off-

diagonals of  were zero in eq. 3.10, and the variances were all equal to the 

reef-specific values of )7- specified above: )7,AA- = )7-). In these simulations, I set 

b=0.84 (i.e., the strength of density dependence was 0.16). 

(ii) Varied intra-specific interactions (varIntra): This scenario introduces between-

species variation in intra-specific density dependence. Specifically, values on the 

diagonal of  in (eq. 3.9) were drawn from a normal distribution with mean 1.8 

and standard deviation 0.4, and then inverse-logit transformed to yield values 

between 0 and 1. This produces random coefficients of the diagonal of B with 

mean values close to 0.84 (i.e., B[DAA] ≈ 0.84, implying average strength of 

density-dependence  1 − B[DAA] ≈0.16), and standard deviations close to 0.06, 

implying a coefficient of variation of density-dependent strength of about 0.37. 

Because equilibrium abundance is exp M 1'N''O, this approach produced 

unrealistically large variance in the total variance of log-abundance, )$*$- . 

Therefore, the diagonal elements of  were reordered to increase with species’ 

intrinsic growth rates (i.e., elements of vector A in eq. 3.9), so that species with 

strong density dependence also had high intrinsic growth rates. This yielded 

B
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more realistic variances of log-abundance (see below). 

(iii) Inter-specific interactions (varInter): This scenario introduces diffuse inter-

specific density dependence by drawing the off-diagonals of  from a uniform 

distribution between 0 and 0.002 (mean=0.001). This yielded an average 

summed effect of interspecific interactions (across the other 99 species in the 

community) that was approximately 60% the strength of intra-specific density-

dependence (i.e., 0.001 × 99 ≈ 0.6	 × 0.16). All other parameter values were 

the same as in the Baseline simulation. Scenarios with stronger interspecific 

interactions are not considered here. Mean interaction strength values slightly 

above those employed here (0.001-0.003) tended to produce distributions of 

observed richness values that differed notably from the data (lower observed 

richness levels, and more strongly right-skewed abundance distributions). 

Moreover, mean interaction strengths above about 0.003 tended to produce 

assemblages lacking a stable coexistence equilibrium (Figure C2). 

(iv) Unequal environmental variances (varEnv): This scenario introduces 

heterogeneity among species in sensitivity to environmental fluctuations. 

Specifically, species-specific environmental variances (the diagonal of  in eq. 

3.10) were drawn from a uniform distribution between 0 and 2 (mean=1), and 

then multiplied by the reef-specific )7- term, as specified above. This ensured 

that the average value of environmental variance ranged from 0.025 to 0.5, as in 

the Baseline scenario, and thus continued to yield realistic )$*$-  values. All other 

parameter values were as in the Baseline scenario. 

(v) Unequal environmental covariances (varcovEnv): This scenario introduces 

covariance in species’ responses to environmental fluctuations. In order to draw 

random matrices that were valid variance-covariance matrices (i.e., that were 

positive-definite symmetric matrices), I used the Cholesky decomposition 

method implemented in the “Matrix” package in R for matrix algebraic 

computations (see https://github.com/TsaiCH/simsEngenVPRSA for R codes of 

simulations of this scenario). Specifically, I generated a lower-triangular matrix 

 whose elements were drawn from a normal distribution with mean 0 and 

standard deviation 0.25. I then produced a covariance matrix = . The 

elements of  were subsequently standardized by the mean of the diagonal 

elements, and then the entire matrix multiplied by the reef-specific 
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environmental variance term )7-. This yielded a matrix of unequal variances and 

covariances among species, whose correlation coefficients ranged from -0.5 to 

0.5, with mean 0, and with the mean of the diagonal elements equal to the reef-

specific value )7- (and thus comparable in environmental variability to the other 

scenarios). 

 

3.2.4 Estimating VPRSA through simulated community dynamics data 

 

I tested the robustness of statistical inferences drawn from VPRSA by analysing the 

simulated data described above. Following the original estimation procedure of VPRSA, I 

use the R package “poilog” to fit the bivariate Poisson-lognormal distributions to paired 

assemblage at different time lags (Grøtan & Engen 2008). This involves fitting the bivariate 

Poisson lognormal to all possible pairs of times by maximum likelihood, for each simulated 

reef’s time series, and then analysing the correlation coefficients for all of these pairs as 

functions of the time elapsed between them, as in Chapter 2. (Engen et al. 2002; Engen et al. 

2011). 

 

After obtaining the correlation coefficients from Poisson-lognormal fits, I estimated the 

three parameters ( , , and ) of the autocorrelation function of (eq. 3.4). Here, I 

compare two different approaches: Individual Maximum Likelihood (IML) and Mixed-

effects Model (MM). As per the original IML approach of Engen et al. (2002), I fit the 

autocorrelation function (eq. 3.4) to the estimated correlation coefficients from the bivariate 

Poisson-lognormal fits, independently for each reef. That is, I fit eq. (3.4) with a Gaussian 

error term and fixed parameters to the correlation coefficients as a function of time lag. I then 

compare this approach with a random-effects version of eq. (3.4) fitted to the simulated 

community time series from all 40 reefs simultaneously (as employed in Chapter 2). This 

random-effects approach can be formulated as follows: 

 (eq. 3.15) 

 (eq. 3.16) 

 (eq. 3.17) 

 (eq. 3.18) 
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where  represents the correlation coefficient of relative abundances for two samples from 

reef k as a function of the time lag t  between them. , , and  represent the three 

parameters of the autocorrelation function (eq. 3.4), in which superscript Rk denotes a reef-

specific value for reef k due to the random effect of reef. Density dependence is assumed to 

be a fixed effect (as in Chapter 2) in eq. (3.15), because analyses of LTMP data found 

numerical instability when the density dependence parameter is instead modelled as a random 

effect (Appendix B, Chapter 2). The other random effects of parameters (eqs. 3.16-3.17) are 

assumed to follow lognormal distributions, while the residual error is assumed to follow a 

normal distribution (eq. 3.18). Visual inspection of model fits tended to indicate acceptable 

agreement with model assumptions (also see Appendix B, Chapter 2), and the numerical 

stability and convergence is guaranteed for all estimations. 

 

For both the IML and MM approaches described above, I use the estimated 

parameters of the autocorrelation function to calculate the proportion of the total variance of 

log-abundance attributable to deterministic species differences, responses to environmental 

fluctuations, and demographic stochasticity and sampling effects, as in Chapter 2 (eqs. 3.3-

3.7 in Introduction). I use R package “bbmle” (Bolker and R Development Core Team 2017) 

to compute the IML estimates, and the R package “TMB” (Kristensen et al. 2016) to compute 

the MM estimates. 

 

3.2.5 Testing the robustness of statistical inferences drawn from VPRSA 

 

I compare the performance of the MM and IML estimates with the Baseline scenario, 

since the “true” proportional variance terms (i.e., the relative importance of deterministic 

versus stochastic factors in eq. 3.3) can be calculated directly from the parameters used in the 

process-based model (eq. 3.8-3.14). Specifically, for each reef in each simulation, there is an 

estimate of the proportional variance components from IML and from MM. I compare these 

estimates with the analytical expected variance components, which I calculated using the 

process model parameters of the Baseline simulation: variance in intrinsic growth rates ( ), 

environmental variance ()7-), and intra-specific density dependence ( ) according to eq. 3.3. 

Specifically, for the density-dependent parameter, I used / ≡ b-1 (i.e., the strength of intra-

specific density-dependent parameters used in the simulations), to ensure that the equilibrium 

abundances matched their predicted values (see below). Because the environmental variance 
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parameter varied from one reef to the next in each simulated data set, estimator performance 

was assessed visually by plotting both estimated and analytical variance components as 

functions of the reef-specific environmental variance. 

 

Once a method of estimation was identified as superior (either IML or MM), I then 

applied that method to assess the robustness of estimated proportional variance components 

to violations of model assumptions (scenarios ii through iv). For these simulations, I used 

average values (across species) for computing “expected” proportional variances in scenarios 

of varied intra- and inter-specific interactions (scenarios ii and iii) and environmental 

variances and covariances (scenarios iv and v), because the density dependence and 

environmental variance parameters are not fixed constants applied to all species in these 

scenarios. For analytical simplicity, the “expected” proportional variance explained by 

demographic/sampling stochasticity is ignored in computations of eq. 3.3 (i.e., assuming Vd is 

negligible in eq. 3.3). This assumption is reasonable given that the proportional variance of 

demographic/sampling stochasticity is quite small in both simulations in this chapter, and in 

the LTMP data analysed in Chapter 2. 

 

In addition, I calculated, analytically, an alternative measure of expected proportional 

variances to take more explicit account of between-species heterogeneity, species 

interactions, and covariances in response to environmental fluctuations. I did this by 

exploiting general analytical solutions (e.g., Ives et al. 2003) for the environmental variance 

and variance in equilibrium abundance for the discrete time, stochastic, multivariate 

Gompertz model as follows: 

 (eq. 3.21) 

 (eq. 3.22) 

 (eq. 3.23) 

 (eq. 3.24) 

where S1 is the among-species variance of equilibrium population sizes (on a logarithmic 

scale), and S7  represents the average species-level variance of log-abundance due to 

environmental stochasticity. In (eq. 3.21),  represents the species’ abundances at 
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stationary or equilibrium states, “var” represents the variance operator, B is the interaction 

matrix (as per eq. 3.9), A is a vector of intrinsic growth rates (as per eq. 3.9). In (eq. 3.22), 

 is the average of the diagonal of the environmental variance-covariance matrix at 

stationary states, “avg” represents the arithmetic mean function, and “diag” and “vec” are the 

diagonal and vectorization operators (Searle 1982). The symbol  represents the Kronecker 

or tensor product. From equations (3.23)-(3.24), the two variance components are generalized 

to account for heterogeneity in intra-specific and inter-specific density dependences through 

the interaction matrix B, as well as heterogeneity in environmental variances and covariances 

through the environmental variance-covariance matrix . 

 

Importantly, under the assumptions of the Baseline scenario, the approximate measures 

of S1 and S7  above (eqs. 3.21-3.24) collapse to discrete-time analogous of Engen and 

colleagues’ functional forms of T1  and T7  (eq. 3.3) (where the density-dependent parameter 

/ ≡ 1 − DAA). However, once species interactions or heterogeneity in density-dependence are 

incorporated (e.g., scenarios ii and iii), )1- deceases to be directly proportional to the variance 

in species’ equilibrium log-abundances, so this modified version of S1 (eq. 3.21) might be a 

better measure of the relative importance of niche structure than Vr from the original theory 

(eq. 3.3). Similarly, in the presence of environmental covariances or heterogeneity in 

environmental variances among species (e.g., scenarios iv and v), the functional relationship 

between Ve in eq. (3.3) and the overall contribution of environmentally-mediated population 

fluctuations to variance in species-abundances may also break down, rendering eq. (3.22) a 

more robust measure. For example, environmental covariances and compensatory 

interspecific interactions would likely change the linear functional relationship between ri 

and equilibrium log-abundance. Consequently, for scenarios (ii)-(v), I test estimated variance 

components from the IML and MM fits (eqs. 3.5-3.7) against theoretical variance 

components calculated according to both the original theory (eq. 3.3), and the generalized 

forms above. However, the model from which these generalized forms are derived (eqs. 3.21-

3.22) omits demographic stochasticity; thus, if the contribution of Vd (eq. 3.3) is non-

negligible, then analytically-calculated proportional variance components from (eqs. 3.23-

3.24) will be biased. Consequently, to maximize the comparability of these quantities S1 and 

S7  with the original VPRSA forms, I normalized the variance components of the former T1  

and T7  (eqs. 3.5-3.7) as follows: 

T
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T
^
7 = VX

V&WVX
≡ VX

YZ[Z\ ]V^
   (eq. 3.26) 

 

 

3.3 Results 

 

Incorporating spatial replicates via MM estimation substantially improved estimates of 

proportional variance (i.e., Vr , Ve , and Vd divided by the overall variance; eq. 3.3), compared 

to IML estimation. Specifically, for both the mixed model (MM) and independent model 

(IML) fits, as the magnitude of environmental variance increases along the spatial replicates 

of community dynamics, the proportional variance explained by deterministic “intrinsic 

species differences” decreases (red points in Figure 3.1), and the proportional variance 

explained by “environmental stochasticity” correspondingly increases (blue points in Figure 

3.1). 

 

However, the MM method has much lower sampling variance (spread of colored points 

around colored lines in Figure 3.1A), and the analytical expectation is less biased (compare 

black lines with colored lines in Figure 3.1A), compared to the IML-based estimates (Figure 

3.1B) (see Figure C3 for various scenarios with IML). In particular, the IML estimates appear 

bimodal, with some time series erroneously converging on “quasi-neutrality” (i.e., blue points 

along the top of Figure 3.2B, indicating estimated proportional variance explained by 

deterministic species difference ~ 0 and proportional variance explained by environmental 

stochasticity ~1), even when the true proportions are nearly the opposite (Figure 3.1B). 

Interestingly, this behaviour is also observed when the IML approach is applied to the LTMP 

data (results not shown), so my simulations strongly suggest that this bimodality is an artefact 

of poor estimator performance. 

 

Focusing on the better-performing MM-based estimates, I find that the central tendency 

of VPRSA estimates deviate detectably from analytical prediction (Figure 3.1A and Figure 

3.2). The discrepancy is slightly more pronounced when intraspecific density-dependence 

varies among species (Figure 3.2A) compared to the other scenarios (Figure 3.2B-3.2D). 

Robustness of IML estimates are qualitatively similar to those of the MM results, but, as with 

the baseline scenario, the estimates exhibit considerably greater sampling variability than the 

corresponding MM estimates (c.f. Figure 3.2 and Figure C3). 
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To understand this discrepancy, it is important to note that the variance attributable to 

“deterministic species differences” is the variance in deterministic equilibrium population 

sizes (on a logarithmic scale). In Engen et al.’s (2002) original model, as in the baseline 

scenario, this is equal to )1-//- or ".	with equations (3.3)-(3.7). However, when there is 

heterogeneity among species in intra-specific density dependence (i.e., the “varIntra” 

scenario; Figure 3.2A) or species interactions (i.e., the “varInter” scenario; Figure 3.2B), or 

when there are different species responses to environmental fluctuations (i.e., the “varEnv” 

and “varcovEnv” scenario), this is no longer true, and thus the original analytical expectation 

(eq. 3.3) itself may be  biased. However, VPRSA estimates provide even less biased 

estimates of the proportional variance in log-abundance attributable to “deterministic species 

differences”, when those proportions are calculated by taking the additional heterogeneity 

among species into account with the appropriate multivariate Gompertz expressions (eqs. 

3.21-3.24) (Figure 3.3 and Figure 3.4). Interestingly, the modified expressions (eqs. 3.21-

3.24) also perform better in the baseline scenario (i.e., when species differ only in intrinsic 

growth rates), compared to the original analytical expressions (eq. 3.3) (Figure C4). 

 

 

 
Figure 3.1 Relationships between true environmental variance and VPRSA-estimated 

variance components of deterministic species differences, environmental stochasticity, 

and a combination of demographic and sampling stochasticity for the “Baseline” 

scenario. (A) Mixed-effects model (MM) estimates (B) Individual maximum likelihood 

(IML) model estimates. Red, blue, and green colors represent the VPRSA-estimated 
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proportional variance driven by deterministic species differences (niche structure), 

environmental stochasticity, and demographic/sampling stochasticity, respectively. Each 

point, irrespective of color, represents one simulated time series for one spatial replicate 

(reef) (i.e., for each color, n = 40 spatial replicates with varied environmental variance × 100 

simulations = 400 points). All community dynamics data (points) are simulated from the 

baseline scenario. Red, blue and green colored lines represent the kernel smoothing of 

proportional variance estimates, respectively, obtained using local polynomial regression 

fitting. Black lines represent the analytical predictions of Engen et al. 2002 (eq. 3.3) using the 

“true” parameters from the simulations (and thus are identical in the two panels). 

 

 
Figure 3.2 Relationships between true environmental variance and MM-estimated 

variance components under different community dynamics scenarios. Red, blue, and 

green colors represent the MM-estimated proportional variance components due to 

deterministic species differences, environmental stochasticity, and to other sources of 



 58 

variance (e.g., demographic and sampling stochasticity). Colored (red, blue, and green) lines 

represents the kernel smoothing of proportional variance estimates, respectively, obtained 

using local polynomial regression fitting. Black lines represent the analytical prediction of 

Engen et al. 2002 (eq. 3.3) using the true parameters from the simulations. (A) The 

“varIntra” scenario, which includes species differences in intra-specific density dependence. 

(B) The “varInter” scenario, which includes species differences in inter-specific density 

dependence. (C) The “varEnv” scenario, which includes species differences in the magnitude 

of environmental variance. (D) The “varcovEnv” scenario, in which species’ responses to 

environmental fluctuations covary. 

 

 
Figure 3.3 Relationships between variance estimate of deterministic species differences 

and its analytical prediction. The black line is the unity line indicating perfect agreement 

between VPRSA estimates and analytical predictions.  The red line is a quantile regression 
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through the median of the MM-based VPRSA estimates of variance components of 

deterministic species differences. (A, C) The relationship between VPRSA estimates and the 

original analytical prediction of Engen et al. 2002 (eq. 3.3), and (B, D) the relationship 

between VPRSA estimates and the generalized analytical prediction from the discrete-time 

multivariate Gompertz model (eqs. 3.21-3.24) under the (A, B) “varIntra” and (C, D) 

“varInter” community dynamics scenarios. 

 

 
Figure 3.4 Relationships between variance estimate of deterministic species differences 

and its analytical prediction. The black line is the unity line indicating perfect agreement 

between VPRSA estimates and analytical predictions. The red line is a quantile regression 

through the median of the MM-based VPRSA estimates of variance components of 

deterministic species differences. (A, C) The relationship between VPRSA estimates and the 

original analytical prediction of Engen et al. 2002 (eq. 3.3), and (B, D) the relationship 
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between VPRSA estimates and the generalized analytical prediction from the discrete-time 

multivariate Gompertz model (eqs. 3.21-3.24) under the (A, B) “varEnv” and (C, D) 

“varcovEnv” community dynamics scenarios. 

 

 

3.4 Discussion 

 

My results suggest that proportional variance estimates from VPRSA provide robust 

information about the relative importance of deterministic species differences versus 

stochastic environmental fluctuations in shaping patterns of commonness and rarity among 

species, even when key simplifying assumptions about community dynamics made by the 

original theory are violated. Additionally, the MM method generally outperforms the original 

IML method for estimating variance components in temporal dynamics of species’ relative 

abundances, at least for the level of spatial replication and time series length considered here, 

which correspond to the characteristics of the LTMP data analysed in Chapter 2. These 

results suggest that the VPRSA approach may be more broadly applicable than previously 

realized. 

 

First, my simulations clearly show that MM-based VPRSA performs better than IML-

based VPRSA. MM outperforms the original IML by shrinking the estimation error of 

VPRSA for levels of spatial and temporal replication comparable to that of the LTMP data 

(Figure 3.1, also see Figure 3.2 and Figure C3). MM-based VPRSA shrinks variance 

estimates toward the ensemble mean through inclusion of spatial latent variables (i.e., random 

effects due to varied magnitudes of environmental stochasticity in community dynamics). 

This is because MM, but not IML, has the mathematical advantage of “shrinkage”: a 

tendency to shrink the magnitude of estimates of individual effects (e.g., reef-level deviations 

from the overall mean variance component values) by penalizing estimates that are too far 

from the mean. However, the advantage comes at the price of assuming a particular 

distributional form for the random effects (eqs. 3.15-3.18). My results suggest that better 

estimates are produced by leveraging information across time series on the order of 10 years, 

even where the true distribution of random effects lacks an internal mode, as in the 

simulations employed here (for which the distribution is uniform). Of course, as time series 

length increases, and among-site heterogeneity in variance components increases, this 
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tradeoff could change. Regardless, simulation studies like this one provide a way to evaluate 

the relative plausibility of estimates obtained using MM versus IML approaches. 

 

Second, my results support the robustness of inferences drawn from VPRSA to 

violations of simplifying assumptions of the underlying theory (Figure 3.2). That is, VPRSA 

provides robust estimates of the proportion of variance in species log-abundances explained 

by deterministic species differences and stochastic factors. However, this robustness does not 

extend without limitation to all process parameters. For example, VPRSA estimates are 

robust estimates of the contribution of deterministic species differences (or variance in 

carrying capacities at deterministic equilibria) to the overall variance in relative species 

abundance, which can be expressed as  or . The numerator 

 can be interpreted as the deterministic variance component due to persistent 

species differences, which is exactly equivalent to the Vr term in eq. 3 when the underlying 

assumptions of VPRSA are met. I initially expected that, when key assumptions are violated 

(particularly the inclusion of interspecific interactions), equilibrium abundances would 

become decoupled from their VPRSA theory-predicted relationships with )1-, )7- and /, 

rendering the expressions in eq. (3.3) inaccurate (Figure 3.2). Under such conditions, I 

expected that the expressions in eqs. (3.21)-(3.24), which explicitly account for species 

interactions, covariation in responses to environmental fluctuations, and among-species 

heterogeneity in density-dependence and sensitivity to environmental fluctuations, would 

perform better. And, indeed, these alternative forms were less biased than the VPRSA 

estimates (Figure 3.3 and Figure 3.4). However, because this reduced bias was also apparent 

in the baseline simulations, where VPRSA assumptions were met, this better performance 

may have more to do with the fact that VPRSA is based on a continuous-time stochastic 

differential equation model, whereas the stochastic simulations, and our generalized variance 

component expressions, assume discrete-time dynamics. In any case, my findings suggest 

that VPRSA provides much more robust estimates of the relative importance of deterministic 

and stochastic processes in high-diversity assemblages than one might have assumed based 

on the assumptions of the original theory from which the expressions for these variance 

components was derived. 

 

Third, my simulations were necessarily limited to a subset of possible departures from 

model assumptions (scenarios i-v). Consequently, I cannot rule out the possibility that 

2
r totalV s 2ˆvar(logN) totals

ˆvar(logN)
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VPRSA is more sensitive to ecologically plausible violations of model assumptions not 

considered here. For example, I did not consider “modularized” interaction networks, where 

small subsets of species interact very strongly with each other but weakly or not at all with 

the other species in the assemblage (McCann et al. 1998; Berlow 1999; Wootton & 

Emmerson 2005). Obviously, an exhaustive exploration of all possible combinations of 

assumptions is logistically infeasible. Nevertheless, the results presented here provide 

evidence that the approach is much more robust than one might have assumed, based on the 

restrictive assumptions of the original theory. Moreover, further theoretical development may 

make possible a formal derivation of the variance due to environmental fluctuations from the 

general multivariate Gompertz model, analogous to the variance in equilibrium population 

sizes used here (eqs. 3.21-3.24), enhancing the robustness and strengthening the theoretical 

foundations of the VPRSA approach. 

 

Fourth, my results have expanded the range of empirical cases for which VPRSA is 

feasible, but some additional characteristics of data sets are also important. In particular, 

VPRSA’s statistical power is subject to sampling completeness and the natural variation in 

community dynamics across spatial replicates. In this chapter, spatial replicates and time-

series length in community simulations were specifically designed to be comparable to the 

LTMP data. However, when applied to other data sets (e.g., bioTime global datasets; 

Dornelas et al. 2014, Bowles et al. 2019), the number of spatial replicates needed to produce 

reliable MM-based VPRSA estimates may depend on the magnitudes of both process and 

observation noise in the data. For example, if sample sizes are low, such that only a small 

proportion of the fauna is represented in each sample, spatial replicates may be 

indistinguishable from a collection of very noisy random samples from the same underlying 

community. This could render MM estimates uninformative. Alternatively, strong violation 

of VPRSA assumptions about community dynamics could also increase unknown process 

noise in VPRSA estimation from individual time series (e.g., model mis-specification error in 

species interactions). If so, VPRSA’s first-order (Gompertz-type) approximation of 

community dynamics may deviate from true ones across spatial replicates. Consequently, 

MM-based VPRSA might fail to converge due to undistinguishable noises that behave like 

observation or process error in samples, and the sample size of spatial replicates might need 

to increase. The issues above warrant further simulation studies, with other community 

datasets as empirical baselines, in order to evaluate VPRSA’s statistical power. 
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Lastly, my results suggest that VPRSA is well-suited to studies that focus on assessing 

the relative importance of deterministic versus stochastic processes in structuring ecological 

communities, where richness is too high for species-by-species approaches to be feasible. 

VPRSA has two major advantages over other approaches for such species-rich communities: 

it is derived from process-based theory, and it requires only species-abundance data in space 

and time. For instance, the recent empirical operationalization of modern coexistence theory 

(MCT) ( e.g., Chesson 2000, Angert et al. 2009, Chu and Adler 2015, Ellner et al. 2016) 

explicitly incorporates niche structure and environmental stochasticity into process-based 

models to explain variation in species abundance. However, unlike VPRSA, MCT relies on 

species-by-species measures of inter-specific interactions and demographic parameters (e.g., 

Chu and Adler 2015). For such approaches, much more detailed species-level data, rather 

than just numerical abundances, are necessarily required, limiting the applicability of MCT to 

high-diversity communities, except in extraordinary cases where such data exist (Usinowicz 

et al. 2017). The fact that VPRSA requires only abundance data does restrict the inferences 

that can be drawn from its application, compared to MCT. However, in high-diversity 

systems, such as tropical coral reefs (Chapter 2), where detailed species-level data limit the 

applicability of MCT, VPRSA, particularly if it can be combined with functional and 

phylogenetic approaches, has considerable potential to advance our understanding of how 

deterministic and stochastic aspects of community dynamics interact to shape patterns of 

commonness, rarity, and biodiversity. 
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Chapter 4: Portfolio effect and diversity-stability relationship depend 

on how communities are structured across coral reefs 
 

4.1 Introduction 

 

Species diversity can play an important role in stabilizing aggregate community 

properties such as total community abundance (hereafter, “community stability” refers to 

temporal stability in aggregate community properties) (Hooper et al. 2005; Hector et al. 

2010; Loreau 2010; Tilman et al. 2014). Ever since the diversity-stability relationship was 

first articulated (McNaughton 1977; Tilman 1999), theoretical models and manipulative 

experiments have generally supported the hypothesis that species diversity can increase 

community stability (Hughes & Roughgarden 2000; Jiang & Pu 2009; Campbell et al. 2011; 

Gross et al. 2014). Such stabilizing effects are broadly termed “portfolio effects” in analogy 

with the tendency for more diverse financial portfolios to show more stable asset returns over 

time (Doak et al. 1998; Thibaut & Connolly 2013; Schindler et al. 2015). 

 

One general approach to partition diversity-stability relationships (or portfolio effects) is 

according to whether diversity reduces the overall synchrony in fluctuations of a 

community’s constituent populations (Loreau & de Mazancourt 2008a; Hector et al. 2010), 

or whether diversity reduces the average fluctuations of the individual populations 

themselves (Tilman 1999; Thibaut & Connolly 2013). In particular, reduced fluctuations of a 

community’s constituent species can arise from species interactions or responses to 

environmental fluctuations (Hughes & Roughgarden 2000; Thibaut et al. 2012; Loreau & de 

Mazancourt 2013), depending on how population-level variability changes systematically 

with the mean (Doak et al. 1998; Tilman 1999; Gross et al. 2014) and whether species 

unevenness responds to changes in richness (Wayne et al. 2007; Sasaki & Lauenroth 2011; 

Ma et al. 2017) (see Thibaut & Connolly 2013 for a unified definition). The established 

consensus that diversity generally stabilizes ecological communities has led to calls for 

protecting “diversity” itself as a means of securing stability in the provision of ecosystem 

goods and services (Hooper et al. 2005; Cardinale et al. 2012; Schindler et al. 2015). 

 

There exists, nevertheless, a longstanding controversy over whether the above 

mentioned diversity-stability relationships and portfolio effects occur along natural richness 
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gradients at the regional scale (Sankaran & McNaughton 1999; Srivastava & Vellend 2005; 

Wardle 2016), which obviously has implications for whether such relationships can inform 

priority-setting in biodiversity conservation (Srivastava & Vellend 2005; Gonzalez et al. 

2016; Wardle 2016; Vellend 2017). In particular, the evidence for diversity-stability effects 

comes overwhelmingly from manipulative experiments, where the richness gradient is 

manipulated and other confounding sources of variation in community structure and stability 

(such as variability in species composition, relative abundance, and environmental 

fluctuations) are controlled (Sankaran & McNaughton 1999; Srivastava & Vellend 2005; 

Wardle 2016). Conversely, in natural systems, such additional sources of variation in 

community structure could mediate or counteract the stabilizing effect of diversity (Sankaran 

& McNaughton 1999; Blüthgen et al. 2016; Ma et al. 2017), potentially explaining cases in 

which the sign and strength of diversity on community stability is negative (Valdivia & Molis 

2009; Veen et al. 2018), or undetectable (Petchey et al. 2002; Romanuk et al. 2009; Xu et al. 

2015). 

 

Regional-scale (spatial) variation in community structuring processes, rather than 

diversity, could be strongly associated with community stability. Within assemblages, 

interspecific variation in species abundance is driven both by persistent, deterministic species 

differences that create heterogeneity in long-term mean abundance, and by asynchronous 

fluctuations in species abundances, due to factors such as differential responses to 

environmental stochasticity (Lande et al. 2003; also see variance components defined in 

Chapters 2 and 3). Moreover, the relative importance between deterministic species 

differences and environmental stochasticity has the potential to influence overall community 

stability. Deterministic niche structure, for instance, underpins species’ differences in 

intrinsic growth rates and intra- and inter-specific interaction strengths, which in turn affects 

species’ long-term mean of abundances (Hughes & Roughgarden 2000; Engen et al. 2002; 

Loreau & de Mazancourt 2008a). These deterministic factors have been known to influence 

community stability by means of demographic trait differentiation, resource partitioning, 

enhanced intra-specific versus interspecific density dependence, and asynchronous species 

dynamics (Tilman 1999; Hughes & Roughgarden 2000; Loreau & de Mazancourt 2008b; 

Loreau 2010). Alternatively, stochastic fluctuations, arising from environmental and 

demographic stochasticity, is expected to reduce community stability through amplifying 

population-level variability (Hughes & Roughgarden 2000). 
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It is tempting to expect that a relationship between the variance components of 

community structure (deterministic species differences versus stochasticity; Chapter 2-3) and 

community stability (this chapter) would be trivial: that is, where fluctuations are more 

important, abundances will be more variable, and this will destabilize overall community 

abundance. However, there are several reasons why this might not be the case. Firstly, 

regional variation in the ratio of Vr (variance due to deterministic species differences; Chapter 

2-3) to Ve (variance due to stochastic environmental fluctuations; Chapter 2-3) may not be 

driven by variation in Ve; that is, more “niche-structured” species abundance distributions 

may not exhibit reduced fluctuations of constituent species. Also, Vr depends on the variance 

in log-abundance; on this scale, a doubling of abundance from 10 to 20 is a fluctuation 

comparable in magnitude to a doubling of abundance from 1000 to 2000, and because rare 

species constitute the overwhelming majority of species in high-diversity assemblages, it is 

fluctuations in the abundance of rare species that will dominate estimates of Ve in the VPRSA 

approach employed in preceding chapters of this thesis. In contrast, community stability is 

measured on an arithmetic scale, such that it is overwhelmingly influenced by the dynamics 

of the most abundant few species. 

 

In this chapter, I estimate the magnitude of regional variation in community stability of 

fish assemblages on the Great Barrier Reef, and I test whether regional variation in diversity 

explains this variation in stability. I also test whether regional-scale variation in the relative 

importance of stochastic fluctuations in determining interspecific variation in species 

abundances is associated with regional-scale variation in community stability using the 

VPRSA approach used in the previous chapters (Chapters 1-3). Specifically, I define a niche 

structure index (hereafter, NSI) that quantifies the relative importance of persistent niche 

differences versus stochastic fluctuations in community dynamics. I focus on the relative, 

rather than the absolute, importance of these two factors in order to decouple NSI from 

species unevenness (i.e., the overall variance in log-abundance among species: Chapter 2). I 

quantify how much the variation in community-level stability across coral reefs can be 

explained by the simultaneous effects of species diversity, unevenness and NSI, and if so, 

how much these effects occur due to effects on synchrony versus average population 

variability. In addition, I ask whether environmental variables associated with the community 

structure variables of richness, evenness, and NSI explain regional variation in community 

structure better, or worse, than the community structure variables themselves, to gain insight 
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into the plausibility of the hypothesis that diversity or NSI are causally or coincidentally 

related to community stability. 

 

4.2 Methods 

 

4.2.1 Long-term reef fish community data and environmental covariates 

 

Using data from the Long-term Monitoring Program of the Australian Institute of 

Marine Science (Sweatman et al. 2005), I analyse annual time-series (11 years) of reef fish 

abundances and associated environmental variables at 40 reefs across much of the length of 

the Great Barrier Reef (see Figure 2.1 in Chapter 2). I quantify each response and explanatory 

variable on each reef and treat reefs as replicates in regression analyses at the regional scale. 

Specifically, to consider the potential influence of environmental factors, I use latitude and 

cross-shelf position as proxies because these two geographical variables covary strongly with 

important macroecological variables, such as sea surface temperature and coastal inputs of 

nutrients, and because fish community composition also varies strongly with both of these 

variables. The latitudinal gradient is measured in degrees from the equator. The cross-shelf 

position is measured as standardized distance from the location of the reef to the nearest edge 

of the continental shelf (i.e., 0 represents the shelf boundary and 1 represents the coast). 

Because of their importance in Chapter 2, I also use the long-term average (11-yr mean) and 

standard deviation (s.d.) in coral cover over the same time period, as proxies for the 

availability and variability of coral habitat. 

 

4.2.2 Quantifying portfolio effect via synchrony and average population variability 

 

Throughout this chapter, I use the coefficient of variation of total abundance in reef fish 

assemblages over time (hereafter, “community variability” or ) as an inverse measure of 

“community stability”)(Tilman 1999; Loreau 2010). Following a unified approach of Thibaut 

and Connolly (2013), I partition community variability ( ) into two components: (i) 

synchrony representing how correlated the fluctuations in abundance of different species are, 

and (ii) average population variability, which is the average coefficient of variation of 

species-level abundance, weighted by mean abundance. The mathematical relationship 

CCV

CCV
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between the effects of synchrony and average population variability can be expressed as 

follows (Thibaut & Connolly 2013): 

  (eq. 4.1) 

where  and  represents the synchrony index and the (weighted-) average population 

variability, respectively. 

 

The synchrony index ( ) is defined as follows (Loreau & de Mazancourt 2008a): 

 (eq. 4.2) 

where  and  represents the square-roots of the elements of the variance-covariance 

matrix for the temporal fluctuations in species-abundance observations [i.e., )AA- is the 

variance (over time) of the abundance of species i, and )A-̀  is the covariance of the 

fluctuations of species i and species j]. The numerator is the variance of total community 

abundance, and the denominator represents the maximum possible total variance of a 

community with the same constituent species variances (i.e., where species’ fluctuations are 

perfectly positively correlated). As such, the synchrony index ( ) is standardized to range 

between zero (perfectly constant total community abundance) and one (perfectly positively 

correlated fluctuations of all species) (Hector et al. 2010). 

 

Average population variability ( ) is defined as follows (Thibaut and Connolly 

2013):   

aTb = ∑ d e'
∑ eff

g Mh'e'OA   (eq. 4.3) 

where  and  represent the temporal standard deviation and mean abundance of species i, 

respectively. Eq. 4.3 represents abundance-weighted average coefficient of variation: the 

term in the first set of brackets inside the sum is the relative abundance of species i, and the 

term in the second set of brackets is species i's coefficient of variation. 

 

4.2.3 Estimating species diversity (richness) and unevenness 

 

I use time-averaged observed species richness to represent species diversity of reef 

fishes for each reef, to maintain consistency with previous studies of diversity-stability 
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relationships (Campbell et al. 2011; Morin et al. 2014). Observed richness is highly 

correlated with maximum-likelihood estimates of true species richness obtained by fitting the 

Poisson-lognormal distribution to observed species abundances (R2=0.95, P<0.001; Figure 

D1), a distribution that characterizes these data very well (Chapter 2). Consequently, 

variation in observed richness is highly likely to be representative of variation in true species 

richness for these data. 

 

To quantify unevenness in relative species abundance, I use maximum-likelihood 

estimates of the Poisson-lognormal species-abundance distribution. Poisson-lognormal fits 

can be used to estimate unevenness through the variance parameter )-. Specifically, this 

parameter is equivalent to  , i.e., the overall variance in log abundance among species 

defined in Chapter 2-3. This quantity has two important advantages over other evenness 

metrics: it is robust to variation in sampling (i.e., it estimates the variance of log-abundance 

in the underlying community from which the data are a sample), and it completely specifies 

unevenness independent of species richness (Sæther et al. 2013). That is, the skew of a 

lognormal distribution is entirely specified by the parameter )-, where larger )- implies 

larger unevenness. 

 

4.2.4 Estimating niche structure index (NSI) from stochastic community dynamics 

 

Here, I propose the “niche structure index” (NSI) to quantify the relative importance of 

niche differences versus stochastic fluctuations in driving variation of fish community 

structure across coral reefs. This is simply the ratio of the variance components of relative 

species abundance presented in the previous chapters (Chapter 2-3). To recap, under the 

assumptions of stochastic Gompertz-type community dynamics, the (stationary) total 

variance in relative species abundance can be partitioned into the variance components 

explained by persistent species differences (what Engen et al. 2002 term “species 

heterogeneity”), environmental stochasticity, and an additional term representing residual 

sources of variance, such as demographic and sampling stochasticity (Engen et al. 2002): 

  (eq. 4.4) 

where  represents the overall variance in log abundance among species (i.e., the 

unevenness measure used in this chapter), and Vr, Ve and Vd represent the variance in species’ 
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equilibrium abundances, the variance due to environmentally-induced fluctuations in species 

year-to-year intrinsic growth rates, and the variance due to other factors such as sampling 

error and demographic stochasticity, respectively. The other parameters in the middle part of 

eq. 4.4 are from mathematical analysis of stochastic Gompertz-type community dynamics 

theory (Engen et al. 2002), which are described in Chapters 2 and 3. 

 

Using the three additive terms in (eq. 4.4), I define the niche structure index, NSI, as 

follows:  

  (eq. 4.5) 

NSI is dimensionless and varies from zero (for completely stochasticity-structured 

assemblages, where all species have the same equilibrium abundance) to infinity (for 

completely niche-structured assemblages), where NSI = 1 indicates that the stochastic and 

deterministic components of community structure are equal in magnitude. That is, NSI 

measures the relative strength of deterministic species differences versus stochasticity in 

community turnover. I use NSI, rather than the absolute magnitude of the variance 

components (i.e., ,  and ), to ensure that this quantity is not statistically confounded 

with unevenness  (and indeed it is not: the correlation coefficient between these two 

quantities, after log-transforming to meet assumptions of parametric correlation, is r=0.07, 

P=0.65). To estimate NSI, I use the variance component estimates obtained in the previous 

chapter from analysis of the temporal autocorrelation of relative species abundances (Chapter 

2). 

 

4.2.5 Testing pathways of portfolio effect and community stability 

 

I use regression analyses to test for the stabilizing effects of species diversity (richness), 

unevenness, and NSI, via the pathways of synchrony and average population variability. I 

evaluate the sign and strength of the effect of species diversity, unevenness and NSI on the 

two pathways. Specifically, in my regression analyses, I first model community variability 

( ) as a function of its two components: synchrony and (weighted-) average population 

variability. I do this on a log scale to linearize the expected relationships among the terms: 

that is, on a log-scale, eq. 1 is: 
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log(CVo) =
1
2 log(ϕ) + log(CVs) 	 

(Note that, the above relationship is a mathematical identity for a given community, but a 

regression of CVc on f and CVs across communities is not a mathematical identity). Then I 

model f  and CVs as functions of fish community structure variables (species richness, 

unevenness, and NSI) on log scale. The total effect of community structure variables on 

community variability, via pathways of synchrony and average population variability, is 

computed by multiplying the effect magnitudes along the pathway (i.e., path analysis). 

Additionally, I consider important environmental variables in Chapter 2 (i.e., latitude, cross-

shelf position, mean coral cover, and coral cover variability), instead of the fish community 

structure variables, to determine which set of variables best explains synchrony and average 

population variability, and therefore their total effects on community stability. 

 

Ordinary-least-squares (OLS) regressions and R2 are used for selecting the best single-

variable model for explaining synchrony and average population variability. Firstly, 

community structure variables (i.e., richness, evenness and NSI) and environmental variables 

(i.e., latitude, shelf position, mean coral cover, and volatility in coral cover) are separated 

initially into two model selection procedures. Secondly, for my four model selection 

procedures (i.e., community structure and environmental explanatory variable groups, each 

paired with the response variables synchrony and average population variability), I find the 

single-variable model that best explains the synchrony and average population variability in 

terms of R2. All variables are log-transformed, and they are standardized to unit mean and 

standard deviation prior to the path analysis. Nonparametric bootstrapping is used to compute 

the standard errors of effect magnitudes. 

 

Note that, the abovementioned procedure selects a best community structure model and 

a best environmental model (single variable) for both synchrony and weighted-average 

population variability. Then, to test among the community structure variables and 

environmental variables, I considered the best environmental and community structure 

explanatory variables together in a final model selection procedure using a “full” model 

including the best environmental and community structure variables, as well as their 

interactions, and nested models that omit particular terms. I used AICc (i.e., AIC with bias-

correction for small sample sizes) as my model selection statistic. The objective of this 

analysis is to determine whether covarying environmental and community structure variables 
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may be explaining the same variation, and, if so, whether one or more such variables are 

redundant and should not be included in a final model. Firstly, for synchrony as a response 

variable, I find the best community structure model out of the following: NSI, richness, 

unevenness, including possible pairwise interactions between NSI and richness or between 

NSI and unevenness. However, explanatory variables are not included in the same model, if 

the correlation between them is too high. I thus separated a pair of explanatory variables 

when Pearson correlation between two explanatory variables is larger than 0.7 (it turns out 

only the correlation between richness and evenness is larger than this threshold). Secondly, 

again for synchrony as a response variable, I find the best environmental model out of the 

following: latitude, cross-shelf position, mean coral cover and volatility in coral cover, and 

their respective interactions (unless any of the paired variables have correlation that is larger 

than 0.7 to include in the same model). Thirdly, for a combined model selection, I take the 

best variables from the community structure model selection and the environmental model 

selection. Then, I pooled them together (with pairwise interactions) for final model selection 

(ranked by AICc) to see whether community structure variables are retained in the model 

selection, or whether they are redundant with covarying environmental variables. Third-order 

and higher interactions are not considered due to the lack of degrees of freedom for such 

models. Finally, I repeat the same procedure as above for selecting best community structure, 

environmental, and combined models for explaining average population variability. 

 

 

4.3 Results 

 

On the Great Barrier Reef, community variability of reef fishes is driven more by 

synchrony than average population variability (Figure 4.1). The greater variation in 

synchrony index means that this quantity explains much more of the regional variation in 

community variability/stability (R2=0.73, P<0.001; Figure 4.1A) than average population 

variability does (R2=0.17, P=0.008; Figure 4.1B). There is no statistically significant 

correlation between the two quantities (Figure 4.1C). 

 

Both species richness and evenness, considered separately, have weakly stabilizing 

effects by reducing synchrony (R2=0.1, P=0.04; Figure 4.2A and R2=0.13, P=0.02; Figure 

4.2B), but they are not significantly related to average population variability (R2=0, P=0.72; 
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Figure 4.2D and R2=0.01, P=0.51; Figure 4.2E). Due to the high correlation between richness 

and evenness for these data (r = -0.77, P<0.001; Figure S1, also see Chapter 2), I do not 

consider the effects of these variables jointly; that is, I cannot causally distinguish effects of 

evenness from those of richness for these data. In contrast, the niche structure index (NSI) 

has a marginally non-significant relationship with synchrony (R2=0.09, P=0.07; Figure 4.2C), 

but a much stronger relationship with average population variability: high NSI is associated 

with the stabilizing effect of low average population variability (R2=0.4, P<0.001; Figure 

4.2F). 

 

 Single-variable model selection produces distinct community structure variables and 

environmental variables for explaining synchrony index and average population variability 

among reefs. For community structure variables, the single-variable models show synchrony 

index is best explained (with highest R2) by evenness (with the strongly covarying effect of 

richness providing only slightly poorer fit), while average population variability is best 

explained by NSI (Table 4.1). For environmental variables, the single-variable models show 

synchrony index is best explained by cross-shelf position, while average population 

variability is best explained by coral cover variability (Table 4.1). 

 

Based on the results of single-variable models, path analysis reveals that the magnitude 

of the net stabilizing effect of niche structure index (NSI) is comparable to that of species 

diversity (richness) and evenness (Figure 4.3A): a one standard deviation change in each is 

associated with an approximately 0.3-0.35 standard deviation change in community 

variability (Figure 4.3C). However, a complementary path analysis reveals that the strength 

of the relationship between cross-shelf position and population synchrony is substantially 

stronger than that of either richness or evenness (Figure 4.3B), such that a one standard 

deviation change in environmental effect of cross-shelf position is associated with an 

approximately 0.5 standard deviation change in community variability (Figure 4.3C). In 

contrast, the effect of coral cover variability is associated with an approximately 0.25 

standard deviation change in community variability (Figure 4.3C), slightly lower than that of 

NSI. 

 

Model selection of final models ranked by AICc (reporting only those models with 

DAICc < 2), that include community structure variables (CMS; Table E1), environmental 
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variables (ENV; Table E1) and pooled variables (CMS+ENV; Table E1) in both additive and 

interactive ways, supports potentially joint effects of community structure and environmental 

variables on average population variability, but not on synchrony index (Table E1). For 

explaining variation in synchrony index among reefs, the best model includes only cross-

shelf position as an explanatory variable (Table E1). Specifically, synchrony index increases 

on reefs that are geographically closer to the coastline of the Great Barrier Reef (or farer from 

edges of the continental shelf) (Table E2). By contrast, for weighted-average population 

variability among reefs, the best model includes NSI, as well as both the mean and variability 

of coral cover, and an interaction of NSI and coral cover variability (Table E1). Specifically, 

weighted-average population variability decreases on reefs that have higher NSI in fish 

assemblages and higher mean coral cover, whereas it increases on reefs that have higher 

variability of coral cover. Consistently, the negative impact of NSI on average population 

variability is detected from both the best single-variable model and the best final model 

(Table E2). Interestingly, NSI and variability of coral cover interact to reduce the weighted-

average population variability (Table E2), in which increasing NSI reduces weighted-average 

population variability more on reefs that have higher variability of coral cover (Figure E2). 

 

 

 

 
 

Figure 4.1 Community variability determined by synchrony and weighted-average 

population variability in reef fish assemblages across the Great Barrier Reef. Each point 

represents a reef (n=40). Lines indicate estimated relationships from ordinary-least-squares 

regression. (A) The relationship between community variability and synchrony index. (B) 

The relationship between community variability and weighted-average population variability. 
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(C) The relationship between two portfolio effect components: synchrony index and 

weighted-average population variability. 

 

 
Figure 4.2 Stabilizing effects of species diversity (richness), evenness and niche structure 

index (NSI) on synchrony and weighted-average population variability. Each point 

represents a reef (n=40). Lines indicate estimated relationships from ordinary-least-squares 

regression, for only those relationships that met the conventional statistical threshold for 

significance (P<0.05). (A, B, C) Synchrony index of reef fish communities in relation to 

species diversity (richness), unevenness and niche structure index (NSI). (D, E, F) Weighted-

average population variability of reef fish communities in relation to species diversity, 

unevenness and niche structure index (NSI). 
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Figure 4.3 Community variability depends on community structure and environmental 

effects, via pathways of synchrony and weighted-average population variability. 

Standard errors (numbers in parentheses) and error bars of effect magnitudes are computed 

from bootstrapping (B=1000). (A) Path analysis of effects of fish community structure 

variables on synchrony and average population variability. This pathway is termed 

“community structure effect”. (B) Path analysis of biotic and abiotic environmental variables 

on synchrony and average population variability. This pathway is termed “environmental 

effect”. (C) Overall stabilizing effects, arising from species diversity, unevenness, niche 

structure index (NSI), coral cover variability and cross-shelf position, via pathways of 

synchrony and average population variability. The effect magnitude is computed by 
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multiplying the effect pathway of middle and bottom layers of panel (A) and (B), 

respectively. Blue represents the stabilizing effect via average population variability, and 

gray represents the stabilizing effect via synchrony. 

 

Table 4.1 Results of single-variable model selection. For OLS regressions, terms to the 

right-hand side of the tilde (~) represent the explanatory variable, while the term on the left-

hand side of the tilde represents the response variable. “sync” and “cvs” represent the 

synchrony index and weighted-average population variability, respectively. “richness”, 

“unevenness”, and “NSI” are community structure variables representing species richness, 

unevenness, and the niche structure index, respectively. “lat”, “shelf”, “mC”, and “sdC” are 

environmental variables representing latitude, cross-shelf position, mean coral cover, and 

coral cover variability, respectively. 
Candidate variables Single-variable OLS model R2 Selected 

log(richness), log(uneveness), logNSI log(sync) ~ log(richness) 0.1 no 

 
log(sync) ~ log(unevenness) 0.13 yes 

 
log(sync) ~ logNSI 0.09 no 

 
log(cvs) ~ log(richness) 0 no 

 
log(cvs) ~ log(unevenness) 0.01 no 

 
log(cvs) ~ logNSI 0.4 yes 

lat, shelf, mC, log(sdC) log(sync) ~ lat 0.01 no 

 
log(sync) ~ shelf 0.24 yes 

 
log(sync) ~ mC 0 no 

 
log(sync) ~ log(sdC) 0 no 

 
log(cvs) ~ lat 0.01 no 

 
log(cvs) ~ shelf 0 no 

 
log(cvs) ~ mC 0.01 no 

  log(cvs) ~log(sdC) 0.19 yes 
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4.4 Discussion 

 

To my knowledge, this study is the first documentation of multiple, distinct stabilizing 

effects, arising from both diversity and community structuring processes (i.e., deterministic 

species differences versus stochasticity), in a highly species-rich assemblage. My findings 

suggest that positive diversity-stability relationships exist at the regional scale in a tropical 

coral reef system. I find that the two key components of community stability, synchrony and 

weighted-average population variability, are statistically independent of one another 

geographically, and that geographical variation in synchrony explains 4-5 times more 

variation in community stability than weighted-average population variability (Figure 1). 

Despite that, the existence of a strong relationship between average population variability and 

the relative importance of deterministic species differences versus stochasticity (measured by 

NSI), combined with a much weaker relationship between synchrony and diversity, suggest 

that these two assemblage variables have comparably strong overall relationships with 

community stability (Figure 2 and Figure 3). Moreover, I find strong evidence suggesting that 

NSI, coral cover dynamics and their interaction, together, are important stabilising 

components of weighted-average population variability among reefs (Table E1, Figure E2); 

however, I find no evidence supporting an unique effect of richness or unevenness that can be 

teased apart from the environmental covarying effect of cross-shelf position (such as 

variation in species composition and nutrient loadings) on synchrony index among reefs 

(Table E1).  

 

The diversity effect on community stability on the Great Barrier Reef is comparable in 

sign and magnitude to those of previous studies that examined such relationships along 

natural diversity gradients (c.f., Campbell et al. 2011; Houlahan et al. 2018). Interestingly, 

the principal stabilizing effect of diversity (i.e., via the synchrony pathway) is confounded 

with the effect of cross-shelf position on stability, whose statistical relationship with stability 

is approximately equal or stronger to that of diversity. Consequently, I cannot unambiguously 

disentangle these effects or partition their causal contributions to the regional variation in 

synchrony. My results, therefore, imply that environmental variables related to cross-shelf 

gradients, such as nutrient and pollution discharge from coastal human activities or inshore-

offshore hydrodynamics, might be an important underlying driver of geographical variation 

in both diversity and stability on coral reefs, rather than being a direct causal relationship 
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between diversity and stability (cf. Table 4.1 and Table E1). Indeed, covarying effects of 

environmental variables on both diversity and community stability are often observed in 

studies of natural systems (Shurin et al. 2007; Bulleri et al. 2012), and may overwhelm the 

diversity effect itself (Blüthgen et al. 2016). 

 

The relative statistical weakness of the relationship between diversity and stability 

(Figure 4.3C and Table E1) discovered here is also typical of previous observational studies 

(Campbell et al. 2011; Houlahan et al. 2018), and contrasts with the stronger relationships 

often found in manipulated experiments (e.g., Tilman 1999; Campbell et al. 2011; Gross et al. 

2014). Interestingly, the diversity-stability relationship occurs overwhelmingly via synchrony 

index, with no statistically detectable relationship between diversity and average population 

variability (Figure 4.2). Additionally, the diversity-synchrony relationship is largely 

independent of population variability in determining community stability across coral reefs 

(Figure 4.1C). These results agree well with the consensus view: a diversity-dependent 

synchrony effect can easily arise from species’ compensatory dynamics through competitive 

interactions and differential responses to environmental fluctuations (Loreau & de 

Mazancourt 2008; Hector et al. 2010). 

 

The lack of relationship between diversity and average population variability suggests 

an absence of diversity-stability mechanisms that would operate through this pathway, such 

as overyielding or dominance/unevenness (Thibaut & Connolly 2013; Gross et al. 2014; 

Turnbull et al. 2016). One possible explanation for the lack of a diversity-dependent effect on 

average population variability is that this effect is obscured by the larger effect of the niche 

structure index (NSI) on average population variability (Figure 4.2F). Such an effect would 

not appear in experimental diversity-stability relationship studies, because manipulated 

experiments deliberately initialize communities from identical species pools and with 

consistent relative abundance patterns (usually perfect evenness) (Tilman 1999; Gross et al. 

2014; Winfree et al. 2015). However, it is possible that overyielding is particularly weak or 

negligible in coral reef fish assemblages. Overyielding might arise more commonly in 

systems with a small number of shared limiting resources, e.g., temperate grasslands 

(Marquard et al. 2009; Hector et al. 2010), whereas it might not occur in systems like coral 

reefs that are trophically and functionally diverse and the effect of the presence/absence of 

one species on other species is less consistent (Sale 1977; Dunne & Williams 2004; Casey et 

al. 2019). For example, a previous study in intertidal marine systems has shown dominant 
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patterns of under-yielding and limited evidence for species complementarity (Emmerson et 

al. 2001). 

 

In addition to the diversity-stability relationship discussed above, the relative importance 

of deterministic species differences (i.e., NSI derived from VPRSA as a proxy for niche 

structure) is associated with greater community stability. This effect is mediated by the 

relationship between NSI and reduced weighted-average population variability, rather than 

reduced synchrony. This relationship is stronger than that between weighted-average 

population variability and other environmental variables, such as coral cover variability, 

providing modest evidence of a more direct link between average population variability and 

deterministic niche structure than the environmental variables that are correlated with them 

both (Table 4.1). Unlike the relationship between diversity and synchrony, evidence for a 

relationship between NSI and population variability is retained, even when accounting for the 

effects of environmental variables, where NSI, mean coral cover, and variability in coral 

cover all contribute to explaining variations in average population variability among reefs 

(Table E1). In particular, the directions of these effects make ecological sense. For instance, 

weighted-average population variability is lower on reefs that have higher mean coral cover 

(Table E2), suggesting increased habitat availability stabilizes intraspecific fluctuations in 

fish abundance. By contrast, increased coral cover variability has a negative impact on 

weighted-average population variability as expected, because it indicates greater 

environmental stochasticity that I would expect to induce larger fluctuations in fish species’ 

abundances. However, the interaction between NSI and coral cover variability implies that 

this negative effect is most pronounced when NSI is low and vanishes when NSI is high. In 

other words, increasing NSI reduces weighted-average population variability on reefs with 

high volatility in coral cover more strongly than it does on low-volatility reefs (Figure E2). 

This might imply that deterministic differences in species’ demographic or life-history traits 

(or niche structure in a sense of traditional niche concept) that influence long-term mean 

abundance may disproportionally absorbs volatile fluctuations in species’ intrinsic growth 

rates in extremely good or bad years. 

   

Finally, my results suggest protecting diversity per se might be a good proxy for 

stabilising coral reef assemblages on the Great Barrier Reef, because such protection 

decreases synchrony in abundance fluctuations among species against environmental 

perturbations (Figure 4.2 and Figure 4.3). However, my results could also imply that 
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conservation practitioners may find that preserving the highest level of species diversity (e.g., 

richness hotspots over seascape), a common target of conservation planning, may not protect 

the most stable assemblages of reef fishes depending on the covarying effect of community 

determinism (measured as NSI) and environmental variables, such as cross-shelf position and 

coral cover (Wang & Loreau 2016; Helmut et al. 2017). For instance, community 

determinism has a stabilizing effect that is stronger, or at least comparable in magnitude to 

those of richness or evenness, but realizations of these stabilizing effects might ultimately 

depend on the environmental context (Figure 4.3, Table E2, Figure E2). Specifically, on the 

world’s largest coral reef system analysed here, the stabilizing effect of fish diversity occurs 

almost entirely via its effects on synchrony (Figure 4.3), and may in fact not be causal at all, 

but rather a coincidence of covarying cross-shelf patterns, e.g., in functional composition and 

human impacts (Table E1 and Table E2). Therefore, protecting distinct pathways of 

community stability (e.g., synchrony mechanisms vs. average population variability 

mechanisms), identifying the covarying environmental effects (e.g., nutrient discharge from 

coast, cross-shelf hydrodynamics, habitat availability and variability), and understanding 

different effects of community structure (e.g., richness, evenness, species differences in 

demographic traits) might provide a foundation for a more comprehensive approach to assist 

spatial prioritization than focusing exclusively on areas of highest richness. Given recently 

increased variability in assemblages and environmental conditions on the world’s coral reefs 

(Hughes et al. 2018b, a), conservation strategies that simultaneously target the drivers of 

alpha-diversity (e.g., richness and evenness) and drivers of temporal beta-diversity (e.g., 

community turnover in relative species abundance and composition) could better mitigate the 

volatility in diversity-dependent ecosystem goods and services. 
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Chapter 5: General discussion 
 

Overall, my thesis uses VPRSA to quantify proximate and ultimate drivers of relative 

abundance of reef fishes, as well as their impacts on regional variation in assemblage-level 

stability of total community abundance on the Great Barrier Reef. Specifically, I found: 

 

1. Deterministic niche-related differences among species drive much more of the 

patterns of commonness and rarity in reef fish assemblages, compared to 

stochastic environmental fluctuations and other sources of variation, such as 

neutral processes.   

2. The contributions of the above community structure components (i.e., 

persistent differences among species, environmental fluctuations, neutral 

process) vary at the regional scale, and such variation can be explained by in-

situ coral cover dynamics, but not by classical environmental gradients such as 

latitude and onshore-offshore position. 

3. The conclusions mentioned above (1 and 2) hold within broadly-defined 

trophic/functional groups, as well as for the reef fish assemblage as a whole. 

That is, the patterns for the fish fauna as a whole are not driven by changes in 

the functional composition of the fish assemblage across environmental 

gradients (at least not exclusively), but rather by shifts occurring within 

multiple constituent functional groups. 

4. VPRSA is generally robust to violation of several key underlying assumptions 

of the theory on which it is based, namely the assumptions of homogeneous 

intraspecific interactions, negligible inter-specific interactions, and 

homogeneous responses to environmental fluctuations. 

5. There is a positive relationship between diversity and stability of reef fish 

assemblages on the Great Barrier Reef. The stabilizing effect of diversity 

operates through reducing synchrony of fluctuations in abundance among 

species.  

6. The relative importance of species differences versus environmental 

stochasticity influences community stability in fish assemblages. Specifically, 

the relative importance of persistent differences among species, relative to that 

of stochastic environmental and neutral fluctuations, (i.e., niche structure 
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index, NSI) stabilizes communities by reducing weighted-average population 

variability.  

7. The stabilizing effects of NSI and species richness have comparable 

magnitudes, although they occur via different pathways. However, the extent 

to which these relationships represent causal links, versus correlated responses 

to common environmental drivers, is not clear. My analysis suggests that NSI 

and coral cover dynamics act in concert to influence average population 

variability, whereas the effect of richness (or evenness) is too confounded with 

cross-shelf variation in other community properties or environmental 

conditions to confidently attribute a causal relationship between diversity and 

stability.   

 

Conclusion 1 indicates that patterns of commonness and rarity in coral reef fish 

assemblages are driven by persistent differences between species in long-term average 

abundances (i.e., niche-related traits that are associated with long-term abundance), to a 

substantially greater extent than they are driven by stochastic fluctuations in the relative 

abundances of different species (Chapter 2). This study builds on previous work, which 

showed that neutral theory was not a sufficient theory for coral reef systems (Dornelas et al. 

2006; Connolly et al. 2009, 2014), and suggests that the mechanisms included in neutral 

theory in fact play a very minor role in determining relative abundance patterns on coral 

reefs, relative to the species differences that neutral theory specifically excludes. However, 

the contribution of differential responses to environmental fluctuations is substantial (around 

20-25% of the total variance in species log-abundances), suggesting considerable scope for 

fluctuation-mediated mechanisms (such as the storage effect) in species coexistence (Chesson 

2000). Because VPRSA is based solely on abundance data, whereas tests of modern 

coexistence theory (MCT) require information about which demographic rates are density-

dependent, and what the functional form of that density-dependence is (Ellner et al. 2016), 

VPRSA does not allow a direct assessment of the relative importance of fluctuation-

independent versus fluctuation-dependent mechanisms of species coexistence per se. 

 

In previous studies on tropical coral reefs, debates over niche versus neutral/quasi-

neutral community dynamics have focused on analysing static frequency distributions of 

relative species abundance (i.e., snapshots of relative abundances in time). Invariably, such 
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approaches focus on whether neutral models are sufficient to explain commonness and rarity 

on coral reefs. VPRSA, in contrast, allowed us to understand how persistent relative 

abundance relationships are in time, and thereby take the additional step of estimating the 

relative importance of deterministic species differences versus stochastic fluctuations (both 

neutral and non-neutral) as drivers of relative abundance, and thus makes possible an 

assessment of whether and how those components vary in relative importance along 

ecological gradients. By exploiting this potential, I showed that the relative importance of 

niche-related species differences versus stochastic environmental and demographic 

fluctuations varies with coral cover volatility (Conclusion 2). To my knowledge, this is the 

first such application of VPRSA in the literature, for any system, and its success suggests that 

this approach may yield insights in other systems where community level time series exist 

along environmental gradients, e.g., the bioTime database (Dornelas et al. 2014, 2018; 

Blowes et al. 2019). 

 

Additionally, the functional composition of reef fishes is known to change along 

geographical gradients, such as latitude and cross-shelf position (Hoey & Bellwood 2008; 

Emslie et al. 2010, 2012; Bennett 2011; Cheal et al. 2012; Hoey et al. 2013; Goatley et al. 

2016). Specifically, the geographical variation in composition and abundance of a given 

functional group (e.g., herbivores; Cheal et al. 2012) or clade (e.g., Chaetodontidae; Emslie 

et al. 2010) has been the principal focus of previous studies. Conclusion 3 suggests that 

important geographical variation in community structure is not confined to compositional 

changes in the relative abundances of different functional groups. Rather, the extent to which 

relative abundance patterns persist over time is explained by within-functional-group 

dynamics, which exhibit similar relationships with the explanatory variables considered in 

my analyses. Therefore, it might be interesting to further investigate why effect of 

environmental variables on the relative importance of deterministic versus stochastic 

community processes is so consistent across such diverse functional groups.   

 

Conclusion 3 also highlights potentially fruitful areas for further work. Firstly, 

functional groups identified in this thesis (Table A3) are more or less subject to experts’ 

classification reflecting their experiences. It will be important to determine the extent to 

which the consistency across functional groups that I found in this thesis may be sensitive to 

how species are categorized functionally or trophically. Secondly, functional diversity 

metrics are not analysed in this thesis, but it would be interesting to investigate whether 
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functional diversity metrics (e.g., Bellwood et al. 2003; Villéger et al. 2008, 2010; Stuart-

Smith et al. 2013; D’agata et al. 2014; Mouillot et al. 2014; Brandl & Bellwood 2016) can be 

used along with Engen et al.’s VPRSA approach to assess the relative importance of 

deterministic vs. stochastic community dynamics. For example, it might be expected that 

sites with greater diversity in resource acquisition traits might also possess more 

deterministic structure in relative species abundance, whereas diversity in environmental 

response traits might be associated with more stochastic-driven communities. 

 

Conclusion 4 suggests that Conclusions 1-3 are robust to at least some important ways 

in which real assemblage dynamics might differ from those assumed in the theory from 

which the VPRSA approach is derived (Chapter 3). Additionally, it suggests that VPRSA 

may be more broadly applicable than one might have assumed, based on the restrictive nature 

of some of those initial assumptions. On the other hand, my investigation of robustness is not 

exhaustive (and indeed, an exhaustive investigation of assumption violations would be 

impossible). For example, I have not investigated the extent to which modularized interaction 

networks, where species have a small number of strong interactions and many interactions 

that are zero, or nearly so, as I noted in my Chapter 3 Discussion. Similarly, I have not 

explicitly investigated departures from the Gompertz form of density-dependent interactions. 

Thus, there is scope for further work exploring the robustness of the VPRSA approach. 

 

More generally, the VPRSA approach does not reveal which species traits are 

responsible for the abundance variation observed in the community. Consequently, there is 

considerable potential for VPRSA to complement and enrich the insights obtained from other 

approaches. For example, phylogenetic and functional approaches seek to explain variation in 

abundances as a function of phylogenetic or functional similarity. “Null model” versions of 

this approach (Webb et al. 2002; Kraft et al. 2007; Cavender-Bares et al. 2009; Freilich & 

Connolly 2015; Gerhold et al. 2015) cannot be used to apportion variation in the relative 

contribution of niche vs. stochastic factors, because they only test for significant departure 

from abundances randomized with respect to phylogeny or functional traits. This approach is 

in contrast to classical “ordination” or “eigen-decomposition” approaches (Legendre et al. 

2009; Dumbrell et al. 2010; Smith & Lundholm 2010; Caruso et al. 2011; Tuomisto et al. 

2012; Yeh et al. 2015; Ford & Roberts 2018) that explicitly model covariance in abundance 

as a function of similarity in environmental variables. However, in both cases, the effects of 

unmeasured or phylogenetically unstructured species traits that influence abundance would 
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be missed, and the niche or stochastic contribution to abundance variation would be 

correspondingly underestimated. By complementing such analyses with a VPRSA estimate of 

the overall variation due to persistent species differences, the extent to which phylogeny or 

measured functional traits explain those persistent aspects of community structure could be 

potentially quantified. Indeed, where time series are available, this opens up the possibility of 

estimating the contribution of phylogeny or functional traits to both long-term variation in 

abundance, and to the patterns of interannual fluctuations in abundance.  

 

Conclusions 4-6 provide a framework for simultaneously exploring the effects of 

diversity and the relative importance of deterministic vs. stochastic community assembly 

process on community-level stability. The framework also represents a novel example, 

derived from species-rich coral reef systems, showing how the degree of determinism in 

relative species abundance patterns might be linked to diversity-stability relationships (see 

Turnbull et al. 2016 for a review). Moreover, it empirically extends the previous theoretical 

model of Thibaut and Connolly 2013 by showing that the variance (dynamical) components 

of relative species abundance are associated with weighted-average population variability 

component of community stability. Importantly, conclusions 4-6 seem to suggest that average 

population variability is more strongly related to community determinism (measured as NSI) 

than to richness (Tilman 1999; Hector et al. 2010; Gross et al. 2014) or evenness (Sasaki & 

Lauenroth 2011; Thibaut & Connolly 2013). This is especially true when comparing the 

covarying effect of NSI and coral cover variables, showing a portion of variation in 

community stability is explained uniquely by NSI and its interaction with environmental 

conditions (Table E1, Table E2, and Figure E2; Chapter 4). Intriguingly, such a strong effect 

of community determinism is independent of effect of richness or evenness, suggesting 

separate stabilising pathways that have not been previously identified (Thibaut & Connolly 

2013; Gross et al. 2014; Tilman et al. 2014). Amid more frequent bleaching episodes 

(Hughes et al. 2018a, b), changes in coral reef assemblages could have profound ecosystem 

consequences: Conclusions 4-6 imply a potential destabilisation of coral reef fish 

communities whenever diversity declines (which would be expected to increase community-

level synchrony in abundance fluctuations) and/or niche structure erodes (via increased 

weighted-average population variability). 

 

Examination of diversity-stability relationships along natural diversity gradients have 

the advantage of addressing these relationships in real systems, at the spatial scales relevant 
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to management and conservation (Srivastava & Vellend 2005). However, they inherit the 

limitations that characterize such “natural experiments” (Wardle 2016). Most importantly, all 

the detected effects involving diversity measures and deterministic vs. stochastic components 

of community structure are correlational. Consequently, environmental factors that covary 

along these gradients might be the true drivers of the covariation between diversity, 

community assembly process and community stability. Such causal relationships cannot be 

teased apart unambiguously using the statistical analyses employed in this thesis, because the 

differences in the explanatory power (R2) of environmental variables vs. assemblage 

properties is comparable (Table 4.1; Chapter 4). Particularly, I find that the detected 

stabilising effect of richness (or evenness) might be an artefact of its covariation with cross-

shelf position (Table E1; Chapter 4). By contrast, effects of NSI and environmental variables 

that are related to coral cover dynamics are both important, and the two effects interact to 

determine population and community stability (Table 4.1, Table E1, Figure E2; Chapter 4). 

These findings suggest that regional variation in community stability in this system may 

depend more on variation in NSI than on variation in richness or evenness. Nevertheless, a 

positive diversity-stability relationship is observable for fish communities on the Great 

Barrier Reef, even though the causal nature of such a relationship is complicated by other 

community properties and environmental factors that vary systematically with position on the 

continental shelf. Meanwhile, a clear NSI-stability relationship among reefs is strongly 

supported by my analyses, even after accounting for environmental influences. 

 

Finally, throughout my thesis, several core topics in community ecology are 

connected by a common theme: variance partitioning of relative species abundance (or 

species abundance distribution, SAD). My work extends VPRSA theory in several important 

ways. Firstly, by employing it on an extensive network of time series at a regional scale, I 

show that there is statistically detectable variation in the importance of deterministic and 

stochastic components of community structure, and moreover that this variation is potentially 

explainable in terms of regional variation in environmental conditions (Chapter 2). Secondly, 

I show that VPRSA is surprisingly robust to violation of several important simplifying 

assumptions of the theory, particularly when the variance component due to deterministic 

species differences is interpreted more broadly as the component due to variance in species’ 

long-term average abundances, rather than specifically to variance in intrinsic growth rates 

(Chapter 3). Lastly, the relative stability in species’ abundances implied by a high niche 

structure index (NSI) correlates strongly with the “weighted average population variability” 
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of Thibaut and Connolly (2013), and thus is conceptually linked to diversity-stability theory 

(Chapter 4). On the Great Barrier Reef, these extensions show that reef fish assemblages are 

highly niche structured, that this niche structure is eroded on reefs with high volatility in 

coral cover, and that the relative magnitudes of deterministic versus stochastic components of 

community structure, via their close relationship with weighted average population 

variability, explain regional variation in community stability to approximately the same 

extent as species richness or evenness. These findings highlight the potential of VPRSA to 

greatly expand the toolkit of community ecology and macroecology, particularly in high-

diversity assemblages, where species-level estimation of community dynamics parameters is 

not feasible. 
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Appendices 
 
Appendix A 

 
Table A1. Pearson correlations between environmental variables. ‘mC’, ‘log(sdC)’, and 

‘log(cvC)’ represents the long-term (11-yr) average, log-transformed standard deviation, and 

log-transformed coefficient of variation in coral cover annual fluctuations, respectively. ‘Lat’ 

and ‘Shelf’ represents the latitude and cross-shelf position, respectively. Symbol * indicates 

P<0.05. 
  log(sdC) mC log(cvC) Lat Shelf 

log(sdC) 
 

0.53* 0.89* -0.24 -0.04 

mC 
 

 0.12 -0.16 -0.12 

log(cvC) 
 

  -0.18 0.07 

Lat 
 

  
 

0.15 

Shelf          

 

 

Table A2. Pearson correlations between measures of reef fish community structure. 

‘Richness’ and ’Unevenness’ represents time-averaged richness and unevenness from 

Poisson-lognormal fits of reef fish relative species abundance across coral reefs, respectively. 

01, 07 and 0; represents the proportional variance in relative abundances of reef fishes 

explained by species differences, environmental stochasticity, and sampling/demographic 

stochasticity, respectively. Symbol * indicates P<0.05. 

 Richness Unevenness 01 07 0; 

Richness 
 

-0.67* -0.08 0.11 -0.17 

Unevenness 
 

 0.09 -0.07 -0.08 

01 
 

  -0.98* 0.23 

07 
 

  
 

-0.39* 

0; 
 

  
  

 

 

Table A3. Classifications of trophic/functional groups of coral reef fishes. 
Species name Trophic group 

Acanthochromis polyacanthus Planktivore 
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Acanthurus albipectoralis Planktivore 

Acanthurus auranticavus Herbivore 

Acanthurus bariene Herbivore 

Acanthurus blochii Herbivore 

Acanthurus dussumieri Herbivore 

Acanthurus grammoptilus Herbivore 

Acanthurus lineatus Herbivore 

Acanthurus maculiceps Herbivore 

Acanthurus mata Planktivore 

Acanthurus nigricans Herbivore 

Acanthurus nigricauda Herbivore 

Acanthurus nigrofuscus Herbivore 

Acanthurus nigroris Herbivore 

Acanthurus olivaceus Herbivore 

Acanthurus pyroferus Herbivore 

Acanthurus spp Herbivore 

Acanthurus thompsoni Planktivore 

Acanthurus triostegus Herbivore 

Acanthurus xanthopterus Herbivore 

Amblyglyphidodon aureus Planktivore 

Amblyglyphidodon curacao Planktivore 

Amblyglyphidodon leucogaster Planktivore 

Amphiprion akindynos Planktivore 

Amphiprion chrysopterus Planktivore 

Amphiprion clarkii Planktivore 

Amphiprion melanopus Planktivore 

Amphiprion percula Planktivore 

Amphiprion perideraion Herbivore 

Anyperodon leucogrammicus Piscivore 

Aprion virescens Piscivore 

Bolbometopon muricatum Herbivore 

Caesio caerulaurea Planktivore 

Caesio cuning Planktivore 

Calotomus carolinus Herbivore 

Cephalopholis argus Piscivore 

Cephalopholis boenak Piscivore 

Cephalopholis cyanostigma Piscivore 

Cephalopholis microprion Piscivore 

Cephalopholis miniata Piscivore 

Cephalopholis urodeta Piscivore 
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Cetoscarus bicolor Herbivore 

Chaetodon aureofasciatus Corallivore 

Chaetodon auriga Benthic invertebrate feeder 

Chaetodon baronessa Corallivore 

Chaetodon bennetti Corallivore 

Chaetodon citrinellus Benthic invertebrate feeder 

Chaetodon ephippium Benthic invertebrate feeder 

Chaetodon flavirostris Corallivore 

Chaetodon kleinii Benthic invertebrate feeder 

Chaetodon lineolatus Benthic invertebrate feeder 

Chaetodon lunula Benthic invertebrate feeder 

Chaetodon melannotus Benthic invertebrate feeder 

Chaetodon mertensii Benthic invertebrate feeder 

Chaetodon meyeri Corallivore 

Chaetodon ornatissimus Corallivore 

Chaetodon oxycephalus Corallivore 

Chaetodon pelewensis Corallivore 

Chaetodon plebeius Corallivore 

Chaetodon punctatofasciatus Corallivore 

Chaetodon rafflesii Benthic invertebrate feeder 

Chaetodon rainfordi Herbivore 

Chaetodon reticulatus Corallivore 

Chaetodon speculum Corallivore 

Chaetodon trifascialis Corallivore 

Chaetodon trifasciatus Corallivore 

Chaetodon ulietensis Corallivore 

Chaetodon unimaculatus Corallivore 

Chaetodon vagabundus Corallivore 

Cheilinus fasciatus Benthic invertebrate feeder 

Cheilinus undulatus Benthic invertebrate feeder 

Cheiloprion labiatus Corallivore 

Chelmon rostratus Benthic invertebrate feeder 

Chlorurus bleekeri Herbivore 

Chlorurus japanensis Herbivore 

Chlorurus microrhinos Herbivore 

Chlorurus sordidus Herbivore 

Choerodon fasciatus Benthic invertebrate feeder 

Chromis acares Planktivore 

Chromis agilis Planktivore 

Chromis amboinensis Planktivore 
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Chromis atripectoralis Planktivore 

Chromis atripes Planktivore 

Chromis chrysura Planktivore 

Chromis flavomaculata Planktivore 

Chromis iomelas Planktivore 

Chromis lepidolepis Planktivore 

Chromis lineata Planktivore 

Chromis margaritifer Planktivore 

Chromis nitida Planktivore 

Chromis retrofasciata Planktivore 

Chromis ternatensis Planktivore 

Chromis vanderbilti Planktivore 

Chromis viridis Planktivore 

Chromis weberi Planktivore 

Chromis xanthochira Planktivore 

Chromis xanthura Planktivore 

Chrysiptera biocellata Herbivore 

Chrysiptera flavipinnis Planktivore 

Chrysiptera rex Planktivore 

Chrysiptera rollandi Planktivore 

Chrysiptera talboti Planktivore 

Coris gaimard Benthic invertebrate feeder 

Cromileptes altivelis Piscivore 

Ctenochaetus binotatus Herbivore 

Ctenochaetus spp Herbivore 

Dascyllus aruanus Planktivore 

Dascyllus melanurus Planktivore 

Dascyllus reticulatus Planktivore 

Dascyllus trimaculatus Planktivore 

Dischistodus melanotus Herbivore 

Dischistodus perspicillatus Herbivore 

Dischistodus prosopotaenia Herbivore 

Dischistodus pseudochrysopoecilus Herbivore 

Epibulus insidiator Benthic invertebrate feeder 

Epinephelus cyanopodus Piscivore 

Epinephelus fasciatus Benthic invertebrate feeder 

Epinephelus fuscoguttatus Piscivore 

Epinephelus merra Benthic invertebrate feeder 

Epinephelus ongus Benthic invertebrate feeder 

Epinephelus quoyanus Benthic invertebrate feeder 
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Forcipiger flavissimus Benthic invertebrate feeder 

Forcipiger longirostris Benthic invertebrate feeder 

Gnathodentex aureolineatus Benthic invertebrate feeder 

Gomphosus varius Benthic invertebrate feeder 

Gymnocranius spp Benthic invertebrate feeder 

Halichoeres hortulanus Benthic invertebrate feeder 

Hemiglyphidodon plagiometopon Herbivore 

Hemigymnus fasciatus Benthic invertebrate feeder 

Hemigymnus melapterus Benthic invertebrate feeder 

Hemitaurichthys polylepis Planktivore 

Hipposcarus longiceps Herbivore 

Lethrinus atkinsoni Benthic invertebrate feeder 

Lethrinus erythracanthus Benthic invertebrate feeder 

Lethrinus harak Benthic invertebrate feeder 

Lethrinus laticaudis Benthic invertebrate feeder 

Lethrinus lentjan Benthic invertebrate feeder 

Lethrinus miniatus Benthic invertebrate feeder 

Lethrinus nebulosus Benthic invertebrate feeder 

Lethrinus obsoletus Benthic invertebrate feeder 

Lethrinus olivaceus Piscivore 

Lethrinus ornatus Benthic invertebrate feeder 

Lethrinus rubrioperculatus Benthic invertebrate feeder 

Lethrinus semicinctus Benthic invertebrate feeder 

Lethrinus xanthochilus Benthic invertebrate feeder 

Lutjanus adetii Piscivore 

Lutjanus argentimaculatus Piscivore 

Lutjanus biguttatus Piscivore 

Lutjanus bohar Piscivore 

Lutjanus boutton Piscivore 

Lutjanus carponotatus Piscivore 

Lutjanus fulviflammus Piscivore 

Lutjanus fulvus Piscivore 

Lutjanus gibbus Piscivore 

Lutjanus kasmira Piscivore 

Lutjanus lemniscatus Piscivore 

Lutjanus lutjanus Piscivore 

Lutjanus monostigma Piscivore 

Lutjanus quinquelineatus Piscivore 

Lutjanus rivulatus Piscivore 

Lutjanus russellii Benthic invertebrate feeder 
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Lutjanus sebae Piscivore 

Lutjanus semicinctus Piscivore 

Lutjanus vitta Piscivore 

Macolor spp Planktivore 

Monotaxis grandoculis Benthic invertebrate feeder 

Naso lituratus Herbivore 

Naso tuberosus Herbivore 

Naso unicornis Herbivore 

Neoglyphidodon melas Benthic invertebrate feeder 

Neoglyphidodon nigroris Herbivore 

Neoglyphidodon polyacanthus Planktivore 

Neopomacentrus azysron Planktivore 

Neopomacentrus bankieri Planktivore 

Neopomacentrus cyanomos Planktivore 

Paracanthurus hepatus Planktivore 

Plectroglyphidodon dickii Benthic invertebrate feeder 

Plectroglyphidodon johnstonianus Herbivore 

Plectroglyphidodon lacrymatus Herbivore 

Plectropomus areolatus Piscivore 

Plectropomus laevis Piscivore 

Plectropomus leopardus Piscivore 

Plectropomus maculatus Piscivore 

Pomacentrus adelus Herbivore 

Pomacentrus amboinensis Herbivore 

Pomacentrus australis Herbivore 

Pomacentrus bankanensis Herbivore 

Pomacentrus brachialis Planktivore 

Pomacentrus chrysurus Herbivore 

Pomacentrus coelestis Planktivore 

Pomacentrus grammorhynchus Herbivore 

Pomacentrus imitator Planktivore 

Pomacentrus lepidogenys Planktivore 

Pomacentrus moluccensis Planktivore 

Pomacentrus nagasakiensis Planktivore 

Pomacentrus nigromarginatus Planktivore 

Pomacentrus philippinus Planktivore 

Pomacentrus reidi Planktivore 

Pomacentrus tripunctatus Herbivore 

Pomacentrus vaiuli Benthic invertebrate feeder 

Pomacentrus wardi Herbivore 
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Pomachromis richardsoni Planktivore 

Pomadasys taeniatus Benthic invertebrate feeder 

Premnas biaculeatus Planktivore 

Sargocentron spiniferum Benthic invertebrate feeder 

Scarus altipinnis Herbivore 

Scarus chameleon Herbivore 

Scarus dimidiatus Herbivore 

Scarus flavipectoralis Herbivore 

Scarus forsteni Herbivore 

Scarus frenatus Herbivore 

Scarus ghobban Herbivore 

Scarus globiceps Herbivore 

Scarus longipinnis Herbivore 

Scarus niger Herbivore 

Scarus oviceps Herbivore 

Scarus psittacus Herbivore 

Scarus rivulatus Herbivore 

Scarus rubroviolaceus Herbivore 

Scarus schlegeli Herbivore 

Scarus spinus Herbivore 

Scarus spp Herbivore 

Siganus argenteus Herbivore 

Siganus corallinus Herbivore 

Siganus doliatus Herbivore 

Siganus fuscescens Herbivore 

Siganus javus Herbivore 

Siganus lineatus Herbivore 

Siganus puellus Herbivore 

Siganus punctatissimus Herbivore 

Siganus punctatus Herbivore 

Siganus spinus Herbivore 

Siganus vulpinus Herbivore 

Stegastes apicalis Herbivore 

Stegastes fasciolatus Herbivore 

Stegastes gascoynei Herbivore 

Stegastes nigricans Herbivore 

Variola albimarginata Piscivore 

Variola louti Piscivore 

Zanclus cornutus Benthic invertebrate feeder 

Zebrasoma scopas Herbivore 
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Zebrasoma veliferum Herbivore 

 

 

 

 
Figure A1. Scores (p-values) of parametric bootstrap tests under the null hypothesis of 

bivariate Poisson-lognormal species-abundance distributions over time lags for reef fish 

communities. For each time lag (n=55) on a reef, the scores (or p-values) are computed from 

100-times bootstrapped likelihood values of bivariate Poisson-lognormal species-abundance 

distributions. The test statistic (scores) is the likelihood value of data compared to parametric 

bootstrapped likelihood values. Dashed line indicates the critical quantile values (5% and 

95%) for rejecting the null hypothesis. Solid lines and circles represent the full range and the 

median of bootstrapped scores, respectively. The scores located within the interval between 
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the two dashed lines indicate that the fitted bivariate Poisson-lognormal species-abundance 

distributions are not rejected by null hypothesis tests. 

 

 

Appendix B 

 

Numerical stability and AIC are used to select mixed-effects model of eq. 1 for reef 

fish communities (i.e., 40 reefs as random effects; Table B1). Although lowest-AIC model 

contains all three parameters as random effects, this model is numerically unstable - the 

corresponding parameters estimated from Laplace approximation and importance sampling 

do not converge to similar values (Table B1, Figure B1). By contrast, the model that contains 

only two random-effect parameters are numerically stable, where the fitted parameters from 

both algorithms are converged and the corresponding AIC value is close to lowest (Table B1, 

Figure B2). 

 

Therefore, I used the later model of eq. 1 for variance partitioning of relative species 

abundance. The best mixed-effects model can be expressed as follows (also see Chapter 3):  

  

 

 

 

where notations are the same as eq. 1, except there are two random-effect parameters 

following lognormal distributions. Residual error is assumed to follow a normal distribution. 

Visual inspection of residual errors also agrees well with the assumptions (Figure B2).   
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Figure B1. Relationship between random-effect parameters estimated from Laplace 

approximation and importance sampling. In this case, density dependence  is assumed 

to be a random-effect parameter (i.e., ) in addition to the other two parameters of eq. 1 

(A-C). Red line represents a 1:1 relationship where estimates from both methods of Laplace 

approximation and importance sampling converge to the same values. Deviations from the 

red line represent the numerical instability. 

 

 

 
Figure B2. Visual inspections for best-fitted mixed-effects model. (A-E) Visual 

inspections of residual errors. (F) Estimated random-effect values are not correlated (R2 = 

0.05). (G-H) Both methods of Laplace approximation and importance sampling converge to 

almost the same random-effect estimates. 

 

 

Appendix C 

 

Table C1. Results of paired t-tests for differences between mean variance components of 

persistent species differences of the different trophic groups. The direction of the 

estimated mean difference is presented as row subtracted by column.  
  Herbivore Planktivore Benthicinvertivore 

Herbivore NA -1.8% 1.9% 

Planktivore NA NA 3.7% 

Benthicinvertivore NA NA NA 

d

kRd
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* indicates P <0.05 and ** indicates P <0.01 after Bonferroni correction of P values 

 

 

Table C2. Results of paired t-test for mean difference of variance components of 

environmental stochasticity between trophic groups. The direction of estimated mean 

difference is presented as row subtracted by column. 
  Herbivore Planktivore Benthicinvertivore 

Herbivore NA -4.2% -11.2%** 

Planktivore NA NA -7%* 

Benthicinvertivore NA NA NA 

* indicates P <0.05 and ** indicates P <0.01 after Bonferroni correction of P values 

 

Table C3. Results of paired t-test for mean difference of variance components of 

demographic/sampling stochasticity between trophic groups. The direction of estimated 

mean difference is presented as row subtracted by column. 
  Herbivore Planktivore Benthicinvertivore 

Herbivore NA 6.1%** 8.8%** 

Planktivore NA NA 2.6%** 

Benthicinvertivore NA NA NA 

* indicates P <0.05 and ** indicates P <0.01 after Bonferroni correction of P values 

 

Table C4. OLS regression models for proportional variance components, richness, and 

unevenness in the context of trophic groups. For explanatory variables, ‘mC’ and 

‘log(sdC)’ represents the long-term (11-yr) mean and log-transformed standard deviation in 

annual coral cover fluctuations, respectively. ‘Lat’ and ‘Shelf’ represents latitude and cross-

shelf position, respectively. ‘TG’ represents the identity of trophic group as a categorical 

variable. Cross and plus symbols represent interactive and additive effects, respectively. 

Response variable Explanatory variable adjR2 AIC ΔAIC Final model 

Species differences log(sdC)×mC×TG 0.15 -168.2 0 Yes 

Species differences log(sdC)×TG 0.07 -161.9 6.3 No 

Species differences mC×TG 0.05 -159.8 8.4 No 

Species differences Lat×Shelf×TG 0.05 -155.7 12.5 No 

Species differences Lat×TG 0 -154.5 13.7 No 

Species differences Shelf×TG 0.05 -160.5 7.7 No 

Species differences TG 0 -157.1 11.1 No 

Environmental stochasticity log(sdC)×mC×TG 0.26 -176.1 0 Yes 
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Environmental stochasticity log(sdC)×TG 0.16 -165.1 11 No 

Environmental stochasticity mC×TG 0.15 -164.8 11.3 No 

Environmental stochasticity Lat×Shelf×TG 0.16 -160.2 15.9 No 

Environmental stochasticity Lat×TG 0.11 -159.3 16.8 No 

Environmental stochasticity Shelf×TG 0.15 -164.9 11.2 No 

Environmental stochasticity TG 0.11 -162.4 13.7 No 

Richness log(sdC)×mC×TG 0.74 730.9 57.5 No 

Richness log(sdC)×TG 0.72 731.4 58 No 

Richness mC×TG 0.74 725.7 52.3 No 

Richness Lat×Shelf×TG 0.84 673.4 0 Yes 

Richness Lat×TG 0.74 724.3 50.9 No 

Richness Shelf×TG 0.77 708.5 35.1 No 

Richness TG 0.73 727.1 53.7 No 

Unevenness log(sdC)×mC×TG 0.7 438.4 23.6 No 

Unevenness log(sdC)×TG 0.72 428.6 13.8 No 

Unevenness mC×TG 0.69 441.4 26.6 No 

Unevenness Lat×Shelf×TG 0.74 425.2 10.4 No 

Unevenness Lat×TG 0.75 414.8 0 Yes 

Unevenness Shelf×TG 0.65 453.7 38.9 No 

Unevenness TG 0.66 448 33.2 No 
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Figure C1. Estimated variance components of community structure of reef fish 

functional groups. Points and horizontal lines represent the median and the 1st and 3rd 

quantiles of estimates (n=40 reefs). (A) Estimated variance component due to persistent 

species differences. (B) Estimated variance component driven by stochastic fluctuations in 

population growth rates. (C) Estimated variance component driven by demographic or 

sampling stochasticity. Note that the scale of x-axis in (C) is different from that in (A-B), and 

that the inter-quartile range is smaller than the size of the points, so the horizontal lines are 

not visible. 
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Figure C2. Relationship between coral cover dynamics and variance components of 

community structure of reef fish functional groups. Relationships between the reef-scale 

coral cover variables (temporal SD and mean of coral cover for each reef) and the relative 

importance of variance components in structuring species-abundances of fish trophic groups 
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across reefs (n=40 reefs). (A-C) Herbivores. (D-F) Planktivores. (G-I) Benthic invertivores. 

The relationships are plotted using the lowest-AIC models, with interactive effects of the 

mean and SD of coral cover as explanatory variables, on variance components of fish 

community structure as response variables (Table A6). The red band represents the 95% C.I. 

of the proportional variance attributable to persistent species or niche differences, while the 

blue band represents the 95% C.I. of the proportional variance attributable to environmental 

stochasticity. To illustrate the interactive relationships, the 1st, median and 3rd quartiles of 

mean coral cover are fixed in panels (A-C), (D-F), and (G-I), respectively, and the 

relationship between SD of coral cover and variance component values plotted for the 

corresponding value of mean coral cover. 

 

 

 
Figure C3. Estimated richness and unevenness of reef fish functional groups on the 

Great Barrier Reef. Points and horizontal lines represent the median and the 1st and 3rd 

quantiles of estimates (n=40 reefs). (A) Estimated species richness of trophic groups. (B) 

Estimated unevenness of trophic groups. 
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Figure C4. Richness of reef fish functional groups depend on latitude and cross-shelf 

position. Relationship between time-averaged species richness of fish trophic groups and the 

interaction of latitude with cross-shelf position. (A-C) Herbivores. (D-F) Planktivores. (G-I) 

Benthic invertivores. Grey bands are the 95% confidence intervals predicted from the lowest-

AIC models for richness (n=40 reefs; Table A6). To better illustrate the interactive 
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relationships, the 1st, median, and 3rd quartiles of cross-shelf positions are fixed in panels (A-

C), (D-F), and (G-I), respectively, and the relationship between species richness as a function 

of latitude show for the corresponding value of cross-shelf position. Note that cross-shelf 

position increases towards the coast. 
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Figure C5. Unevenness of reef fish functional groups depend on latitude and cross-shelf 

position. Relationship between time-averaged unevenness of fish trophic groups and the 

interaction of latitude with cross-shelf position. (A-C) Herbivores. (D-F) Planktivores. (G-I) 

Benthic invertivores. Grey bands are the 95% confidence intervals predicted from the lowest-

AIC models for unevenness (n=40 reefs; Table A6). To better illustrate the interactive 

relationships, the 1st, median, and 3rd quartiles of cross-shelf positions are fixed in panels (A-

C), (D-F), and (G-I), respectively, and the relationship between unevenness as a function of 

latitude show for the corresponding value of cross-shelf position. Note that cross-shelf 

position increases towards the coast. 

 

 

Appendix D 

 

 
Figure D1. Density distributions of overall variance in relative species abundance and 

sample completeness estimated from empirical and simulated community time series 

data. (A) Density distribution of estimated overall variance of Poisson-lognormal species-

abundance distributions. (B) Density distribution of sample completeness measured as the 

ratio of observed (sampled) species richness to estimated total species richness from Poisson-

lognormal fits. Curves are probability density distributions. Red curves represent the 

empirical LTMP data. Green curves (light green, intermediate, and dark green) are 

‘baseline’,’varcovEnv’, and ’varEnv’ scenarios, respectively. Light- and dark-gray curves are 

‘varIntra’ and ‘varInter’ scenarios, respectively.  
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Figure D2. Relationship between interaction strength and probability of unstable 

equilibria under the scenario “varInter”. The proportion of unstable equilibria is defined 

as the number of interaction matrices B in eq. 3.9 whose largest eigenvalue is greater than 1 

(i.e., the complex norm is within the unit circle) in every 100 simulations. 
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Figure D3. Relationships between simulation-controlled environmental variance and 

IML-estimated variance components under different scenarios of community dynamics 

(cf. Figure 3.2). The variance components estimated by IML approach (i.e., the estimation 

method from the original theory). Red, blue, and green points represent the IML-estimated 

proportional variance, for each reef in each simulation (4000 points per color in total) driven 

by deterministic species differences (or “niche structure”), environmental stochasticity, and 

the remaining variance attributable to demographic and sampling stochasticity, respectively. 

Colored (red, blue, and green) lines represent the kernel smoothing of proportional variance 

estimates, obtained using local polynomial regression fitting. Black lines represent the 

analytical prediction of Engen et al. 2002 (eq. 3.3) using the true parameters from the 

simulations. (A) “varIntra” scenario, in which species differences are introduced into intra-

specific density dependence. (B) “varInterS” scenario, in which species differences are 

introduced into inter-specific density dependence. (C) “varEnv” scenario, in which species 
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differences are introduced into environmental variance. (D) “varcovEnv” scenario, in which 

species differences are introduced into environmental covariance. 

 

 
Figure D4. Relationships between variance estimate of deterministic species differences 

and its analytical prediction under baseline scenario. The black line is the unity line 

indicating perfect agreement between VPRSA estimates and analytical predictions. The red 

line is a quantile regression through the median of the MM-based VPRSA estimates of 

variance components of deterministic species differences. (A) The relationship between 

VPRSA estimates and the original analytical prediction of Engen et al. 2002 (eq. 3.3), and 

(B) the relationship between VPRSA estimates and the generalized analytical prediction from 

the discrete-time multivariate Gompertz model (eqs. 3.19-3.22). 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

Appendix E 

 

 
Figure E1. Relationship between observed and estimated species richness. 

 

 
Figure E2. Relationship between NSI and weighted-average population variability, 

depending on volatility in coral cover. Predictions are from the best model for explaining 

weighted-population variability. Intervals represent 80% CI of NSI effects, given different 

levels of volatility in coral cover. Symbols and notations are the same as in Tables E1 and E2. 
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Table E1. Results of model selection ranked by AICc and DAICc. For OLS regressions, “CMS”, “ENV” and “CMS+ENV” represents the 

regression that analyses community structure variables, environmental variables, and both of the variables sets, respectively. Global models are 

shown to compare with selected subset models. Terms to the right-hand side of the tilde (~) represent the explanatory variable, while the term on 

the left-hand side of the tilde represents the response variable. (+) and (*) represent additive and interaction terms. “log” represents log 

transformation. “Paiwise_Interaction” represents the pairwise interaction terms between individual variables. “sync” and “CVs” represent the 

synchrony index and weighted-average population variability, respectively. “richness”, “unevenness”, and “NSI” are community structure 

variables representing species richness, unevenness, and the niche structure index, respectively. “lat”, “shelf”, “mC”, and “sdC” are 

environmental variables representing latitude, cross-shelf position, mean coral cover, and coral cover variability, respectively. “AICc” is the AIC 

corrected for small sample size. Only those subset models (and their AICc weights) that have DAICc < 2 are reported. 
Candidate 

variables Global model Selected subset model AICc DAICc weight 

CMS log(sync)~log(richness)+logNSI+log(richness)*logNSI log(sync)~log(richness)+logNSI 114.4 0 0.42 

  log(sync)~log(richness) 114.8 0.4 0.35 

  log(sync)~logNSI 115.6 1.2 0.23 

 
log(sync)~log(unevenness)+logNSI+log(richness)*logNSI log(sync)~log(unevenness)+logNSI 112.96 0 0.58 

  log(sync)~log(unevenness) 113.64 0.68 0.42 

ENV log(sync)~lat+shelf+log(sdC)+mC+Pairwise_Interactions log(sync)~shelf 107.86 0 1 

CMS+ENV log(sync)~log(richness)+logNSI+shelf+log(richness)*shlef+logNSI*shelf log(sync)~shelf 107.86 0 0.55 

  log(sync)~logNSI+shelf 108.26 0.4 0.45 

 
log(sync)~log(unevenness)+logNSI+shelf+log(richness)*shlef+logNSI*shelf log(sync)~shelf 107.86 0 0.36 

  log(sync)~logNSI+shelf 108.26 0.4 0.3 

  log(sync)~log(unevenness)+shelf 109.09 1.24 0.19 

  log(sync)~logNSI+log(unevenness)+shelf 109.61 1.75 0.15 

      
CMS log(CVs)~log(richness)+logNSI+log(richness)*logNSI log(CVs)~logNSI 98.41 0 0.62 
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  log(CVs)~logNSI+log(richness) 99.35 0.94 0.38 

 
log(CVs)~log(unevenness)+logNSI+log(unevnness)*logNSI log(CVs)~logNSI 98.41 0 0.55 

  log(CVs)~logNSI+log(unevenness) 98.82 0.42 0.45 

ENV log(CVs)~lat+shelf+log(sdC)+mC+Pairwise_Interactions log(CVs)~log(sdC)+mC+log(sdC)*mC 107.59 0 1 

CMS+ENV log(CVs)~logNSI+log(sdC)+mC+log(sdC)*mC+logNSI*log(sdC)+logNSI*mC+logNSI*log(sdC)*mC log(CVs)~logNSI+log(sdC)+mC+logNSI*log(sdC) 91.99 0 1 

 

 

 

Table E2. Estimated coefficients, CI, and P values of the best OLS models for synchrony index and weighted-average population 

variability. Symbols and notations are the same as in Table E1. 

  log(sync) log(CVs) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.00 -0.28 – 0.28 1.000 -0.11 -0.35 – 0.12 0.339 

shelf 0.50 0.21 – 0.78 0.001 
   

logNSI 
   

-0.46 -0.75 – -0.18 0.002 

log(sdC) 
   

0.36 0.08 – 0.63 0.013 

mC 
   

-0.37 -0.64 – -0.10 0.009 

logNSI*log(sdC) 
   

-0.25 -0.47 – -0.04 0.020 
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Observations (N) 40 40 

R2 / R2-adjusted 0.246 / 0.227 0.584 / 0.536 
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