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Simple Summary: Mouth cancer is the most common malignancy in the head-and-neck region.
Usually, these tumors develop from white lesions in the mouth that appear long before cancer
diagnosis. However, platforms that can estimate the time-factored risk of cancer occurring from these
diseases and guide treatment and monitoring approaches are elusive. To this end, our study presents
time-to-event models that are based on machine learning for prediction of the risk of malignancy from
oral white lesions following pathological diagnosis as a function of time. These models displayed
very satisfactory discrimination and calibration after multiple tests. To facilitate their preliminary use
in clinical practice and further validation, we created a website supporting the use of these models to
aid decision making.

Abstract: Machine-intelligence platforms for the prediction of the probability of malignant transfor-
mation of oral potentially malignant disorders are required as adjunctive decision-making platforms
in contemporary clinical practice. This study utilized time-to-event learning models to predict ma-
lignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with
oral white lesions from two institutions were included in this study. In all, 26 features available from
electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv,
random survival forest (RSF)—and one standard statistical method—Cox proportional hazards
model. Discriminatory performance, calibration of survival estimates, and model stability were
assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of
the averaged c-index and IBS following training cross-validation. This study found that DeepSurv
(c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based
on discrimination and calibration following internal validation. However, DeepSurv was more
stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for
discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03).
We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall,
time-to-event models are successful in predicting the malignant transformation of oral leukoplakia
and oral lichenoid lesions.
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1. Introduction

Oral cavity cancer is the 18th most common malignancy worldwide and accounts
for many head and neck cancers in contemporary clinical practice [1]. Early detection of
malignancy is an important factor influencing disease morbidity and mortality following
intervention [2,3]. Oral carcinogenesis may be associated with a lengthy pre-pathologic
phase (between initial risk-factor exposure and overt disease onset), which features the oc-
currence of diseases with increased risk of malignancy, known as oral potentially malignant
disorders (OPMDs). These include discreet, lesions such as leukoplakia (including prolifer-
ative verrucous leukoplakia), erythroplakia, erythroleukoplakia, and oral lichenoid lesions,
together with more widespread conditions, such as oral submucous fibrosis, Plummer-
Vinson syndrome, chronic discoid lupus erythematosus, and dyskeratosis congenita [4].
Appropriate recognition and management of OPMDs are essential to ensure early recogni-
tion of malignancy, delivery of effective treatment with reduced morbidity, and, ultimately,
to improve long-term prognosis and survival for oral cancer patients.

Malignant transformation potential (MTP) of OPMDs, unfortunately, varies sub-
stantially between 0.13 and 85%, according to the clinical subtype [5–8]. For example,
proliferative verrucous leukoplakia and erythroplakia, although relatively rare in clinical
practice, are known to exhibit the highest MTPs [5–8], whilst other more common lesions,
such as leukoplakia or oral lichenoid lesions, demonstrate highly equivocal transformation
potentials. Clinico-pathological characterization of OPMDs, including the presence and
extent of epithelial dysplasia, anatomical location, lesion size and appearance, together
with various systemic comorbidities, have been studied, respectively, as the key features
influencing malignant transformation risk [9–11]. To date, however, platforms that en-
courage accurate prediction of transformation risk for such lesions on an individual basis
remain elusive.

Artificial intelligence and machine learning are now increasingly applied to the predic-
tion of oral oncological outcomes [12]. These algorithms provide automated and exclusive
prediction or classification of clinical outcomes upon learning and detecting patterns from
health data without being outrightly programmed by the user to do so [13]. Many products
based on this technology are being applied in precision medicine to support clinical decision
making and encourage individualized treatment selection and monitoring regimens for
patients [14]. In the context of oral squamous malignancies, most models have considered
clinical outcomes, such as cell-type recognition, treatment response, occult metastasis, and
disease prognosis, more than the malignant transformation of OMPDs [12,15]. Furthermore,
the very few learning models currently proposed for OPMD malignant transformation
have considered outcomes as purely binary classes (likely or unlikely), rather than dynamic
variables that incorporate time-to-event data or generate outcomes as a probability of trans-
formation over time, which would be more clinically useful [16,17]. Therefore, this study
sought to compare and validate supervised deep and conventional learning algorithms for
the risk-probability prediction of malignant transformation in OPMDs. The rationale for
this comparative approach was to determine the utility of the deep learning approaches
against conventional tree-based and statistical methods in other to select the optimal model
for further validation and preliminary deployment in practice. We hypothesized that the
deep-learning methods will have balanced performance accuracy and stability compared
to conventional machine-learning or statistical models.

2. Materials and Methods
2.1. Patients and Dataset

Data from 716 patients with a clinical diagnosis of oral leukoplakia, oral lichen planus,
or oral lichenoid lesions who underwent incisional or excisional biopsy between 1 January
2003, and 31 December 2019 were obtained from the Hong Kong Hospital Authority Clinical
Management System (HA-CMS) of the Queen Mary Hospital, Hong Kong. These patients
were encountered across the Head and Neck Surgery, Otorhinolaryngology, and Oral
and Maxillofacial Surgery services of the institution. Included patients were those with a
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minimum follow-up of 18 months. However, patients with synchronous erythroplakia and
proliferative verrucous leukoplakia or those with previous oral cavity cancers before the
data-collection time frame were excluded from the study. Demographic, clinical, pathologic,
and treatment information of suitable patients was collected from the HA-CMS electronic
health record. The specific features retrieved are listed in Table 1. These features have been
presented in several reports as independent risk predictors for malignant transformation
of these oral leukoplakia and oral lichenoid lesions [9,10,18,19]. Key dates included the
date of histologic diagnosis and the date of malignant transformation, if any. The censoring
date used was 15 August 2021. The outcome considered in this study was the time to
malignant transformation of oral leukoplakia and oral lichenoid lesions. Hence, the output
of the models is interpreted as the probability of being free of malignant transformation at
each time point or period from the date of histologic diagnosis. Only oral squamous cell
carcinomas arising within the lesion focus were considered relevant malignancies in this
study. Moreover, tumors identified as microinvasive or superficially invasive on histology
were included, while carcinoma in situ was considered a severe type of epithelial dysplasia
without stromal invasion, in line with the most recent WHO criteria for grading of oral
epithelial dysplasia [20].

Table 1. Input features, variable category, and missing data.

Input Feature Type Missing Instance Handling Technique

Age Continuous 0 NA

Sex Binary 0 NA

Tobacco smoking Binary 2
One-hot transformation

Alcohol drinking Categorical (nominal) 33

Patient category Categorical (nominal) 0 NA

Risk-habit indulgence
following diagnosis Categorical (nominal) 0 NA

Previous malignancy Categorical (nominal) 0 NA

Charlson Comorbidity Index (CCI) Continuous 0 NA

Hypertension status Binary 0 NA

Diabetes Mellitus status Binary 0 NA

Hyperlipidemia status Binary 0 NA

Autoimmune disease status Binary 0 NA

Viral hepatitis status Binary 0 NA

Family history of malignancy Binary 592 Variable elimination

Type of lesion Binary 0 NA

Clinical subtype of lichenoid lesion Categorical (nominal) 0 NA

Tongue/FOM involved Binary 0 NA

Labial/buccal mucosa involved Binary 0 NA

Retromolar area involved Binary 0 NA

Gingiva involved Binary 0 NA

Palate involved Binary 0 NA

Number of lesions Categorical (ordinal) 0 NA

Lesion size Continuous 464 Variable elimination

Presence of ulcers or erosions Binary 0 NA

Lesion border status Binary 679 Variable elimination
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Table 1. Cont.

Input Feature Type Missing Instance Handling Technique

Presence of induration Binary 0 NA

Treatment at diagnosis Categorical (nominal) 0 NA

Recurrence after surgical excision Binary 0 NA

Number of recurrences Categorical (ordinal) 0 NA

Oral epithelial dysplasia at diagnosis Categorical (nominal) 0 NA

Oral epithelial dysplasia detected
during follow-up Categorical (nominal) 0 NA

NA—Not applicable; FOM—Floor of the mouth.

2.2. Data Cleaning and Feature Engineering

Electronic spreadsheets were used for data entry, with each column filtered to ensure
correlation of variables and identification of missing instances. Input variables were
either continuous, ordinal, nominal, or binary (Table 1). Three features (family history of
malignancies, size of the lesion, and lesion border status) had between 64.8% and 94.8%
of variables missing and were excluded from further analysis. One-hot transformation of
the smoking and alcohol-consumption risk-habit categories was performed to engineer a
new feature that differentiated patients into non-smoking, non-alcohol-drinking (NSND)
patients and smoking and alcohol-drinking (SD) patients. The rationale for this stratification
has already been described by our group and others [21,22]. No data transformation
or feature engineering was performed with other categorical input features. Neither
standardization nor normalization was performed for the age of patients at diagnosis or
the Charlson comorbidity index, which represented the continuous features for modeling,
as they did not improve the performance metrics during experimentation.

2.3. Machine Learning Algorithms

Five algorithms, including two standard classifiers and three neural-network-extended
models were compared to determine their suitability to model the probability of malignant
transformation over time. Detailed description of the architecture of each algorithm has
been described in our previous report [23]. DeepSurv, time-dependent neural net cox
model (Cox-Time), and DeepHit were the configurable deep-learning models used for
training, while random survival forest (RSF) and the Cox proportional hazard (Cox-PH)
model were used for comparison, as the performance of the latter methods had not been
previously considered for malignant-transformation prediction. DeepSurv is a non-linear,
feed-forward neural-network-based extension of the standard Cox regression model that
fulfils the proportional-hazards assumption, while Cox-Time represents the nonpropor-
tional neural-net transformation of the Cox model with time-varying input variables [24].
While both DeepSurv and Cox-Time are continuous-time algorithms, DeepHit was imple-
mented to serve as the non-proportional discrete-time extension of these models [25,26].
This was to explore whether the continuous-time models were restrictive in determining
the discriminatory performance and calibration of risk probabilities obtained for this out-
come. RSF, which represents a robust learning method that grows the trees by variable
subset selection at each node, was the comparative ensemble learning model against which
the performance of the deep-learning models were further compared [27].

2.4. Model Training and Internal Validation

Data were split into train and validation sets based on the 80:20 rule. Training data
were resampled using five-fold cross-validation, with performance estimates generated
for each stratum. Hyperparameters for the neural networks, i.e., learning rate, number
of hidden layers, nodes per layer, drop-out, and batch size, were tuned based on the
performance measures at the algorithm level. The different hyperparameters considered
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are presented in Table S1. Additionally, early stopping regularization was implemented
in the deep-learning models to deter model training when there was no improvement on
the validation fold. Mean and standard deviations of the performance measures obtained
across the five cross-validation folds were used to assess and compare the stability of the
algorithm on different datasets. The internal validation cohort unseen during training
and cross-validation was selected randomly using computer-generated serial numbers.
Performance measures generated from the internal-validation dataset were the basis for
comparison of the algorithms in this study.

2.5. Model Performance Measures

Both the discriminative performance and calibration of the models for malignant-
transformation forecasting were assessed. Harrell’s concordance index (c-index) was used
as the measure of model discrimination when the order-of-probability estimates per follow-
up time were considered for random pairs. Scores range from 0 to 1, with a value of
0.5 representing random discrimination. In addition to the c-index, the integrated Brier
score (IBS) considering all represented time points in the training data was used to compare
the accuracy of the predicted probabilities among algorithms. A lower IBS denotes better
calibration, and only models with scores below 0.25 are deemed useful in real-world
scenarios [25].

2.6. External Validation and Algorithm Deployment

To validate the best-performing model(s), this study utilized a previously published
dataset of 590 patients with OPMDs treated by laser surgery at the Maxillofacial Surgery
Unit of the Newcastle Dental Hospital and the Royal Victoria Infirmary between August
1996 and December 2014 [8,28,29]. Patients with erythroplakia and proliferative verrucous
leukoplakia were excluded. Further, those with an unexpected diagnosis of squamous
malignancy following a preliminary diagnosis of dysplasia from incisional biopsy were
not included in the external validation cohort. In total, 382 patients were used for analysis
(Table S2). As there were missing features in these data compared to the original training
and internal validation, we examined the effect of this scenario on the performance of
the outperforming prediction models by re-training and re-validating the models on
these features before external validation. In line with the recent proposition for real
world application of promising machine-learning models [30], we performed a web-based
deployment of the best-performing algorithm considering the discrimination, calibration,
and stability measures obtained during both validation procedures.

2.7. Computation

Descriptive statistics were performed using SPSS v 26 (IBM, Armonk, NY, USA).
Training, testing, and validation of the deep, ensemble, and standard Cox models, as well
as interactive graphic user interface for day-to-day application and further validation in
clinical oncological centers and general practices, were performed with Python v 3.8.7
(Python Software Foundation, Wilmington, DE, USA) [24,25,27].

3. Results
3.1. Patient Characteristics

Seven hundred and sixteen patients with oral leukoplakia and lichenoid lesions were
utilized for model training and internal validation. Descriptive data of this cohort are
presented in Table 2. Patients were between 18 and 89 years of age, with more females
(56.0%) than males (44.0%). A majority of the patients were NSND (65.5%), and only a few
of the SD patients (2.0%) who indulged in the risk habits at diagnosis continued with their
use afterward. The mean Charlson comorbidity index of this cohort was 0.64, with a higher
prevalence of hypertension (29.5%) than hyperlipidemia (17.0%), diabetes mellitus (15.5%),
and autoimmune diseases (5.9%).
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Table 2. Demographic, clinical, and pathologic characteristics of all patients with oral leukoplakia
and lichenoid lesions used to train learning algorithms.

Variables
N = 716

N (%)

Median age (IQR) 58 (49–67)

Gender
Female 401 (56.0)

Male 315 (44.0)

Patient category
NSND 469 (65.5)

SD 247 (34.5)

Continued risk habits
following diagnosis

Yes 14 (2.0)

No 167 (23.3)

Not applicable 535 (74.7)

Previous malignancy

Head and neck tumors 21 (2.9)

Other tumors 46 (6.4)

Hematologic malignancies 23 (3.2)

No malignancy 626 (87.4)

Charlson comorbidity index—mean (SD) 0.64 (1.02)

Hypertension 211 (29.5)

Diabetes mellitus 111 (15.5)

Hyperlipidemia 122 (17.0)

Autoimmune disease 42 (5.9)

Viral hepatitis infection 69 (9.6)

Lesion
Oral leukoplakia 389 (54.3)

Oral lichen planus/oral
lichenoid lesion 327 (45.7)

Clinical subtype of
lichenoid lesion

Reticular/Papular 100 (14.0)

Erosive/Atrophic 142 (19.8)

Plaque 85 (11.9)

Tongue/FOM 245 (34.2)

Buccal/Labial mucosa 407 (56.8)

Retromolar area 26 (3.6)

Gingiva 88 (12.3)

Palate 23 (3.2)

Number of lesions

Single 469 (65.5)

Bilateral or double 210 (29.3)

Multiple 37 (5.2)

Presence of ulcers or erosions 228 (31.8)

Induration 47 (6.6)

Treatment

Surgical excision 221 (30.9)

Medical 195 (27.2)

No treatment 300 (41.9)

Post-excision recurrence 42 (19.0)
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Table 2. Cont.

Variables
N = 716

N (%)

Number of recurrences

1 30 (4.2)

2 7 (1.0)

3 4 (0.6)

4 1 (0.1)

Oral epithelial dysplasia
at diagnosis

Absent 641 (89.5)

Mild 34 (4.7)

Moderate 27 (3.8)

Severe 7 (1.0)

Unknown (defaulted biopsy
at diagnosis) 7 (1.0)

Oral epithelial dysplasia
at follow-up

Absent 658 (91.9)

Mild 11 (1.5)

Moderate 15 (2.1)

Severe 24 (3.4)

Unknown (defaulted biopsy
during follow-up) 8 (1.1)

Malignant transformation 76 (10.6)

AJCC TNM stage

Stage I 47 (6.6)

Stage II 9 (1.3)

Stage III 6 (0.8)

Stage IV 12 (1.7)

Tumor grade

Well differentiated 23 (3.2)

Moderately differentiated 30 (4.2)

Poorly differentiated 3 (0.4)

Tumor prognosis

Remission 58 (8.1)

Recurrence 6 (0.8)

Cancer-related death 6 (0.8)

Second primary tumor 6 (0.8)

More oral leukoplakia cases than oral lichenoid lesion cases were included (54.3%
vs. 45.7%). Of those with oral lichenoid lesions, the erosive clinical subtype was mostly
represented (19.8%) than the asymptomatic reticular or papular variants (14.0%), as this
often warranted an incisional or excision biopsy at our institution. Most lesions involved
the buccal or labial mucosa (56.8%) and were solitary (65.5%). Four hundred and sixteen
patients received treatment that was either surgical (30.9%) or pharmacological (27.2%),
and 19% of the patients treated via surgical excision experienced between one and four
recurrences. Epithelial dysplasia was present in 9.5% and 7.0% of the lesions at diagnosis
and during follow-up biopsies, respectively. Overall, 10.6% of the patients developed oral
squamous cell carcinoma emanating from the lesions, with an average follow-up time of
90.9 months. A majority of the cancers were early-stage tumors (7.9%), and most patients
(8.9%) were in remission as of the censoring date.
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3.2. Performance of Time-to-Event Machine-Learning Models

Following data splitting, 573 patients were used for training and five-fold cross-
validation of the algorithms, while internal validation was performed using 143 randomly
selected patients who were unseen during model training. The metrics of each algorithm
on these datasets are shown below.

3.2.1. Cox-PH

Compared to the IBS, concordance indices across the cross-validation fold were less
stable with this model (Figure 1). The average c-index and IBS following cross-validation
were 0.70 and 0.03, respectively, while performance metrics on the unseen data obtained
were a c-index of 0.83 and an IBS of 0.03, respectively.
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3.2.2. Cox-Time

The discriminative performance of Cox-Time was stable, while the IBS scores across
five folds were fairly unstable (Figure 1). The mean c-index and IBS following cross-
validation were 0.88 and 0.11, respectively. Additionally, the model performance measures
on internal validation were 0.86 for c-index and 0.06 for IBS (Table 3). The predicted
probability function for each patient in the validation cohort is plotted in Figure 2.

Cancers 2021, 13, x 9 of 14 
 

Table 3. Performance measures of time-to-event algorithms for prediction of malignant transformation of oral leukoplakia 
and lichenoid lesions. 

Models 

Five-Fold  
Cross-Validation 

Internal Validation 
Repeat Five-Fold  

Cross-Validation with  
Reduced Features 

Internal Validation  External Validation 

Concordance 
Index 

Integrated 
Brier 

Scores 
(IBS) 

Concordance 
Index 

Integrated 
Brier 

Scores 
(IBS) 

Concordance 
Index 

Integrated 
Brier Scores 

(IBS) 
Concordanc

e Index 

Integrated 
Brier 

Scores 
(IBS) 

Concordance 
Index 

Integrated 
Brier 

Scores 
(IBS) 

Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
Cox-PH 0.70 (0.098) 0.03 (0.005) 0.83 0.03 

    Cox-Time 0.88 (0.034) 0.11 (0.055) 0.86  0.06 
DeepHit 0.84 (0.061) 0.17 (0.064) 0.86 0.08 

DeepSurv 0.88 (0.046) 0.11 (0.053) 0.95 0.04 0.78 (0.097) 0.13 (0.069) 0.92 0.05 0.82 0.18 
RSF 0.85 (0.142) 0.03 (0.007) 0.91 0.03 0.89 (0.064) 0.03 (0.006) 0.92 0.03 0.73 0.03 

  
Figure 2. Predicted malignant-transformation-free survival plots generated for 143 patients in the internal validation 
cohort for (a) DeepSurv, (b) Cox-Time, and (c) DeepHit. DeepHit plots were generated following linear interpolation. The 
red lines in (a,b) represent the Brier scores plotted at each time point. 

3.2.3. DeepHit 
Concordance indices were relatively more stable than IBS scores across the training 

data folds for this model (Figure 1). C-index and IBS following cross-validation were 0.84 
and 0.17, respectively, while on internal validation, scores of 0.86 for c-index and 0.08 were 
obtained, respectively (Table 3). Predicted probability functions for patients in the 
validation cohort are plotted in Figure 2. 

Figure 2. Predicted malignant-transformation-free survival plots generated for 143 patients in the internal validation cohort
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3.2.3. DeepHit

Concordance indices were relatively more stable than IBS scores across the training
data folds for this model (Figure 1). C-index and IBS following cross-validation were 0.84
and 0.17, respectively, while on internal validation, scores of 0.86 for c-index and 0.08
were obtained, respectively (Table 3). Predicted probability functions for patients in the
validation cohort are plotted in Figure 2.
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Table 3. Performance measures of time-to-event algorithms for prediction of malignant transformation of oral leukoplakia and lichenoid lesions.

Models

Five-Fold
Cross-Validation Internal Validation

Repeat Five-Fold
Cross-Validation with

Reduced Features
Internal Validation External Validation

Concordance
Index

Integrated Brier
Scores (IBS) Concordance

Index
Integrated Brier

Scores (IBS)

Concordance
Index

Integrated Brier
Scores (IBS) Concordance

Index
Integrated Brier

Scores (IBS)
Concordance

Index
Integrated Brier

Scores (IBS)Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Cox-PH 0.70 (0.098) 0.03 (0.005) 0.83 0.03
Cox-Time 0.88 (0.034) 0.11 (0.055) 0.86 0.06
DeepHit 0.84 (0.061) 0.17 (0.064) 0.86 0.08

DeepSurv 0.88 (0.046) 0.11 (0.053) 0.95 0.04 0.78 (0.097) 0.13 (0.069) 0.92 0.05 0.82 0.18
RSF 0.85 (0.142) 0.03 (0.007) 0.91 0.03 0.89 (0.064) 0.03 (0.006) 0.92 0.03 0.73 0.03
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3.2.4. DeepSurv

Integrated Brier scores were less stable compared to c-indices for the cross-validation
folds (Figure 1). The mean c-index and IBS were 0.88 and 0.11, respectively (Table 3). Upon
internal validation, better c-index and integrated Brier scores of 0.95 and 0.04, respectively,
were obtained. Estimated probability functions for patients in the validation cohort are
plotted in Figure 2.

3.2.5. RSF

Concordance indices were less stable than integrated Brier scores across the training
data folds (Figure 1). C-index and IBS values were 0.85 and 0.03 for cross-validation and
0.91 and 0.03 following internal validation, respectively (Table 3).

3.3. Comparing the Performance Measures of the Algorithms

Regarding the stability of the algorithms in handling different datasets, we observed
that Cox-Time and DeepSurv were the most stable algorithms for assessment of discrimi-
native tasks, while the standard Cox-PH was stable for obtaining calibrated probability
estimates over time. RSF was the least stable algorithm for discriminative tasks, while
DeepHit was the least stable based on the integrated Brier scores. Overall, DeepSurv had
the best concordance index, while RSF had the lowest integrated Brier scores, as assessed
on the internal validation cohort. However, the IBS of RSF was only slightly better than
Cox-PH and DeepSurv (Table 3). DeepHit also had the worst integrated Brier score, al-
though this is still very acceptable in practice (i.e., <0.25), while the standard Cox-PH model
had the poorest performance based on model discrimination.

3.4. External Validation and Effect of Missing Variables on Trained Models

The two best-performing algorithms for model discrimination and calibration, i.e.,
DeepSurv and RSF, were subjected to external validation using the Newcastle OPMD
cohort. Prior to that, both models were re-trained to assess the effect of the missing
variables on the model performance. Both the discrimination and calibration of DeepSurv
were affected following re-training, with lower mean c-index and IBS scores upon cross-
validation (Table 3). However, the reverse was the case for RSF, which obtained slightly
better estimates than the full model. Upon internal validation, the performance of both
models was similar, albeit slightly lower than the metrics obtained with the original models.
External validation of the re-trained models obtained respective c-index and IBS scores of
0.82 and 0.18 for DeepSurv, while for RSF, performance scores were 0.73 for discrimination
and 0.03 for calibration.

3.5. Algorithm Deployment

We deployed the DeepSurv algorithm using the Flask module in Python to create
an interactive web-based tool for practical use, similar to tools developed by other au-
thors [31]. Visuals on the functionality and output of the application are presented in
Figure 3. The application, which is primarily for research or informational purposes,
can be assessed publicly at https://opmd-pred-facdent-hku-deepsurv.herokuapp.com
(accessed on 5 November 2021). Codes used for this production can also be found at
https://github.com/jaadeoye/opmd-mt-deepsurv-app (accessed on 5 November 2021)
for potential modification in respective institutions.

https://opmd-pred-facdent-hku-deepsurv.herokuapp.com
https://github.com/jaadeoye/opmd-mt-deepsurv-app
https://github.com/jaadeoye/opmd-mt-deepsurv-app
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4. Discussion

Prediction of the malignant transformation of OPMDs is critical to the prevention and
early diagnosis of oral squamous cell carcinoma. Currently, there are no concrete decision-
making support platforms to assist clinicians in the management of OPMDs [15]. Due to
the highly variable malignant-transformation potentials reported for oral leukoplakia and
oral lichenoid lesions, an effective platform would help clinicians rationalize the choice of
treatment intervention and deliver appropriate patient follow-up and long-term monitoring
arrangements [15]. As artificial intelligence is increasingly being applied to oncological
decision making and outcome prediction, this study presents the comparison and validation
of deep and tree-based time-to-event machine-learning algorithms to predict malignant-
transformation-free survival of patients with oral leukoplakia and oral lichenoid lesions.

This study found DeepSurv and RSF to be robust for discrimination and provision of
better-calibrated probability estimates as a function of time for the malignant transforma-
tion of oral leukoplakia and lichenoid lesions. This means that clinical scenarios involving
the comparison of malignant-transformation probability estimates among patients for treat-
ment selection, risk stratification, and disease surveillance plans are better performed using
DeepSurv, while individual survival distributions are only slightly better modeled relative
to the actual probability functions using the RSF model. The former may be attributed to
the implementation of DeepSurv specifically to predict individuals’ risk before treatment
recommendation, thus prioritizing discriminative performance over calibrated probability
estimates [24,25]. Furthermore, this finding is in keeping with a previous implementation
of these algorithms to train prognostic features to predict the prognoses of oral squamous
malignancies [23,32]. Nonetheless, DeepSurv had very satisfactory calibration estimates,
which can permit its singular use for both tasks in practice. While our findings support the
use of both DeepSurv and RSF based on the clinical tasks to be performed, our analysis
showed that the RSF model is still very unstable for discriminatory tasks, which may mean
equivocal performance with changes in the modeling dataset. However, this was notable
with the use of an expanded than reduced number of features implemented during model
re-training.

Upon comparing the best-performing machine-learning models with clinical nomo-
grams for prediction of malignant transformation of OPMDs, DeepSurv outperformed both
existing nomograms, especially with regards to discrimination [18,33]. External validation
of the best-performing algorithms in this study suggests that these models are reliable,
with reproducible performances in other populations with disparate sociodemographic
characteristics and risk profiles. However, we found that the ordering of the risk proba-
bilities and the accuracy of predicted survival functions were affected differently upon
re-training due to the missing features. While external validation was satisfactory for
DeepSurv, the calibration estimate was higher that than obtained in internal validation,
although within satisfactory limits. Likewise, poorer discrimination was observed for
RSF while retaining its ability to provide near-actual estimates. With this observation, we
propose that better estimates can be obtained if all variables used for model training are
included. Additionally, these studies may consider incorporating techniques for handling
missing features and instances specific to supervised learning for discriminative tasks
involving the models [34,35].

Though this study pioneered machine-learning models for prediction of malignant
transformation of oral leukoplakia and oral lichenoid lesions, it is not without limitations.
First, three input variables were excluded from model training, which, if included, may
have further improved the predictive performance and stability of the models. However,
the current performance estimates are satisfactory, pending further validatory endeavors
and clinical deployment. Second, the retrospective design of this study and lack of direct
patient recruitment may hamper the reliability of the input features used. However,
instances obtained for each patient were verified across several clinical specialty platforms
to ensure their accuracy prior to data entry. Third, the prediction time points and frame of
the models were restricted to the duration of patients’ follow-up in the training models,
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with forecasts only available until 271 months following histologic diagnosis. Even so,
poorer calibration may be experienced with the use of the interactive web-based tool at time
points above 210 months due to a reduced number of patients with longer follow-up. Last,
the study did not consider molecular data, which may improve the clinical performance of
the machine-learning models [15]. Future studies should consider prospective validation
of these models while including results from biomarker assays to deliver enhanced and
more precise predictive ability.

5. Conclusions

This study successfully utilized time-to-event algorithms to model the malignant-
transformation risk for oral leukoplakia and oral lichenoid lesions. The DeepSurv algorithm
had the best discriminative performance, while RSF outperformed other models, with
better-calibrated probability estimates. External validation of both models was satisfactory,
which shows promise for application in contemporary oncology, as well as general medical
and dental practices, especially in areas where access to specialist clinical expertise may
be lacking.
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