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Abstract: Despite advances in the treatment of cancers through surgical procedures and new phar-
maceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by
low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that reg-
ulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the
PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of
intense investigation and the focus of current therapeutics. In this review article, we consider the role
of this pathway in the pathogenesis of HCC, focusing on its downstream effectors such as glycogen
synthase kinase-3 (GSK-3), cAMP-response element-binding protein (CREB), forkhead box O protein
(FOXO), murine double minute 2 (MDM2), p53, and nuclear factor-κB (NF-κB), and the cellular
processes of lipogenesis and autophagy. In addition, we provide an update on the current ongoing
clinical development of agents targeting this pathway for HCC treatments.
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1. Introduction

Cancer of the liver is represented by cholangiocarcinoma and hepatocellular carci-
noma (HCC). HCC constitutes approximately 80–90% of all primary liver cancers and
has a high mortality rate while many are detected in later stages of development and
therapeutic options are limited [1]. Worldwide, HCC is now the sixth most common cancer
and the fourth leading cause of cancer-related death [2–4]. The major known causes of HCC
are alcohol abuse, diabetes, obesity, hepatitis B virus (HBV) and hepatitis C virus (HCV)
infections, aflatoxin B1, and non-alcoholic fatty liver disease (NAFLD) and its progressed
form non-alcoholic steatohepatitis (NASH), which was recently renamed metabolic asso-
ciated fatty liver disease (MAFLD) [5–7]. Together, these promote hepatic inflammation
that can progress to fibrosis and cirrhosis, and in turn hepatocyte apoptosis and oxida-
tive stress, leading to altered protein expression, DNA damage, and carcinogenesis. In
this regard, formative studies noted mutations and dysregulated expression of the phos-
phatidylinositol 3-kinase (PI3K)/the serine-threonine protein kinase (Akt)/mammalian
target of the rapamycin (mTOR) signaling pathway in HCC. This encouraged the applica-
tion of small molecule inhibitors of the PI3K/Akt/mTOR pathway in pre-clinical models
and subsequent treatment of patients [8–13]. Considering HCC incidence is rapidly in-
creasing worldwide and therapeutic choices are limited, here we consider the role of the
PI3K/Akt/mTOR pathway in HCC, while it is a focus of current clinical practice and
subject of intense investigation for future therapeutic development.
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2. HCC Drivers and Outlook

Since 1990, there has been a 114% increase in world-wide liver cancer incidence with
significant rises in countries with high socio-demographic indexes, particularly in the USA,
Australia, the UK, and the Netherlands [14,15]. This has occurred despite the introduction
of HBV vaccines in the 1990s and HCV anti-viral therapies in the last decade. These
initiatives decreased the rates of HBV- and HCV-driven HCC in developed countries,
and these HCC forms are becoming a disease of underdeveloped countries [2–4]. In
contrast, with increasing rates of alcohol abuse and NAFLD/MAFLD, the expectation is that
HCC incidence will increase in developed countries [16–18]. NAFLD/MAFLD represents
conditions ranging in severity from simple steatosis, non-alcoholic steatohepatitis (NASH),
to advanced fibrosis and cirrhosis [16]. Recent analyses show the overall global prevalence
of NAFLD/MAFLD diagnosis to be in the vicinity of 25%, and it commonly associates with
comorbidities such as obesity, diabetes mellitus, and the metabolic syndrome [16,17]. In
the US, NAFLD and NASH cases are estimated to increase 21% and 63%, respectively, by
2030 and this is expected to coincide with increased HCC incidence [19].

3. Current Treatments of HCC

Treatment options for early to intermediate stages of HCC remain relatively un-
changed, including surgical resection, percutaneous ethanol injection (PEI), radiofrequency
ablation (RFA), trans-arterial chemoembolization (TACE), and liver transplantation. How-
ever, these procedures are only suitable for a small number of patients, mostly those without
cirrhosis, and often have post-operative complications [20]. The introduction of Sorafenib,
a multi-kinase inhibitor in 2007, has significantly altered the treatment for intermediate and
advanced stage HCC [13]. In advancing intermediate HCCs, the combination of TACE and
pharmaceutical agents are frequently used, as this is more effective than monotherapy [21].
Importantly, with the approval of additional drugs, the current algorithm of treatment for
advanced HCC includes sorafenib and lenvatinib as first-line and regorafenib, cabozantinib,
ramucirumab, nivolumab, and pembrolizumab as second-line add-on pharmaceuticals [22].
Sorafenib, regorafenib, lenvatinib, and cabozantinib are multitargeted tyrosine kinase in-
hibitors (TKI) that target tumor cell proliferation and angiogenesis pathways. Sorafenib and
regorafenib share a common targeting profile as regorafenib is a derivative of sorafenib. So-
rafenib targets tyrosine kinase signaling including rapidly accelerated fibrosarcoma (RAF),
vascular endothelial growth factor (VEGF) receptors 1–3, and platelet-derived growth
factor (PDGF) receptor β, and regorafenib additionally blocks v-raf murine sarcoma viral
oncogene homolog B1 (B-RAF), proto-oncogene c-KIT (KIT), ret proto-oncogene (RET),
angiotensin 1 receptor (TIE2), PDGFRα, and fibroblast growth receptors (FGFRs) 1 and
2 [23,24]. Lenvatinib is a tyrosine kinase inhibitor that inhibits angiogenesis by targeting
VEGFR1-3, fibroblast growth factor receptor (FGFR) 1–4, PDGFR, and tumor cell expressed
RET and KIT. Cabozantinib similarly targets the aforementioned proteins, and as well MET
(hepatocyte growth factor receptor), neurotrophic receptor kinase 2 (NTRK2), Fms Related
Receptor Tyrosine Kinase 3 (FLT3), and AXL receptor tyrosine kinase (AXL). Ramucirumab
is a direct binding VEGFR2 antagonist and blocks the binding of VEGF ligands -A, -C,
and -D. Nivolumab and pembrolizumab are immune check-point inhibitors and will be
discussed in later sections.

Despite sorafenib’s usage as a first-line treatment option for advanced HCC, fewer
than one-third of patients benefit from treatment and have just three months prolonged
median survival time [13,25]. Moreover, the use of chemotherapeutic agents can lead to
drug resistance within six months of initiation and complications such as drug inefficacy
leading to increased dosage and toxicity [25]. This is of concern as the current available
first-line drugs are TKIs that target the PI3K/Akt/mTOR pathway. Hence, in this review
we will consider the role of the PI3K/Akt/mTOR pathway in HCC, the efficacy of current
TKI drugs, and their application in new therapeutic approaches.
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4. The PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway is a major intracellular signal transduction pathway
involved in regulating the cell cycle, cell proliferation, apoptosis, metabolism, and angio-
genesis through communicating with its related upstream and downstream molecules and
is activated in many cancer types through the action of dysregulated receptor tyrosine
kinases (RTK) [26,27]. RTK monomers are high-affinity cell surface receptors for growth
factors, cytokines, and hormones that, on ligand binding, become activated and dimerize,
causing each monomer to autophosphorylate, leading to downstream activation of the
PI3K/Akt/mTOR pathway [28–30]. Activated RTKs recruit PI3K that phosphorylates
phosphatidylinositol on the internal plasma membrane. PI3K is classified into three classes
(I, II, and III) according to their structure and substrate specificity, and class IA PI3Ks is the
main enzyme that associates with oncogenesis. PI3K can be directly activated by regulatory
subunits binding to RTKs and GTP-binding rat sarcoma virus (RAS), or indirectly activated
by adaptor molecules such as the insulin receptor substrates (IRS).

Active PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-triphosphate (PIP3) [31,32]. PIP3 can interact and recruit 3-
phosphoinositide dependent protein kinase 1 (PDK1) and Akt to the plasma membrane,
and PDK1 phosphorylates Thr308 of the activation loop to partially activate Akt [33,34].
Akt, also known as protein kinase B (PKB), is a serine/threonine-specific protein kinase
that has an integral role in various cellular mechanisms [35]. Akt consists as three isoforms:
Akt1, Akt2, and Akt3, and they are expressed in different tissues within the human body.
Akt1 is widely expressed, Akt2 is mainly expressed in insulin-sensitive tissues, and Akt3 is
expressed in the brain and testis. The major difference among these three subtypes are the
functional domains that regulate various downstream protein–protein and protein–lipid
interactions. Phosphorylation of both Thr308 and Ser473 located in the regulatory region
of Akt, respectively by PDK1 and PDK2, are required to complete Akt activation [35]. Akt
is also regulated by the tumor suppressor Phosphate and Tensin Homolog (PTEN), a phos-
phatase that dephosphorylates PIP3 to produce PIP2. Complete Akt activation stimulates
targets downstream proteins, including mammalian target of rapamycin (mTOR), glycogen
synthase kinase-3 (GSK-3), cAMP-response element binding-protein (CREB), forkhead box
O protein (FOXO), p53 and nuclear factor-kβ (NF-kB), and cellular processes including
lipid metabolism and autophagy.

4.1. mTOR

mTOR is a serine/threonine protein kinase that is part of the PI3K-associated kinase
protein family and mTOR’s major cellular role is to regulate cell growth and proliferation
through nutritional signals. mTOR is present in two cellular complexes: mTOR complex 1
(mTORC1) and complex 2 (mTORC2). mTORC1 is composed of mTOR, the regulator-
associated protein of mTOR (Raptor), while mTORC2 contains rapamycin-insensitive
companion of mTOR (Rictor). Together these proteins act as a framework for assembling
the complexes and binding substrates. DEP domain-containing mTOR interacting protein
(DEPTOR) and the Mammalian lethal with SEC13 protein 8 (mLST8) associates with both
mTORC1 and mTORC2. In addition, mTORC2 contains protein observed with rictor-1
(Protor-1), Protor-2, and mammalian stress-activated protein kinase-interacting protein 1
(mSIN1). Both mTOR complexes also bind with a number of inhibitor proteins that
regulate their activity; mTORC1: proline rich Akt substrate 40 (PRAS40) and FKBP38; and
mTORC2: exchange factor found in platelet, leukemic, and neuronal tissues (XPLN) that
can negatively regulate mTORC2. mTORC1 regulates cell growth and energy metabolism
whereas mTORC2 is involved in the reconstruction of cytoskeletons and regulation of cell survival.

As a PDK2, mTORC2 phosphorylates Akt on Ser473 to fully activate Akt, that can
then in turn activate mTORC1. In addition to phosphorylated Akt, Ras homolog mTORC1
binding (Rheb), a small GTPase, is required for mTORC1 activation. Rheb is normally
inhibited by tuberous sclerosis complex subunit 2 (TSC1/2) a GTPase-activating protein
(GAP) inhibitor. Akt can inhibit TSC1/2 leading to Rheb and in turn mTOR activation
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in mTORC1. The downstream effectors of mTORC1 include the eukaryotic translation
initiation factor 4E binding protein 1 (4EBP1) and ribosomal proteins S6 kinase 1 and 2
(S6K1/2), which are involved in mitochondrial biosynthesis and regulation of mRNA
translation. Given these integral roles, the dysregulation of both mTORC1 and mTORC2
has been observed in many human solid tumors. Studies have also shown that mTOR
inhibition associates with autophagy activation, and in contrast mTOR hyperactivation can
increase lipid production that parallels obesity, diabetes, and fatty liver disease [36–38].

4.2. Glycogen Synthase Kinase-3 (GSK-3)

GSK-3 a well-known substrate of Akt, is an ubiquitously expressed serine/threonine
protein kinase that exists as two isoforms, GSK-3α and GSK-3β with 85% homology [39].
They are constitutively active and inhibit glycogen synthase, the key enzyme in glyco-
gen synthesis. In response to insulin receptor activation, Akt is phosphorylated and in
turn phosphorylates and inhibits GSK-3α on Ser21 and Tyr279 and GSK-3β on Ser9 and
Tyr21 [40,41]. GSK-3 controls a range of downstream substrates, including c-Myc, hypoxia
inducible transcription factors 1α (HIF-1α), sterol regulatory element binding protein 1c
(SREBP1c), and forkhead/winged helix family k1 (Foxk1). Phosphorylation of GSK-3β
also leads to the accumulation of β-catenin within cells and translocation to the nucleus to
promote T-cell factor (TCF) transcription targets, such as c-Myc, c-Jun, and cyclin D1 [42].
mTORC1 can also directly modulate GSK-3 activity by restricting GSK3-mediated phospho-
rylation of Foxk1. This causes the nuclear accumulation of Foxk1 and binding to promoters
of several metabolic genes such as those involved in glucose metabolism and HIF-1α
to induce cell growth and tumor development [43]. Reports have shown that GSK-3β
upregulation in HCC predicts poor patient prognosis and that GSK-3β inhibition with
short-hairpin RNA (shRNA) or specific inhibitors can decrease mTORC1 activity, glycolysis,
and HCC growth in vivo [44]. These data illustrate an important role for GSK-3β in HCC.

4.3. cAMP-Response Element-Binding Protein (CREB)

Activity of PI3K and Akt also leads to the phosphorylation of the transcription factor
cyclic adenosine 3′,5′-monophosphoate (cAMP)-response element binding-protein (CREB)
on Ser133 to cause CREB dimerization and activation [45]. CREB binds the cAMP response
element (CRE) of gene promoters, is expressed in all nucleated cells, and associates with
expression of genes that control proliferation, apoptosis, angiogenesis, metastasis, and
metabolism. Additionally, GSK-3β can phosphorylate CREB on Ser129 to enhance ac-
tivity [46]. Therefore, inhibiting Akt and/or GSK-3β can limit CREB activity and gene
activation. CREB expression is also positively regulated by TSC2 through mTOR, and the
dysregulation of mTOR or loss of TSC2 can lead to the overexpression or hyperactivation of
CREB, disrupting autophagy regulation. Furthermore, studies show the association of acti-
vated CREB with increased HCC invasion and hence poor prognosis [47], and compared
to the normal liver, total and phosphorylated CREB proteins are significantly increased in
HCC [48]. In addition, under hypoxic conditions, the knockdown of CREB reduced HCC
proliferation and limited angiogenesis and made HCC cells susceptible to chemotherapy
in vitro and in vivo [49]. In contrast, the over-expression of a positive-dominant CREB
mutant supported HCC growth, angiogenesis, and resistance to apoptosis [50]. CREB
overexpression also restored the expression of the oncogene Yes-associated protein (YAP)
in HCC cells to promote HCC proliferation, and the HBV X protein can enhance this associa-
tion in HBV-driven HCC [51,52]. Other reports have illustrated that decoy oligonucleotides
or p38 MAPK inhibitors promote CREB degradation and the radiosensitivity of HCC cells,
suggesting a role for CREB in radiotherapy prognosis in HCC patients [53].

4.4. Forkhead Box O Protein (FOXO)

The forkhead box O protein (FOXO) is a transcription factor and consists of four
members: FOXO1, FOXO3, FOXO4, and FOXO6. Akt-mediated phosphorylation of FOXO
inhibits their function by promoting their export from the nucleus to the cytoplasm. FOXO1
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is expressed in the liver, pancreas, fat, and muscle tissues, whereas FOXO3 and FOXO4
are expressed in the lymph node, liver, kidney, heart, and skeletal muscles [54]. FOXO6 is
mainly expressed in the nervous system, including the brain. FOXOs function by integrat-
ing signals such as growth factors, oxidative stress, and other stimulatory signals to induce
gene expression of downstream targets involved in cell cycle, metabolism, apoptosis, DNA
damage, oxidative stress, and stem cell differentiation. An important regulator of FOXO is
insulin signaling, which through Akt leads to FOXO1 and FOXO3 phosphorylation, bind-
ing to 14-3-3 proteins, translocation to the cytoplasm, and subsequent dissociation from
14-3-3 for ubiquitination and degradation, to inhibit FOXO-mediated transcription [55,56].

FOXO1 and FOXO3 are the main FOXO proteins that contribute to HCC tumorigenesis
and progression [55]. In HCC, hyperactive Akt signaling inhibits FOXO1 transcriptional
activity, weakens defense against oxidative stress, and as FOXO1 normally suppresses the
expression of epithelial mesenchymal transition (EMT)-inducing transcription factors and
transforming growth factor-β (TGF-β), leads to subsequent EMT and increased HCC cell mi-
gration and invasion [57]. In contrast, reports have established an association between high
FOXO3 expression and poor prognosis. In the normal liver, FOXO3 expression is limited,
whereas FOXO3 overexpression is observed in more than half of HCCs and correlates with
poor disease-free survival and prognosis [58,59]. Furthermore, the doxycycline-regulated
over-expression of FOXO3 in the murine liver supported hepatotoxicity-mediated HCC
growth, the accumulation and elimination of reactive oxidative species (ROS), and the
activation of Akt and mTORC2 signaling [60]. With regards to sorafenib treatment, FOXO3
ablation inhibited sorafenib-induced autophagy and increased cytotoxicity to sorafenib in
HCC cells and xenograft tumors, suggesting the development of FOXO3 targeted therapy
may be a promising approach to augment sorafenib action [61].

4.5. Murine Double Minute 2/Human Double Minute2 (MDM2/HDM2)–p53 Axis

The transcriptional factor p53 acts as a tumor suppressor by modulating apoptosis, cell cycle
arrest, and senescence, and is upregulated in response to cellular stresses such as DNA damage,
hypoxia, and nutritional starvation [62]. p53 is one of the most often mutated genes in all human
cancers as either a gain or loss of function, and contributes to increased proliferation, survival,
EMT, and metastasis. p53 mutations are readily observed in HCC with a reported range of 22 to
33% [63]. However, this varies between geographical regions and presence of hepatitis virus and
carcinogen exposure, in particular the combination of HBV and aflatoxin B1 exposure where a
specific p53 mutation is detected in more than 75% of HCCs [64].

Normally, p53 protein expression is regulated by the E3 ubiquitin ligase murine double
minute 2 (MDM2) by binding to p53 to restrict p53 mediated transcriptional activation,
and promote p53 translocation to the cytoplasm for proteosome-dependent degradation
via ubiquitination [62]. In turn, MDM2 is a transcriptional target of p53 and MDM2-p53
homeostasis is maintained through an auto-regulatory negative feedback loop as p53
enhances MDM2 transcription and MDM2 downregulates and degrades p53 in response
to excess p53. Additionally, Akt can regulate p53 stability by phosphorylating MDM2
at specific serine residues (166, 183, or 188) to facilitate MDM2 translocation into the
nucleus and reduce p53-dependent gene transactivation, and increase the degradation
of p53 [65–67]. Exemplifying the importance of these residues, in murine HCC models,
the generation of mice with Ser 183 replaced by alanine in MDM2 reduced HCC load,
suggesting that the absence of Ser 183 phosphorylation sensitizes cells to oxidative stress-
induced senescence and ultimately HCC progression [68].

In the other direction, p53 can induce genes that restrict PI3K/Akt/mTOR activity.
p53 can induce insulin-like growth factor binding protein 3 (IGF-BP3) which binds to
insulin growth factor-1 (IGF1) and prevent activation of the IGF receptor and PI3K/Akt
signaling. The tumor suppressor PTEN can also be upregulated by p53 to limit PI3K/Akt
signaling [69,70]. p53 can also promote the expression of Sestrins 1/2 that bind the major
metabolic regulator adenosine monophosphate-activated kinase (AMPK) and TSC1/2 lead-
ing to GAP inhibitor activity and reduced mTOR function [71]. Additionally, p53 increases
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the expression of regulated in DNA damage 1 (REDD1) which disrupts the inhibitory
association of TSC2 and 14-3-3, causing the release of TSC2 and subsequent mTORC1
inhibition [72,73]. The PI3K/Akt pathway plays an important role in activating glycolysis
by stimulating the translocation of glucose transporters (GLUT) to promote glucose uptake
and activate glycolytic enzymes. Conversely, stabilized p53 can reduce the activity of the
pentose phosphate pathway and promote glutaminolysis and mitochondrial oxidative
phosphorylation. Thus, increased, mutated, or absent p53 can have profound effects on
PI3K/Ak/mTOR pathway activity [74]. In this regard, a recent study illustrated that TSC1
deficiency facilitates p53 haploinsufficiency-mediated activation of PTEN/Akt/mTOR axis
to promote HCC tumorigenesis and metastasis [75].

4.6. Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB)

PI3K/Akt can regulate the NF-κB pathway/family of transcription factors that modu-
late inflammation, cellular stress, and innate and adaptive immune responses, which, in
turn, regulate the survival, proliferation, migration, and invasion of hepatocytes, kupffer
cells, and hepatic stellate cells [76]. NF-κB comprises five different family members: RelA
(p65), RelB, c-Rel, p105/p50, and p100/p52. The Rel proteins are synthesized as mature
proteins, and p50 and p52 are generated by proteosomal degradation of precursor forms
p105 and p100, respectively. The proteins share a conserved Rel homology domain, that
binds a target DNA sequence, for homo/heterodimerization, and in the absence of any
stimulus are localized to the cytoplasm by inhibitor of NF-κB (IκB) [77]. Activation of
NF-κB occurs through distinct canonical and non-canonical pathways. In the canonical
pathway, the inhibitor IκB is phosphorylated by the IκB kinase (IKK) complex and subjected
to ubiquitin-mediated proteasomal degradation. The free NF-κB dimers (mainly p50/p65
and p50/c-Rel) then translocate to the nucleus and activate target gene transcription. In
the non-canonical pathway, the NF-κB-inducing kinase (NIK) is activated, followed by
subsequent post-translational processing of p100 into the p52 subunit, dimerization with
RelB, and nuclear localization to cause the induction of gene transcription [78].

The PI3K/Akt/mTOR pathway activates the NF-κB pathway through various mech-
anisms. The most common is the phosphorylation of IKK and IκB by Akt causing disso-
ciation of IκB from the NF-κB dimers [79]. Akt can also promote IKK activity indirectly
through mTOR and the mitogen-activated protein kinase (MAP3K) cancer osaka thyroid
(Cot) [80,81]. Given that HCC most often develops in the setting of chronic inflammation,
the NF-κB pathway has been demonstrated to be a major contributor to HCC. Numerous
in vitro studies have established that the NF-κB signaling pathway is aberrantly expressed
and activated in human HCC cell lines. Functional studies have shown that the over-
expression of IκBα in Hep3B cells can lead to an 80% decrease in cell invasion and the
suppression of downstream effectors associated with invasion [82]. In murine models, the
chemical carcinogen diethyl nitrosamine (DEN) has often been used to induce HCC, which
is similar to human HCC development, and to test the role of the NF-κB pathway. The
hepatocyte deletion of IKKβ, a subunit of IKK, prevented NF-κB activation and promoted
hepatocyte death, but through inflammatory cell action enhanced ROS production, hepato-
cyte survival, and HCC promotion. In contrast, the absence of IKKβ in both hepatocytes
and Kupffer cells decreased HCC progression [83]. Together, these data show that IKKβ

regulates inflammatory crosstalk between the hepatocytes and immune cells, and that
aberrant PI3K/Akt/mTOR signaling could drive these events and HCC progression.

4.7. Lipid Metabolism

Increased lipid synthesis is required to generate membranes for new tumor cells.
Thus, a prominent metabolic change in cancer is to increase the synthesis and uptake of
lipids to support cellular growth, proliferation, and tumorigenesis. The PI3K/Akt/mTOR
pathway enhances lipid synthesis through different mechanisms. The most relevant is
the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which is
a master regulator of lipid homeostasis as it regulates the expression of genes associated
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with fatty acid, triglyceride, and cholesterol synthesis [84]. SREBP-1 is synthesized in the
endoplasmic reticulum (ER) as a precursor protein and to attain nuclear transcriptional
activity, the amino domain of SREBP-1 must be released from the ER proteolytically. The
processing of SREBP-1 into its mature and active form is influenced by PI3K/Akt/mTORC1
activity, leading to the expression of key lipogenic enzymes, such as fatty acid synthase
(FASN), acetyl CoA carboxylase (ACC), and ATP citrate lysate (ACLY) [85,86]. Impor-
tantly, studies reveal that SREBP-1 expression is significantly higher in HCC tissues, and
this correlates with larger tumor size, higher histological grade, and advanced tumor-
node-metastasis stage [87]. Moreover, the suppression of SREBP-1 inhibits HepG2 cell
proliferation, migration, and invasion, and in vivo inhibits HCC growth [88].

An important mechanism to regulate SREBP-1 activity involves the phosphatidate
phosphatase Lipin 1, which catalyzes the last step of triglyceride synthesis to dephospho-
rylate phosphatidic acid to generate diacylglycerol, which on mTORC1 phosphorylation
becomes localized to the cytoplasm. In the absence of mTORC1 activity, Lipin 1 is de-
phosphorylated and enters the nucleus and reduces SREBP-transcriptional activity [89].
mTORC1 can also promote lipogenesis through S6K1-mediated phosphorylation of serine
arginine protein kinase (SRPK2), causing nuclear translocation and eventual activation
of U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) to induce splicing of lipogenic
pre-mRNAs, such as FASN, acyl-CoA synthetase long chain family member 1 (ACYL),
acyl-CoA synthetase short chain member 2 (ACSS2), and 3-hydroxy-3-methylglutaryl-CoA
synthase 1 (HMGCS1), that are important in lipid and cholesterol synthesis [90].

As discussed previously, Akt can inhibit GSK-3 by specific phosphorylation and
studies reveal that GSK-3 inhibition leads to SREBP-1 stabilization, and in the absence
of GSK-3 inhibition, GSK-3 phosphorylates SREBP-1 and it is inhibited [91]. Moreover,
Akt activity is responsible for limiting the expression of insulin-induced gene 2 (Insig2), a
liver specific gene and inhibitor of SREBP-1 [92]. mTORC2 has also been shown to control
liver fatty acid synthesis through Akt and SREBP-1, leading to broad changes in liver
fat synthesis, including sphingolipids, glycerophospholipids, and cardiolipins, with the
last of those having the ability to bind ATP synthase and improve oxidative respiration.
Importantly, inhibition of mTORC2 reduces HCC fat content and tumor load, and suggests
that inhibiting mTORC2 could be a strategy to restrict HCC [93].

4.8. Autophagy

Autophagy is a cellular catabolic pathway that targets the degradation or removal of unneces-
sary, dysfunctional, and long-lived proteins and cellular components for lysosomal degradation.
This occurs by the unwanted cellular components being packaged into autophagosomes, a double
membrane vesicle that fuses with lysosomes, that then leads to the generation of free fatty acids
and amino acids that can be recycled to maintain cellular homeostasis [94]. Autophagy is mediated
through various autophagy-related proteins (ATGs) that assemble into several complexes to direct
the collection, formation of autophagosome, fusion with lysosome, and eventual degradation [95].
The Akt/mTOR pathway is major regulator of autophagy, and under normal physiological condi-
tions when mTORC1 is activated, autophagy is inhibited through the phosphorylation of ATG1
human homologs Unc-51-like autophagy-activating kinase-1 (ULK1) and Unc-51-like autophagy-
activating kinase-2 (ULK2) [96,97]. In conditions of hypoxia or starvation, AMPK is activated and
phosphorylates Raptor to inhibit mTORC1 leading to the subsequent dephosphorylation of ULK1/2,
and the promotion of autophagy [96,98]. In addition, GSK-3β can also phosphorylate and activate
ULK1 to initiate autophagy while suppressing the mTOR pathway [99,100].

Given that ULK1 activation initiates autophagy and autophagy induction is exhibited
by many tumors, elevated ULK1 expression is a feature of human HCC and is associated
with tumor size and reduced survival time [101]. Functionally, the silencing and deletion
of ULK1 in HepG2 and primary human cells suppressed tumor cell proliferation and
increased the therapeutic effects of sorafenib in vitro and in vivo. Moreover, the generation
of a specific ULK1 inhibitor XST-14 and used in combination with Sorafenib significantly
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reduces HepG2 tumor growth [102]. Taken together, these data suggest that targeting
ULK1 could be a therapeutic approach for treating HCC.

Notwithstanding the aforementioned signaling mediated by the PI3K/Akt/MTOR
pathway, it must be mentioned that this pathway is not a stand-alone entity and has cross
talk with and can be regulated by the Ras/mitogen-activation protein kinase
(MEK)/extracellular signal-regulated kinase (ERK) pathway. The two pathways interact at
various signaling points; for example, Akt and mTOR (see review [103]) can be activated
by alike growth factors and their concurrent dysregulation is a feature of some HCCs [104].
For further information, we refer readers to recent reviews on the role of Ras/MEK/ERK
pathway in HCC [105,106]. The major components of the PI3K/Akt/MTOR pathway as
discussed in the text are presented in Figure 1.
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Figure 1. Schematic overview of the major components of the PI3K/Akt/mTOR signaling pathway. Activation of RTK
by a ligand in turn activates PI3K, PDK1, and Akt, which regulates downstream effectors including FOXO, mTORC1,
mTORC2, CREB, GSK-3α, and GSK-3β. Abbreviations: RTK—receptor tyrosine kinase; PI3K—phosphatidylinositol 3-kinase;
PIP3—phosphatidylinositol-3,4,5-triphosphate; PDK1—3-phosphoinositide dependent protein kinase 1; Akt—Akt, protein
kinase B; TSC1/2—tuberous sclerosis complex subunit 1/2; Rheb—Ras homolog mTORC1 binding; mTOR—mammalian
target of rapamycin; GSK-3—glycogen synthase kinase-3; c-Myc—cellular Myc; HIF-1α—hypoxia inducible transcription
factors 1α; SREBP-1c—sterol regulatory element binding protein-1c; CREB—cAMP-response element-binding protein;
FOXO—forkhead box O protein; AMPK—adenosine monophosphate-activated protein kinase; MDM2—murine double
minute 2; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; PTEN—phosphatase and tensin homolog.
Blue line: positive regulation; Red line: negative regulation.

5. The Utility of PI3K/Akt/mTOR Inhibitors in HCC Treatment

Given that the PI3K/Akt/mTOR pathway is aberrantly activated in near 50% of HCC patients,
it is a focus of intense investigation for clinical utility with specific small molecule inhibitors
and humanized antibodies to restrict HCC growth. In 2008, the Sorafenib HCC Assessment
Randomized Protocol (SHARP) trial (NCT00105443, FDA approval (FDAA) 22 November 2013),
a phase III randomized placebo-controlled trial, demonstrated that Sorafenib prolonged median
survival and radiologic progression by approximately 3 months in advanced HCC patients (HR
0.69; 95% CI 0.55–0.87; p < 0.001) [13]. The results of the SHARP trial led to the approval of sorafenib
for HCC treatment by the US Food and Drug Administration (FDA) as the first systemic therapy
option for inoperable advanced HCC. In 2009, another randomized placebo-controlled trial known
as the Asian-Pacific (AP) trial (NCT00492752) also reported improved overall survival (OS) of
2.3 months (HR 0.68; 95% CI 0.50–0.94; p = 0.014), supporting the efficacy of sorafenib in advanced
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HCC [107]. The REFLECT trial (NCT01761266, FDAA 16 August 2018), a randomized phase III
trial, compared lenvatinib and sorafenib as a first line treatment option in advanced HCC patients.
This trial demonstrated that the efficacy and safety of lenvatinib is similar to sorafenib (HR 0.92;
95% CI 0.76–1.06) and gained US FDA approval in 2018 as the second first-line systemic treatment
option for advanced HCC [108]. Taken together, these three large, randomized trials established the
use of sorafenib and lenvatinib to treat advanced HCC and led to the development of numerous
clinical guidelines for their use as first line treatment options.

5.1. Second-Line Treatment Options

For second-line treatment options, regorafenib is for HCC patients who progressed
on sorafenib treatment. A randomized phase III trial (RESORCE; NCT01774344, FDAA
27 April 2017) demonstrated increased median OS of 10.6 months versus 7.8 months for
the placebo group (HR 0.63; 95% CI 0.50–0.79; p < 0.0001) [109]. Together, this showed that
regorafenib provided clinical benefit to sorafenib-resistant patients. A follow-up analysis of
the RESORCE clinical trial illustrated a prolongation in time from the beginning of sorafenib
treatment to death of 26 months for regorafenib versus 19.2 months for placebo [110].

Cabozantinib is an oral multikinase inhibitor that is often used as a second line or
add-on drug. It targets receptor tyrosine kinases such as c-MET, VEGRF2, tyrosine-protein
kinase receptor UFO (AXL), and RET to inhibit angiogenesis and Akt activation. Similar to
the RESORCE trial, the CELESTIAL trial (NCT01908426, FDAA 14 January 2019) compared
the efficacy of cabozantinib versus placebo, and targeted advanced HCC patients with prior
sorafenib treatment. The mean OS with cabozantinib was 10.2 versus 8.0 months for placebo
(HR 0.76; 95% CI 0.63–0.92; p = 0.0005) and the median progression-free survival (PFS) was
5.2 versus 1.9 months (HR 0.44; 95% CI 0.36–0.52; p < 0.0001) for cabozantinib compared to
placebo [111]. These results, despite a rate of high-grade adverse events, established the
effectiveness of cabozantinib as a second-line treatment option for advanced HCC.

In the last decade, humanized antibodies for immunotherapy have been developed to
block the interaction of programmed death ligand (PD-L1), which is expressed by tumor
cells, with programmed cell death protein 1 (PD-1) present on immune cells, such as T-cells.
The purpose of immunotherapies is to block the inhibitory signals mediated between
PD-L1 and PD-1 and to promote an anti-tumor response. In 2020, the US FDA approved
atezolizumab (a PD-L1 inhibitor) in combination with bevacizumab (a humanized antibody
that targets VEGF) as a first-line systemic treatment option for advanced HCC patients
without prior systemic treatment [112]. This was based on IMBrave150 (NCT03434379,
FDDA 29 May 2020), a randomized phase III study that compared the combination of
atezolizumab and bevacizumab versus sorafenib monotherapy. The combination of ate-
zolizumab and bevacizumab increased OS by nearly 6 months (HR 0.66; 95% CI 0.52–0.85;
p = 0.0009) and PFS by 2 months (HR 0.59; 95% CI 0.47–0.76; p < 0.001) compared to so-
rafenib monotherapy [113]. These results illustrated a significantly better OS and PFS for
advanced HCC patients receiving atezolizumab and bevacizumab versus sorafenib alone.
The results of the current significant systemic treatment options are presented in Table 1.

Table 1. Summary of significant clinical trials for current first-line systemic treatment options of advanced HCC.

Trial Drugs Results (Months) Statistics Clinical Trial#

SHARP Sorafenib vs. placebo

OS 10.7 vs. 7.9
HR 0.69; 95% CI

0.55–0.87; p < 0.001 NCT00105443SP 4.1 vs. 4.9

RP 5.5 vs. 2.8

Asian-Pacific Sorafenib vs. placebo

OS 6.5 vs. 4.2 HR 0.68; 95% CI
0.50–0.94; p = 0.014

NCT00492752
TTP 2.8 vs. 1.4 HR 0.57; 95% CI

0.42–0.79; p = 0.00005



Biomedicines 2021, 9, 1639 10 of 20

Table 1. Cont.

Trial Drugs Results (Months) Statistics Clinical Trial#

REFLECT Lenvatinib vs.
sorafenib OS 13.6 vs. 12.3 HR 0.92; 95% CI

0.76–1.06 NCT01761266

RESORCE Regorafenib vs.
placebo OS 10.6 vs. 7.8 HR 0.63; 95% CI

0.50–0.79; p < 0.0001 NCT01774344

CELESTIAL Cabozantinib vs.
placebo

OS 10.2 vs. 8.0 HR 0.76; 95% CI
0.63–0.92; p = 0.005

NCT01908426
PFS 5.2 vs. 1.9 HR 0.44; 95% CI

0.36–0.52; p < 0.001

IMbrave150
Atezolizumab +
bevacizumab vs.

sorafenib

OS 19.2 vs. 13.4 HR 0.66; 95% CI
0.52–0.85; p = 0.0009

NCT03434379
PFS 6.8 vs. 4.3 HR 0.59; 95% CI

0.47–0.76; p < 0.001

The details of completed clinical trials were obtained from https://www.clinicaltrials.gov (accessed on 8 September 2021) and corresponding
publications. OS—overall survival; SP—time to symptomatic progression; RP—time to radiologic progression; TTP—time to progress;
HR—hazard ratio, CI—confidence interval.

5.2. Clinical Trials Focusing on the PI3K/Akt/mTOR Pathway

Currently, there are more than 35 ongoing clinical trials targeting the PI3K/Akt/mTOR
pathway, and some of the recently completed and ongoing ones we now present. The
MATCH Screening Trial (NCT02465060, ongoing) is a phase II clinical trial which will exam-
ine the effects of combinations of various inhibitors including sapanisertib
(mTORC1/2 inhibitor), GSK2636771 (PI3Kβ inhibitor), capivasertib (ATP-competitive
pan-Akt inhibitor), and ipatasertib (Akt inhibitor) in HCC and other cancers. This trial is
currently recruiting patients and aims to target advanced tumor patients with no existing-
treatment or at least one failed line of standard treatment. For PI3K-targeted clinical
trials, SF1126, a dual inhibitor of pan-PI3K and the bromodomain-containing protein 4
(BRD4), an important epigenetic reader, is under a phase I clinical trial for patients with ad-
vanced HCC in conjunction with nivolumab (PD-1 immune checkpoint inhibitor; NCT03059147,
ongoing) [114].

Nivolumab has been approved as a first-line monotherapy treatment of sorafenib-
exposed advanced HCC patients. This was based on the results from the CheckMate040
(NCT01658878, FDAA 22 September 2017) and CheckMate459 (NCT02576509, not ap-
proved 30 April 2021) expansion trial. The CheckMate040 trial was a phase I/II trial that
evaluated the safety and efficacy of Nivolumab. The CheckMate459 trial was a randomized
multicenter phase III study and compared the efficacy of nivolumab in comparison to
sorafenib to treat advanced HCC [115]. In comparison to sorafenib, nivolumab showed a
median OS during the dose-escalation phase of 15.0 months (95% CI 9.6–20.2) and median
time to progression of 3.4 months (95% CI 1.6–6.9) [115]. The CheckmateMate459 results
were not promising as median OS was 16.4 months for nivolumab versus 14.7 months for
sorafenib (HR 0.85; 95% CI 0.72–1.02; p = 0.0752) [116]. In July 2021, nivolumab was volun-
tarily withdrawn from the market as it failed to meet the requirements for demonstrating
benefit in advanced HCC patients. This decision now leaves advanced HCC patients
with just three first-line systemic therapies: sorafenib, lenvatinib, and the combination of
atezolizumab and bevacizumab.

Given that the clinical trial of atezolizumab and bevacizumab combination was suc-
cessful, the combination of bevacizumab and erlotinib (EGFR inhibitor) has been ex-
plored for its efficacy and safety in an open label phase II trial (NCT01180959, completed
19 May 2021). Erlotinib can prevent activation of Akt signaling pathway. The median
OS was 8.55 months in both the bevacizumab and erlotinib combination and sorafenib
control group (HR 0.67; 95% CI 0.42–1.07; p = 0.09), suggesting no difference in efficacy
for this combination and sorafenib monotherapy [117]. Another Akt inhibitor, MK2206

https://www.clinicaltrials.gov
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has been considered in two similar clinical trials, but one trial is not specifically for HCC
(NCT01425879, ongoing) and the other has been terminated early for discouraging results
(NCT01239355, completed 1 February 2013).

Unlike Akt and PI3K inhibitors, mTOR inhibitors have been a more popular target of treat-
ment. Rapalogs, the first generation of mTOR inhibitors, are derived from the antibiotic rapamycin
and include everolimus (RAD001), temsirolimus (CCI-779), and sirolimus (rapamycin). Rapalogs
are effective in inhibiting HCC cell growth and proliferation as they inhibit phosphorylation of
mTOR in vitro and in vivo [118]. Studies examined everolimus as a monotherapy and in second-
line combinations in multiple clinical trials. When everolimus was given at 5 or 10 mg/day as a
monotherapy, the OS was 8.4 months and only 8% of patients were progression-free at 24 weeks
(NCT00516165, completed 1 November 2011). EVOLVE-1 (NCT01035229, completed 1 October
2013), a randomized, double-blind, phase III clinical trial, tested the efficacy of everolimus in
sorafenib-failed advanced HCC patients. However, in this study, everolimus was not effective, as
OS was 7.6 months with everolimus versus 7.3 months with placebo (HR 1.05; 95% CI 0.86–1.27;
p = 0.68) [119].

In a randomized phase II clinical trial that compared the efficacy of sorafenib with
or without everolimus (NCT01005199, completed 1 March 2016), the median OS was
10 months for sorafenib and 12 months for sorafenib with everolimus, and PFS at 12 months
was 70% and 68%, respectively [120]. These results suggest everolimus is not effective
in vivo, while as a monotherapy or an add-on there was no prolongation in overall sur-
vival. Additionally, another clinical trial that considered the combination of everolimus
and MM-141, a monoclonal antibody that targets the insulin-like growth factor 1 receptor
(IGF-1R) has been completed, but no result has yet been provided. Other combinations
such as bevacizumab and everolimus (NCT00775073, completed 1 April 2012) have been
completed and anti-vascular activity has been demonstrated [121]. A clinical trial combin-
ing everolimus, trametinib (an inhibitor of the mitogen-activation protein kinase: MEK),
and lenvatinib (NCT04803318, ongoing) is active and currently recruiting advanced solid
tumor patients, including those with advanced HCC.

Temsirolimus and sirolimus are mTORC1 inhibitors and there are multiple clinical
trials associated with both due to their limited efficacy as monotherapies in advanced
HCC. A phase I trial of sirolimus combined with bevacizumab (NCT00467194, completed
1 May 2011) is complete with evidence of anti-vascular activity and promising clinical
activity [121]. A phase I and phase I/II study of temsirolimus in combination with sorafenib
is complete, and the median OS was 8.8 months (95% CI 6.8–14.8) whereas the previous
SHARP and Asian-Pacific studies showed 10.7 and 6.5 months, respectively, and this
combination has not become an FDA approved treatment option (NCT01008917, completed
27 June 2013; NCT01687673, completed 9 January 2020). Another phase II trial evaluated the
combination of temsirolimus and bevacizumab in advanced cancer patients (NCT01010126,
completed 13 March 2017) and demonstrated median PFS of 7 months and OS of 14 months,
a significant extension of OS, but as the sample size was small (n = 28), further studies
are required [122]. Furthermore, two active trials are currently recruiting advanced solid
tumor patients to evaluate the efficacy and safety of different combinations of mTOR
inhibitors, which include nivolumab and nab-rapamycin (ABI-009; a nanoparticle form of
human albumin bound rapamycin) (NCT03190174, ongoing); and trametinib combined
with everolimus and lenvatnib (NCT04803318, ongoing). Recently, second generation
mTOR inhibitors that are under development have begun to be trialed. A phase I/II
clinical trial to assess the safety and efficacy of CC-223, a dual mTOR inhibitor, in advanced
solid tumor has been completed, but no results are available (NCT01177397, completed 09
December 2016). Furthermore, two clinical trials are actively recruiting patients to evaluate
the safety and efficacy of onatasertib (ATG-008), a dual mTOR inhibitor, for both advanced
solid tumors and HBV-positive advanced HCC (NCT04518137, ongoing; NCT03591965,
ongoing). Table 2 lists ongoing clinical trials with inhibitors targeting the PI3K/Akt/mTOR
signaling pathway in HCC.
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Table 2. Ongoing clinical trials with pharmaceuticals associated with PI3K/Akt/mTOR signaling pathway blockade in HCC.

Drugs NCT # Patients Phase Combinations Dosage Year Status Notes

Sapanisertib, GSK2636771,
Capivasertib, Ipatasertib NCT02465060 6452 II Sapanisertib, GSK2636771,

Capivasertib, Ipatasertib Dosages not specified 2015 Recruiting
Aimed for

multiple advanced
solid tumors

PI3K inhibitors

SF1126 NCT03059147 14 I Nivolumab

SF1126 IV
900–1100 mg/m2

twice weekly +
nivolumab 240 mg IV

every 2 weeks

2017 Active, not
recruiting

Akt inhibitors

Erlotinib NCT01180959 45 II Bevacizumab

Erlotinib 150 mg PO
OD + bevacizumab IV
10 mg/kg once every

2 weeks

2010 Completed, no
results

As second-line
therapy for those

with previous
sorafenib
treatment

MK2206 NCT01425879 8 II Dosage not specified,
but PO every 7 days 2011 Completed

Not specifically for
HCC patients—

unknown number
of HCC patients

MK2206 NCT01239355 15 II Dosage not specified,
but PO every 7 days 2010 Terminated

Early termination
due to

discouraging
results

mTOR inhibitors

RAD001 NCT00516165 28 I/II RAD001 10 mg PO OD 2007 Completed

P/E and blood test
each week and
imaging every

6–12 weeks

RAD001 NCT00775073 33 III Bevacizumab

Everolimus 5 mg PO
OD, bevacizumab
5 mg/kg IV every

2 weeks

2008 Completed, no
results
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Table 2. Cont.

Drugs NCT # Patients Phase Combinations Dosage Year Status Notes

Everolimus NCT01035229 546 III Everolimus 7.5 mg PO OD 2009 Completed

Everolimus NCT01005199 106 III Sorafenib
Everolimus 5 mg PO
OD, sorafenib 800 mg

PO OD
2009 Completed, no

results

Everolimus NCT04803318 100 III Trametinib, lenvatinib PO, dosage not
specified 2021 Recruiting

Not specific for
HCC, for recur-
rent/refractory
advanced solid

tumors

Sirolimus NCT00467194 27 I Bevacizumab
Sirolimus 1 mg PO

OD, bevacizumab IV
100 mg every 2 weeks

2007 Completed, no
results

Temsirolimus NCT01008917 25 I Sorafenib
Temsirolimus IV

weekly, sorafenib PO
OD

2009 Completed, no
results

Combined phase
I/II study

Temsirolimus NCT01687673 29 II Sorafenib
Temsirolimus IV 10

mg weekly, sorafenib
200 mg PO BD

2012 Completed, results
available

Temsirolimus NCT01010126 252 II Bevacizumab
Temsirolimus IV

weekly, bevacizumab
IV every 2 weeks

2009 Completed, results
available

Not specific for
HCC, for
advanced

endometrial,
ovarian, liver,

carcinoid or islet
cell cancer

Nab-rapamycin/
ABI-009 NCT03190174 40 I/II Nivolumab

Escalating dose of
ABI-009 IV once every

three weeks,
nivolumab 3 mg/kg
IV every three weeks

2017 Recruiting

Not specific for
HCC, for

advanced sarcoma
and certain

cancers
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Table 2. Cont.

Drugs NCT # Patients Phase Combinations Dosage Year Status Notes

CC-223 NCT01177397 173 I/II
CC-233 dose starting

at 7.5 mg PO OD,
dose-escalation

2010 Completed, no
results

Not specific for
HCC, for

advanced solid
tumors,

non-Hodgkin
lymphoma or

multiple myeloma

ATG-008 NCT04518137 48 II ATG-008 30 mg PO,
OD 2020 Recruiting

Not specific for
HCC, for

advanced solid
tumors

ATG-008 NCT03591965 75 II
ATG-008 45 mg PO
OD, ATG-008 20 mg

PO BD
2018 Recruiting

Hep B positive
HCC patients with
prior exposure to
systemic therapy

Abbreviations: PO (orally); OD (once daily); IV (intravenous).
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6. Conclusions

Cumulative evidence illustrates the importance of the PI3K/Akt/mTOR signaling
pathway in tumorigenesis and HCC progression. The PI3K/Akt/mTOR pathway is over-
expressed in nearly 50% of HCCs and the dysregulated activation of this pathway affects a
wide range of processes, including cell proliferation, metabolism, tumor cell differentiation,
lipid metabolism, autophagy, and EMT [123,124]. Due to these mechanistic connections,
the current available first-line drugs are multitargeted tyrosine kinase inhibitors that focus
on the PI3K/Akt/mTOR pathway. However, these inhibitors can only modestly extend life;
the patients invariably acquire resistance and this in turn leads to limited pharmaceutical
options. Thus, with the expected growth in HCC cases worldwide, there is an urgency
for the development of safer and more efficient treatment options for advanced HCC
patients who are not eligible for surgical resection. In this manner, a key challenge for
PI3K/Akt/mTOR pathway inhibition will be to understand the cross-talk and feedback
into other pathways and establish methods to diagnose these significant adaptive signaling
changes. This could involve more invasive management before and after treatment to
determine the basis of each patient’s tumor genetics and signaling changes, the devel-
opment of patient spheriod screening for drug testing, or the utilization of novel liquid
biopsy techniques. Additionally, as is evident from the listed clinical trials, combinations of
systemic therapies need to be tested to establish systemic effects and efficacy, develop better
inhibitors, and use novel delivery technologies to direct the drug to the tumor. Together,
these future developments will reduce side effects and improve life expectancy.
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