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Abstract 

Background: Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has 
inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based 
on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health 
Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria 
Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The per-
formance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated.

Methods: The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis 
using Giemsa-stained blood films, focused on crucial field needs: malaria parasite detection, malaria parasite species 
identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines 
scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was 
tested on a WHO 55 slide set.

Results: The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation 
accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, 
the best performance of a fully-automated system on a WHO 55 set.

Conclusions: EasyScan GO’s expert ratings in detection and quantitation on the WHO 55 slide set point towards its 
potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species 
ID needs. Improved runtime may enable use in general case management settings.
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Background
Microscopic examination of Giemsa-stained blood films 
continues to be widely used for parasitological confir-
mation of malaria diagnosis, representing roughly half 
of all malaria diagnostic tests performed worldwide 
in 2018 [1]. Assessments of the therapeutic efficacy 
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of anti-malarial drugs depend on microscopy for the 
detection and identification of malaria parasites and for 
estimation of parasite density. However, difficulties in 
maintaining consistent access to training, quality assur-
ance, and material resources can lead to high variability 
in the quality of microscopy, hindering programmatic 
and research operations in the malaria endemic regions 
where they are most needed [2, 3].

Malaria microscopy is thus a high-value target for auto-
mated image-processing and machine learning (ML) 
systems because such systems can potentially be widely 
deployed, mitigating the expert-training bottleneck, and 
because their results are reproducible. Since a thorough 
review in 2018 [4], there have been several additional 
reports proposing or evaluating systems for automated 
interpretation of malaria blood films [5–14].

A lack of benchmark datasets hampers the evaluation 
and comparison of various automated systems [4, 5]. 
One strong candidate for such a benchmark is the slide 
set used for the World Health Organization (WHO) 
External Competence Assessment of Malaria Microsco-
pists (ECAMM) programme. These slide sets consist of 
55–56 carefully specified Giemsa-stained blood films, 
used to evaluate microscopists in detection, species 
ID, and quantitation of malaria parasites as part of the 
WHO Quality Assurance programmes [15, 16]. Assess-
ment based on an ECAMM slide set can offer valuable 
insight into a system’s  effectiveness, because it focuses 
on the key requirements for viability in field use-cases. 
Crucially, a system that hopes to deploy through exist-
ing field infrastructure, clinicians, and protocols needs to 
operate successfully on standard Giemsa-stained blood 
films as currently prepared and processed in the field by 
microscopists.

This paper reports performance of a fully-automated 
end-to-end malaria diagnostic system, the Motic Easy-
Scan GO [17], on an ECAMM slide set. The system 
includes (i) an automated bright-field microscopy plat-
form for scanning of Giemsa-stained thick and thin 
blood films, and (ii) malaria detection algorithms, previ-
ously described in [5, 6], that process the image sets to 
give parasite detection, species ID, and parasite quantita-
tion at the patient level.

Methods
ECAMM test set
A set of Giemsa-stained blood films consisting of both 
malaria positive and negative cases and varying parasite 
densities were obtained from the WHO WPRO (Regional 
Office for the Western Pacific) regional malaria slide 
bank, a collection of reference slides managed by the 
WHO Collaborating Centre for malaria diagnosis at the 
Research Institute for Tropical Medicine (RITM) [18]. 

All slides in the slide bank were previously validated by 
12 independent microscopists certified as Level 1 malaria 
microscopists through the WHO ECAMM. Each micros-
copist read two representative slides from a set of about 
200 slides per case. The parasite species was confirmed 
by at least 70 % of the readers and by polymerase chain 
reaction (PCR). Parasite counts per microliter were esti-
mated against 500 white blood cells and calculated with 
an estimated average white cell count of 8000/µL, and the 
median of 24 readings was taken as the reference count. 
Slides with statistically significant inter- or intra-reader 
count variation are never selected for the ECAMM sets. 
The 55-slide set used in the experiments for this study 
was assembled by WHO WPRO to represent the tem-
plate for ECAMM slide sets described in [16] and shown 
in Fig.  1 (henceforth the WHO 55). However, it had a 
few deviations. Such deviations are common in ECAMM 
workshops (K. Lilley, pers. commun.) due to the logisti-
cal difficulties of assembling an ideal set. The deviations 
present in this set are described below, and their effects 
on the results are discussed in the Discussion section. For 
detailed contents of the set used in this study, see Addi-
tional File 1.

The ECAMM slide set is designed to evaluate a micros-
copist’s competence in three key areas important for 
malaria diagnosis: (1) malaria parasite detection, (2) 
malaria parasite species ID, and (3) quantitation of 
malaria parasites. Accuracy in each of these areas is eval-
uated using a different subset of the ECAMM slide set 
(see [16] and Fig. 1):

Detection
Ideally, the detection component uses 20 negative sam-
ples and 20 positive samples with a parasitaemia ranging 
from 80 to 200 parasites per microlitre (p/µL). Given the 
samples in the set provided, the Plasmodium falciparum 
samples with a parasitaemia below 200 p/µL (7 slides, 
rather than 10) and all non-falciparum and mixed-spe-
cies samples (8 slides rather than 10) were used to evalu-
ate detection. The non-falciparum slides ranged from 164 
to 10,184 p/µL with most samples above 1000 p/µL, well 
above the ideal range of 80–200 p/µL.

Species identification
Ideally, the species ID component uses the same sam-
ples, 20 negative and 20 positive, as the detection subset. 
Negative samples are used along with positive samples 
for evaluating species ID accuracy during ECAMM (K. 
Lilley, pers. commun.). The same subset of slides, 20 
negative and 15 positive, used for Detection were used 
for Species ID. The provided set also contained only one 
mixed-species sample, rather than four as called for by 
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the WHO malaria microscopy quality assurance manual 
[16].

Quantitation
Ideally, the quantitation component uses 15 P. falcipa-
rum slides with parasitaemias within 200 ≤ p/µL ≤ 2000, 
plus one or two very high parasitaemia slides. From the 
provided set, the 20 P. falciparum slides with parasi-
taemia > 200 p/µL (rather than 15) were used. Of these, 
18 slides had 200 ≤ p/µL ≤ 2000, and two slides had 
∼200,000 p/µL. An estimated parasitaemia within 25 % 
of the reference value was considered correct, per the 
WHO malaria microscopy quality assurance manual [16]. 
The parasitaemia range is important, because slides with 
low parasitaemias have higher Poisson variability and are 
thus harder to quantitate accurately (as provided in the 
supplementary information of reference [19]).

A newer, slightly modified version (“V2”) of the 
ECAMM slide set template, with detailed protocols on 
its use during evaluation of microscopists, is found in 
[15]. “V1” [16] was used in this study, because (i) the pro-
vided ECAMM set was designed to match “V1”; and (ii) 
the “V2” protocols describe using a subset of the slides 
during an orientation phase prior to testing, which does 
not align with standard machine learning practice (the 

samples used to test an algorithm should never be used 
during training).

Slides used for algorithm development
The malaria detector algorithm was trained and vali-
dated using over 500 slides from 11 countries. Sources 
of training data (with geographic source of the slides in 
parentheses) included Shoklo Malaria Research Unit 
(Thailand), Amref Health Africa (Kenya), University of 
Lagos (Nigeria), Universidad Peruana Cayetano Here-
dia (Peru), World Wide Antimalarial Resistance Net-
work (Thailand, Indonesia, Cambodia, and DR Congo), 
Hospital for Tropical Diseases and the London School 
of Hygiene and Tropical Medicine (UK), Kenya Medical 
Research Institute (Kenya), Centers for Disease Control 
and Prevention (USA and other countries), James Cook 
University (Solomon Islands), and the Defence Services 
Medical Academy (Myanmar).

No slides from RITM were used for training the 
machine learning algorithm models. A separate set of 
48 slides from RITM, also roughly analogous to an offi-
cial ECAMM set, was used along with the other slides 
listed above to tune final diagnostic parameters in the 
patient-level disposition step, prior to any exposure to 
the ECAMM test set.

Fig. 1 Contents of ECAMM evaluation slide set. From [16]
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Imaging method
The slides, permanently mounted with cover glass, were 
scanned with a prototype version of the Motic EasyS-
can GO [17]. The microscope had a 40×, NA = 0.75 
objective, infinity-corrected optical train, and 10  W 
LED Köhler illumination. A CMOS camera captured 
images (2048 × 1536 pixels) at an approximate pixel 
pitch of 8.3 pixels/µm at the sample plane. Each field-
of-view (FoV) was captured as a stack of 5 slices with 
0.5 µm vertical spacing, to ensure in-focus thumbnails 
of all objects-of-interest (e.g. parasites), which can lie at 
different depths due to the thickness of the blood films 
and/or slight tilting of the microscope slide.

On the thick film, a 20 × 20 grid of FoVs near the cen-
tre was manually selected and scanned. This gave an 
area scanned of roughly 18  mm2, equivalent to ∼580 
fields of view on a manual microscope with 100× oil 
immersion lens and 20 mm field number eyepiece, 
yielding ∼3 k to 17 k white blood cells (WBCs).

On the thin film, a rectangular region near the 
“feathered edge”, where a monolayer of red blood cells 
(RBCs) is most often found, was manually selected and 
scanned, yielding 150 to 192 FoVs and ∼10 k to 50 k 
non-overlapped RBCs. The area selected was based 
only on the presence of a monolayer of RBCs and not 
on whether parasites were visible in the region.

Algorithm
The image sets were analysed by both thick film and 
thin film malaria detector algorithms that detect and 
evaluate objects of interest. A final synthesis block 
combined the thick and thin film findings to produce 
a diagnosis report indicating: (i) whether malaria par-
asites were detected; (ii) the suspected malaria spe-
cies; and (iii) the total parasite count (also ring-stage 
and late-stage counts) given as parasites per 8000 
WBCs. This quantitation unit allows direct compari-
son to standard methods that assume a WBC density of 
8000/µL, but also allows for correction when the WBC 
count is known.

To assess performance on the ECAMM set, the results 
of the algorithm on each slide were compared with the 
reference readings from RITM, and performance was 
evaluated according to the rubric in the WHO malaria 
microscopy quality assurance manual [16] (shown in 
Table 1).

A schematic representation of the algorithm modules 
is shown in Fig. 2. Full algorithm details are found in [6] 
for thick film, and [5] for thin film. This section (i) pro-
vides a brief overview of the two algorithms; (ii) notes 
the updates to the current thick film algorithm from the 
version in [6]; and (iii) describes the synthesis block that 

combines thick and thin film findings to give the final 
slide diagnosis.

Algorithm overview
Both algorithms consist of various processing blocks as 
depicted in Fig.  2. The term “Pass” refers to the differ-
ent modules of processing (vertically laid out in Fig.  2) 
from Pass1 at the top to Pass6 at the bottom. The term 
“branch” refers to multiple blocks in Pass3, Pass4 

Table 1 Scoring rubric for  ECAMM evaluation slide set, 
from [16]

Accreditation 
level

Detection Species 
identification

Parasite 
quantitation

Based on lowest grade 
achieved

(within 25% of 
reference count)

1 ≥ 90 % ≥ 90 % ≥ 50 %

2 80 % –<90 % 80 % -–<90 % 40 % –<50 %

3 70 % -–<80 % 70 % -–<80 % 30 % –<40 %

4 < 70 % < 70 % < 30 %

Fig. 2 Malaria detector algorithm architecture. The thick film (left) 
and thin film (right) malaria detector algorithms each consist of six 
passes. Multiple branches, each with a paired Pass3-Pass4 block, 
target different parasite morphologies. A synthesis module (not 
shown) combines the thick and thin film findings to give a patient 
diagnosis
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processing (Pf Ring, Late, non-Pf Ring, horizontally laid 
out in Fig. 2). The processing performed in Pass1 through 
Pass6 is described below.

Pass1  Analyses every FoV stack for quality and focus. 
WBCs and RBCs are detected at the best focus level for 
each FoV. Thin film RBC and WBC detection use tradi-
tional computer vision techniques (e.g. thresholding, seg-
mentation, feature extraction, classification), whereas the 
thick film uses a region-based convolutional neural net-
work (CNN), Faster R-CNN [20], for WBC detection.

Pass2  Finds candidate parasites in all FoVs at all focus 
levels, via traditional computer vision techniques. The 
most in-focus thumbnail of each candidate object is 
selected for further processing.

Pass3  Weeds out obvious non-parasites (distractors) 
via traditional feature extraction and a gradient-boosted 
decision tree classifier [21].

Pass4  Applies a CNN classifier to thumbnails of all can-
didate parasite objects that survived the distractor filter 
of Pass3. In thin film only, a species classifier is applied to 
late-stage objects in a species branch [5].

Pass5  Arbitrates the appropriate stage type (ring or 
late) of objects detected by multiple branches, using the 
highest CNN score.

Pass6  (Disposition) processes all the detected and clas-
sified objects to (i) determine whether the blood film 
(thick or thin) is overall positive for malaria; (ii) estimate 
the parasitemia if positive; and (iii) determine the species 
of malaria if positive (potentially more than one).

Branches Multiple branches of paired Pass3-Pass4 mod-
ules are applied to the detected candidate objects. Each 
branch is trained and tuned to detect a different life-cycle 
stage of the malaria parasite. The ring-stage branch tar-
gets young ring-form trophozoites (in thick film only, 
there are separate P. falciparum and non-falciparum 
ring-stage branches). The late-stage branch targets late-
stage trophozoites, schizonts, and gametocytes, which are 
common in non-falciparum species and much rarer in P. 
falciparum. The species branch (thin film only) extracts a 
set of manually designed features for species ID, then clas-
sifies objects by species and stage via a gradient-boosted 
decision tree classifier.

Thick film algorithm updates
The thin film algorithm used in this study is identical to 
the one reported in [5]. The thick film algorithm is largely 

the same as the one reported in [6], but has been further 
developed:

(i) The algorithm in [6] was trained on images acquired 
with a prototype scanning microscope, whereas the 
results reported here are based on images scanned 
with the EasyScan GO [17].

(ii) The WBC detector is now based on a CNN object 
detection architecture, Faster R-CNN [20], as 
opposed to traditional computer vision techniques.

(iii) The distractor filter of Pass3 has been enhanced by 
doubling the number of discriminative features.

(iv) The thick-film algorithm has a new third detection 
branch targeting non-falciparum ring-stage tropho-
zoites. This helps distinguish P. falciparum from 
non-falciparum infections solely from the thick 
film, even if a non-falciparum sample presents few 
or no late-stages, by recognizing that beyond the 
youngest ring-stages, non-falciparum and P. falci-
parum trophozoites differ morphologically.

(v) The Pass6 disposition block has an added func-
tion that assesses whether a thick film slide may 
be poorly prepared, based on the presence of very 
large numbers of distractor objects. If this condi-
tion is detected, the disposition block can adjust 
the diagnosis thresholds to reduce the chance that a 
malaria-negative but debris-filled slide will be diag-
nosed as malaria-positive.

Synthesis block
The thick and thin film algorithms are independent and 
can provide conflicting results for the same sample. The 
synthesis block combines the two findings as follows. It 
uses the thick film analysis to determine three results:

 (i) Malaria diagnosis (i.e. whether malaria parasites 
are present). This matches standard microscopy 
practice [22].

 (ii) Quantitation of parasites, at all parasitaemias. This 
differs from microscopy practice, which recom-
mends switching to the thin film when the density 
on thick films is very high (roughly 80,000 p/µL) 
[23] due to the difficulty of manually tracking large 
numbers of parasites in a single FoV. Because an 
automated system can readily track these higher 
counts, it can leverage the much larger blood vol-
ume on thick films to avoid Poisson variability in 
parasite counts (as provided in the supplementary 
information of reference [19]).

 (iii) Determination of whether the species is P. falcipa-
rum, non-falciparum, or a mixed infection. This 
depends on the ratios between the numbers of late-
stage, P. falciparum ring-stage, and non-falciparum 
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ring-stage parasites as well as the total ring-stage 
count. Mixed infections are identified by very high 
ring-stage counts (ascribed to P. falciparum, since 
non-falciparum species typically have lower parasi-
taemias) combined with sufficiently high late-stage 
counts (since P. falciparum typically presents very 
few late-stages).

The synthesis block only uses the thin film results 
if the thick film algorithm reports a non-falciparum 
or mixed species infection. Thin film results then 
determine the non-falciparum species, as in standard 
microscopy [22]. If the thick film result is non-falcipa-
rum or mixed species and the thin film result is nega-
tive, the species is predicted as P. vivax due to P. vivax 
being the most prevalent non-falciparum species of 
malaria globally [1].

The final report gives three parasitaemias: ring-stage 
(immature trophozoite), late-stage (mature trophozo-
ite, schizont, and gametocyte), and total. It does not 
differentiate between the various late-stages. To evalu-
ate quantitation accuracy on ECAMM P. falciparum 
slides, the ring-stage count was used rather than the 
total parasite count. This is because RITM’s reference 
readings counted only asexual stages (i.e. non-game-
tocytes) consistent with malaria microscopy stand-
ards [22], and because non-gametocyte late-stages are 
uncommon in P. falciparum blood films.

The final report lists malaria species, WBC count, 
RBC count (thin film only), and poor slide quality 
warnings if indicated. It also includes a mosaic of high-
scoring objects’ thumbnails for possible examination 
by the clinician.

Results
The EasyScan GO malaria detector correctly detected 
whether or not malaria was present in 33 of 35 slides 
(20 negative slides and 15 positive slides), for 94.3 % 
accuracy. It achieved 82.9 % accuracy for species ID, 
correctly labeling 29 of 35 slides. It correctly quanti-
tated 10 of 20 slides, for 50 % accuracy.

These results correspond to a Level 1, Level 2, and 
Level 1 microscopist for diagnosis, species ID, and 
quantitation, respectively, according to the rubric in 
[16] (shown in Table  1). A microscopist’s final rating 
equals their lowest-scoring component, so the EasyS-
can GO would officially receive Level 2 microscopist 
status. These results are summarized in Table  2. The 
outputs from the malaria detector for each sample are 
given in Additional File 1. The results for each section 
are described in detail below.

Parasite detection
The malaria detector correctly identified whether or 
not malaria was present in 33 of 35 slides in the detec-
tion subset. All negative slides were classified as negative 
(100 % specificity), and 13 of 15 malaria positive slides 
were classified as positive (86.7 % sensitivity). This yielded 
an accuracy of 94.3 % (93.3 % balanced accuracy). The two 
false negative samples were P. falciparum samples with 
reference parasitaemias of 112 p/µL and 175 p/µL. Also, 
all 20 P. falciparum quantitation slides were correctly 
classified as positive.

Species ID
The species was correctly labeled for 29 of the 35 slides 
(82.9 %) used for evaluating species identification accu-
racy. This included correctly labelling all 20 (100 %) nega-
tive samples, and 9 of 15 (60 %) positive samples, for a 
balanced accuracy of 80 %. Two errors were due to mis-
classifying 2 of the 7 P. falciparum samples as negative. 
Also misclassified were 1 out of 3 Plasmodium malariae 
samples, both Plasmodium ovale samples, and the sin-
gle mixed species (P. falciparum plus P. ovale) sample. A 
confusion matrix is shown in Table  3, which also gives 
(in parentheses) the performance on the 20 P. falciparum 
quantitation slides. Of the 20 quantitation slides, 19 were 
correctly classified as P. falciparum and one was incor-
rectly classified as Plasmodium vivax.

Performance on the simpler task of identifying P. fal-
ciparum versus non-falciparum was higher. When com-
bining all 27 P. falciparum-only samples in the 55-slide 
set, 24 were classified as P. falciparum, 1 was classified 
as P. vivax, and 2 were classified as negative (88.9 % accu-
racy). Of the 7 non-falciparum samples, 1 was classified 
as P. falciparum and the remaining 6 were classified as 
non-falciparum species (85.7 % accuracy). The mixed 
sample was classified as P. vivax.

Quantitation
Of the 20 P. falciparum slides used to evaluate quantita-
tion, the EasyScan GO reported parasitaemias within 
25 % of the reference (manually counted) parasitaemias 

Table 2 Performance of  the  EasyScan GO on  the  various 
components of the External Competence Assessment slide 
set

Component 
of assessment

Number 
of slides in 
subset

Numbe 
correct

Percentage 
correct

WHO level 
on this 
component

Detection 35 33 94.3 1

Species ID 35 29 82.9 2

Quantitation 20 10 50 1
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on 10 samples (50 %). Figure  3 plots the EasyScan GO 
parasitaemia vs. the reference parasitaemia for this set, as 
well as for the additional positive samples used for detec-
tion and species ID. Estimated parasitaemias were within 
25 % of reference parasitaemias for 4 of 7 (57.1 %) sub-200 
p/µL P. falciparum samples, and 6 of 8 (75 %) non-falci-
parum or mixed species samples.

Timing and invalid results
Timing 
The mean time to scan and analyse each slide in the con-
figuration used for this assessment totalled 54.4 minutes: 
12.8 and 5.8 minutes for scanning the thick and thin films 
respectively, and 28.7 and 7.0 minutes for analysing the 
thick and thin films, respectively. This is well above the 10 
minutes per slide allowed in the WHO malaria micros-
copy quality assurance manual [16].

Invalid results
The system is designed to reject a film scan if there are 
not enough in-focus FoVs, too few WBCs (thick film), 
or too few RBCs (thin film). On all slides both thick and 

thin films were successfully scanned, with two excep-
tions. One thick film was rejected because every FoV 
was out-of-focus, but was re-scanned successfully. One 
thin film was rejected because all FoVs were reported as 
out-of-focus. Upon review, the entire thin film had a very 
dark background whether viewed with the EasyScan GO 
or with a standard manual microscope. An example FoV 
is shown in Additional File 2. Re-scanning was unsuc-
cessful, because the malaria detector could not evaluate 
focus on the dark background. Since this sample’s thick 
film was reported as P. falciparum, the lack of a thin film 
result did not affect its final disposition or the above anal-
ysis of accuracy.

Discussion
WHO 55 as benchmark
The WHO 55 is a template for slide sets used to evaluate 
malaria microscopist competence (ECAMM) as part of 
WHO’s quality assurance program. Besides having a con-
sistent composition, it assumes use of existing field infra-
structure (i.e. field-prepared Giemsa-stained blood films), 
and emphasizes (in both content and scoring rubric) the 
key performance requirements of the most important 
use-cases. Thus, it may serve as a valuable benchmark 
dataset to assess and compare automated malaria detec-
tion systems. Such benchmarks are currently lacking.

In this paper, the performance of a fully-automated 
malaria diagnosis system, the EasyScan GO, on such a 
WHO 55 set is presented. The system scanned Giemsa-
stained thick and thin films with an EasyScan GO auto-
mated microscope, then applied image-processing and 
ML methods to generate a slide-level diagnosis.

There are some limitations to using the WHO 55 tem-
plate as a benchmark for testing automated systems. Each 
ECAMM slide set is a unique instance of the template, 
and performance on the set is only a single snapshot of 
system performance. The slide set is also fairly small, 
resulting in low statistical power. Ideally, a system should 
be tested on several ECAMM-style slide sets and should 
achieve Level 1 on most or all of them as confirmation 
of its performance. The ECAMM slide sets are also 

Table 3 Confusion matrix comparing the reported EasyScan GO species to the reference species. Values in parentheses 
are the results for slides not used for evaluating species identification accuracy

EasyScan GO species Reference species

P. falc. P. vivax P. malariae P. ovale Negative mixed Pf + Po

P. falciparum 5 (19) – – 1 – –

P. vivax − (1) 2 1 – – 1

P. malariae – - 2 1 - –

P. ovale – - – 0 – –

Negative 2 - – - 20 –

Fig. 3 Quantitation accuracy. EasyScan Go quantitation estimate vs. 
the reference quantitation. For P. falciparum samples, the ring-stage 
count is plotted, whereas for non-P. falciparum samples the total 
count is plotted. The dotted lines show ± 25 % error
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generally of high quality, and do not represent the high 
variability in sample preparation possible in the field. 
Internal evaluations (e.g. [5, 6]) and field trials (e.g. [7, 8], 
as well as ongoing studies) are also vital measures of sys-
tem performance.

Diagnosis
The system achieved Level 1 performance on diagnosis 
of low-parasitemia slides, with 94.3 % accuracy, 86.7 % 
sensitivity, and 100 % specificity. In the ECAMM slide 
set used, the non-falciparum slides had higher-than ideal 
parasitaemias. However, it has been observed (in prior 
experiments and field trials) that late-stage parasites of 
non-falciparum samples are much easier to detect and 
distinguish from distractor objects than are P. falciparum 
ring-stages, and the algorithm has consistently posted 
lower limits of detection for late-stages than for ring-
stages, making non-falciparum samples easier to diag-
nose at low parasitaemias than P. falciparum samples. It 
is, therefore, likely that the higher parasitaemias on non-
falciparum slides did not impact the system’s sensitivity 
results.

Quantitation
The system also achieved Level 1 performance on quan-
titation of the 20 relevant P. falciparum samples, indicat-
ing its potential for use in new drug evaluation and drug 
resistance studies where accurate estimation of parasite 
densities is critical.

On the two high parasitaemia samples (∼200 k p/µL), 
the system’s estimates (done on thick film) were low rela-
tive to the reference counts (done on thin films [22]). 
Given a perfect detector, quantitations from thick films 
are intrinsically more consistent because the higher vol-
ume of blood reduces unavoidable Poisson variability. 
This is a case where machines have a distinct advan-
tage over even expert humans because of their ability to 
screen many FoVs without fatigue and track large num-
bers of objects without error.

Species ID
The system achieved Level 2 performance on species ID. 
However, this score was likely inflated due to the differ-
ences in the ECAMM test set used compared to the ideal 
ECAMM template: there were fewer positive samples (15 
vs. 20), the parasitaemia of samples was higher than 200 
p/µL for 6 (non-falciparum and mixed species) samples, 
and only one sample was mixed species instead of four. 
Had the test set matched the template, the system likely 
would have achieved Level 3 due to poor performance on 

mixed species samples and perhaps reduced performance 
on lower parasitaemia non-falciparum samples. The sys-
tem’s low species ID rating points to two weaknesses:

 (i) Machine learning algorithms are often data-hun-
gry [24], requiring far more training samples than 
humans do. The training sets were rich in P. falci-
parum and P. vivax, but contained few P. ovale and 
P. malariae samples since these are less common in 
malaria-infected humans. Plasmodium vivax train-
ing samples sufficed to ensure strong P. falciparum 
vs. non-falciparum classification on thick films, 
which enabled the system to have high accuracy at 
the level of P. falciparum vs. non-falciparum. But 
the vivax-ovale-malariae classifier suffered from 
lack of training data.

 (ii) The system diagnoses mixed infections by leverag-
ing priors on likely parasitaemias and ring-stage to 
late-stage ratios of the various species (non-falcipa-
rum samples tend to have lower maximum para-
sitaemias and P. falciparum late-stage counts tend 
to be low [25]). It has no way to distinguish mixed 
infections on low parasitaemia samples, because 
young ring-stage parasites look similar for all spe-
cies. So in the absence of a distinctive P. falciparum 
gametocyte, any low-parasitaemia sample con-
taining late-stages is classified as non-falciparum. 
Indeed, the ability of human microscopists to cor-
rectly classify such samples is a testament to their 
skill.

Fortunately, fine-grained species ID is a secondary 
need in some use-cases. One example is drug resistance 
studies which involve only quantitation of P. falcipa-
rum to generate parasite clearance curves. Additionally, 
geographic priors often indicate the likely type of non-
falciparum infection. Examples include: (a) In South 
America the two dominant species are P. vivax and P. 
falciparum [26], and Peruvian protocols allow use of 
thick films for species ID [27]; and (b) in West Africa, 
innate resistance to infection with P. vivax makes it 
rare compared to P. ovale [28]. The ECAMM template 
itself specifies incorporating “local prevalence” [15, 16]. 
However, given travel and other considerations, these 
geographic priors are not certainties.

Species ID is important for some treatment decisions 
[29]. Examples include: (a) P. falciparum infection has 
a high fatality rate, so high P. falciparum sensitivity is 
important; and (b) P. vivax and P. ovale develop hyp-
nozoites, which require distinct treatment, so accu-
rate falciparum-malariae vs. vivax-ovale species ID is 
desirable.
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Thick‐film only evaluation
The system mostly depends on thick film results, for vari-
ous reasons:

 (i) In many situations (e.g. drug resistance sentinel 
sites, and sites with only one non-falciparum spe-
cies such as Peru), this is sufficient.

 (ii) In the field, thin film quality can be highly vari-
able (E. Long, pers. commun.), and thick film-only 
workflows can be preferable for various reasons (J. 
Carter, pers. commun.).

 (iii) Machine learning algorithms are often data hungry, 
and owing to the greater density of blood on thick 
films the training sets contained more parasite 
images from thick films than from thin films.

However, successfully distinguishing between non-fal-
ciparum species using only thick films has not yet been 
achieved and the algorithm still depends on thin films for 
this task.

ECAMM versions
The “V2” ECAMM slide set [15] has some minor differ-
ences from “V1”. These changes might have affected the 
system’s performance, in either direction. Also, “V2” 
protocols specify that 30 % of the slides be used during 
a preparation or orientation phase, i.e. the slide set is not 
treated as a true holdout set (a set of samples which is 
not seen prior to testing) since the microscopists receive 
some training on the slide set prior to assessment. Such 
prior exposure, if incorporated into training of an algo-
rithm, would complicate the training flow and would 
also strongly affect machine results (by the nature of 
machine learning). In this regard, the “V2” protocols are 
not as well suited to evaluation of computer-automated 
systems.

Timing
Whether the current system runtime is acceptable 
depends on particular field constraints. In some field 
clinics, fast throughput is essential, and the system would 
be inappropriate for such scenarios. In other settings, 
the ability to analyse batches of samples overnight would 
mitigate long runtime (e.g. re-checking of slides for qual-
ity control).

Since these experiments were run, several changes have 
been made to the EasyScan GO software to shorten runt-
ime, including:

 

(i) Scan a lower volume of blood, using thresholds 
on FoVs, WBCs (thick film) and RBCs (thin film), 
rather than scanning a fixed number of FoVs. This 
enables the blood volume scanned to more closely 

match manual microscopy protocols (100 FoVs with 
a 100× objective rather than the ∼580 scanned 
here, and at least 500 WBCs [22], rather than the 
average of 8000 WBCs scanned here). Analysis time 
scales roughly linearly with the number of FoVs.

 (ii) Analyze thick film first and proceed to thin film 
analysis only when indicated, i.e. only in case of a 
positive, non-falciparum result.

 (iii) Perform scanning and analysis in parallel instead of 
in series, e.g. a second sample can be scanned while 
the first sample is being analysed.

Further experiments are needed to characterize the 
resulting changes in runtime, and to ensure there is no 
loss in accuracy due to the decreased scan area. Prelimi-
nary experiments indicate typical total time of 18–25 
minutes per slide with these changes. To simulate the 
effect on accuracy of reducing FoVs, the samples were re-
analysed using 70 FoVs (the equivalent of 100 FoVs using 
a standard microscope with a 100× objective), selected 
from the original scanned FoVs, for each thick film. This 
did not change the detection or species ID results for 
any sample, however the quantitation results varied by 
0.7x to 2.3x compared to the original counts. A detailed 
discussion is beyond the scope of this report, but these 
results are included as columns in Additional file 1.

Finally, analysis time is dependent on computing power. 
This study was performed on a computer with specifica-
tions matching that provided as part of the EasyScan Go 
system – a relatively high-end laptop (as of 2019) with 
an Intel i7-9750H CPU, an NVIDIA GeForce GTX 1650 
GPU, and 16 GB RAM.

Machine vs. human trade‑offs
In malaria microscopy, as in other domains, machines 
have pros and cons relative to human workers:

 (i) In general, machines can run long hours with-
out getting tired, but conversely they are at risk of 
mechanical failures.

 (ii) Once developed, machines can be deployed at 
scale, without personnel training bottlenecks 
(although for this application there remains a need 
for sample collection and preparation by trained 
personnel).

 (iii) Machine learning algorithms are notoriously brittle 
in the face of test samples that differ markedly from 
their training data. In the malaria task, algorithm 
performance can degrade in deployments to new 
locations if the clinics’ slide preparations have unfa-
miliar characteristics [7]. In such cases, humans 
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adapt much more readily to the novel character-
istics. For example, the thin film described in this 
report that was rejected by the system was, while 
highly abnormal, still interpretable by a human.

To develop ML algorithms for malaria is to enjoy ample 
opportunities to recognize and admire the skill, versatil-
ity, rapid learning, and adaptability of human workers. 
At the same time, EasyScan GO’s strong performance on 
this benchmark slide set is evidence that fully-automated 
systems are poised to play a meaningful role in malaria 
field microscopy.

Conclusions
Automated (machine learning-based) systems are a 
promising way to improve the quality and consistency of 
malaria microscopy. The WHO 55 slide set, designed to 
evaluate microscopists’ competence in crucial field use-
cases, can serve as a benchmark for evaluating such sys-
tems. The fully-automated EasyScan GO, a slide scanning 
microscope coupled with malaria detection algorithms, 
was evaluated on a WHO 55 slide set. It achieved Level 
1 competence in Diagnosis and Quantitation, and Level 
2 in Species ID, the best performance on this benchmark 
test of any fully-automated system to our knowledge. 
While runtime and species ID both require improvement 
for use in general case management settings, its strong 
results on this slide set indicate its potential value for 
research use-cases such as drug efficacy monitoring, and 
possibly for case management use-cases with less strin-
gent species ID requirements.
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