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Abstract

Aedes aegypti and Aedes albopictus vector dengue, chikungunya and Zika viruses. With

both species expanding their global distributions at alarming rates, developing effective sur-

veillance equipment is a continuing priority for public health researchers. Sound traps have

been shown, in limited testing, to be highly species-specific when emitting a frequency cor-

responding to a female mosquito wingbeat. Determining male mosquito capture rates in

sound traps based on lure frequencies in endemic settings is the next step for informed

deployment of these surveillance tools. We field-evaluated Male Aedes Sound Traps

(MASTs) set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz for sampling Aedes aegypti and/or

Aedes albopictus and compared catch rates to BG-Sentinel traps within Pacific (Madang,

Papua New Guinea) and Latin American (Molas, Mexico and Orange Walk Town, Belize)

locations. MASTs set to 450–550 Hz consistently caught male Ae. aegypti at rates compara-

ble to BG-Sentinel traps in all locations. A peak in male Ae. albopictus captures in MASTs

set at 550 Hz was observed, with the lowest mean abundance recorded in MASTs set to

450 Hz. While significantly higher abundances of male Culex were sampled in MASTs emit-

ting lower relative frequencies in Molas, overall male Culex were captured in significantly

lower abundances in the MASTs, relative to BG-Sentinel traps within all locations. Finally,

significant differences in rates at which male Aedes and Culex were positively detected in

trap-types per weekly collections were broadly consistent with trends in abundance data per

trap-type. MASTs at 550 Hz effectively captured both male Ae. aegypti and Ae. albopictus

while greatly reducing bycatch, especially male Culex, in locations where dengue
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transmission has occurred. This high species-specificity of the MAST not only reduces staff-

time required to sort samples, but can also be exploited to develop an accurate smart-trap

system—both outcomes potentially reducing public health program expenses.

Author summary

The continued global expansion of Aedes aegypti and Aedes albopictus, which transmit

viruses causing dengue and Zika, necessitates the further development of effective mos-

quito traps for monitoring and predicting transmission risk. Mosquito sound traps attract

male mosquitoes by producing a frequency which mimics the wingbeat sound of female

mosquitoes. As few insects will respond to such sounds, these traps can be highly species-

specific, saving significant person-time to sort samples, potentially paving the way for

more accurate smart-trap systems and reduced surveillance costs. To date, limited

research has occurred within field-settings investigating the capture rates of male mosqui-

toes in sound traps set to different frequencies. To this point, we performed trials in den-

gue endemic environments to quantify capture rates of mosquitoes in Male Aedes Sound

Traps set to different frequencies in Papua New Guinea, Mexico and Belize. We found

that both male Ae. aegypti and Ae. albopictus responded positively to frequencies between

450 and 600 Hz. Additionally, male Culex mosquitoes were also caught, but at lower abun-

dances in traps set to higher sound frequencies. These traps, when set to 550 Hz, effec-

tively capture male Ae. aegypti or Ae. albopictus with limited bycatch.

Introduction

Aedes aegypti and Aedes albopictus are the two most important vectors of the viruses responsi-

ble for dengue, Zika and chikungunya [1–3]. Both mosquito species have expanded their dis-

tributions in recent years [4], with Ae. aegypti projected to continue dispersing into tropical

and subtropical regions and Ae. albopictus spreading more globally, such as within Central [5]

and South America [6], the Pacific region [7] and temperate regions in Europe and the United

States of America [8]. Efforts to successfully control these mosquitoes requires cost-effective

surveillance tools which not only detect mosquitoes in sufficient abundances to monitor popu-

lation trends, but can regularly detect the presence of mosquitoes throughout the mosquito

season with minimal burden to public health programs.

Male mosquitoes are mass-reared for a variety of mosquito control programs utilising Wol-
bachia-infected mosquitoes [9–11] and recently, there has been renewed development of mos-

quito sound traps mimicking female mosquito wingbeat frequencies [12–16] to attract and

capture male mosquitoes. A speaker integrated into a trapping unit encourages male mosqui-

toes to fly into a capture chamber, removing the need for fans which damage samples during

capture [17,18]. Traps incorporating fans are highly effective in securing mosquitoes [19–21],

but incur substantial operational costs in long-term adult Aedes surveillance programs (e.g.,

costs of 12 V batteries or mains power, person-time required to sort and identify captured

insects). The indiscriminate collection of non-target species by traditional traps impedes the

accurate identification of specimens, increases labour to identify samples and poses a signifi-

cant challenge for the development of mosquito smart-trap systems, which aim to detect and

communicate catches to surveillance staff.
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Although wingbeat frequencies typically vary between 150–200 Hz (5th to 95th percentile of

range) for a single species in natural settings [22], sound traps can fine-tune the sound-lure fre-

quency to one which is differentially attractive for a desired target species group compared to

bycatch. Culex females produce mean frequencies which generally peak under 400 Hz while

female Ae. aegypti wingbeat frequencies are slightly higher (e.g., can peak around 458–460 Hz)

and Ae. albopictus female frequencies higher still (e.g., can peak between 536–544 Hz) [22–24].

Hence, sound traps deployed to catch Culex males have been set to frequencies of 370 Hz or 400

Hz [25–30], while traps targeting Ae. aegypti used sound lures set to 484–500 Hz [14,18,31] and

those investigating the attraction of male Ae. albopictus were set to 545–649 Hz [12].

Female wingbeat frequencies, and male attraction to these frequencies, are affected by bio-

logical and environmental factors, such as male and female body size, age and ambient temper-

ature [27,32–36]. Additionally, male attraction to various wingbeat frequencies can also

change due to their mating experience and larval rearing conditions [25,37]. Subsequently, the

actual ranges of wingbeat frequencies to which males are exposed, and how males respond to

these frequencies, may vary considerably, especially in natural settings where a wider range of

wingbeat frequencies may facilitate successful mating [27]. For example, to effectively differen-

tiate mosquito species recorded in the field, Mukundarajan, Hol et al. [22] classified different

wingbeat frequencies by distributions varying by up to 100 Hz for each species, rather than

specific mean values.

Understanding the extent to which male mosquitoes are attracted to specific frequencies in

a natural environment is a vital step towards effective deployment of sound traps for surveil-

lance. While Kahn and Offenhauser [38] first deployed sound traps in the 1940s and Ikeshoji

and colleagues performed multiple experiments attempting to control field mosquito popula-

tions with sound traps in the 1980s [26,29,30,39], to date, few field studies have assessed male

attraction to sound traps set to different frequencies. In the 1980s, Kanda, Cheong et al. [40]

surveyed male Malaysian Mansonia and Ikeshoji and Ogawa [39] sampled male Ae. albopictus
and Culex tritaeniorhynchus in Japan. Recently, Swan, Russel et al. [41] assessed the attraction

of male Ae. albopictus to Male Aedes Sound Traps (MASTs) set to fixed frequencies ranging

between 450 and 700 Hz in northern Australia. While the effectiveness of these MASTs was

not compared to standard mosquito traps, the researchers did find that MASTs set to frequen-

cies between 500 and 650 Hz caught the highest abundances of males in this location. Little

field research has otherwise occurred investigating male mosquito attraction to various fre-

quencies, therefore we clearly still have much to learn.

We assessed MAST capture rates of male Ae. aegypti and Ae. albopictus, as well as, medically

important Culex species (Culex quinquefasciatus, Culex restuans and Culex nigripalpus), using

sound-lures set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz under natural environmental con-

ditions in three dengue endemic countries (Papua New Guinea, Mexico and Belize). BG-Senti-

nel (BGS) traps (Biogents, Regensburg, Germany) were integrated into the evaluation design

as the gold standard surveillance trap comparator for Ae. aegypti and Ae. albopictus) to estab-

lish benchmarks. We assessed differences in mean male abundances per trap type, and con-

firmed these trends against the proportion of positive weekly detections of male mosquitoes to

ensure that the trap-types which caught the most abundant male mosquitoes also most fre-

quently detected their presence.

Methods

Trap description

The MAST is a low-powered and highly specific water-resistant sound-baited mosquito trap

consisting of two main components [18]. The large black base acts as a swarm marker to
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visually attract male Aedes while the clear plastic 2.5 L head houses a speaker attracting mos-

quitoes that are subsequently captured (S1 Fig). The entrance to the clear container is a small

hole in the shape of an inverted equilateral triangle with 2 cm sides over which a strip of black

5 cm X 9 cm cloth tape (Bear, Saint-Gobain), with an identical triangle opening, is placed

internally over the trap entrance (black side facing into trap). Previous laboratory observations

indicated that this black tape reduced exit behaviour of the mosquitoes as, once they were no

longer attracted to the sound lure, they displayed escape behaviours which avoided the dark

tape. The sound lure is programmable for frequency and volume emitted, whether the fre-

quency is played continually or intermittently (30 s on-off) and has a photo-detector which

turns it off during the night to save power. Both the MAST Sticky and MAST Spray versions of

this trap were deployed in these trials. The MAST Sticky uses an internal killing chamber and

sticky panel to capture mosquitoes whereas the MAST Spray lacks the extra killing chamber

and contains insecticide to knock down mosquitoes entering the clear container housing the

sound lure. Both versions are described in detail by Staunton, Crawford et al. [18].

Field sites

Three Latin Square trials were run simultaneously within Madang, situated at 3 m elevation

and a latitude of 5˚S, in Papua New Guinea between 30 May and 31 October 2019 (Fig 1A).

Meanwhile, two Latin Square trials were performed between 19 June and 27 September 2019

in the Mexican village of Molas, south of Merida at 10 m elevation and latitude of 20˚ north,

approximately 35 km from the nearest coast (Fig 1B). Lastly, three Latin Square trials were run

simultaneously between 3 July and 16 October 2019 in Orange Walk Town (33 m elevation, a

latitude of 18˚ north and approximately 48 km from the nearest coast), Belize, Central America

(Fig 1C).

During the experimental period in Madang, the mean monthly air temperatures ranged

from 21.6˚C to 30.3˚C, with 1,970 mm total rainfall and an average humidity of 72% (Madang

Airport Weather Services). In Molas, temperatures ranged from 20.6˚C to 40.2˚C and the total

rainfall was 721.6 mm during the trial period (Universidad Autónoma de Yucatán, Merida,

México). While in Orange Walk Town during the experimental period, temperatures ranged

from 22.2˚C to 38.4˚C, with an average 73% relative humidity and 343.67 mm total rainfall

(Belize Vector & Ecology Center weather station in Orange Walk Town).

Trap locations were generally in secure, sheltered, dark and unobtrusive areas associated

with homes (i.e., least interruptive to routine household activities), selected with the home-

owner’s consent. Within PNG, these locations were mostly situated near doors, or underneath

raised dwellings and in Molas, traps were also positioned with access to mains power (for BGS

trap requirements). Trap locations in Molas and Orange Walk Town were often in structures

external to the home but within the peridomestic area (e.g., unused pig sty, external cooking

structures and sheds). The mean (± S. E.) distances between nearest traps within each town

were 317 m (± 56 m), 129 m (± 25 m) and 465 m (± 67 m) for Madang, Molas and Orange

Walk Town, respectively.

Trap settings

Within Madang, each Latin Square trial consisted of five treatments: 1) a BGS trap (unbaited

version 2 [42]) powered using car batteries (12 V, 50 Ah; manufactured by Bolt (Guangdong,

China) or Yuasa (Kyoto, Japan); and four MAST Sticky versions, with a sound lure set to either

2) 450 Hz, 3) 500 Hz, 4) 550 Hz or 5) 600 Hz. The sound lures (Verily, South San Francisco,

USA) were programmed to emit a specific frequency at 60 dB at the trap entrance intermit-

tently (30 s on-off) during daylight hours. MAST Sticky versions, containing yellow sticky
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panels (Trappit, manufactured by Entosol (Australia) Pty Ltd, Roselands), cut to 50 x 70 mm,

were deployed as a capture agent in the MAST head in Madang based on evidence of Ae.
aegypti and Ae. albopictus pyrethroid-resistance in study area [43]. Traps were operated daily

and randomly rotated weekly within their Latin Square. MASTs were serviced weekly, by

removing all catches, replacing sticky panels, and checking the sound lure settings. BGS traps

Fig 1. Field sites with trap locations in A) Madang, Papua New Guinea, B) Molas, Mexico and C) Orange Walk Town,

Belize. Stars indicate town locations within countries and different symbols indicate different Latin squares specific to

each field site. Main maps were created in QGIS 3.4 using layers created by Donovan Leiva and silhouette maps were

sourced from vectorstock.com (PNG), dreamstime.com. (Mexico) and freevectormaps.com (Belize).

https://doi.org/10.1371/journal.pntd.0009061.g001
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operated continuously, with catch bags and batteries replaced twice per week, after 4 days and

then again after 3 more days.

Five treatments were also evaluated simultaneously in Molas consisting of one BGS trap

(unbaited and connected to mains power) and four MAST Spray versions [24] set to the same

four frequencies and sound lure settings as in PNG trials. Aedes aegypti were also pyrethroid

(deltamethrin) resistant in this region [44] so MAST Spray versions were treated with H24

(Naucalpan, Mexico; active ingredients: propoxur 1.507 g/kg, prallethrin 0.093 g/kg and delta-

methrin 0.35 g/kg) known to knock down synthetic pyrethroid resistant mosquitoes [45,46].

All Molas traps operated for a single, 24-hour period each week to conform to standard sur-

veillance protocols in the study area. Traps were randomly rotated within each Latin square

among participating households weekly throughout each five-week trial.

In Orange Walk Town we again deployed five treatments for each Latin Square trial includ-

ing a BGS trap (unbaited and powered using motorbike batteries (12 V, 5 Ah; manufactured

by Outdo, Fujian, China) and four MAST Spray versions set to the same four frequencies and

sound lure settings as in Madang and Molas. All MASTs used H24 insecticidal spray to kill

captured mosquitoes. Traps were left in situ for an eight-hour period one day per week begin-

ning between 08:00 and 10:00 and then collected later that day, in the same order they were

deployed, between 16:00 and 18:00, conforming to local Aedes surveillance protocols for other

studies in the area. As in PNG and Mexico, all traps were randomly rotated amongst partici-

pating households each week within a single trial until all MAST and BGS traps had been eval-

uated at each household sampling site (i.e., five weeks total).

For all trial locations, captured mosquitoes were transported to in-country laboratories and

identified to species using relevant morphological keys [47,48], sexed and counted by date of

capture, sampling site, trap and lure type. For the purposes of this study the term ‘bycatch’

refers to mosquito species other than the two target species (Ae. aegypti or Ae. albopictus) as

well as all other (non-culicid) invertebrates. All other (non-culicid) invertebrates were sorted

to order, counted and their capacity for flight noted (for example, wingless ants were recorded

as Formicidae whereas all other Hymenoptera were noted to be ‘Hymenoptera (winged)’).

Data analysis

All analyses were conducted within the R statistical environment ver 3.5.3 [49] on data sup-

plied (S1 Table). Male Ae. aegypti, Ae. albopictus (for Madang only) and Culex abundance

(count) data were set as response variables and analysed separately for each country. For

Madang data, we analysed male Cx. quinquefasciatus only as other Culex species were rarely

caught. For the Molas male Culex data we combined Cx. quinquefasciatus, Cx. nigripalpus and

Cx. restuans abundance data and for the Orange Walk male Culex data, we combined Cx. quin-
quefasciatus and Cx. restuans abundance data to assess Culex catches in the traps.

We fit the treatment parameter ‘trap-type’ to each response variable by specifying a general-

ized linear mixed model (GLMM) with a negative binomial distribution and logit link function

using the lme4 package [50]. Initial model runs using Poisson distributions were consistently

overdispersed. We included the parameters ‘trap location’ and ‘week’ in the model as random

factors to account for any influences on response data between trap locations and throughout

time. Trap fails—where the trap was interfered with or, in the case of BGS traps, the battery

was depleted—were removed from all analyses. For PNG data, where BGS traps were serviced

twice per week, we included an offset parameter in the model to account for trap fails by speci-

fying the number of days (out of seven) the trap was operational. Once models were created,

the effect of predictors within each model were analysed using an analysis of deviance in the

car package [51]. Lastly, post-hoc Tukey test comparisons were used to determine differences
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among the least-squares means of trap type groups, when significantly differences were found

using the emmeans package [52].

Trap-type was unable to be fitted to the Culex response data from Molas using the above

method as there was perfect separation in the data as Culex were not caught in the 600 Hz

MASTs. Instead we employed a Bayesian generalized linear model, using the arm package [53]

to fit parameters to this response variable. This package uses the weakly informative Cauchy dis-

tribution as the prior distribution and was applied to data with separation issues [54]. GLMMs

similar to the above would not run for this data set due to the random effects being too complex

to be supported by the data so we instead ran GLMs including ‘trap location’ and ‘week’ as fixed

factors to account for the influences between locations and over time on the response data. Sig-

nificant interactions between fixed factors were not detected for any models and therefore were

not reported or further analysed regarding the final least complex adequate models.

To compare the mean rates of positive detections of target species between each trap type

abundance data were transformed into binomial data sets by converting all abundance values

greater than zero to one. A set of GLM/Ms were then fitted to these new response variables

using identical models above except that binomial, rather than negative binomial distributions,

were fitted to response data. Again, analyses of deviance and post-hoc Tukey tests were per-

formed to compare differences between groups as described above.

Results

Invertebrate catches

In total 28,796 invertebrates were caught from all traps in all countries, including 15,166 mos-

quitoes and 13,630 other (not-culicid) invertebrates (Table 1).

In Madang, 23,465 invertebrates were caught, with MAST traps capturing ~1–2% of the

total invertebrates sampled by BGS traps (Table 1). Of the 11,796 mosquitoes caught in this

location: 147 male Ae. aegypti were sampled in BGS traps and 401 in MASTs, 118 male Ae.
albopictus were caught in BGS traps and 540 in MASTs and lastly, 5,857 male Cx. quinquefas-
ciatus were caught in BGS traps with 50 caught in MASTs. Additionally, 11,669 other (not-

culicid) invertebrates were also captured (S2 Table).

In Molas, a total of 3,462 invertebrates were caught, with MASTs capturing ~4–26% of the

total invertebrate catch sampled by BGS traps (Table 1). Of the 2,393 mosquitoes caught here:

147 male Ae. aegypti were sampled in BGS traps and 703 in MASTs, 365 male Cx. quinquefas-
ciatus were caught in BGS traps and 313 in MASTs, 67 male Cx. nigripalpus were caught in

BGS traps and 0 in MASTs and lastly, 182 male Cx. restuans were caught in BGS traps and 258

in MASTs. An additional 1,069 other invertebrates were also captured (S1 Table).

In Orange Walk Town, 1,869 total invertebrates were captured, with MASTs catching ~9–

14% of the total invertebrates caught by BGS traps (Table 1). Of the 977 mosquitoes captured

in Orange Walk Town: 125 male Ae. aegypti were captured in BGS traps and 498 in MASTs, 3

male Ae. albopictus were caught in BGS traps and 8 in MASTs, 11 Cx. quinquefasciatus were

caught in BGS traps and none in MASTs and lastly, 131 male Cx. restuans were captured in

BGS traps and 49 in MASTs. In total, 892 other invertebrates (not-culicid) were also caught

(S2 Table).

Comparisons of Aedes mean abundances and positive detection rates per

trap type

In Madang, there were no significant differences (χ2 = 7.8, df = 4, P = 0.097, n = 38–45)

between the weekly mean abundances of male Ae. aegypti among treatments (Fig 2A and S3
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Table). Additionally, there were no significant differences in the rates of positive detections of

male Ae. aegypti by trap-type (χ2 = 3.3, df = 4, P = 0.5, n = 38–45). Male Ae. aegypti were posi-

tively detected in 47% of the weekly samples from the BGS traps and in 37%, 42%, 40% and

36% of the weekly samples from the MAST 450 Hz, 500 Hz, 550 Hz and 600 Hz treatments,

respectively (S4 Table). In addition, no significant differences (χ2 = 8.8, df = 4, P = 0.07,

n = 38–45) were found between the weekly mean abundances of male Ae. albopictus in

Madang per trap type (Fig 2B and S3 Table). Nor were any significant differences detected

regarding positive detection rates of male Ae. albopictus between trap types (χ2 = 6.5, df = 4,

Table 1. Total abundance of taxa caught by trap type in all sites.

Location Taxa BGS trap MAST 450 Hz MAST 500 Hz MAST 550 Hz MAST 600 Hz Total

Madang, Papua Aedes aegypti male 147 99 81 128 93 548

New Guinea Aedes aegypti female 145 0 0 0 0 145

Aedes albopictus male 118 44 157 210 129 658

Aedes albopictus female 350 0 0 0 0 350

Culex annulirostris male 15 3 0 0 0 18

Culex annulirostris female 11 0 0 0 0 11

Culex quinquefasciatus male 5,857 16 20 12 2 5,907

Culex quinquefasciatus female 4,149 0 0 0 0 4,149

Other mosquitoes 10 0 0 0 0 10

Mosquitoes (totals) 10,802 162 258 350 224 11,796

Other invertebrates 11,530 37 18 50 34 11,669

Total invertebrates 22,332 199 276 400 258 23,465

Molas, Mexico Aedes aegypti male 147 206 182 229 86 850

Aedes aegypti female 145 0 0 0 0 145

Culex quinquefasciatus male 365 165 142 6 0 678

Culex quinquefasciatus female 119 0 0 0 0 119

Culex nigripalpus male 67 0 0 0 0 67

Culex nigripalpus female 81 0 0 0 0 81

Culex restuans male 182 161 73 24 0 440

Culex restuans female 2 0 0 0 0 2

Other mosquitoes 11 0 0 0 0 11

Mosquitoes (totals) 1,119 532 397 259 86 2,393

Other invertebrates 974 9 5 79 2 1,069

Total invertebrates 2,093 541 402 338 88 3,462

Orange Walk Aedes aegypti male 125 145 132 112 109 623

Town, Belize Aedes aegypti female 96 1 0 0 0 97

Aedes albopictus male 3 2 2 4 0 11

Aedes albopictus female 7 0 0 0 0 7

Culex quinquefasciatus male 11 0 0 0 0 11

Culex quinquefasciatus female 28 0 0 0 0 28

Culex restuans male 131 23 12 13 1 180

Culex restuans female 20 0 0 0 0 20

Mosquitoes (totals) 421 171 146 129 110 977

Other invertebrates 862 9 8 5 8 892

Total invertebrates 1,283 180 154 134 118 1,869

All locations All mosquitoes (totals) 12,342 865 801 738 420 15,166

All other invertebrates 13,366 55 31 134 44 13,630

All invertebrates 25,708 920 832 872 464 28,796

https://doi.org/10.1371/journal.pntd.0009061.t001
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Fig 2. Mean abundance (± S. E.; coloured lines) with raw abundance data (grey points) per trap type of male A) Ae. aegypti from Madang B) Ae. aegypti from Molas, C)

Ae. aegypti from Orange Walk Town and D) Ae. albopictus from Madang. Madang traps were run continuously each week, whereas in Molas traps were operated for a 24
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P = 0.16, n = 38–45). Male Ae. albopictus were positively detected in 58% of the weekly samples

from the BGS traps and in 39%, 50%, 58% and 45% of the weekly samples from the MAST 450

Hz, 500 Hz, 550 Hz and 600 Hz treatments, respectively (S4 Table).

In Molas, unlike Madang, significant differences (χ2 = 13.2, df = 4, P = 0.01, n = 28–30)

were noted between the weekly mean abundances of male Ae. aegypti according to treatment

(Fig 2C and S3 Table). Male Ae. aegypti were caught in higher abundance in MASTs set to 500

or 550 Hz than those set to 600 Hz. Significant differences were also detected between positive

detection rates of male Ae. aegypti for each trap type (χ2 = 9.6, df = 4, P = 0.048, n = 28–30).

However, post-hoc Tukey tests (P� 0.05) indicated that male Ae. aegypti were positively

detected at higher rates only in the MAST 500 Hz (93%) relative to the MAST 600 Hz traps

(60%). Positive detections of these males from weekly samples were recorded at 75%, 70% and

80% from the BGS traps, MAST 450 Hz and MAST 500 Hz treatments, respectively (S4 Table).

In Orange Walk Town, no significant differences (χ2 = 0.83, df = 4, P = 0.93, n = 43–45)

were indicated between weekly mean abundances of male Ae. aegypti (Fig 2D and S3 Table).

Positive detection rates of male Ae. aegypti also did not significantly differ between trap- types

(χ2 = 2.4, df = 4, P = 0.65, n = 43–45). Male Ae. aegypti were positively detected in 56% of the

weekly samples from the BGS traps and in 43%, 50%, 53% and 49% of the weekly samples

from the MAST 450 Hz, 500 Hz, 550 Hz and 600 Hz treatments, respectively (S4 Table).

Comparisons of Culex mean abundances and positive detection rates per

trap type

In Madang, there were significantly more male Cx. quinquefasciatus (χ2 = 625.5, df = 4,

P< 0.05, n = 45) caught weekly in the BGS traps than all MAST frequency versions (Fig 3A

and S3 Table). Additionally, there were significantly more male Cx. quinquefasciatus caught in

the MASTs set to 500 Hz than to 600 Hz. The rates of positive detection of male Cx. quinque-
fasciatus also significantly differed between BGS traps and all MAST versions (χ2 = 37.1,

df = 4, P< 0.05, n = 38–45), but not between MASTs frequencies when analysed using post-

hoc Tukey tests (P� 0.05). Male Cx. quinquefasciatus were positively detected in 98% of the

weekly samples from the BGS traps and in 15%, 18%, 7% and 5% of the weekly samples from

the MAST 450 Hz, 500 Hz, 550 Hz and 600 Hz treatments, respectively (S4 Table).

Male Culex mean weekly abundances in Molas (during a 24 hr period each week) signifi-

cantly differed between trap types (χ2 = 144.1, df = 4, P< 0.05, n = 28–30; Fig 3B and S3

Table). Highest male Culex abundance rates were recorded in the BGS traps and, within

MASTs, male Culex rates declined as the sound lure frequency was increased. Positive detec-

tion rates of male Culex also significantly differed by trap-type (χ2 = 70, df = 4, P< 0.05,

n = 28–30) with BGS traps displaying higher rates than all MAST treatments. There were no

significant differences in positive detection rates of male Culex between MASTs set to different

sound lure frequencies (Tukey, P� 0.05). Male Culex were positively detected in 93% of the

weekly samples from the BGS traps and in 50%, 47%, 40% and 0% of the weekly samples from

the MAST 450 Hz, 500 Hz, 550 Hz and 600 Hz versions, respectively (S4 Table). For these

models, run with station and week as fixed factors, station was found to significantly influence

the number of Culex caught per week (χ2 = 22.1, df = 9, P = 0.008, n = 28–30) whereas week

did not (χ2 = 20.1, df = 14, P = 0.13, n = 28–30). In relation to positive detection rates of male

hr period each week and traps in Orange Walk Town were operated for an 8 hr period each week. BGS = BG-Sentinel traps, M450 = MASTs with 450 Hz, M500 = MASTs

with 500 Hz, M550 = MASTs with 550 Hz and M600 = MASTs with 600 Hz. Different letters above Molas points indicate significantly different catch rates between

treatments determined by models run separately for each target species (males only) and country (Tukey HSD, P<0.05).

https://doi.org/10.1371/journal.pntd.0009061.g002
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Fig 3. Mean abundance (± S. E.; coloured lines) with raw abundance data (grey points) per trap type of male A) Cx. quinquefasciatus from Madang B) Cx.

quinquefasciatus, Cx. restuans and Cx. nigripalpus combined from Molas and C) Cx. quinquefasciatus and Cx. restuans combined from Orange Walk Town. Madang traps

were run continuously each week, whereas in Molas traps were operated for a 24 hr period each week and traps in Orange Walk Town were operated for an 8 hr period

each week. BGS = BG-Sentinel traps, M450 = MASTs with 450 Hz, M500 = MASTs with 500 Hz, M550 = MASTs with 550 Hz and M600 = MASTs with 600 Hz. Different
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Culex in Molas, neither station (χ2 = 7.3, df = 9, P = 0.6, n = 28–30) nor week (χ2 = 17.3,

df = 14, P = 0.23, n = 28–30) significantly influenced the response variable.

BGS trap mean weekly abundances of male Culex (caught over an 8 hr period each each) in

Orange Walk Town were significantly greater (χ2 = 58.2, df = 4, P< 0.05, n = 43–45) than

those from all MAST treatments (Fig 3C and S3 Table). Male Culex positive detection rates

also significantly varied (χ2 = 31.4, df = 4, P< 0.05, n = 43–45). The BGS traps displayed higher

rates of positive detection for male Culex (51%) than all MAST treatments which were positive

in 11%, 16%, 14% and 2% of all weekly samples from the MAST 450 Hz, 500 Hz, 550 Hz and

600 Hz traps, respectively (S4 Table).

Discussion

The MASTs evaluated in the current study specifically and effectively captured male Ae.
aegypti, relative to BGS traps, when set to various frequencies in one Pacific and two Latin

American dengue endemic countries. These findings not only reinforce the utility of this

sound trap for surveillance of male Ae. aegypti, but also as a suitable platform for continued

development of a smart sensor system, which only needs to process a limited suite of species.

These results also suggest that male Ae. aegypti respond positively to a range of female wing-

beat frequencies in natural environments. The wingbeat frequencies displayed by females may

vary due to a range of factors such as age, size and even ambient temperature [27,32–36]. Field

populations of Ae. aegypti may therefore contain substantial heterogeneity in the wingbeat fre-

quencies produced by females and positive male responses across a range of frequencies may

contribute to enhancing the probability of successful reproduction [27]. Whether our Ae.
aegypti male catch rates in MASTs is due to individual males positively responding to a range

of frequencies or similar proportions of males within a field population positively responding

to different frequencies is unclear. Additionally, the precise influence, if any, of varying ambi-

ent temperatures on male capture rates in sound traps would also require further investigation.

However, this range in attractive frequencies offers flexibility in sound trap frequency selection

which could be potentially useful for the further reduction of bycatch.

Our findings also indicated that male Culex were most attracted to MASTs set to lower fre-

quencies in all study localities and male Ae. aegypti were less abundant in MASTs set to the

highest frequency in Molas. Additionally, male Ae. albopictus, which were caught in compara-

ble rates in all trap-types, peaked in abundance in MASTs set to 550 Hz. Although female

wingbeat frequencies can vary widely due to many factors, previous studies have reported

female Culex wingbeat frequencies to be generally below 400 Hz whereas female Ae. aegypti
wingbeat frequencies tend to be a little higher, with means such as 458–460 Hz, and female Ae.
albopictus wingbeat frequencies are higher still, with means of 536–544 Hz, for example [22–

24].

The preference of Culex for the lower frequency lures in MASTs in the current study is con-

sistent with Ikeshoji and Ogawa [39] who demonstrated an affinity of Culex to their sound

traps set at 400 Hz. Our decline of male Ae. aegypti mean abundance in Molas with traps set to

600 Hz confirmed earlier work by Johnson and Ritchie [14], in which free-flying male Ae.
aegypti catch rates in semi-field experiments were highest in Gravid Aedes Traps (Biogents,

Regensburg, Germany) with sound lures set to 484 Hz compared to those set to 560 Hz or 715

Hz.

letters above points indicate significantly different catch rates between treatments determined by models run separately for each target species (males only) and country

(Tukey HSD, P<0.05).

https://doi.org/10.1371/journal.pntd.0009061.g003
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This study not only confirms previous findings that the MAST captures comparable mean

abundances and positive weekly detection rates of male Ae. aegypti to those caught in BGS

traps [18], but also extends this work to include similar findings regarding male Ae. albopictus.
Our results in Madang indicated that catches of male Ae. albopictus decrease in sound traps set

to frequencies below 500 Hz which is consistent to field studies performed in northern Austra-

lia by Swan, Russel et al. [41]. Balestrino, Iyaloo et al. [12] investigated the attraction of male

Ae. albopictus to 545 Hz, 600 Hz and 649 Hz, as well as a frequency-sweep ranging between

500–650 Hz, within a climatic chamber using a prototype sound trap. While, similar to us,

they did not find any significant differences in male attraction to traps set at fixed frequencies,

they recorded a light decline in the number of males attracted to 650 Hz, relative to 600 Hz,

whereas our mean male abundances began to decline at 600 Hz, relative to 550 Hz [12] and the

mean abundances of male Ae. albopictus sampled by Swan, Russel et al. [41] declined between

650 Hz and & 700 Hz. Such differences in the upper limits of male attraction may reflect varia-

tions between male Ae. albopictus of different strains. Balestrino, Iyaloo et al. [12] also demon-

strated significantly greater male catch rates in sound traps set with the frequency-sweep,

relative to the fixed frequencies, which they attributed to better representing either the range

of sounds potentially displayed during swarming or a female in flight, thereby exciting males

more. Additionally, they hypothesised that males may experience desensitisation to a fixed fre-

quency and become less responsive. While we set our sound lures to intermittent tones (30 s

on-off) to save energy and reduce potential male desensitisation, future field trials with the

MAST should also test male mosquito responsiveness using frequency-sweeps.

Regarding bycatch, it is important to note that BGS traps are often deployed with a variety

of chemical lures which often significantly increase Ae. aegypti and Ae. albopictus catch rates

[55–58]. However, how these chemical lures influence bycatch abundance in BGS traps is

unknown. Furthermore, the addition of chemical lures to sound traps has been rarely investi-

gated. Staunton, Rohde et al. [59] found that Gravid Aedes Traps with sound lures and

BG-Lures (Biogents, Regensburg, Germany) did not catch higher abundances of male Ae.
aegypti than those set without these chemical lures in northern Australia. Kanda, Cheong et al.

[40] found that the addition of dry ice and a guinea pig to their sound traps greatly increased

male Mansonia capture rates in Malaysia. Future trials, assessing the efficacy of the MAST,

should investigate mosquito and other invertebrate catch rates in both MASTs and BGS traps

set with chemical lures.

The MAST was designed to capture male Aedes mosquitoes by attracting them from a dis-

tance with its large black base and then enticing them into the clear capture container with the

sound lure, with a physical design which enhances the species-specificity of catches [18]. With

the lure set at 60 dB at the trap entrance to avoid irritating people living nearby, the sound lure

is only effective over short distances as sound is detected by mosquitoes as particle motion

which reduces rapidly with distance [60]. The MAST was not designed to sample Culex mos-

quitoes, especially species which inhabit houses such as those from the Culex pipiens complex,

which may co-locate with Ae. aegypti. As such it was unsurprising that male Culex were caught

in lower abundances, and detected less frequently, in MASTs than BGS traps at all locations.

Unlike males of Ae. aegypti and Ae. albopictus, male Culex pipiens generally swarm over large

objects such as trees and buildings, although swarming can occur at ground level [61]. The

very low catch rates of Cx. quinquefasciatus in the MASTs, relative to the BGS traps in PNG,

suggest that this strain may not be attracted to the MAST base. However, Culex pipiens quin-
quefasciatus, sourced from The Gambia and maintained in a laboratory in England were

reported to have swarmed within a cage over a black marker and adjusted their flight behav-

iour relative to a non-localised frequency played between 500 and 600 Hz [62]. It is therefore

feasible that the Culex captured in Mexico were either attracted to the MAST base as a swarm
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marker and then entered the trap at certain frequencies or were simply at high abundances

and responded positively to the sound lures as they randomly intercepted the MASTs. While

not designed to catch Culex, the MAST could potentially use sound lures run at lower frequen-

cies than those tested in Molas or be physically reconfigured, although potentially at the

expense of Aedes capture effectiveness, to expand the application of MASTs to monitoring

Culex.

In light of the above findings and in relation to Aedes surveillance, 550 Hz may be the opti-

mal frequency for this MASTs sound lure. At this frequency both male Ae. aegypti and Ae.
albopictus mean abundances and positive detection rates were effective, relative to the BGS

trap, while male Culex catch rates were consistently low. These results support previous find-

ings [18] that the MAST is a highly species-specific trap, relative to the BGS trap. Large reduc-

tions in bycatch saves significant time and labour for surveillance programs of Ae. aegypti or

Ae. albopictus. Thus, using a sound lure to capture mosquitoes may enable the development of

a cost-effective smart trap to accurately identify catches with a reduced workforce

requirement.

Conclusion

This study is the most extensive reported set of surveys investigating male mosquito capture

rates in sound traps set at different frequencies under natural conditions and presents data

vital to the effective deployment of sound traps in control programs, such as those mass rear-

ing and releasing Wolbachia-infected males. MASTs utilising sound lures set to 450–550 Hz

consistently caught male Ae. aegypti at comparable rates to BG-Sentinel traps in all study loca-

tions. Results suggest that MASTs should be set at 550 Hz for male Ae. aegypti and Ae. albopic-
tus surveillance in these regions to ensure sensitive detection of the Aedes vectors with limited

bycatch, including male Culex. Our findings will further enable development of a cost-effective

smart trap to assist in rigorously monitoring key mosquito vector species all the while reducing

burden in person-time.
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S1 Fig. The MAST deployed in A) a laundry area in Madang and kitchen areas in B) Molas

and C) Orange Walk Town.

(TIF)

S1 Table. Male mosquito data from each country on which analyses were performed.

(XLSX)

S2 Table. Total abundance of other invertebrates (not Culicidae) caught by trap type in all

sites.

(XLSX)

S3 Table. Mean weekly (± S. E.) abundances of target mosquito species (males only) by

trap type in all sites. Note in Madang traps were run continuously each week, whereas in

Molas traps were operated for a 24 hr period each week and in Orange Walk Town traps

were operated for an 8 hr period each week. Culex spp. from Molas are comprised of com-

bined abundance values for Cx. quinquefasciatus, Cx. restuans and Cx. nigripalpus and Culex
spp. from Orange Walk Town consist of combined abundance values for Cx. quinquefasciatus
and Cx. restuans.
(XLSX)
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S4 Table. Mean weekly (± S. E.) proportions of positive detection rates of target mosquito

species (males only) by trap type in all sites. Note in Madang traps were run continuously

each week, whereas in Molas traps were operated for a 24 hr period each week and in Orange

Walk Town traps were operated for an 8 hr period each week. Culex spp. from Molas are com-

prised of combined abundance values for Cx. quinquefasciatus, Cx. restuans and Cx. nigripal-
pus and Culex spp. from Orange Walk Town consist of combined abundance values for Cx.

quinquefasciatus and Cx. restuans.
(XLSX)
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