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Abstract: The Guangxi Zhuang Autonomous Region is an important manganese ore district in
Southwest China, with manganese ore resource reserves accounting for 23% of the total manganese
ore resource reserves in China. The Xialei manganese deposit (Daxin County, Guangxi) is the first
super-large manganese deposit discovered in China. The Mn oxide in the supergene oxidation
zone of the Xialei deposit was characterized using scanning electron microscopy (SEM), energy
spectrometer (EDS), transmission electron microscopy (TEM, HRTEM), and X-ray diffraction analysis
(XRD). The Mn oxides have a gray-black/steel-gray color, a semi-metallic-earthy luster, and appear
as oolitic, pisolitic, banded, massive, and cellular textures. Scanning electron microscopy images
show that the manganese oxide minerals are present as fine-spherical particles with an earthy surface.
TEM and HRTEM indicate the presence of oriented bundled and staggered nanorods, and nanopores
between the crystals. The Mn oxide ore can be classified into two textural types: (1) oolitic and
pisolitic (often with annuli) Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and
hollandite are the main Mn oxide minerals. The potassium contents of cryptomelane and pyrolusite
are discussed. The unit cell parameters of pyrolusite are refined.

Keywords: manganese oxide; Xialei Mn deposit; mineral composition; crystal structure; pyrolusite

1. Introduction

Manganese (Mn) ranks 10th in abundance among the crustal elements. Its valence
electron configuration of 3d54s2 with seven valence electrons allows a variable valence
(0, +II, +III, +IV, +VI, +VII) [1,2]. Mn occurs in three oxidation states (+II, +III, +IV) in
minerals, resulting in a wide variety (more than 30) of Mn oxide and hydroxide minerals.
The MnO6 octahedral structure, which is the basic building block for most Mn oxide
minerals, can share edges, corners, or faces to form tunnel and layer structures [2,3].

Manganese oxides are widely distributed in nature and affect the concentration,
migration, and bioavailability of heavy metals, organic matter, and nutrient elements in
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soil, water, and sediments [4,5]. Lu et al. [6–8] studied the mineral composition and fine
structure characteristics of the Fe-Mn oxide “mineral membrane”, which develops on
the soil/rock surface when exposed to sunlight. They found evidence for non-classical
photosynthesis, indicating that natural Mn oxide plays an important role in biogeochemical
interactions between the lithosphere, hydrosphere, and atmosphere.

Natural Mn oxide is low in price and can be used as a source material for Li-Mn
batteries. Lithium-manganese oxide batteries have, therefore, a strong price advantage and
show great potential because of their excellent power and discharge rate under variable
temperature conditions and high voltage frequency [9]. Natural Mn oxides also have
good surface adsorption properties and are chemically active. Under different conditions,
they can show different degrees of adsorption of heavy metal ions and adsorption and
oxidation of anions including NO3

−, PO4
3−, F−, and S2−. Manganese oxide can adsorb,

transform, and degrade organic pollutants including phenol, ethane, ethylene, and syn-
thetic organic acids, and it can decompose and transform CO2, NOx, and SO2 [10,11]. All
in all, Mn oxides show great potential for the transition to a green economy and mitigating
environmental pollution.

The Guangxi Zhuang Autonomous Region is one of the most important Mn ore
districts in China. The Mn ore resource reserves account for 23% of the national Mn
ore resource reserves in China. The Xalei deposit is the earliest super-large Mn deposit
discovered in China with an average grade of Mn oxide ore of ~30% [12,13]. Previous
research on the Mn oxide minerals in the Xialei deposit [11,14] has been limited to cryp-
tomelane, i.e., other Mn oxide minerals have not been investigated in detail. Systematic
understanding of the Mn oxide minerals in the supergene zone is also in lack for the Mn
deposits in China. As a typical example of a super-large manganese deposit in China, the
Xialei Mn deposit can be taken as a representative example to investigate the manganese
oxide minerals.

Natural Mn oxides that occur in the supergene zone can be present as fine-scale
intergrowths of two or more phases that readily alter from one to another, which makes the
identification of multiple disordered phases challenging [15]. A combination of different
analytical techniques was used, including scanning electron microscopy (SEM), energy
spectrometry (EDS), transmission electron microscopy (TEM, HRTEM), Electron Probe
Micro Analysis (EPMA), and X-ray diffraction analysis (XRD) to chemically and structurally
characterise the Mn oxide minerals in the supergene zone of the Xialei Mn deposit, with
the aim to provide a mineral characterisation reference framework of Mn oxide minerals of
one of the largest Mn deposits in China.

2. Geological Settings

Situated in the Daxin County (Guangxi), the Xialei Mn deposit is the first super-large
Mn deposit discovered in China. The Mn ore resource reserves of Guangxi account for 23%
of the total Mn ore resource reserves in China. The study area is located in the Caledonian
fold belt in South China (Figure 1a) comprising Cambrian, Devonian-Triassic, Tertiary, and
Quaternary strata (Figure 1b).
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Figure 1. (a) Location and regional geological setting of the Xialei Mn Deposit (modified after [16]); (b) detailed geological
map of the Xialei Mn deposit (modified after [17]).

The Xialei Mn deposit is hosted in Devonian and Carboniferous strata with primary
Mn carbonate occurring in the Upper Devonian Wuzhishan Formation and the Mn oxide
occurring in the supergene oxide zone. The Wuzhishan Formation is divided into three
layers, and the stratabound Mn ore body occurs in the middle layer (Figure 2). The upper
layer (8–124 m thick) of the Wuzhishan Formation is composed of calcareous limestone,
siliceous calcareous mudstone, marlstone, and carbon-bearing siliceous rock and marlstone.
The middle layer (10–100 m thick) contains thin layers of siliceous limestone, siliceous
rock, Mn carbonate ore bodies, siliceous mudstone intercalated with Mn carbonate, and
calcareous mudstone. The lower layer (9–88 m thick) is composed of argillaceous limestone,
calcareous mudstone, and lentil-loaded limestone. The average Mn content of the primary
ore is 18–20%, and the average Mn content in the oxidized ore is 28–35% [12]. Minor mafic
intrusions including diabase stocks and dykes are present in the region [17].

The Mn ore body is situated in the north-north-east extension of the Shangying
syncline. The Upper and Lower Carboniferous limestone occur in the centre of the syncline
and are characterized by steep karst mountains with a height of about 400 m. The Upper
Devonian siliceous rocks on both limbs of the syncline appear as hills. The Mn oxide
ore bodies occur near the surface on the two limbs of the Shangying syncline. Intense
folding and faulting of the southern and southwestern limb inverted the stratigraphy,
causing the oxidation zone to be deeper (oblique depth of the Mn oxide ore body reaching
approximately 50–150 m) than in the northwest limb (oblique depth of the Mn oxide ore
body reaching approximately 15 m, [18]). The (quasi) layered Mn oxide ore body follows
the folded Mn-bearing Devonian Wuzhishan Formation and retains the appearance of the
original stratabound Mn carbonate ore body.
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Figure 2. Cross section showing the geometry of supergene Mn oxide bodies (modified after [18]).

3. Methodology
3.1. Sampling and Preparation

The Mn oxide ore from the oxidation zone of the Xialei Mn deposit occurs as black to
steel-gray/ brownish red, semi-metallic earthy luster, cryptocrystalline–microcrystalline
texture. The Mn oxides are characterized by oolitic and pisolitic (Figure 3a,b), oolitic-
banded (Figure 3c), massive-earthy (Figure 3d), massive (Figure 3e), and massive-cellular
(Figure 3f) textures.

Minerals 2021, 11, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. Representative hand specimens of the Mn-oxide ore in the Xialei deposit. (a) and (b) Oolitic 

and pisolitic texture; (c) oolitic-banded texture (yellow dashed line indicates the banded texture); 

(d) massive-earthy texture; (e) massive texture; (f) massive-cellular texture. 

Two Mn oxide samples (XLO-1 and XLO-2) were collected from the supergene zone 

in the Xialei Mn deposit. The average Mn mass fraction of XLO-1 (34.2 wt.%) and XLO-2 

(34.6 wt.%) was determined using a Thermo Scientific Niton XL 3t XRF analyzer (Table 1). 

Polished thin sections and polished blocks were prepared for ore microscopy and petrog-

raphy. Mn oxide samples for XRD, SEM, and TEM are Mn oxide minerals selected by 

gravity separator, selected by binocular microscope and then meshed to power <200 mesh. 

Table 1. Chemical composition of the two Mn oxide samples (XLO-1, XLO-2) from the Xialei deposit by X-Ray Fluores-

cence (in wt.%). 

Sample No. Mn Mn Error Ti Ti Error Fe Fe Error K K Error Ba Ba Error 

XLO-1 

20.4 0.855 0.1 0.019 6.1 0.283 1.1 0.213 0.0 0.012 

41.0 1.914 0.2 0.025 10.2 0.521 1.1 0.236 0.7 0.063 

41.3 1.717 0.1 0.021 9.2 0.419 0.9 0.220 0.3 0.031 

XLO-2 

30.4 1.461 0.1 0.019 15.2 0.770 0.4 0.191 0.1 0.022 

30.8 1.418 0.1 0.019 17.8 0.872 0.4 0.185 0.0 0.016 

42.5 2.579 0.1 0.020 2.5 0.228 0.3 0.198 0.1 0.025 

XLO-1 average 34.2 1.495 0.2 0.022 8.5 0.408 1.1 0.223 0.3 0.035 

XLO-2 average 34.6 1.819 0.1 0.019 11.8 0.623 0.4 0.191 0.1 0.021 

3.2. Experimental Methods 

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Mn 

oxide mineral powders (<200 mesh) were pasted onto conductive adhesive for SEM and 

EDS analysis. SEM observations were carried out on a Hitachi S-3500N scanning electron 

microscope operated at 24.96 kV. EDS analysis was carried out using an INCA-300 Oxford 

Instrument. The SEM and EDS analyses were performed at the Beijing General Research 

Institute of Mining and Metallurgy Technology Group. 

Transmission electron microscopy (TEM) and high-resolution transmission electron 

microscopy (HRTEM). The Mn oxide mineral powder <200 mesh was embedded with G1 

glue for the preparation of ultra-thin sections for TEM and HRTEM analysis. The TEM 

and HRTEM analyses were carried out at the Beijing General Research Institute of Mining 

and Metallurgy Technology Group using a JEOL JEM2100 high-resolution transmission 

electron microscope. An accelerating voltage of 200 kV was used. 

X-ray diffraction (XRD). Manganese oxide mineral powder (<200 mesh) was used for 

XRD analysis, which was carried out at the China University of Geosciences Beijing using 

Figure 3. Representative hand specimens of the Mn-oxide ore in the Xialei deposit. (a) and (b) Oolitic
and pisolitic texture; (c) oolitic-banded texture (yellow dashed line indicates the banded texture);
(d) massive-earthy texture; (e) massive texture; (f) massive-cellular texture.

Two Mn oxide samples (XLO-1 and XLO-2) were collected from the supergene zone
in the Xialei Mn deposit. The average Mn mass fraction of XLO-1 (34.2 wt.%) and XLO-2
(34.6 wt.%) was determined using a Thermo Scientific Niton XL 3t XRF analyzer (Table 1).
Polished thin sections and polished blocks were prepared for ore microscopy and petrogra-
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phy. Mn oxide samples for XRD, SEM, and TEM are Mn oxide minerals selected by gravity
separator, selected by binocular microscope and then meshed to power < 200 mesh.

Table 1. Chemical composition of the two Mn oxide samples (XLO-1, XLO-2) from the Xialei deposit by X-Ray
Fluorescence (in wt.%).

Sample No. Mn Mn Error Ti Ti Error Fe Fe Error K K Error Ba Ba Error

XLO-1
20.4 0.855 0.1 0.019 6.1 0.283 1.1 0.213 0.0 0.012
41.0 1.914 0.2 0.025 10.2 0.521 1.1 0.236 0.7 0.063
41.3 1.717 0.1 0.021 9.2 0.419 0.9 0.220 0.3 0.031

XLO-2
30.4 1.461 0.1 0.019 15.2 0.770 0.4 0.191 0.1 0.022
30.8 1.418 0.1 0.019 17.8 0.872 0.4 0.185 0.0 0.016
42.5 2.579 0.1 0.020 2.5 0.228 0.3 0.198 0.1 0.025

XLO-1 average 34.2 1.495 0.2 0.022 8.5 0.408 1.1 0.223 0.3 0.035
XLO-2 average 34.6 1.819 0.1 0.019 11.8 0.623 0.4 0.191 0.1 0.021

3.2. Experimental Methods

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Mn
oxide mineral powders (<200 mesh) were pasted onto conductive adhesive for SEM and
EDS analysis. SEM observations were carried out on a Hitachi S-3500N scanning electron
microscope operated at 24.96 kV. EDS analysis was carried out using an INCA-300 Oxford
Instrument. The SEM and EDS analyses were performed at the Beijing General Research
Institute of Mining and Metallurgy Technology Group.

Transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM). The Mn oxide mineral powder < 200 mesh was embedded with G1
glue for the preparation of ultra-thin sections for TEM and HRTEM analysis. The TEM
and HRTEM analyses were carried out at the Beijing General Research Institute of Mining
and Metallurgy Technology Group using a JEOL JEM2100 high-resolution transmission
electron microscope. An accelerating voltage of 200 kV was used.

X-ray diffraction (XRD). Manganese oxide mineral powder (<200 mesh) was used
for XRD analysis, which was carried out at the China University of Geosciences Beijing
using a Bruker D2 Phaser X-ray diffractometer with a Cu Kα radiation source. X-ray
diffraction patterns were collected between 5 and 80◦ (2θ) at a scanning rate of 1◦ (2θ) min−1

(λ = 0.154 nm, 30 kV, 10 mA). For XRD indexing, the Le Bail routine (Peakfit) and manually
picked peaks were combined. The Rietveld method with extraction of the structure factors
(Fobs) was then used for refining the unit cell parameters.

Electron probe micro-analysis (EPMA). Major and minor element chemical analysis
of the Mn oxides were carried out at the Chinese Academy of Geological Sciences using
a JXA-iHP200F Hyper Probe electron microprobe with a 15 kV accelerating voltage, a beam
current of 20 nA, a counting time of 10 s (peak position), and a beam diameter of 5 µm.
Standard substances refer to GB/T 15074-2008 general rules for EPMA analysis.

4. Results
4.1. Optical Microscopy

Cryptomelane shows a light whitish green to off-white reflection color with sig-
nificant pleochroism. The cryptomelane shows an oolitic-pisolitic and massive texture
(Figure 4a,b,e). Massive pyrolusite shows earthy-yellow, yellow-white to cream-yellow re-
flection light, and strong pleochroism. Pyrolusite sometimes occurs as prismatic microcrys-
tals (Figure 4c–e,h). Cracks that resulted from dehydration can be observed (Figure 4f,g).
Hollandite shows a yellow-grey reflection color, weak pleochroism, and a colloidal texture
(Figure 4g,h). The pyrolusite-cryptomelane-hollandite assemblage occurs, which can be
observed under the microscope and in BSE images (Figure 4e,g,h).



Minerals 2021, 11, 1243 6 of 14

Minerals 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 

a Bruker D2 Phaser X-ray diffractometer with a Cu Kα radiation source. X-ray diffraction 

patterns were collected between 5 and 80° (2θ) at a scanning rate of 1° (2θ) min−1 (λ = 0.154 

nm, 30 kV, 10 mA). For XRD indexing, the Le Bail routine (Peakfit) and manually picked 

peaks were combined. The Rietveld method with extraction of the structure factors (Fobs) 

was then used for refining the unit cell parameters. 

Electron probe micro-analysis (EPMA). Major and minor element chemical analysis 

of the Mn oxides were carried out at the Chinese Academy of Geological Sciences using a 

JXA-iHP200F Hyper Probe electron microprobe with a 15 kV accelerating voltage, a beam 

current of 20 nA, a counting time of 10 s (peak position), and a beam diameter of 5 μm. 

Standard substances refer to GB/T 15074-2008 general rules for EPMA analysis. 

4. Results 

4.1. Optical Microscopy 

Cryptomelane shows a light whitish green to off-white reflection color with signifi-

cant pleochroism. The cryptomelane shows an oolitic-pisolitic and massive texture (Figure 

4a,b,e). Massive pyrolusite shows earthy-yellow, yellow-white to cream-yellow reflection 

light, and strong pleochroism. Pyrolusite sometimes occurs as prismatic microcrystals 

(Figure 4c–e,h). Cracks that resulted from dehydration can be observed (Figure 4f,g). Hol-

landite shows a yellow-grey reflection color, weak pleochroism, and a colloidal texture 

(Figure 4g,h). The pyrolusite-cryptomelane-hollandite assemblage occurs, which can be 

observed under the microscope and in BSE images (Figure 4e,g,h). 

 

Figure 4. Representative thin section photomicrographs and back-scattered electron images of the 

Mn-oxide ore in the Xialei deposit. (a,b) Cryptomelane showing light whitish green to off-white 

reflection color, annulus texture; (c–f) Pyrolusite showing an earthy-yellow, yellow-white to cream- 

Figure 4. Representative thin section photomicrographs and back-scattered electron images of the
Mn-oxide ore in the Xialei deposit. (a,b) Cryptomelane showing light whitish green to off-white
reflection color, annulus texture; (c–f) Pyrolusite showing an earthy-yellow, yellow-white to cream-
yellow reflection color and a massive texture; (e) Mineral assemblage of pyrolusite, cryptomelane,
and hollandite; (g,h) Annule-type texture of pyrolusite and hollandite, with hollandite colloidal
structure. Microphotographs (a–g) are reflective light images, the image in (h) is a back-scattered
electron image. Cry—Cryptomelane; Pyr—Pyrolusite; Hol—Hollandite.

4.2. SEM and TEM

Scanning electron microscopy images show that the Mn oxide mineral samples in
Xialei deposit present as fine-spherical with earthy surface (Figure 5a,b). Tiny loose particles
can be observed at 10,000 and 2000× magnifications (Figure 5c–f). The EDS results of Mn
oxide are shown in Figure 5g,h. Figure 6 presents the TEM and HRTEM images of the
tunnels of Mn oxide. Three-dimensional nanorods can be observed with widths and
lengths of 5–10 and 200–500 nm, respectively (Figure 6a). The TEM and HRTEM images
show the detailed structure of the extended nanorod in the Mn oxide in the Xialei deposit
(Figure 6b–e). Nanopores between the crystal grains can be observed with the diameter of
the pores ranges from a few to about 60 nm (Figure 6a–e). The fringe distances separated
by 0.24 and 0.31 nm with a cross angle of 90◦ are in good agreement with the lattice
spacings of the (101) and (110) planes of pyrolusite (K2O wt.% < 1, Ba was not detected by
EDS), respectively (Figure 6f). The lattice plane distances are also in agreement with those
determined by XRD.
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4.3. EPMA

The analyzed points for EPMA came from six polished thin sections. Two representa-
tive textural types of samples (oolitic and massive) were involved for the EPMA analyses,
with 79 points in total (shown in Table S1). The mineral species include cryptomelane,
pyrolusite and hollandite. The Mn oxide minerals are composed of MnO (69.87–83.27 wt.%,
average value of 77.96 wt.%), K2O (0.03–4.33 wt.%, average value of 2.01 wt.%), CaO
(0.08–1.76 wt.%, average value of 0.65 wt.%), and BaO (0–8.76 wt.%, average value of
0.30 wt.%). Other elements include SiO2 (<6.96 wt.%, average value of 0.25 wt.%), MgO
(<1.98 wt.%, average value of 0.22 wt.%), P2O5 (<0.72 wt.%, average value of 0.20 wt.%),
Al2O3 (0.02–0.66 wt.%, average value of 0.18 wt.%), FeO (<0.19 wt.%, average value of
0.07 wt.%), Na2O (<0.31 wt.%, average value of 0.06 wt.%), TiO2 (<0.12 wt.%, average value
of 0.02 wt.%), Cr2O3 (<0.09 wt.%, average value of 0.02 wt.%), NiO (<0.17 wt.%, average
value of 0.02 wt.%), CuO (<0.11 wt.%, average value of 0.02 wt.%), ZrO2 (<0.08 wt.%,
average value of 0.01 wt.%), and PbO (<0.07 wt.%, average value of 0.01 wt.%). The K2O
mass fraction in oolitic and pisolitic structure ranges from 2.31 to 4.33 wt.% (average value
of 3.60 wt.%), whereas the K2O mass fraction in the massive structure ranges between
0.03 and 2.21 wt.% (average value of 0.54 wt.%) (Figure 7). The compositional data and
the calculated a.p.f.u. (atoms per formula unit) of the different mineral species are shown
in Table S1.
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4.4. XRD

The three strongest XRD peaks for Mn oxide sample XLO-1 are: 2θ= 28.580◦ (d = 3.1207 Å,
height = 2565), 2θ = 37.368◦ (d = 2.4045 Å, height = 1850), 2θ = 56.569◦ (d = 1.6256 Å,
height = 771), and for Mn oxide sample XLO-2:2θ = 26.630◦ (d = 3.3447 Å, height = 1808),
2θ = 28.579◦ (d = 3.1208 Å, height = 769), 2θ = 37.323◦ (d = 2.4073 Å, height = 475),
2θ = 56.605◦ (d = 1.6246 Å, height = 360) (all detected peaks are shown in Table 2).
A comprehensive analysis (using XRD pattern processing software JADE and Search-
Match) combined with the EDS results shows that the Mn oxide samples comprise pyro-
lusite (PDF No. 72-1984), cryptomelane (PDF No. 44-1386), hollandite (PDF No. 75-1184),
and quartz (PDF No. 46-1045) (Figure 8). The pyrolusite unit cell parameters (tetragonal
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system, space group P 42/m n m) were refined using the Rietveld method returning the fol-
lowing unit cell parameters, i.e., for sample XLO-1: a = 4.41 (±0.01) Å, b = 4.41 (±0.01) Å,
c = 2.87 (±0.01) Å, V = 55.96 (±0.11) Å3, and for sample XLO-2: a = 4.42 (±0.01) Å,
b = 4.42 (±0.01) Å, c = 2.87 (±0.01) Å, V = 56.01(±0.06) Å3.

Table 2. XRD peak lists of the Mn oxide in the Xialei deposit.

2-Theta D-Spacing Intensity Width

Sample XlO-1
12.669 6.9816 692 0.233
17.935 4.9416 293 0.332
28.580 3.1207 2565 0.226
37.368 2.4045 1850 0.237
56.569 1.6256 771 0.264
72.419 1.3039 227 0.268
75.663 1.2559 101 0.189

Sample XlO-2
12.339 7.1672 142 0.089
18.692 4.7432 137 0.094
26.630 3.3447 1808 0.068
28.579 3.1208 769 0.113
37.323 2.4073 475 0.112
42.759 2.1130 206 0.094
56.605 1.6246 360 0.119
59.957 1.5416 351 0.078
67.747 1.3820 215 0.078
68.142 1.3749 259 0.075
72.360 1.3048 151 0.127
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5. Summary and Discussion
5.1. Mn Oxide Phases, Chemical Composition, and Genesis

In this study, petrography, bulk chemical composition, EPMA, and XRD were carried
out to characterize the Mn oxide phases. The average Mn content of the Mn oxides deter-
mined in this study is 34.4 wt.% (Table 1), which is consistent with previous studies [12,19].
Pyrolusite, cryptomelane, and hollandite are the main Mn oxide ore minerals, and quartz
is the primary gangue mineral.
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The strong XRD peaks are consistent with cryptomelane and pyrolusite (Figure 8).
Thus, in this case, depending solely on ideal chemical formula may not be sufficient for
phase identification. Hollandite can be identified chemically as it contains Ba. In order to
distinguish between pyrolusite and cryptomelane, optical microscopy and the K2O mass
fraction were applied.

Richmond and Fleischer [20] were the first to separate cryptomelane from
a cryptocrystalline aggregate and demonstrated that cryptomelane is characterized by
a high mass fraction of K2O (3.10–3.88 wt.%). Detailed studies on the crystal structure of
natural Mn-K ore (e.g., [2,21,22]) have resulted in the availability of a complete and detailed
crystal structure data set. Gao et al. [23] studied the chemical composition of cryptomelane
from the Xiangtan deposit (Hunan province, South China) with a K2O mass fraction of
2.9–3.2 wt.%. Zhao et al. [14] studied the oolitic and pisolitic cryptomelane in the Xialei
deposit and found that the K2O was >2.5 wt.%. Vafeas et al. [24] studied fibrous cryptome-
lane from the todorokite-cryptomelane mineral assemblage at the Sebilo mine (northern
Cape Province, South Africa) of which the cryptomelane K2O is 4.4–7.0 wt.%. With regard
to pyrolusite, the tunnels are too small to accommodate cations except for possibly H+.
Consequently, most natural pyrolusite samples are close to the ideal composition [22], with
a K2O weight percent of 0.18–0.91 wt.% [25].

The Mn oxide ore can be classified into two types: (1) oolitic and pisolitic (often with
annuli, Figures 3a–c and 4a,b), and (2) massive (Figures 3d–f and 4c–e). The EPMA results
(Figure 7) show that the K2O mass fraction in oolitic and pisolitic structure ranges from
2.31 to 4.33 wt.% (average of 3.60 wt.%), whereas the K2O mass fraction in the massive
structure varies between 0.03 and 2.21 wt.% (average of 0.53 wt.%). The oolitic and pisolitic
Mn oxide shows a higher K2O content than the massive Mn oxide. In the oolitic and
pisolitic Mn oxide, the primary Mn oxide mineral is cryptomelane, confirming a previous
study by Zhao et al. [14]. The massive Mn oxide, on the other hand, comprises dominantly
pyrolusite with local cryptomelane (Figure 7). The pyrolusite-cryptomelane assemblage
(Figure 4e) has been confirmed by EPMA. The cryptomelane is characterized by a K2O
mass fraction of 1.0–2.5 wt.%. Thus, the cryptomelane and pyrolusite are characterized by
a K2O > 1 and <1 wt.%, respectively.

Pyrolusite is a stable MnO2 phase in the supergene environment. When the potas-
sium concentration in the formation environment is high, cryptomelane will replace
pyrolusite [10,24,26]. The oolitic and pisolitic Mn oxide ore is pure cryptomelane, in-
dicating a high degree of oxidation and a relatively high K mass fraction.

5.2. Crystal Structure of the Mn Oxide

Considerable attention has been paid to the tunnel structure in Mn oxides due to
their excellent catalytic performances [27]. In pyrolusite, single chains of MnO6 octahedra
sharing corners with neighboring chains, build a framework structure containing tunnels
(1 × 1), with the theoretical size of ~0.23 × 0.23 nm2, forming a rutile-type structure.
The crystal structure of cryptomelane and hollandite consists of two double edge-sharing
MnO6 octahedral chains forming a 2 × 2 tunnel, which are corner-connected to form
one-dimensional tunnels, with a cryptomelane tunnel size of ~0.46 × 0.46 nm2 [2,27].

Of the main Mn oxide ore minerals cryptomelane has been studied in detail by Lu
and Li [11] and Zhao et al. [14]. Therefore, the crystal structure of pyrolusite and hol-
landite became the focus of our study. Hollandite shows far less information of crystal
structure than pyrolusite because of its limited presence. In this study, the unit cell pa-
rameters for pyrolusite (tetragonal system) were refined, which is as follows for sample
XLO-1:a = 4.41 (±0.01) Å, b = 4.41 (±0.01) Å, c = 2.87 (±0.01) Å, V = 55.96 (±0.11) Å3, and for
sample XLO-2:a = 4.42 (±0.01) Å, b = 4.42 (±0.01) Å, c = 2.87 (±0.01) Å, V = 56.01 (±0.06) Å3.
The size of the pyrolusite tunnels has been determined to be 2.6705 × 2.6705 Å2 (Figure 9)
using Diamond crystal modeling software.
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Transition metal oxides (TMOs) are considered to be one of the most promising
battery anode materials due to their high specific capacity, low cost, and wide practicability.
Compared with other TMOs, Mn oxide has a lower conversion reaction potential, especially
MnO (standard potential is 1.03 V); it is widely available, and it is environmentally friendly.
It is a multi-electron reaction with great potential for anode material [28]. The synthetic
material K-OMS-2 has been designed to manufacture high-energy-density batteries [29,30].

Mn oxide has wide applications in environmental purification techniques, in particular
cryptomelane, which has a one-dimensional extended Mn oxide octahedral molecular sieve
2 × 2 pore structure (OMS-2) [10,14]. It can degrade phenolic organics in industrial
wastewater [31,32] and decolorize printing and dyeing wastewater [33]. It also performs
well in the absorption and decomposition of formaldehyde at room temperature [34]. Mn
oxide can also affect organic matter cycling through adsorption, oxidative coupling, or
oxidative decomposition (e.g., Mn oxide can degrade organic macromolecules in soil and
water). In addition, Mn oxide can oxidatively couple small organic matter and participate



Minerals 2021, 11, 1243 12 of 14

in the formation of humus, thereby reducing the bioavailability and toxicity of molecular
organics [35,36].

6. Conclusions

The average Mn content of the Mn oxides in this study from the Xialei deposit in this
study is 34.4 wt.%. The Mn oxide ore can be classified into two textural types: (1) oolitic
and pisolitic Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and hollandite
are the main Mn oxide ore minerals in the supergene zone of the Xialei Mn deposit.

Scanning electron microscopy images show that the Mn oxide minerals in the Xialei de-
posit are present as fine-spherical with an earthy surface. TEM and HRTEM imaging show
that the Mn oxides appear as oriented bundled and staggered nanorods, with nanopores
between the crystal grains. The nanopore diameter ranges from a few nm to about 60 nm.

The cryptomelane and pyrolusite show notable different K2O mass fractions. Only
minor K2O can enter the pyrolusite (K2O a.f.p.u. < 0.2; K2O wt.% < 1) because of the
narrow space, whereas more K2O can occur in the cryptomelane as a 2 × 2 tunnel cation
(K2O a.f.p.u. > 0.2; K2O wt.% > 1).

The average refined unit cell parameters of pyrolusite (tetragonal system) are: a = 4.42 Å,
b = 4.42 Å, c = 2.87 Å, V = 55.98 Å3. The pyrolusite tunnel size is 2.6705 × 2.6705 Å2.
The wide occurrence of pyrolusite and cryptomelane in the supergene zone of Xialei Mn
deposit provides great potential for its usage in environmental mineralogy, electrodes, and
molecular sieves.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11111243/s1, Table S1: EPMA results of the Mn oxide minerals in the Xialei deposit.
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