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Estimation Issues with PLS and CBSEM:  

Where the Bias Lies! 

Abstract 

     Discussions concerning different structural equation modeling methods draw on an increasing 

array of concepts and related terminology. As a consequence, misconceptions about the meaning 

of terms such as reflective measurement and common factor models as well as formative 

measurement and composite models have emerged. By distinguishing conceptual variables and 

their measurement model operationalization from the estimation perspective, we disentangle the 

confusion between the terminologies and develop a unifying framework. Results from a 

simulation study substantiate our conceptual considerations, highlighting the biases that occur 

when using (1) composite-based partial least squares path modeling to estimate common factor 

models, and (2) common factor-based covariance-based structural equation modeling to estimate 

composite models. The results show that the use of PLS is preferable, particularly when it is 

unknown whether the data’s nature is common factor- or composite-based. 
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1. Introduction 

     The extent to which researchers raise an issue is a subtle indicator of its importance. The 

benefits and limitations of partial least squares path modeling (PLS) is one such issue that scholars 

have heatedly debated across a variety of disciplines including marketing (e.g., Fornell & 

Bookstein, 1982; Hair, Sarstedt, Ringle, & Mena, 2012), strategic management (e.g., Bentler & 

Huang, 2014; Rigdon, 2012, 2014; Sarstedt, Ringle, Henseler, & Hair, 2014b), and management 

information systems (e.g., Goodhue, Lewis, & Thompson, 2012; Marcoulides & Saunders, 2006; 

Ringle, Sarstedt, & Straub, 2012). Such scientific debates are important since they serve as a 

catalyst that sparks further careful examination of a method’s properties. Oftentimes, the result is 

improved understanding of the advantages and disadvantages of the focal method, but also 

additional research and methodological advances that stem from such objective and constructive 

discussions amongst scholars. 

     Recently, however, the scholarly community has witnessed a surprising level of acrimony 

towards PLS. Antonakis, Bendahan, Jacquart, and Lalive (2010, p. 1103) allude that “there is no 

use for PLS whatsoever […] thus strongly encourage researchers to abandon it.” Other authors 

similarly suggest that the use of PLS “is very difficult to justify“ (Rönkkö & Evermann, 2013, p. 

443) or that “PLS should not be adopted as a tool for psychological research.” (Rönkkö, McIntosh, 

& Antonakis, 2015, p. 82). This new harshness climaxed in an editorial from the editors in chief of 

the Journal of Operations Management (Guide & Ketokivi, 2015, p. vii) who declared that they 

were “desk rejecting practically all PLS-based manuscripts.” In a follow-up paper, Rönkkö, 

Antonakis, McIntosh, and Edwards (2016) echo this call and claim to “set the record straight” by 

suggesting that “the only logical action stemming from objective consideration of these issues is the 

abandonment of PLS.”  

     Leaving aside the tone of these and similar statements, which aim at shutting down any 
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scholarly debate, the question arises why these authors cannot find even a single positive attribute 

of PLS despite its acceptance in scholarly research. In an effort to disentangle these opposing 

views, Rigdon (2016) offers an in-depth discussion of PLS and its origins, concluding that critics 

just as proponents of the method frequently offer incorrect or incomplete rationale for avoiding as 

well as using PLS. In addition, Rigdon (2016) concludes that many misconceptions about PLS have 

their roots in the method’s conceptual underpinnings and particularly the estimation philosophy it 

relies on (e.g., Rigdon, 2012). 

     In fact, when deciding to use PLS, researchers—consciously or unconsciously—opt for a 

composite-based approach to SEM that linearly combines indicators to form composite variables 

(Lohmöller, 1989), which serve as proxies for the concepts under investigation (Rigdon, 2016). 

This approach is different from common factor-based SEM (i.e., covariance-based SEM; CBSEM), 

which considers the constructs as common factors that explain the covariation between their 

associated indicators. While this distinction has long been noted (e.g., Jöreskog & Wold, 1982; 

Schneeweiß, 1991), researchers have traditionally emphasized how PLS “is ‘like’ factor-based 

SEM but with advantages and disadvantages across different conditions” (Rigdon, 2012, p. 353)—

see, for example, Hair et al. (2012); Kaufmann and Gaeckler (2015); Peng and Lai (2012). Only 

recently have scholars started calling for the emancipation of PLS from CBSEM by acknowledging 

its status as a purely composite-based method (e.g., Rigdon, 2012; Sarstedt et al., 2014b). 

Addressing this call, Henseler, Hubona, and Ray (2016a, p. 3) attempt to provide “an updated view 

on what PLS actually is” and suggest a set of guidelines for the interpretation and reporting of 

results that explicitly consider the distinction between composite-based SEM and common factor-

based SEM. In their guidelines, the authors note that “PLS path models can contain two different 

forms of construct measurement: factor models or composite models” and continue by explaining 

that the depicted direction of arrows in the measurement model (i.e., reflective or formative) does 
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not necessarily indicate whether PLS estimates a factor or composite model (Henseler et al., 2016a, 

p. 4).  

     Such statements leave many applied researchers confused as some misperceive the distinction 

between reflective and formative measurement specification on the one hand, and common factor 

and composite models on the other. The introduction of consistent PLS (PLSc), which Dijkstra and 

Henseler (2015) developed in an effort to align common factor and composite-based SEM 

methods, further contributed to the confusion. For example, some researchers have started using 

both PLS and PLSc—which assume fundamentally different measurement philosophies—on the 

same data without explicitly considering the nature of the data, model, and the implications of their 

choice of methods (e.g., Gelhard & von Delft, 2016). These issues are nicely reflected in a recent 

query by a thoughtful PhD student from the UK who asked one of this paper’s authors, “what is the 

real difference between reflective constructs and factor models? What would be a reflective 

composite and what would be a common factor? And how is such difference transferred to the PLS 

context in terms of model specification?“  

     These queries constitute the research questions this paper sheds light on. By distinguishing 

measurement model conceptualization and operationalization from the model estimation 

perspective, this paper disentangles the confusion between reflective measurement and common 

factor models as well as formative measurement and composite models. More precisely, this 

paper’s aim is to clarify the interplay between measurement model specification and model 

estimation via PLS using different estimation modes (i.e., Mode A vs. Mode B) and CBSEM. 

Understanding this interplay is of fundamental importance when deriving measures to fit a specific 

SEM method, or when choosing a specific SEM method that aligns with existing measures or a 

research objective. Results from a simulation study substantiate our conceptual considerations, 

highlighting the biases that occur when using composite-based PLS to estimate common factor 
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models, and common factor-based CBSEM to estimate composite models. Specifically, our results 

show that PLS entails practically no bias when estimating data from a composite model population, 

regardless of the measurement model specification. In contrast, CBSEM and PLSc estimation of 

reflectively measured constructs when the data stem from a composite population show severe 

biases in parameter estimates, rendering their use inappropriate in these instances. Further 

comparisons with common factor model data show that the parameter bias resulting from using an 

SEM method on discrepant populations is much more severe for CBSEM than for PLS. The real 

bias results when researchers don’t know the underlying data population (i.e., common factor or 

composite)—as is common in social sciences research—making PLS the preferred SEM method 

for most situations.  

     Based on our findings, we propose a framework that aligns different measurement and model 

estimation perspectives. This paper is written with the confidence that it will (1) offer researchers a 

clear roadmap for the conceptionalization and operationalization of their constructs, (2) provide 

guidance in their choice of the appropriate SEM method, and (3) ensure a more balanced 

perspective concerning recent criticism, which largely ignored the common factor vs. composite 

model distinction.  

 

2. Measurement  

2.1. Conceptual Variables, Constructs, and Proxies 

     Irrespective of whether a deductive or an inductive research approach is undertaken by social 

science researchers, at some point in their search to better understand and explain theory, they 

deal with conceptual variables and theoretical models. A theoretical model reflects a set of 

structural relationships; commonly based on a set of equations connecting conceptual variables 

that formalize a theory and visually represent the relationships (Bollen, 2002). As elements of 
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theoretical models, conceptual variables represent broad ideas or thoughts about abstract concepts 

that researchers establish and propose to measure in their research (e.g., customer satisfaction).  

     Constructs represent conceptual variables in statistical models such as in a structural equation 

model.1 They are intended to enable empirical testing of hypotheses regarding the conceptual 

variables (Rigdon, 2012) and are conceptually defined in terms of the attribute and the object 

(e.g., MacKenzie, Podsakoff, & Podsakoff, 2011). The attribute defines the general type of 

property to which the focal concept refers, such as an attitude (e.g., attitude towards an 

advertisement), a perception (e.g., perceived ease of use of technology), or behavioral intention 

(e.g., purchase intention). The focal object is the entity to which the property is applied. For 

example, the focus of interest could be a customer’s satisfaction with the products, satisfaction 

with the services, and satisfaction with the prices. In these examples, satisfaction constitutes the 

attribute, whereas products, services, and prices represent the focal objects.  

     Establishing a construct definition also includes determination of the dimensionality that 

describes the conceptual variable, with each dimension representing a different aspect (e.g., Law, 

Wong, & Mobley, 1998). A conceptual variable is not per se characterized as unidimensional or 

multidimensional, let alone two-, three- or four-dimensional (Bollen, 2011). Rather it depends on 

the context-specific definition of the conceptual variable and the denotation that comes with it. 

The denotation can, in principle, be infinite, since the same conceptual variable can represent 

different levels of theoretical abstraction across contexts (Diamantopoulos, 2005; Law & Wong, 

1999). Thus, a construct definition is subject to the context within which a conceptual variable is 

 
1 Note that researchers frequently distinguish between latent variables / constructs and composites, depending on the 

type of relationship assumed between the latent variable (composite) and its indicators (e.g., MacCallum & Browne, 

1993). We use the term latent variable / construct to refer to the entities that represent conceptual variables in a 

structural equation model. 
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examined such that the definition can change from one study to another and, accordingly, can 

differ in terms of dimensionality and the object of interest. For example, a customer’s satisfaction 

with the service can be broken down into more concrete subdimensions, such as satisfaction with 

the speed of service, the servicescape, and the staff. The latter dimension can be further broken 

down into more concrete subdimensions such as satisfaction with the friendliness, competence, 

and outer appearance of the service staff. Each of these aspects can, in principle, be further 

broken down into yet more concrete subdimensions (e.g., Rossiter, 2011). Finally, the construct 

definition also clarifies how the abstract, conceptual variable relates to measurable, observable 

quantities. That is, the construct definition guides the conceptualization of the measurement 

models, which entails deciding whether to measure a construct reflectively or formatively. 

     Constructs are not just theoretical concepts under a different name as implied by commonly 

used definitions of this term (e.g., Bollen, 2002; Pedhazur & Pedhazur Schmelkin, 1991), but 

representations of conceptual variables in a statistical model. Importantly, constructs do not 

represent conceptual variables perfectly since any concept and any construct definition has some 

degree of ambiguity associated with it (e.g., Gilliam & Voss, 2013). In addition, constructs stem 

from data and therefore share the data’s idiosyncrasies (Cliff, 1983; MacCallum, Browne, & Cai, 

2007), which further detach them from the concepts they intend to represent. In this context, 

Michell (2013, p. 20) notes that constructs “are contrived in a way that is detached from the 

actual structure of testing phenomena and held in place by an array of quantitative methods, such 

as factor analysis, which gratuitously presume quantitative structure rather than infer it from the 

relevant phenomena (…).” Similarly MacCallum et al. (2007, p. 153) state that factor analytical 

procedures such as CBSEM cannot fully represent “the undoubtedly large number of minor 

common factors that influence measured variables and account in part for their intercorrelations. 

There are many other sources of error in such models. At best, a factor analysis model is an 
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approximation of real-world phenomena.” Against this background, Rigdon (2012, pp. 343-344) 

concludes that constructs should rather be viewed as “something created from the empirical data 

which is intended to enable empirical testing of propositions regarding the concept” (Rigdon, 

2012, pp. 343–344). That is, all measures of conceptual variables are approximations of or 

proxies for conceptual variables, independent from how they were derived (e.g., Wickens, 1972). 

Thus, irrespective of the quality with which a conceptual variable is theoretically substantiated 

and operationally defined and the rigor that encompasses measurement model development, any 

measurement in structural equation models produces only proxies for latent variables (Rigdon, 

2012). This assessment is in line with the proliferation of all sorts of instruments that claim to 

measure essentially the same construct, albeit often with little chance to convert one instrument’s 

measures into any other instrument’s measures (Salzberger, Sarstedt, & Diamantopoulos, 2016). 

For example, business research and practice has brought forward a multitude of measurement 

instruments for corporate reputation, which rest on the same definition of the concept but differ 

fundamentally in terms of their underlying conceptualizations and measurement items (e.g., 

Sarstedt, Wilczynski, & Melewar, 2013). 

 

2.2. Measurement Model Conceptualization and Operationalization 

     Based on the construct definition, the next step is to specify a measurement model, which 

expresses how to measure the construct by means of a set of indicators (e.g., Jarvis, MacKenzie, 

& Podsakoff, 2003; MacKenzie, 2003). Generally, there are two broad ways to conceptualize 

measurement models (Coltman, Devinney, Midgley, & Venaik, 2008; Diamantopoulos & 

Winklhofer, 2001), which entail fundamentally different approaches to generating items (e.g., 

Churchill, 1979; Diamantopoulos & Winklhofer, 2001; MacKenzie et al., 2011). The first 

approach is referred to as reflective measurement. In a reflective measurement model the 
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indicators are considered to be error-prone manifestations of an underlying construct with 

relationships going from the construct to its indicators (Bollen, 1989). The relationship between 

an observed and an unobserved variable is usually modeled as expressed in the following 

equation: 

𝑥 = 𝑙 ∙ 𝑌 + 𝑒,      (1) 

     where x is the observed indicator variable, Y is the latent variable, the loading l is a regression 

coefficient quantifying the strength of the relationship between x and Y, and e represents the 

random measurement error.  

     Figure 1 shows a reflective measurement model for a latent variable Y1, measured with four 

indicators x1, x2, x3, and x4 as well as the conceptual variable the construct seeks to represent, 

illustrated by a triangle in the upper part of the figure (Rigdon, 2012). Reflective indicators, also 

referred to as effect indicators, can be viewed as a representative sample of all the possible items 

available within the conceptual domain of the construct (Nunnally & Bernstein, 1994). Since a 

reflective measurement model dictates that all items reflect the same construct, indicators 

associated with a particular construct should be highly correlated with each other (Edwards & 

Bagozzi, 2000). In addition, individual items should be interchangeable, and any single item can 

generally be left out without changing the meaning of the construct, as long as the construct has 

sufficient reliability (Jarvis et al., 2003). The fact that the relationship goes from the construct to 

its indicators implies that if the evaluation of the latent trait changes (e.g., because of a change in 

the standard of comparison), all indicators will change simultaneously (e.g., Diamantopoulos & 

Winklhofer, 2001). 

=== Place Figure 1 about here === 

     The second approach is formative measurement. In a formative measurement model the 

indicators form the construct by means of linear combinations (Figure 1). A change in an 
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indicator’s value due to, for example, a change in a respondent’s assessment of the trait being 

captured by the indicator, changes the value of the construct. That is, “variation in the indicators 

precedes variation in the latent variable” (Borsboom, Mellenbergh, & van Heerden, 2003, p. 

2008), which means that, by definition, constructs with a formative measurement model are 

inextricably tied to their measures (Diamantopoulos, 2006). Besides the difference in the 

relationship between indicator(s) and construct, formative measurement models do not require 

correlated indicators. In practical applications, however, indicators in formative measurement 

models may be highly correlated, yielding satisfactory levels in reliability and validity statistics 

whose use, from a conceptual perspective, should be restricted to reflective measurement models 

(Hair et al., 2012). 

     Despite these clear conceptual differences, deciding whether to specify measurement models 

reflectively or formatively is not clear-cut in practice, as constructs do not inherently follow a 

reflective or formative measurement logic (e.g., Baxter, 2009). Rather, the researcher has the 

flexibility to conceptualize a measurement model based on the construct definition the researcher 

specifies. As Baxter (2009, p. 1377) notes, “there are often quite different possibilities for 

conceptualization of what might at first sight appear to be the same construct and, most 

importantly, there may be quite distinct lines of enquiry underlying the multiple possible 

conceptualizations.” Consider, for example, the concept of perceived switching costs. Jones, 

Mothersbaugh, and Beatty (2000, p. 262) define perceived switching costs as “consumer 

perceptions of the time, money, and effort associated with changing service providers.” Their 

measurement approach in the context of banking services draws on three items, which constitute 

reflections or consequences of perceived switching costs (“In general it would be a hassle 

changing banks,” “It would take a lot of time and effort changing banks,” and “For me, the costs 

in time, money, and effort to switch banks are high”). Hence, the authors implicitly assume that 
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there is a concept of perceived switching costs, which can be manifested by querying a set of 

(e.g., three) items. Barroso and Picón (2012, p. 532), on the other hand, consider perceived 

switching costs as “a latent aggregate construct that is expressed as an algebraic composition of 

its different dimensions.” These authors identify a set of six dimensions (benefit loss costs, 

personal relationship loss costs, economic risks costs, evaluation costs, set-up costs, and 

monetary loss costs), which represent certain specific characteristics, each covering an 

independent part of the perceived switching costs concept. As such, Barroso and Picón’s (2012) 

construct definition of perceived switching costs follows a formative measurement model logic. 

Of course, the underlying items are empirically correlated, and perhaps causally related, but 

they are not actually exchangeable in the way the reflective measurement model 

conceptualization assumes they are (Rigdon, Preacher, Lee, Howell, Franke, & Borsboom, 2011). 

That is, their correlation is not because the construct of perceived switching costs is assumed to 

be their common cause. There are many more examples of constructs that carry the same label 

but which rely on different (i.e., reflective vs. formative) measurement model 

conceptualizations—see, for example, Albers (2010), Baxter (2009), and Chang, Franke, and Lee 

(2016). 

     Further contributing to the difficulties of deciding on the measurement perspective is the fact 

that there is not one type of formative measurement model—as had been implied in the early 

works on formative measurement (e.g., Diamantopoulos & Winklhofer, 2001) and the use of 

formative measurement models in statistical analysis (e.g., Hair, Ringle, & Sarstedt, 2011). 

Rather, two types of indicators exist in formative measurement models: causal indicators and 

composite indicators (Bollen, 2011; Bollen & Bauldry, 2011). Models with causal indicators 

follow a realist approach to measurement, which acknowledges that under any definition of a 

conceptual variable, there is a true value but this can never be measured with complete accuracy 
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(e.g., Grace & Bollen, 2008). Therefore, the indicators should have conceptual unity in that all 

the indicators correspond to the researcher’s definition of the concept (Bollen & Diamantopoulos, 

2016). Breadth of coverage of the domain is extremely important to ensure that the domain of 

content is adequately captured¾omitting important indicators implies omitting a part of the 

conceptual variable that the construct represents (e.g., Bollen & Lennox, 1991).  

     Since causal indicators are expected to cover all aspects of the content domain (Bollen & 

Bauldry, 2011), constructs measured with causal indicators (Y2 in Figure 1) have an error term (z 

in Figure 1). This error term captures all the other “causes” of the construct not included in the 

model (Diamantopoulos, 2006). Or as Diamantopoulos, Riefler, and Roth (2008, p. 1211-1212) 

note, “formative latent variables have a number of proximal causes, which researchers try to 

identify when conceptually specifying the construct. In many cases, however, researchers will be 

unable to detect all possible causes, as there may be some causes that have neither been discussed 

in prior literature nor revealed by exploratory research. The construct-level error term represents 

these missing causes.” Causal indicators themselves are, by definition, error free¾that is, they 

are not subject to any systematic or random error. While this characteristic is fully 

comprehensible from a model estimation perspective (see Diamantopoulos, 2006), from a 

measurement perspective, there is no reason to assume that the sources of error that have 

traditionally been associated with reflective indicators do not apply to causal indicators. For 

example, why would the use of double-barreled items or of suggestive item wordings trigger 

error in a reflective indicator but not in a causal indicator? The following equation represents a 

measurement model comprised of causal indicators, where wi indicates the contribution of xi (i = 

1, … , I) to Y, and z is an error term associated with Y: 

𝑌 = ∑ 𝑤! ∙ 𝑥!"
!#$ + z      (2) 
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     The other type of indicators, referred to as composite indicators, closely resembles that of 

causal indicators except for one aspect. In contrast to constructs measured with causal indicators, 

constructs measured with composite indicators do not have an error term (Y3 in Figure 1). This 

distinction has an important implication for the conceptualization of formative measurement 

models (Henseler et al., 2014) because composite indicators operate as contributors to a construct 

rather than truly “causing” it (Bollen, 2011; Bollen & Bauldry, 2011). They form the composite 

representing the construct in full by means of linear combinations. Therefore, a formative 

construct measured with composite indicators does not have an error term (i.e., the error term is 

set to zero). As with causal indicators, composite indicators are assumed to be error free. The 

following equation illustrates a measurement model with composite indicators, where Y is a 

linear combination of indicators xi, each weighted by an indicator weight wi (Bollen, 2011; 

McDonald, 1996): 

𝑌 = ∑ 𝑤! ∙ 𝑥!"
!#$ .     (3) 

     Although researchers have often used composite models and causal indicator models 

synonymously (e.g., Bollen & Lennox, 1991), more recently they have started distinguishing 

composite from causal indicators (e.g., Bollen, 2011; Bollen & Diamantopoulos, 2016; Howell, 

Breivik, & Wilcox, 2013). Thus, there is still some ambiguity regarding their nature and areas of 

application. For example, Bollen (2011, p. 366) notes that “it seems unlikely that there are many 

situations where an error term would be absent (…). This would mean that the latent variable that 

represents the unidimensional concept is an exact linear function of its indicators, which would 

seem to be a rarity.” Bollen (2011) therefore treats the latent variables as if they were indeed the 

conceptual variables from a theoretical model (also see Bollen & Bauldry, 2011; Bollen & 

Diamantopoulos, 2016). However, viewing latent variables as proxies for a conceptual variable 
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seems more reasonable and realistic (Rigdon, 2012), blurring the conceptual distinction between 

composite and causal indicators.  

     Furthermore, Bollen (2011, p. 366) asserts that “composite indicators need not share 

unidimensional conceptual unity. That is, composite indicators might be combined into a 

composite as a way to conveniently summarize the effect of several variables that do not tap the 

same concept although they may share a similar ‘theme.’” Following this logic, measurement 

models with composite indicators only offer a means to model conceptual variables, for which 

elements are combined to form a new entity (Henseler et al., 2016a). This is particularly the case 

when analyzing secondary data, which typically lack a comprehensive theoretical substantiation 

and are collected for a purpose other than SEM (Rigdon, 2013). For example, a measurement 

model conceptualization of information search activities could be based on capturing the sum of 

the activities that customers engage in when seeking information from dealers, promotional 

materials, the Internet and other sources. Another researcher might choose a different set of 

variables to form a measure of information search activities. Thus, the items ultimately determine 

the meaning of the construct, which implies that adding or omitting an indicator potentially alters 

the nature of the construct. While this interpretation of composite indicators may be convenient 

for communication, it remains largely unclear where to draw a line between items having 

“conceptual unity” and sharing “a similar theme” (Bollen, 2011, p. 336).  

     In practice, researchers naturally choose items in operationalizing measurement models that 

match their construct definition, regardless of whether the actual measurement conceptualization 

draws on reflective, causal or composite indicators. That is, they treat the constructs in their 

studies as unitary entities just like Barroso and Picón (2012) do when offering an in-depth 

literature review of the nature and dimensionality of the perceived switching costs concept prior 

to deriving indicators in their operationalization of the construct’s measurement model. As such, 
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they fully comply with Rönkkö et al. (2016, p. 37) who note that “theoretical meaning is imbued 

upon factors only through a guiding conceptual framework and careful development of the 

indicator content.” In fact, assuming that researchers use measures of composite indicators 

merely as convenient summaries of the data (Rönkkö et al., 2016) implies that the common 

practice of aggregating items as composites to represent constructs, even though commonly done 

in practically all non-SEM studies in all fields of research, is without any theoretical justification 

and undermines the fundamentals of appropriate measurement. However, the very same measures 

in most instances have been carefully developed and tested following common measurement 

model evaluation guidelines¾as extensively documented in standard measurement scale 

handbooks (e.g., Bearden, Netemeyer, & Haws, 2011; Bruner, James, & Hensel, 2001). Thus, the 

very activity of forming composites from validated measurement scales interweaves composite 

and causal indicators, casting doubt on the notion that the use of composites to represent 

conceptual variables is an outright abandonment of measurement theory as Rönkkö et al. (2016) 

imply.  

     Thus, composite indicators not only offer a way to conveniently summarize the data (Rönkkö 

et al., 2016) but can be used to measure any type of property to which the focal concept refers, 

including attitudes, perceptions, and behavioral intentions (e.g., Rigdon, 2012). As with any type 

of measurement conceptualization, however, researchers need to offer a clear construct definition 

and specify items that closely match this definition¾that is, they must share conceptual unity.  

     Alternatively, measurement models with composite indicators can be interpreted as a 

prescription for dimension reduction, where the aim is to condense the measures so they 

adequately cover a conceptual variable’s salient features (Dijkstra & Henseler, 2011). For 

example, a researcher may be interested in measuring the salient aspects of perceived switching 
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costs by means of three (composite) indicators, which cover aspects particularly relevant to the 

study at hand (e.g., evaluation costs, set-up costs, and monetary loss costs).  

 

3. Model Estimation 

3.1. PLS and CBSEM 

     The previous sections described different routes to operationalize constructs as proxies for 

conceptual variables. This measurement perspective needs to be complemented with the model 

estimation perspective, which explains how the different SEM techniques arrive at a solution and 

which assumptions underlie them. Researchers typically use two approaches to estimate 

structural equation models. One is the more widely applied CBSEM approach (Bollen, 1989; 

Diamantopoulos, 1994; Jöreskog, 1978); the other is PLS (Hair, Hult, Ringle, & Sarstedt, 2017; 

Lohmöller, 1989; Wold, 1982). While both complementary methods share the same basic aim, 

which is to estimate the relationships among constructs and indicators, they differ fundamentally 

in their statistical conceptions and particularly in the way they treat measurement models of 

constructs (Jöreskog & Wold, 1982).  

     CBSEM initially divides the variance of each indicator into two parts: (1) the common 

variance, which is estimated from the variance shared with other indicators in the measurement 

model of a construct, and (2) the unique variance, which consists of both specific and error 

variance (Bollen, 1989; Rigdon, 1998). The specific variance is assumed to be systematic and 

reliable while the error variance is assumed to be random and unreliable (i.e., measurement, 

sampling, and specification error). CBSEM initially calculates the covariances of a set of 

variables (common variance), and only that variance is included in any solutions derived. 

CBSEM, therefore, follows a common factor model approach in the estimation of the construct 

measures, which assumes that the variance of a set of indicators can be perfectly explained by the 



16 

 

existence of one unobserved variable (the common factor) and individual random error 

(Spearman, 1927; Thurstone, 1947). The common factor model estimation approach conforms to 

the measurement philosophy underlying reflective measurement models. 

     In principle, CBSEM can also accommodate formative measurement models even though the 

method follows a common factor model estimation approach (e.g., Temme, Diamantopoulos, & 

Pfegfeidel, 2014). Analogous to the scientific realist perspective assumed in the method’s 

treatment of reflective measurement models, formative measurement models in CBSEM typically 

assume causal indicators (Diamantopoulos, 2011). To estimate models with causal indicators, 

researchers must follow rules that require specific constraints on the model to ensure model 

identification (Bollen & Davies, 2009; Diamantopoulos & Riefler, 2011). As Hair et al. (2012, p. 

420) note, “these constraints often contradict theoretical considerations, and the question arises 

whether model design should guide theory or vice versa.”  

     As an alternative, CBSEM scholars have proposed the multiple indicators and multiple causes 

(MIMIC) model (e.g., Bollen, 1989; Jöreskog & Goldberger, 1975)—that includes both 

formative and reflective indicators (e.g., Diamantopoulos & Riefler, 2011; Diamantopoulos et al., 

2008). While MIMIC models enable researchers to deal with the identification problem, they do 

not overcome the problem that formative measurement models with causal indicators invariably 

underrepresent the variance in the construct, since correlated indicators are required by the 

CBSEM common factor model to produce a valid proxy and thereby adequately represent a 

conceptual variable. As Lee and Cadogan (2013, p. 243) note, “researchers should not be misled 

into thinking that achieving statistical identification allows one to obtain information about the 

variance of a formative latent variable.” Clearly, CBSEM at best only allows for approximating 

formative measurement models with causal indicators.  
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     Similarly, CBSEM can accommodate formative measurement models with composite 

indicators (e.g., Diamantopoulos, 2011). Since constructs measured with composite indicators are 

defined by having zero variances, the identification of the construct’s error variance is not an 

issue. Problems arise, however, with regard to the identification of all paths leading to as well as 

flowing out from the construct. Grace and Bollen (2008, p. 206) suggest solving this problem by 

specifying a single incoming or outgoing path relationship to 1.0. While such specifications 

overcome parameter identification issues, they severely limit the interpretability of the estimates 

of the magnitude and significance of the fixed paths in the structural model (Grace & Bollen, 

2008). Because of these limitations, several researchers conclude that CBSEM is not well suited 

for estimating formative measurement models (Hair et al., 2012; Peng & Lai, 2012; Reinartz, 

Haenlein, & Henseler, 2009). 

     Different from CBSEM, PLS does not divide the variance into common and unique variance. 

More precisely, the objective of PLS is to account for the total variance in the observed indicators 

rather than to explain only the correlations between the indicators (e.g., Tenenhaus, Esposito 

Vinzi, Chatelin, & Lauro, 2005). The logic of the PLS approach is, therefore, that in estimating 

the model relationships, all of the variance (common, unique and error) that the exogenous 

variables have in common with the endogenous variables should be included (e.g., McDonald, 

1996). The underlying notion is that the indicators can be (linearly) combined to form composite 

variables that are comprehensive representations of the latent variables, and that these linear 

combinations are valid proxies of the conceptual variables under investigation (e.g., Henseler et 

al., 2016a). As such, PLS follows a composite model approach in the estimation of the construct 

measures, which generally conforms to the measurement philosophy underlying formative 

measurement models. 
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     PLS’s designation as composite-based refers only to the method’s way to represent constructs 

that approximate the conceptual variables in a model. While the very fact that PLS draws on 

composites whose use has traditionally been considered to be consistent with formative 

measurement models but not reflective measurement models (e.g., Grace & Bollen, 2008), the 

method readily accommodates both measurement model types without identification issues (Hair 

et al., 2011). In estimating the model parameters, however, PLS always follows a composite 

model approach. That is, regardless of whether measurement models are reflective or formative, 

PLS always computes composite variables from sets of indicator variables as representations of 

the conceptual variables in the model. Three aspects are important in this regard.  

    First, in formative measurement models, PLS treats all indicators as composite indicators. That 

is, the method does not allow for the explicit modeling of a construct’s error term measured with 

causal indicators (i.e., the error term z in Figure 1 is constrained to zero). As a consequence and 

analogous to CBSEM, PLS only allows for approximating formative measurement models with 

causal indicators. Note, however, that actually no method can estimate formative measurement 

models unless reflective measures are simultaneously available.  

     Second, researchers have long noted that since PLS is based on the composite model logic, the 

method only approximates common factor-based reflective measurement models (Hui & Wold, 

1982). That is, from a model estimation perspective, PLS will produce “biased” estimates if the 

common factor model holds¾just like CBSEM will produce “biased” estimates when using the 

method to estimate data generated from a composite model, as this study will show. However, the 

deviations in parameter estimates should not be considered a “bias” as both methods estimate 

different things and therefore may yield different values.  

     Third, to estimate the model parameters, PLS uses two modes, which relate to the way the 

method estimates the indicators weights that represent each indicator’s contribution to the 
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composite. Mode A corresponds to correlation weights derived from bivariate correlations 

between each indicator and the construct; Mode B corresponds to regression weights, the 

standard in ordinary least squares regression analysis. Regression weights not only take the 

correlation between each indicator and the construct into account but also the correlations 

between the indicators. No matter which mode for estimating the indicator weights is used, the 

resulting latent variable is always modeled as a composite (Henseler, Ringle, & Sarstedt, 2016b). 

That is, since all multi-item measures are converted into weighted components¾even in Mode 

A¾PLS computes components by means of linear combinations of indicators. 

     PLS by default uses Mode A for reflectively specified constructs and Mode B for formatively 

specified constructs. Recent research, however, suggests that selecting the appropriate weighting 

mode requires a more thoughtful approach. Specifically, Becker, Rai, and Rigdon (2013a) show 

that for formatively specified constructs, Mode A estimation yields better out-of-sample 

prediction for sample sizes larger than 100 and when the R2 is moderate to large (i.e., R2³0.30). 

For large sample sizes and large R2 values, Mode A and Mode B perform equally well in terms of 

out-of-sample prediction. In terms of parameter accuracy in the structural model, Mode A 

performs best when sample size or R2 values are small to medium. For larger sample sizes or R2 

values, Mode A and Mode B estimations do not differ in terms of parameter accuracy. 

     From a measurement perspective, PLS and CBSEM both share an approximation character as 

constructs do not necessarily correspond to the conceptual variables they represent. As noted by 

Rigdon (2016, p. 19), “common factor proxies cannot be assumed to carry greater significance 

than composite proxies in regard to the existence or nature of conceptual variables.” A similar 

view is echoed in the intense debates on the relative advantages of component versus common 

factor analysis in the 90s, which witnessed a series of articles and commentaries on the 

conceptual and philosophical underpinnings of the methods. Summarizing these debates, 
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Bandalos and Boehm-Kaufman (2009, p. 70) note that “although methodologists still disagree 

about which model is most appropriate, component analysis and common factor analysis have 

different goals and are based on different philosophies.” Rejecting the reflex-like adherence to 

the common factor model, researchers have long warned that the common factor model rarely 

holds in applied research (Schönemann & Wang, 1972). For example, among 72 articles 

published during 2012 in what Atinc, Simmering, and Kroll (2012) consider the four leading 

management journals (Academy of Management Journal, Journal of Applied Psychology, Journal 

of Management, and Strategic Management Journal) that tested one or more common factor 

model(s), fewer than 10% contained a common factor model that did not have to be rejected. In 

light of these results, Henseler, Dijkstra, Sarstedt, Ringle, Diamantopoulos, Straub, Ketchen, 

Hair, Hult, and Calantone (2014, 184) conclude “from a philosophical standpoint, there is no 

need for modeling constructs as common factors (...), and reducing SEM to common factor 

models is a very restrictive (unnecessarily restrictive, we would argue) view about SEM.“  

 

4. Using PLS to Estimate Common Factor Models vs. Using CBSEM to Estimate Composite 

Models 

4.1. The Parameter Estimation Bias  

     The previous discussions showed that PLS and CBSEM assume different ways of how the 

data represent measurement models that the researcher—in line with a set of construct 

definitions—specifies in a reflective or formative way. CBSEM assumes the data follow a 

common factor model in which the indicator covariances define the nature of the data, whereas 

PLS adheres to a composite model approach in which data is defined by means of linear 

combinations of indicators. So while the measurement models may follow a reflective (or 
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formative) specification, the underlying data model may be composite-based (or common factor-

based).  

     Numerous studies have explored PLS’s performance in terms of parameter accuracy when 

data are assumed to follow a common factor model approach (e.g., Barroso, Cepeda Carrión, & 

Roldán, 2010; Hwang, Malhotra, Kim, Tomiuk, & Hong, 2010; Marcoulides, Chin, & Saunders, 

2012; Reinartz et al., 2009). Overall, these studies suggest that the bias that PLS produces when 

estimating common factor models is comparably small provided that the measurement models 

meet minimum recommended standards in terms of the number of indicators and indicator 

loadings. Prior efforts to dramatize the differences between CBSEM and PLS estimates (Rönkkö 

et al., 2016) in, for example, Reinartz et al.’s (2009) study focused on descriptive differences 

between population values and parameter estimates only, disregarding the concept of statistical 

inference. As Reinartz et al. (2009, p. 338; emphasis added by the authors) note in their results 

description of all simulation conditions, “parameter estimates do not differ significantly from 

their theoretical values for either ML-based CBSEM (p-values between 0.3963 and 0.5621) or 

PLS (p-values between 0.1906 and 0.3449).” Only when the model estimation draws on a very 

large sample size (N=10,000) and includes measurement models with many indicators with high 

loadings, did statistically significant differences of between a low of 0.58% and a high of 3.23% 

of cases occur. Correspondingly, empirical studies using both methods suggest that the 

divergence between PLS and CBSEM results when estimating common factor models is of little 

practical relevance for the results implications (e.g., Astrachan, Patel, & Wanzenried, 2014).  

     The question, however, is whether the bias identified in prior studies results from using 

composite-based PLS on common factor model data or if the method is inherently biased, 

including when estimating composite models. Similarly, while the (supposed) PLS bias has been 

extensively debated in the literature, the bias that CBSEM produces when mistakenly estimating 



22 

 

composite models has not yet been explored. For this reason, the following simulation study 

focuses on revealing the biases that occur when using (1) composite-based PLS to estimate 

common factor models, and (2) common factor-based CBSEM to estimate composite models.  

4.2. Simulation Studies 

     Our studies replicate Reinartz et al.’s (2009) simulation study on the comparative performance 

of PLS and CBSEM, which in its original form assumed a common factor model. We extended 

the original study, however, by additionally generating composite model-based data. 

Furthermore, our studies also consider PLSc, which follows a composite modeling logic but 

mimics a common factor model (Sarstedt, Ringle, & Hair, 2014a). To do so, the method first 

estimates the model parameters using the standard PLS algorithm and corrects these estimates for 

attenuation using the consistent reliability coefficient . This correction only applies to 

reflective measurement models, while formative measurement models remain unchanged.  

     The path model and path coefficient specifications used in the simulations (Figure 2) are 

identical to Reinartz et al. (2009) with low (i.e., .15; p1, p2, p12), medium (i.e., .30; p5), and high 

(i.e., .50; p3, p4, p6, p9, p10, p11) pre-specified path coefficients. Accounting for corresponding 

calls in the literature (Marcoulides et al., 2012), we extended the original model by adding a 

construct (Y5) with two null paths (p7 and p8). Also analogous to Reinartz et al. (2009), all 

measurement models are reflective. Table 1 illustrates the design factors and their levels 

manipulated in the simulation study. The simulation study uses a factorial design. We conducted 

300 replications of each factor-level combination to obtain stable average outcomes for our 

analysis. In summary, the analysis includes 4·4·3·5·300=72,000 datasets for Study I (i.e., the 

common factor-based simulation) and 8·3·5·300=36,000 datasets for Study II (i.e., the 

composite-based simulation), which results in a total number of 324,000 computations for the 

three methods under research. 

Ar
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=== Place Table 1 about here === 

     In line with related research in the field (e.g., Becker, Rai, Ringle, & Völckner, 2013b; 

Reinartz et al., 2009), common factor model-based data generation was performed by means of 

Mattson’s (1997) method (also see Reinartz, Echambadi, & Chin, 2002), where univariate 

random variables initially serve the generation of the latent variables in the structural model, 

followed by the computation of the observed variables. The composite model-based data 

generation used in this study draws on a procedure similar to the one that Schlittgen (2015) 

presents in his SEGIRLS package for the statistical R software (R Core Team, 2014). We first 

generate the model-implied covariance matrix of the indicators, followed by a Cholesky 

decomposition, and finally extract the indicator data for a pre-specified number of observations 

and the sought data distribution. For model estimation based on PLS, PLSc, and CBSEM, we use 

the semPLS (Monecke & Leisch, 2012), matrixpls R (Rönkkö, 2016), and sem (Fox, Nie, Byrnes, 

Culbertson, DebRoy, Friendly, Goodrich, Jones, Kramer, & Monette, 2015) packages of the R 

software. As in Reinartz et al. (2009), CBSEM estimation draws on the standard maximum 

likelihood approach; PLS uses Mode A estimation while PLSc uses Mode A estimation followed 

by the correction for attenuation in both studies. 

 

5. Results 

     The assessment of the methods’ parameter accuracy occurs on the grounds of the mean 

absolute error MAE, which is defined as  

𝑀𝐴𝐸 = $
%
∑ -𝜃/& − 𝜃&-,%
&#$      (4) 

     where t equals the number of parameters, 𝜃& is the prespecified parameter and 𝜃/& is the 

parameter estimate in any replication. Tables 2 and 3 illustrate the results of the simulation 

studies. Our illustration focuses on the case of normally distributed data as the analysis of non-
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normal data yields highly similar results.  

     Our results confirm the well known PLS bias when using the method to estimate the path 

model with common factor model-based data. PLS produces biased estimates with average MAE 

values of around 0.10 when the measurement models only have two indicators or when the 

loadings are low (i.e., 0.50). Confirming PLS’s consistency at large (Hui & Wold, 1982), PLS’s 

MAE values decrease for greater numbers of indicators per measurement model or higher sample 

sizes. Compared to PLS, CBSEM achieves lower MAE values across all conditions except for 

small sample sizes of 100. In this condition, PLSc shows pronounced MAE values of up to 0.34 

and also performs weak at 250 observations when measurement models have only two indicators 

or low loadings. However, PLSc’s performance increases considerably with more indicators and 

higher sample sizes. On average across all simulation conditions, PLS and PLSc have a higher 

MAE (0.07) compared to CBSEM (0.05). Clearly, the differences between the three methods 

when used on common factor model-based data are overall only marginal, however. 

=== Place Table 2 about here === 

     A different picture emerges when estimating data from a composite model population. 

Whereas PLS has an overall MAE value of 0.04, the parameter biases of CBSEM (0.76) and 

particularly PLSc (3.70) are much more pronounced. PLSc shows a bewildering performance 

across the simulation conditions with MAE values ranging from 0.64 to 17.89. Specifically, in 

conditions with four indicators, equal weights and 500, and 10,000 observations, respectively, 

MAE values bounce up to values higher than 10. To rule out potential problems resulting from 

the PLSc implementation of the matrixpls package, we re-ran the simulation study using the 

PLSc extension of the semPLS package (Monecke & Leisch, 2012). Results from this additional 

analysis provided support for the extent and variation of PLSc’s bias with MAE values well 

above 10 for several simulation conditions. Similar to PLSc, CBSEM shows pronounced 
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parameter estimation biases across all simulation conditions but at a much lower level with MAE 

values ranging from 0.51 to 1.72. Nevertheless, CBSEM’s bias when estimating composite 

models is on average 11 times higher than PLS’s bias when estimating common factor models. 

Clearly, the use of PLS to estimate common factor models is much less of an issue than using 

CBSEM on data consistent with the composite model. Finally, while PLS’s MAE values decrease 

when sample sizes increase, this is not the case with CBSEM and PLSc. For these two methods, 

the MAE values show no clear pattern. For example, for measurement models with 2 indicators 

and equal weights, PLSc’s MAE values increase from 100 to 250 observations, decrease at 500 

and 1,000 observations, and finally increase at 10,000 observations. Overall our simulation study 

results suggest that when the underlying model type is unknown, researchers are well advised to 

draw on PLS in order to avoid substantial parameter biases that result from using PLSc or 

CBSEM in case the composite model holds. 

=== Place Table 3 about here === 

     As a result, we find that the methods’ parameter bias depends on the underlying model and 

data. If one assumes a common factor model and draws on data of such a nature, CBSEM 

generally performs¾as expected¾very well. The same generally holds for PLSc, except when 

the sample size is small. The PLS method offers a very good approximation in this case. At the 

same time, PLS performs¾as expected¾very well for composite models, if one draws on data of 

such a nature. In this case, however, CBSEM and PLSc perform very poorly. 

     Table 4 summarizes the results of prior research on the methods’ performance in terms of 

parameter bias when estimating common factor models with effect, causal, and composite 

indicators. Furthermore, the table summarizes the results of this paper’s simulation studies 

regarding the methods’ performances when estimating composite models with effect indicators. 

In line with the nature of each data generation approach and the methods’ way of treating 
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construct measures (e.g., Diamantopoulos, 2011; Henseler et al., 2016a), we differentiate 

between (1) effect indicator models and causal indicator models when the underlying population 

is common factor-based, and (2) between effect indicator models and composite indicator models 

when the underlying population is composite-based. 

=== Place Table 4 about here === 

6. Conclusion 

     “Professional statisticians tend to know little about factor analysis and seldom practice it. 

Indeed, statisticians mostly have a cooly negative attitude towards the subject. They hardly ever 

write about it. […] I can see nothing advantageous in factor analytic methods. Factor analysis is 

technically under-developed and at times appears almost cretinous. Its practitioners seem to be 

largely unaware of the technical and methodological problems, which they let themselves in for.” 

This text, which is more than fifty years old and taken from Ehrenberg’s article “Some Questions 

About Factor Analysis” (1962, p. 191 and 206), appears surprising considering that today factor 

analysis is one of the success stories of statistical analysis (Cudeck & MacCallum, 2007). This 

assessment sounds familiar to everyone who has been exposed to recent papers critically referring 

to the PLS method. Authors have repeatedly suggested that PLS has “largely been ignored in 

research methods journals” (Rönkkö & Evermann, 2013, p. 426), that its use is restricted to few 

domains (Rönkkö et al., 2016; Rönkkö et al., 2015) and that “PLS is not useful for statistical 

estimation and testing” (Rönkkö et al., 2015, p. 76). While we do not suggest that PLS will undergo 

a similar development as factor analysis, the statements about the limitations of factor analysis and 

PLS nicely show how unsubstantiated some methodological discussions can become. As noted 

elsewhere, “any extreme position that (oftentimes systematically) neglects the beneficial features of 

the other technique, and may result in prejudiced boycott calls, is not good research practice and 

does not help to truly advance our understanding of methods and any other research subject” 
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(Sarstedt et al., 2014b, p. 158).  

     Our discussions show that researchers need to clearly distinguish between (conceptual) 

measurement approaches and the (statistical) estimation perspectives when judging the 

appropriateness of or choosing a specific SEM method. Model estimation does not occur in a 

methodological vacuum, detached from measurement considerations but rests on specific 

assumptions, which need to be considered when conceptualizing and operationalizing models and 

vice versa. Despite frequent warnings (Chin, 2010; Henseler et al., 2014; Marcoulides et al., 

2012), research on the performance of PLS has repeatedly ignored the implications of using a 

composite-based method for estimating common factor models (Becker et al. 2013). Recent 

efforts to align reflective measurement and composite-based modeling (Dijkstra & Henseler, 

2015; Henseler et al., 2016a)—while commendable from a methodological viewpoint—have 

instead contributed to the confusion, leaving researchers with little guidance regarding when to 

apply each method and how to align their use with measurement considerations.  

=== Place Figure 3 about here === 

     The framework in Figure 3 merges our theoretical discussions and simulation results. Whereas 

the theoretical layer serves to define the conceptual variable, the conceptual layer delivers the 

definition of the conceptual variables, which then serves as the basis for the measurement 

operationalization using effect, causal, or composite indicators on the operational layer. This 

conceptualization and operationalization of construct measures represents the measurement 

perspective. This perspective needs to be complemented with the model estimation perspective. 

The estimation layer intertwines with the measurement model layer that expresses how the data 

represent reflectively or formatively specified measurement models.  

     By exploring the performance of CBSEM, PLS, and PLSc when estimating composite models, 

the simulation studies overcome a crucial limitation of prior studies, which univocally relied on 



28 

 

data from common factor model populations to judge their universal efficacy (Chin, 2010; 

Marcoulides & Chin, 2013). Therefore, the present simulation studies address corresponding calls 

for future research, such as expressed by Hwang et al. (2010, p. 710) in their comparative study 

on parameter recovery of common factor-based SEM, PLS, and generalized structured 

component analysis: “We generated simulated data on the basis of covariance structure analysis. 

This data generation procedure may have had an unfavorable effect on the performance of partial 

least squares and generalized structured component analysis. We adopted the procedure because 

it was rather difficult to arrive at an impartial way of generating synthetic data for all three 

different approaches. Nevertheless, the same procedure has been used in other studies that 

compared the performance of covariance structure analysis with that of partial least squares (...). 

In any case, it appears necessary in future studies to investigate whether a particular data 

generation procedure may influence the relative performance of the different approaches.” 

      The results outlined in this paper show that PLS entails practically no bias when estimating 

data from a composite model population, regardless of whether the measurement models are 

reflective or formative (Table 3). Biases are somewhat higher for common factor model 

populations (Table 2), but low in absolute terms. Clearly, PLS is optimal for estimating 

composite models while simultaneously allowing approximating common factor models with 

effect indicators with practically no limitations (see the solid lines between composite indicators / 

effect indicators and composite model and the dashed line between effect indicators and common 

factor model in Figure 3; also see Table 4). In contrast, CBSEM and PLSc estimation of 

reflectively measured constructs when the data stem from a composite population entails severe 

biases in parameter estimates, rendering their use inappropriate in these instances (no line 

between effect indicators and composite model in Figure 3; also see Table 4). Particularly PLSc 

shows a bewildering behavior with strong biases across practically all conditions, which do not 
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diminish as sample size increases. When using PLSc to estimate measurement models with 

composite indicators using data that stem from a composite model population, the PLSc results 

parallel those from PLS as no correction for attenuation occurs (see the solid line between 

composite indicators and composite model in Figure 3; also see Table 4).  

     When estimating data from common factor populations, CBSEM’s parameter bias is small for 

a sample size of 250 and quickly diminishes for higher sample sizes (see solid line between effect 

indicators and common factor model in Figure 3; also see Table 4). PLSc shows a similar pattern 

when estimating data from common factor populations but performs less well for small sample 

sizes of 100, where MAE values peak at 0.34 (see dashed line between effect indicators and 

common factor model in Figure 3; also see Table 4). In this situation, PLS outperforms the other 

methods but overall, the differences are marginal (Chin, 1998; Fornell & Bookstein, 1982; also 

see Goodhue et al., 2012). Note that other CBSEM estimators than ML (e.g., GLS, ULS, and 

ADF) entail further biases when estimating common factor models; see for example Boomsma 

and Hoogland (2001) and Dijkstra and Henseler (2015).  

     The obvious problem with these observations is that researchers can hardly know whether the 

data’s nature is common factor- or composite-based. Fit measures such as the standardized root 

mean square residual (SRMR) may provide an indication of whether the data follow a common 

factor model. If the measure does not meet the required level (e.g., 0.08 and smaller for the 

SRMR; Hu & Bentler, 1998), this result suggests that the data follow a composite model. 

Alternatively, an improper CBSEM solution may point to an underlying composite model 

population. Our results show that CBSEM produces improper solutions in up to 99 percent of 

cases when the composite model holds. In consideration that in practical applications improper 

solutions often occur in CBSEM use (Rigdon, 2012; Sarstedt et al., 2014b), these results offer a 

potential explanation why, more often than not, the common factor model cannot be supported in 
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practice (Atinc et al., 2012). At the same time, however, reasons for improper solutions are 

manifold and not restricted to the misspecification of the model type. Therefore, interpreting 

improper solutions as clear evidence for an underlying composite model is not reasonable. As an 

alternative, researchers can follow a multi-methods approach, in which they combine CBSEM 

with PLS to see whether the results align in that specific research situation. Substantial 

differences between the methods indicate that the underlying population is composite-based, 

supporting the use of composite-based SEM methods. Nevertheless, in light of the biases that 

come with a CBSEM and PLSc-based estimations of composite model data, PLS is certainly the 

safer option when estimating data from an unknown population until research has proposed clear 

guidelines on how to identify the population type.  

     Our findings suggest that composite-based methods are going to play a greater role in future 

SEM applications. To date our understanding of this strand of methods is incomplete, however, 

as prior assessments universally drew on common factor model-based data and thereby relied on 

misspecified populations (Rigdon, 2016). Therefore, future research should aim at broadening 

our knowledge of the relative performance of the different approaches on the grounds of 

composite model-based data. For example, studies should contrast PLS’s performance with other 

composite-based SEM techniques such as generalized structured components analysis (Hwang et 

al., 2010) or regularized generalized canonical correlation analysis (Tenenhaus & Tenenhaus, 

2011).  

     In doing so, future research should consider a broader range of model constellations and more 

complex model structures such as hierarchical component models, moderating effects, or 

nonlinear effects. Such assessments would help disclose the different methods’ efficacy for 

different situations that researcher encounter in their studies. By examining CBSEM's 

performance on composite model data, this study complements prior research, which univocally 
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examined PLS's performance on common factor model data. However, future research should 

compare PLS, PLSc, and CBSEM on data where both models fit in the population. Such a design 

would provide supplementary insights, because CBSEM may work well on some composite 

measures but not others. In addition, with regards to PLS, future research should explore the 

interplay between measurement specifications, population type, and PLS’s estimation modes (i.e., 

Mode A and B). These results would help clarifying the estimation modes’ efficacy for out-of-

sample prediction, in-sample-prediction, and parameter bias under different model specification 

and data conditions.  
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Table 1 

Simulation Design 

 
Study 

Design factors 
Study I: Common  

factor-based simulation 

 
Study II: Composite-based  

simulation 
Measurement 
model 
conceptualization 

Reflective  Formative 

Measurement 
model 
operationalization 

Effect indicators  Composite indicators 

Representation of 
the construct and 
data generation  

Common factor model   Composite model 

Structural model Reinartz et al. (2009), extended by 
null paths  

 Reinartz et al. (2009), extended by null paths 

Loadings/weights 
and number of 
indicators 

All possible combinations of 
number of indicators (2, 4, 6, 8) 
and indicator loadings (equal: 0.50, 
0.70 or 0.90; and unequal: half of 
the indicators 0.50, the other half 
0.90) 

 Eight combinations of number of indicators and 
indicator weights:  
Unequal weights 
l 0.30/0.90; 
l 0.10/0.30/0.50/0.70;  
l 0.10/0.175/0.25/0.325/0.40/0.475; and 
l 0.075/0.125/0.175/0.225/0.275/0.325/ 

0.375/0.425  
Equal weights  
l 0.625/0.625;  
l 0.40/0.40/0.40/0.40;  
l 0.30/0.30/0.30/0.30/0.30/0.30; and  
l 0.25/0.25/0.25/0.25/0.25/0.25/0.25/0.25  

 

Data distribution Three variations of 
skewness/kurtosis:  
none, moderate, and high 

 Three variations of the normal distribution: 
symmetric normal, log-normal, and diff-normal 

Sample size 100, 250, 500, 1,000, and 10,000  100, 250, 500, 1,000, and 10,000 
Notes: * In composite models, the indicators fully explain the latent variable, which imposes some restrictions on the 
possibilities of cases that can be drawn; diff-normal = difference of two normal distributions. 
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Table 2 

Coefficients’ Mean Absolute Error (MAE) in the Common Factor Model Situation 

Design factor   Mean absolute error (MAE) 

Observations Group Loadings PLS PLSc CBSEM 

100 

2 Indicators 

Mixed 

0.11 0.30 0.13 
4 Indicators 0.09 0.13 0.10 
6 Indicators 0.08 0.09 0.08 
8 Indicators 0.08 0.12 0.08 
Loadings: 0.5 

Equal* 
0.13 0.34 0.16 

Loadings: 0.7 0.09 0.10 0.10 
Loadings: 0.9 0.06 0.07 0.07 
Loadings: 0.5/0.9 Unequal* 0.08 0.10 0.08 

250 

2 Indicators 

Mixed 

0.10 0.13 0.09 
4 Indicators 0.08 0.07 0.06 
6 Indicators 0.06 0.05 0.05 
8 Indicators 0.06 0.06 0.05 
Loadings: 0.5 

Equal* 
0.12 0.14 0.10 

Loadings: 0.7 0.07 0.06 0.06 
Loadings: 0.9 0.04 0.04 0.04 
Loadings: 0.5/0.9 Unequal* 0.06 0.05 0.05 

500 

2 Indicators 

Mixed 

0.10 0.07 0.06 
4 Indicators 0.07 0.05 0.04 
6 Indicators 0.06 0.04 0.04 
8 Indicators 0.05 0.04 0.04 

Loadings: 0.5 
Equal* 

0.12 0.08 0.07 
Loadings: 0.7 0.07 0.04 0.04 
Loadings: 0.9 0.03 0.03 0.03 
Loadings: 0.5/0.9 Unequal* 0.05 0.04 0.03 

1,000 

2 Indicators 

Mixed 

0.09 0.05 0.04 
4 Indicators 0.06 0.03 0.03 
6 Indicators 0.05 0.03 0.03 
8 Indicators 0.05 0.03 0.03 
Loadings: 0.5 

Equal* 
0.12 0.05 0.05 

Loadings: 0.7 0.06 0.03 0.03 
Loadings: 0.9 0.03 0.02 0.02 
Loadings: 0.5/0.9 Unequal* 0.05 0.03 0.02 

10,000 

2 Indicators 

Mixed 

0.09 0.01 0.01 
4 Indicators 0.06 0.01 0.01 
6 Indicators 0.04 0.01 0.01 
8 Indicators 0.04 0.01 0.01 
Loadings: 0.5 

Equal* 
0.11 0.02 0.01 

Loadings: 0.7 0.06 0.01 0.01 
Loadings: 0.9 0.02 0.01 0.01 
Loadings: 0.5/0.9 Unequal* 0.04 0.01 0.01 

Total   0.07 0.07 0.05 
Note: * Across all numbers of indicators 
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Table 3  

Coefficients’ Mean Absolute Error (MAE) in the Composite Model Situation 

Design factor   Mean absolute error (MAE) 
Observations Indicators Weights PLS PLSc CBSEM 

100 

2 

Equal 

0.07 2.90 0.84 
4* 0.07 4.42 0.74 
6* 0.07 3.57 0.63 
8* 0.07 2.05 0.52 
2 

Unequal 

0.07 5.05 0.61 
4* 0.08 3.03 0.92 
6* 0.07 5.83 0.54 
8* 0.07 2.89 0.48 

250 

2 

Equal 

0.05 5.33 0.81 
4* 0.04 5.56 0.81 
6* 0.05 3.22 0.73 
8* 0.04 3.71 0.57 
2 

Unequal 

0.05 2.94 0.54 
4* 0.05 4.06 0.82 
6* 0.05 2.76 0.58 
8* 0.05 4.20 0.59 

500 

2 

Equal 

0.03 5.21 0.90 
4* 0.03 11.55 0.81 
6* 0.03 2.87 0.82 
8* 0.03 2.89 0.75 
2* 

Unequal 

0.03 2.29 0.55 
4* 0.03 1.17 0.62 
6* 0.03 2.52 0.60 
8* 0.03 4.96 0.56 

1,000 

2 

Equal 

0.02 2.28 0.98 
4* 0.02 5.52 0.80 
6* 0.02 1.38 0.95 
8* 0.02 2.74 0.88 
2* 

Unequal 

0.03 4.39 0.55 
4* 0.02 0.81 0.65 
6* 0.02 2.29 0.65 
8* 0.02 6.88 0.65 

10,000 

2 

Equal 

0.01 1.00 1.34 
4 0.01 17.89 0.74 
6* 0.01 0.85 1.72 
8* 0.01 1.06 1.22 
2* 

Unequal 

0.01 2.44 0.66 
4* 0.01 0.64 0.51 
6* 0.01 1.04 1.02 
8* 0.01 1.59 0.58 

Total   0.04 3.70 0.76 
Note: * Instances in which CBSEM converged in less than 50% of the simulation runs. 
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Table 4 

Efficacy of PLS, PLSc, and CBSEM for Estimating Common Factor and Composite Models 

Method Data type 
Measurement model 
operationalization 

 

Performance Description Sample references 

PLS Common factor Effect indicators (+) Small bias  Reinartz et al. (2009), this study 
Causal indicators - PLS cannot model the construct-level error 

term 
Diamantopoulos (2011) 

Composite Effect indicators + Very small bias  This study 
Composite indicators + Small bias for small sample sizes, which 

approaches zero for increasing sample sizes 
Becker et al. (2013a) 

PLSc Common factor Effect indicators (+) Small bias, which is however higher than that 
of CBSEM for small sample sizes 

Dijkstra and Henseler (2015),  
this study 

Causal indicators - PLSc cannot model the construct-level error 
term 

Diamantopoulos (2011) 

Composite Effect indicators - Pronounced bias  This study 
Composite indicators + Results parallel those from PLS as no 

correction for attenuation occurs 
Becker et al. (2013a) 

CBSEM Common factor Effect indicators + Very small bias except for small sample sizes 
of 100 

Reinartz et al. (2009), this study 

Causal indicators (+) Model identification via MIMIC models or by 
specification of select parameters 

Diamantopoulos and Riefler (2011) 

Composite Effect indicators - Increased bias  This study 
Composite indicators - Model identification by specification of select 

parameters but strong limitations in terms of 
inference 

Grace and Bollen (2008) 

Notes: - not recommended / possible, (+) acceptable, + recommended 
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Figure 1 

Measurement Model Conceptualization and Operationalization  
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Figure 2 

Simulation Model 
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Figure 3 

Measurement and Model Estimation Framework 

 

Notes: Dashed lines indicate acceptable types of measurement approximation; solid lines represent 
recommended types of measurement approximation. The PLSc results when estimating composite model data 
and composite indicators parallel those from PLS as no correction for attenuation occurs. 

 


