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Short-term photovoltaic (PV) energy generation forecasting models are important, stabilizing the power integration between the
PV and the smart grid for artificial intelligence- (AI-) driven internet of things (IoT) modeling of smart cities. With the recent
development of AI and IoT technologies, it is possible for deep learning techniques to achieve more accurate energy generation
forecasting results for the PV systems. Difficulties exist for the traditional PV energy generation forecasting method considering
external feature variables, such as the seasonality. In this study, we propose a hybrid deep learning method that combines the
clustering techniques, convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism with
the wireless sensor network to overcome the existing difficulties of the PV energy generation forecasting problem. The overall
proposed method is divided into three stages, namely, clustering, training, and forecasting. In the clustering stage, correlation
analysis and self-organizing mapping are employed to select the highest relevant factors in historical data. In the training stage,
a convolutional neural network, long short-term memory neural network, and attention mechanism are combined to construct
a hybrid deep learning model to perform the forecasting task. In the testing stage, the most appropriate training model is
selected based on the month of the testing data. The experimental results showed significantly higher prediction accuracy rates
for all time intervals compared to existing methods, including traditional artificial neural networks, long short-term memory
neural networks, and an algorithm combining long short-term memory neural network and attention mechanism.

1. Introduction

Photovoltaic power generation has the advantages of low car-
bon consumption, adaptive to various applications, and low
installation and maintenance costs, which is known as a sus-
tainable energy source [1]. Because of different weather con-
ditions, PV panels often cannot stably output electrical power
from solar energy. While integrating the PV power to the
power grid, the grid is seriously influenced. The stability of
the entire grid will be greatly reduced. With the wireless sen-
sor network, it is possible for deep learning techniques to
forecast solar energy generation and consequently stabilize
the smart grid systems [2]. Therefore, artificial intelligence-
(AI-) driven internet of things (IoT) technology becomes
one of the key technologies of solving this problem [3, 4].

Along with the fast development of IoT technology, the
extended deep learning methods nowadays are capable of
performing short-term time series data forecasting, such as
PV power generation, anomaly detection, and energy con-
sumption forecasting, with considerable high forecasting
accuracy [5–7].

In recent years, with the fast development of AI-driven
IoT technology, the applications of deep learning technolo-
gies have been extended to various fields [8, 9], such as digital
twinning [10], computer security [11], cyberphysical systems
[12], transportation systems [13], and air quality forecasting
[14]. Jiménez-Pérez and Mora-López [15] proposed a fore-
casting system simulating global solar irradiance forecasts
every hour. The system can be separated into two phases.
The first phase is clustering. The original dataset was divided
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into groups by the k-means clustering algorithm. Each group
represents data of different weather types. Machine learning
techniques, such as decision trees, artificial neural networks,
and support vector machines, are employed to perform fore-
casting in the second phase. Yang et al. [16] proposed a
hybrid deep learning method based on weather types for
PV power output forecasting with a timestep at 1 hour. The
proposed method has three steps: classification, training,
and prediction. The classification step involves a self-
organizing map (SOM) [17] and Learning Vector Quantiza-
tion (LVQ) [18]. In the training and prediction step, the
fuzzy training method is used to select the most appropriate
deep learning model for prediction. Han et al. [19] proposed
an alternative multimodel PV power interval prediction
method that considers the seasonal property of the PV power
and absolute power deviation in the prediction process. Van-
Deventer et al. [20] proposed a support vector machine
model based on a genetic algorithm (GASVM). The GASVM
model classifies the historical weather data using an SVM
classifier initially, and later, it is optimized by the genetic
algorithm using an ensemble technique. Malvoni et al. [21]
proposed to use wavelet decomposition and principal com-
ponent analysis to decompose meteorological data and treat
it as predictive inputs. A time series forecasting method,
named as GLSSVM (Group Least Square Support Vector
Machine), which combines the Least Square Support Vector
Machines (LS-SVM) and Group Method of Data Handling
(GMDH), was applied to the measured weather data.

More recently, deep learning techniques, such as the con-
volutional neural network (CNN), long short-term memory
(LSTM), and deep belief networks (DBNs), are widely
applied to the PV system energy generation forecasting prob-
lem. Srivastava and Lessmann [22] proposed to adopt the
original LSTM neural network for PV energy generation
forecasting, and the proposed algorithm is hardly generaliz-
able. Jian et al. [23] proposed an online sequential extreme
learning machine with a forgetting mechanism model for
PV energy generation prediction. The normalized data is
input into a two-layer CNN for feature extraction and then
merged into LSTM by fusion layer for PV power prediction.
Zhou et al. [24] proposed a LSTM neural network combining
the attention mechanism (AM) for PV energy generation
forecasting. The AM is used to adaptively perceive feature
information from the time series data. Chen et al. [25] pro-
posed a cloud shadow model using computer vision tech-
niques to forecast real cloud coverage nature for PV
systems and enhanced the PV energy generation forecasting
results consequently. Chang et al. [26] introduced a virtual
inertia control based on PV load forecasting results, showing
real-world applications of the PV energy generation forecast-
ing techniques.

In this paper, we proposed a novel PV power forecasting
framework combining clustering and deep learning technol-
ogies. The entire framework can be divided into three stages.
In the first stage, according to the impact of the training data
in the previous paragraph, we divide the training data into
four clusters using the SOM algorithm, mimicking the four
seasons. The reason for using the SOM algorithm as the
experimental clustering algorithm is described in 2.2.2, and

the reason for simulating the data into four seasons for the
experiment is described in 2.2.1. In the second stage, use
AM, CNN, and LSTM to build the model. The third stage
is the forecasting stage. According to the month of the testing
data, the most suitable forecasting model is selected to pre-
dict the PV energy generation for the next time stamp. Exper-
imental results show the superior performance of the
proposed method over the existing works. Compared to the
existing methods tackling on the same problem, the main
contributions of the proposed method are summarized in
the following points.

1.1. The Raw Data Is Processed by Clustering Techniques for
More Accurate Forecasting Performance. Based on the data
collected from the eastern region of China, the solar irradi-
ance patterns vary between different seasons. The data is first
clustered into four classes and trained using four different
LSTM neural networks, respectively, to enhance the forecast-
ing accuracy.

1.2. CNN and LSTM Are Combined for a More Sophisticated
Deep Learning Framework. Both CNN and LSTM are popu-
lar deep learning techniques for forecasting problems. In this
study, the two techniques are combined to produce better
forecasting results for the PV energy generation forecasting
problem.

1.3. The AM Technique Is Adopted to Further Enhance the
Forecasting Performance. The AM is an important extension
for the traditional LSTM neural network. It forces the LSTM
neural networks to pay more attention to the features that are
more relevant to the forecasting outputs. According to the
experimental results, the AM technique greatly improves
the forecasting results produced by LSTM neural networks.

2. Methodology

The dataset employed in this study was collected by a PV
power station located in Shaoxing city in the eastern part of
China. This solar energy generation dataset was collected
from October 2014 to September 2018, in a time interval of
7.5min. The data from 2014 to 2016 is taken as the training
dataset, and the data from 2017 to 2018 is used for testing.
Remote sensors were utilized to record the PV module tem-
perature, the current, voltage, frequency, phases, and PV
power every 7.5 minutes. Since the power station uses
three-phase inverter equipment, the data contains the PV
module temperature, three AC currents (alternating current
1, alternating current 2, and alternating current 3), three
AC voltages (AC voltage 1, AC voltage 2, and AC voltage
3), two DC currents (direct current 1 and direct current 2),
two DC voltages (DC voltage 1 and DC voltage 1), frequency,
phases, and PV power. The frequency and phase do not
change with the PV power, so the frequency and phase data
are not used in the experiments. It is very difficult to obtain
huge amount of historical weather data with a time interval
of 7.5min at the same location from the weather bureau.
We do not add weather data to the experimental data and
find a data preprocessing method to effectively improve the
predictive ability of the model.
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We calculated correlation coefficients between other fac-
tor data and PV power. The correlation of the multifactor
combination on the PV power is shown in Table 1. A com-
bined correlation test method for calculating the modified
RV coefficient is introduced here. Modified RV coefficient
(RVmod) is a correlation analysis method based on matrix
calculation. The equation for calculating the modified RV
coefficient is

RVmod =
tr JKð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr Jð Þ2tr Kð Þ2
q , ð1Þ

where J =M ·MT − diag ðM ·MTÞ; K =N ·N T − diag
ðN ·N TÞ; M represents the matrix of influencing factors,
including alternating current 2 (AC2) and alternating current
3 (AC 3); N represents PV power output matrix; diag ð·Þ is a
function that takes out the diagonal elements of the matrix;
trð·Þ is a function that takes the sum of the elements on the
diagonal of the matrix; the range of RVmod is (-1,1), when
the RVmod is closer to -1 or 1; and the correlation is higher
between the factor and the power output.

For the coefficients AC2 and coefficients AC3 which are
very close, we specially carry out experiments and compare
the experimental results of the datasets of AC2 and AC3.
The experimental results show that, although the coefficient
difference is not large, the prediction accuracy of AC2 is sig-
nificantly higher than AC3. In this study, we extract AC2
data as experiment data.

2.1. Clustering of the Original Data. In the clustering stage,
the AC2 data from 2014 to 2016 is the training dataset and
used for clustering. Considering the different numbers of
days per month and the lack of PV data, we selected 15 days
of complete data from each month and made each month
AC2 data to a dataset as ½x1, x2,⋯,x15�; the dataset indicates
that a month’s AC2 data, x, contains 192 AC2 real-time data
for one day. The clustering experiment uses two-year AC2
data. We merged the datasets with the same month label.
The SOM algorithm is used to perform the clustering task.
The raw data was clustered into 4 clusters.

The SOM model structure is shown in Figure 1. The
learning steps of the SOM algorithm are as follows.

In the first step, the weight vector corresponding to each
neuron in the competition layer was initialized, normalizing
the current input mode vector X and the weight vector corre-
sponding to the neuron. Secondly, the neuron node d with
the smallest Euclidean distance between Xc (input vector)
and ѡj (connection weight vector) is selected as the winning
neuron node. As a result, the weights were updated accord-
ingly. Following Equation (3), the weight of the winning neu-
ron node d and other nodes in its domain is updated, where
η ðtÞ is the learning rate of the t step in the range of (0, 1) and
hd，j ðtÞ is the neighborhood function. hd，j ðtÞ generally uses a
Gaussian function, as shown in Equation (4). The specific
adjustment rules are as shown in Equations (5) and (6).

Xc −wj

�� �� =min djc

� �
, ð2Þ

W ij t + 1ð Þ =Wij tð Þ + η tð Þhd,j tð Þ Xi −Wij tð Þ
� �

, ð3Þ

hd,j tð Þ = exp −
d2dj

2r2 tð Þ

 !
, ð4Þ

r t + 1ð Þ = INT r tð Þ − 1ð Þ × 1 −
t
T

� 	� 	
+ 1, ð5Þ

η t + 1ð Þ = η tð Þ − η 0ð Þ
T

, ð6Þ

where the distance between the neuron d and the neuron
j is ddj

2, rðtÞ is the neighborhood radius, INT is the rounding
function, and T is the learning frequency.

2.2. Deep Learning Models. In the training stage, the 4 clus-
ters of data are inputted into a model for training, and 4
forecasting models are trained. The training process fol-
lows the training method of time series. We display the
training data of each category as ½y1, y2, y3,⋯,yn�, where
y represents AC2 data and n represents the number of
AC2 data contained in each category. We set timestep i,
½y1, y2,⋯,yi�, as a new training set, and yi + 1 as the target
value; then, we put the new training set into the training
model, and the model parameters are adjusted during
training so that the predicted output is constantly close
to yi + 1. Next, ½y2, y3,⋯,yi + 1� is inputted into the train-
ing model and adjusts the model parameters so that the
predicted output is continuously close to yi + 2, and so
on, until the target value is yn; end the model training
and get the forecasting model.

The training model structure of this experiment consists
of two convolutional kernel layers of CNN, one layer of
LSTM with attention mechanism, and a fully connected
(FC) layer. The overall flowchart of the proposed framework
is depicted in Figure 2.

This proposed deep learning model (CNN-ALSTM) is
a hybrid deep learning model to extract features from the
raw data and perform foresting using the LSTM neural
network. The CNN layer is employed to extract the use-
ful features from the time series data, representing addi-
tional latent information of the data, which has the
potential to improve the prediction accuracy. The experi-
mental results show that the CNN layer contains one 16
3 × 1 convolution kernel layer and one 32 3 × 1 convolu-
tion kernel convolution layer that optimizes the predic-
tion performance.

The feature vector obtained from the second layer of
CNN was inputted into the LSTM layer for prediction. Each
element of the feature vector has correspondence to one of
the 32 units in the LSTM layer. The attention mechanism
puts higher weight to the feature quantities that are signifi-
cantly related to the current output. Last, the output vector
of the attention mechanism is processed by a FC layer using
the unfolding operation. The predicted value of the AC2 at
the next moment is output.

LSTM is very suitable for prediction experiments of time
series data. Existing works show superior forecasting perfor-
mance combining CNN and LSTM for various applications
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[23, 27–29]. CNN helps LSTM to better extract the character-
istics of experimental data. The attention mechanism is a
process of assigning weights. Using the attention mechanism,
more accurate weightage values are assigned to the LSTM
output vector to improve the prediction capability of the
model.

The predictive power is obtained by the inverse normali-
zation according to Equation (7).

PrP = PrIac2 ∗ Pmax − Pminð Þ + Pmin, ð7Þ

where Prp is the predicted value of power and PrIac2 is the
predicted value of AC2.

2.2.1. Long Short-Term Memory Neural Network. The LSTM
model structure is shown in Figure 3.

The appearance of LSTM cell structure effectively
resolves the gradient explosion/vanishing problems. There
are four important elements in the flowchart of the LSTM
model: cell status, input gate, forget gate, and output gate.
The input, forget, and output gates are used to control the
update, maintenance, and deletion of information contained

in cell status. The forward computation process can be
denoted as

f t = σ Wf · ht−1, xt½ � + bf
� �

,

it = σ Wi · ht−1, xt½ � + bið Þ,
Ot = σ WO · ht−1, xt½ � + boð Þ,

~Ct = tanh WC · ht−1, xt½ � + bCð Þ,
Ct = f t · Ct−1 + it · ~Ct ,

ht =Ot · tanh Ctð Þ,

ð8Þ

where Wf , Wi, and Wo are the weight matrix of the for-
getting gate, input gate, and output gate, respectively; bf , bi,
and bo are the offset items of the forgetting gate, the input
gate, and the output gate, respectively; σ is the sigmoid acti-
vation function; tanh is the hyperbolic tangent activation
function.

2.2.2. The Attention Mechanism. The attention mechanism is
a brain signal processing mechanism peculiar to human
vision. Human vision quickly scans the global image to
obtain the target area that needs attention and ignores other
areas of useless information. The attention mechanism algo-
rithm has been successfully implemented and applied to
model training [26] and other related fields.

The model proposed in this paper uses the LSTM hidden
layer output vector H = fh1, h2,⋯,htg as the input of the
attention mechanism, and the attention mechanism will find
the attention weight αi of hi, which can be calculated as
shown in

ei = tanh Whhi + bhð Þ,

αi =
exp eið Þ

∑t
i=1exp eið Þ ,

ð9Þ

where Wh is the weight matrix of hi and bh is the bias.

Table 1: Correlation coefficient of PV data factors.

PV data factor name Correlation coefficient

DC voltage 1 (V) 0.19

DC voltage 2 (V) 0.20

Direct current 1 (A) 0.13

Direct current 2 (A) 0.13

AC voltage 1 (V) 0.10

AC voltage 2 (V) 0.11

AC voltage 3 (V) 0.14

Alternating current 1 (A) 0.28

Alternating current 2 (A) 0.992

Alternating current 3 (A) 0.998

Alternating current 2 (A) and alternating current 3 (A) combination 0.73

PV module temperature 0.16

Weights ɷ

Input layer

Competition layer

X dimension

Y dimension

Figure 1: Structure of the SOM model.
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The values of Wh and bh vary during the ALSTM training
process. The range of ei is (-1,1). The attention vector H ′ =
fh1 ′, h2 ′,⋯, ht ′g can be obtained by multiplying attention
weight αi and hi:

hi′= αi · hi: ð10Þ

The attention mechanism is implemented as a custom
layer where the parameters are optimized using RMSProp
backpropagation [33, 34].

2.3. The Overall Forecasting Framework. There are four deep
learning models trained in the proposed framework
(Figure 4). In the testing stage, an appropriate forecasting
model is selected based on the grouping result of the testing
data sample. The proposed hybrid deep learning model
structure is shown in Figure 5. As a necessary preprocessing
step, we used correlation coefficient to determine inputs for
prediction. The weather data was employed by the SOM
algorithm to cluster inputs into four categories. Each cate-
gory is trained by the proposed hybrid deep learning frame-
work. In particular, the CNN is used to extract the time
series features of AC2 data; the LSTM neural network further
extracts high latitude features in the data. The attention
mechanism is used to assign different attention weights to
the output elements of the LSTM hidden layer. In the testing
phase, according to the month of the test set, we chose the
appropriate model to predict the testing result (Figures 4
and 5).

The process of data classification method determination
and hyperparameter determination is also described, includ-
ing the reason for simulating data in four seasons, the selec-
tion of clustering algorithm, the settings of SOM
competition layer, and the selection of SOM classified result.

2.3.1. The Selection of Clustering Algorithm. The original idea
of the clustering is to map the raw data into four different
groups, representing the four seasons. These four groups of
data are trained and tested using the proposed CNN-
ALSTM structure separately. Different clustering algorithms
are tested in the section. In the training phase, we analyze
clustering algorithms, including k-means, FCM, and SOM
(Figure 6), for clustering the training dataset into four clus-
ters. Based on the experimental results on the training data,
SOM is more accurate than most of the above-mentioned
traditional clustering algorithms (Figure 6) according to the
original season labels of the raw data.

The size of the SOM competition layer has been evalu-
ated through a series of experiments as shown in Figure 7.
The X-axis represents the size of the competition layer, and

Normalization

Correlation
coefficient

Train data
Clustering

stage

SOM
algorithm

Training
stage

Model 4

Model 3

Model 2

Model 1

Output

Denormalize

January

February

November

December

Test setPrediction
stage

Select training
model based
on month of

test set

CALSTM

˙ 
˙ 
˙ 

Figure 5: Structure of the proposed hybrid model.

FCM, 28.79%
SOM, 38.75%

k-means, 30.96%

Figure 6: Accuracy of different clustering algorithms in the training
phase.

1 1 1 1

2

3 3

4

1×1 1×2 2×1 3×1 1×3 4×1 1×4 2×2

Figure 7: Horizontally, the X-axis represents the size of the
competition layer, and vertically, the Y-axis represents the number
of output neurons.
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Table 2: Predicting MAPE results for one year of data.

2017.10 2017.11 2017.12 2018.1 2018.2 2018.3 2018.4 2018.5 2018.6 2018.7 2018.8 2018.9 Overall

7.5min

MLP 22.15 20.07 23.05 25.62 18.10 24.97 26.00 23.19 28.39 25.08 22.18 20.03 23.11

LSTM 23.87 21.42 20.96 28.76 16.63 28.96 20.99 31.19 40.02 20.21 22.18 21.73 24.61

ALSTM 21.64 22.44 21.44 28.16 23.52 24.55 18.43 17.82 32.79 25.46 29.05 19.78 23.32

Prop. 19.95 16.76 20.79 25.01 16.90 19.29 15.84 16.83 17.21 22.20 19.88 18.69 18.82

15min

MLP 30.19 24.41 26.42 28.58 20.63 37.38 47.40 40.80 53.70 38.39 31.30 27.10 34.17

LSTM 23.42 21.47 23.74 27.51 17.74 23.62 22.63 21.21 28.95 28.72 19.00 18.64 22.75

ALSTM 20.30 23.08 22.40 28.38 20.40 29.96 29.69 20.53 68.64 47.60 24.06 22.49 28.82

Prop. 22.69 20.32 26.51 28.04 21.055 28.17 28.61 25.12 18.23 25.44 23.87 20.89 23.79

30min

MLP 33.09 35.15 36.98 37.68 28.49 33.44 28.85 28.92 30.17 35.92 32.78 30.65 32.57

LSTM 37.75 41.62 38.86 38.42 41.45 36.07 36.34 30.06 37.90 39.01 32.59 40.96 37.39

ALSTM 25.67 29.86 37.76 42.77 33.89 30.41 57.01 28.64 30.09 30.71 37.50 35.79 34.18

Prop. 32.62 29.59 29.32 32.88 23.50 33.38 34.87 31.34 45.62 30.19 31.84 32.62 32.39

Table 3: Predicting RMSE results for one year of data.

2017.10 2017.11 2017.12 2018.1 2018.2 2018.3 2018.4 2018.5 2018.6 2018.7 2018.8 2018.9 Overall

7.5min

MLP 1.39 1.58 2.09 2.16 1.23 1.07 0.63 0.72 0.69 1.25 1.10 1.45 1.32

LSTM 1.45 1.63 2.16 2.20 1.29 1.10 0.63 0.81 0.78 1.30 1.15 1.50 1.37

ALSTM 1.60 1.75 2.16 2.36 1.33 1.10 0.69 0.81 0.71 1.34 1.17 1.63 1.42

Prop. 1.44 1.52 2.08 2.32 1.23 1.10 0.63 0.65 0.70 1.36 1.24 1.40 1.30

15min

MLP 1.42 1.60 2.12 2.19 1.22 1.12 0.77 0.82 0.82 1.29 1.16 1.47 1.37

LSTM 1.63 1.94 2.51 2.44 1.45 1.16 0.69 0.83 0.73 1.56 1.17 1.61 1.53

ALSTM 1.54 1.90 2.38 2.49 1.74 1.19 0.71 0.77 0.96 1.61 1.25 1.69 1.55

Prop. 1.57 1.78 1.47 1.86 1.47 1.21 0.75 0.90 0.87 1.45 1.29 1.62 1.40

30min

MLP 2.23 2.74 2.91 3.29 1.84 1.56 0.94 1.22 1.10 1.96 1.83 2.03 2.02

LSTM 3.10 3.95 4.13 3.72 3.52 2.01 1.46 1.64 1.19 2.32 2.52 3.51 2.89

ALSTM 1.80 2.95 3.78 3.91 2.66 1.19 0.94 0.99 0.76 2.06 1.46 3.18 2.22

Prop. 2.26 2.29 2.95 3.12 1.71 1.92 1.00 0.94 0.96 1.71 1.69 2.71 2.04

Table 4: Predicting MAE results for one year of data.

2017.10 2017.11 2017.12 2018.1 2018.2 2018.3 2018.4 2018.5 2018.6 2018.7 2018.8 2018.9 Overall

7.5min

MLP 0.829 0.88 1.15 1.36 0.70 0.61 0.39 0.42 0.39 0.72 0.67 0.83 0.72

LSTM 0.89 0.95 1.21 1.47 0.74 0.67 0.35 0.52 0.53 0.74 0.69 0.91 0.78

ALSTM 1.049 1.12 1.22 1.56 0.84 0.62 0.39 0.45 0.44 0.83 0.77 1.05 0.83

Prop. 0.85 0.84 1.25 1.55 0.78 0.57 0.32 0.40 0.33 0.81 0.80 0.88 0.70

15min

MLP 0.91 0.92 1.17 1.38 0.69 0.73 0.58 0.58 0.61 0.84 0.75 0.91 0.82

LSTM 1.05 1.25 1.61 1.61 0.97 0.67 0.41 0.49 0.42 0.97 0.70 1.02 0.90

ALSTM 0.95 1.24 1.42 1.65 1.25 0.76 0.47 0.44 0.78 1.16 0.82 1.12 0.95

Prop. 1.022 1.20 1.53 1.55 1.16 0.74 0.49 0.54 0.42 0.81 0.83 0.91 0.85

30min

MLP 1.58 2.02 2.09 2.29 1.35 1.03 0.55 0.73 0.57 1.26 1.30 1.47 1.32

LSTM 2.18 2.98 3.00 2.73 2.78 1.27 0.86 0.97 0.67 1.51 1.73 2.60 1.90

ALSTM 1.19 2.24 2.99 3.16 2.23 0.76 0.77 0.66 0.46 1.39 1.12 2.43 1.47

Prop. 1.64 1.66 2.07 2.29 1.30 1.39 0.67 0.64 0.68 1.10 1.23 2.13 1.38
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the Y-axis represents the number of output neurons. The
result shows that the most suitable competition layer for
SOM is 2 × 2.

The clustering results of the SOM algorithm have a poten-
tial relationship with the prediction effect of the forecasting
model. The number of iterations of the SOM algorithm is set
between 500 and 1000, and the number of times is debugged
in hundred. The batch size is set to 15 or 30.

3. Experimental Process and Results

In this study, the average absolute percentage error MAPE,
the mean absolute error MAE, and the root mean square

error RMSE are used to evaluate the prediction ability of
the model. The detailed equations of three error metrics are
formulated in

MAPE =
1
n
〠
n

i=1

∣xmodel,i − xactual,i ∣
xactual,i

,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
xmodel,i − xactual,ið Þ2

s
,

MAE =
1
n
〠
n

i=1
xmodel,i − xactual,i


 

:

ð11Þ
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Figure 8: PV power forecast result in 7.5min ahead. (a-1) and (a-2) are the January 5th and January 6th, (a-3) and (a-4) are theMarch 1st and
March 3rd, (a-5) and (a-6) are the June 6th and June 8th, and (a-7) and (a-8) are the October 3rd and October 4th.
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Figure 9: PV power forecast result in 15min ahead. (b-1) and (b-2) are the January 14th and January 15th, (b-3) and (b-4) are the May 1st
and May 2nd, (b-5) and (b-6) are the July 1st and July 2nd, and (b-7) and (b-8) are the October 3rd and October 4th.
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The experiment compares the proposed model, our pre-
vious work, that combines the LSTM and attention, together
with theMLP and LSTMmodel alone. The most relevant fac-
tor obtained in this paper is AC2 as input to the training
model. The resulting MAPE results are shown in Table 2.
The resulting RMSE results are shown in Table 3. The result-
ing MAE results are shown in Table 4.

In the case of less training data, using the clustering phase
and prediction phase mentioned in this paper will reduce the
prediction accuracy. When the time interval is 30min, the
amount of data is reduced to a quarter of the data volume
with a time interval of 7.5min. From the comparison of dif-
ferent time intervals, when the interval is 30min, the predic-
tion accuracy drops. On the contrary, in the case of more
training data, the prediction accuracy can be effectively
improved.

The experiment randomly selects two days of the month
as a display of the predicted results. As shown in Figures 8–
10, according to the law of PV power generation, the power
generation in the early evening to the early morning of the
next day is 0, which is not shown in Figures 8–10.

In Figures 8–10, (a-1) and (a-2), (b-1) and (b-2), and (c-
1) and (c-2) are forecasting results of two days in winter; (a-
3) and (a-4), (b-3) and (b-4), and (c-3) and (c-4) are forecast-
ing results of two days in spring; (a-5) and (a-6), (b-5) and (b-
6), and (c-5) and (c-6) are forecasting results of two days in
summer; (a-7) and (a-8), (b-7) and (b-8), and (c-7) and (c-
8) are forecasting results for two days in autumn. For winter,
in Figure 10, deviations of the predicted power curve are
found for 30min ahead predictions. Satisfactory prediction
performances in the winter season for 7.5min ahead and
15min ahead forecasts are achieved according to Figures 8
and 9.

Through the experimental clustering, training, and pre-
diction stage, the accuracy of the forecasting model has a sig-
nificant outperformance over the compared models when the
amount of training data is sufficient. The clustering stage

divides the original PV data into four different clusters.
And each clustered data is trained by a hybrid deep learning
framework combining CNN and LSTM. The sophisticated
deep learning framework obviously enhances the forecasting
performance over singular methods, such as MLP and LSTM.
The AM technique already shows a great influence of the
forecasting results in the experiments with ALSTM. The per-
formance improvement is further enlarged for the proposed
methods. According to Tables 2–4, the proposed model has
a good performance on the RMSE indicator. Compared with
the RMSE indicator, the MAE indicator reflects the actual sit-
uation of the prediction value error. The proposed model has
the better performance than other models in the MAE indi-
cator for intervals within 7.5min. It is noted that the pro-
posed model has significantly higher accuracy in the
prediction of intervals within 7.5min and has no obviously
high accuracy compared with the other individual model in
the prediction of intervals within 15min and 30min.

4. Conclusion and Discussion

Photovoltaic power generation prediction is of great signifi-
cance for maintaining grid security and coordinating
resource utilization. In the era of big data, it is possible for
AI-driven IoT technology to perform accurate solar energy
generation forecasting based on historical solar energy data
[24, 30–32]. This paper proposes a hybrid deep learning
method based on weather categories. Unlike traditional
models, this experiment includes correlation analysis and
clustering calculation of data, which effectively improves
the generalization ability of the model and improves the pre-
diction accuracy. The training algorithm employs the CNN
algorithm, which can extract the data features more effec-
tively and get more potential information in the data. Sec-
ondly, the attention mechanism is applied to the LSTM
model, focusing on the extracted important features. In the
prediction stage, the month of test set is used to determine
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Figure 10: PV power forecast result in 30min ahead. (c-1) and (c-2) are the January 9th and January 11th, (c-3) and (c-4) are the May 30th
and May 31th, (c-5) and (c-6) are the August 2nd and July 9th, and (c-7) and (c-8) are the October 6th and October 12th.
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the forecasting model, which improves the accuracy of the
prediction. This forecasting model is superior to the tradi-
tional algorithmmodel in predicting performance, and it also
shows outstanding results in predicting other data types.

The experimental results shown in Section 3 show that
the proposed method outperforms the traditional time series
data prediction methods, such as MLP, LSTM, and ALSTM
for PV system energy generation forecasting. Three evalua-
tion metrics are used to show the superior performance,
including RMSE, MAPE, and MAE. According to the results
collected in Tables 2–4, the proposed method achieves higher
forecasting accuracy for short-term and very short-term fore-
casting, e.g., the 7.5min advanced forecasting. For longer-
term forecasting, such as time intervals of 15 and 30min,
the forecasting performance advantage decreases.

One of the future works of this study is to extend the
existing work for more generalized datasets, i.e., achieving
acceptable forecasting results for longer-term forecasting of
the PV system energy generation. Another future work direc-
tion is to apply the proposed framework towards a broader
range of time series data applications in other fields, such as
air quality forecasting [14, 35] and energy consumption fore-
casting [36].
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