High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals' endosymbiotic algae

Page, C.E., Leggat, W., Heron, S.F., Fordyce, A.J., and Ainsworth, T.D. (2021) High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals' endosymbiotic algae. Conservation Physiology, 9 (1). coab046.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.1093/conphys/coab046
 
8
702


Abstract

The effects of thermal anomalies on tropical coral endosymbiosis can be mediated by a range of environmental factors, which in turn ultimately influence coral health and survival. One such factor is the water flow conditions over coral reefs and corals. Although the physiological benefits of living under high water flow are well known, there remains a lack of conclusive experimental evidence characterizing how flow mitigates thermal stress responses in corals. Here we use in situ measurements of flow in a variety of reef habitats to constrain the importance of flow speeds on the endosymbiosis of an important reef building species under different thermal regimes. Under high flow speeds (0.15 m s−1) and thermal stress, coral endosymbionts retained photosynthetic function and recovery capacity for longer compared to low flow conditions (0.03 m s−1). We hypothesize that this may be due to increased rates of mass transfer of key metabolites under higher flow, putatively allowing corals to maintain photosynthetic efficiency for longer. We also identified a positive interactive effect between high flow and a pre-stress, sub-lethal pulse in temperature. While higher flow may delay the onset of photosynthetic stress, it does not appear to confer long-term protection; sustained exposure to thermal stress (eDHW accumulation equivalent to 4.9°C weeks) eventually overwhelmed the coral meta-organism as evidenced by eventual declines in photo-physiological function and endosymbiont densities. Investigating flow patterns at the scale of metres within the context of these physiological impacts can reveal interesting avenues for coral reef management. This study increases our understanding of the effects of water flow on coral reef health in an era of climate change and highlights the potential to learn from existing beneficial bio-physical interactions for the effective preservation of coral reefs into the future.

Item ID: 70645
Item Type: Article (Research - C1)
ISSN: 2051-1434
Keywords: Bio-physical, climate change, coral bleaching, flow, interactions, thermal stress
Copyright Information: © The Author(s) 2021. Published by Oxford University Press and the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funders: Australian Research Council (ARC)
Projects and Grants: ARC DP180103199
Date Deposited: 12 Apr 2022 23:51
Downloads: Total: 702
Last 12 Months: 8
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page