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Abstract

The distribution and species/lineage diversity of freshwater invertebrate zooplankton is understudied 
in Sub-Saharan Africa. In the present study, we explored the lineage diversity and regional distribution 
of Moinidae (Crustacea: Cladocera) species in Southeast Nigeria. Three species of Moinidae were 
identified, based on morphology, in 11 of 32 Nigerian lakes examined. Their phylogenetic relationships 
were investigated based on mitochondrial dna sequences (cytochrome oxidase c subunit I gene; coi) 
and two nuclear internal transcribed spacer regions (its-1 and its-2). Three coi lineages were detected, 
corresponding to the morphological species. Two of the coi lineages are newly reported, but one coi 
lineage (and the haplotype found) is globally distributed, suggesting an ability of moinids to disperse over 
long distances. Interestingly, two individuals that were morphologically M. cf. macrocopa and had its 
alleles typical of that species had mtDNA sequences typical of M. cf. micrura. Additionally, one individual 
that corresponded morphologically to M. cf. macrocopa (and also had a mitochondrial sequence typical 
of M. cf. micrura) had one its-2 allele typical of that species and one typical of M. cf. micrura. This 
discordance between mtDNA and nuclear phylogenies suggests gene introgression and/or hybridization 
between different species within the genus. Our data shows the lineage distribution/diversity and the 
presence of gene introgression/interspecific hybridization among moinid species from a tropical region.
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Introduction

“Cosmopolitanism”, based on the apparent 
lack of morphological variation among pre-
sumed conspecific populations across wide 
regions, was widely accepted in the past (Baas-
Becking, 1934). This was especially so for fresh-
water invertebrate zooplankton, as they have 
large population sizes and strong dispersal 
abilities (Bohonak & Jenkins, 2003). However, 
some “species” that have been claimed to 
be cosmopolitan are inreasingly shown to 
be groups or complexes of morphologically 
similar species (Frey, 1987). More recently, 

extensive genetic studies have confirmed that 
many widespread freshwater invertebrate 
“species” (based on morphological criteria) 
often consist of very distinct, locally endemic 
lineages, some of which likely represent cryp-
tic species (Marrone et al., 2013; Neretina  
et al., 2021; Penton et al., 2004).

Gene introgression/hybridization is fre-
quently observed in nature, with at least 25% 
of plant species and 10% of animal species 
engaging in interspecific crosses (Mallet, 
2005). This phenomenon can be inferred 
from mito-nuclear incongruence among phy-
logenetic trees (Linder & Rieseberg, 2004), 
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which is the frequently observed across taxa 
(e.g., Degnan & Rosenberg, 2006; Nichols, 
2001; Rosenberg, 2013; Thielsch et al., 2017). 
Successful interspecific hybridization has 
been often documented in cyclical partheno-
gens, such as aphids (Delmotte et al., 2003) 
and zooplanktonic cladocerans (Hebert, 1985; 
Ma et al., 2019; Xu et al., 2013).

The Moinidae (Crustacea: Cladocera) 
is a speciose cladoceran family belonging 
to the order Anomopoda, close relatives 
of the Daphniidae. Based on the checklist 
from the fada website (Kotov et al., 2013), 
this family includes 35 valid species in two 
valid genera: Moina Baird, 1850 (34 species) 
and Moinodaphnia Herrick, 1887 (1 species). 
Moinidae occur in a wide range of water-
bodies, but are frequently present in tempo-
rary waters (Smirnov, 1976). Similar to other 
zooplankton (e.g., Daphnia Mueller, 1776), 
Moinidae utilize cyclical parthenogenesis, in 
which several generations of parthenogeneti-
cally produced females alternate with a sexual 
generation with males producing sperm and 
females producing haploid eggs (Dumont & 
Negrea, 2002). When the environmental con-
ditions are suitable, parthenogenesis is com-
mon resulting in rapid population growth. 
When unfavorable conditions arise, such as 
food shortage or overcrowding, moinid indi-
viduals can switch to sexual production of 
males and sexual haploid eggs that require 
fertilization, followed by diapause. This sexual 
phase can lead to interspecific hybridization 
if closely related species co-occur (Hebert, 
1985). Indeed, a very recent study showed 
discordances between mitochondrial dna 
(mtDNA) and nuclear its-1 phylogenies of the 
genus Moina in China, which is indicative of 
interspecific introgression and hybridization 
(Ni et al., 2019).

Until now, Moinidae has received little 
attention with respect to molecular system-
atics (e.g., Bekker et al., 2016; Mirabdullayev, 

1998; Neretina & Kirdyasheva, 2019; Ni  
et al., 2019; Padhye & Dumont, 2014). The 
first genetic study discovered that M. cf. 
micrura Kurz, 1875 from Europe and Australia 
belonged to two genetically divergent but 
morphologically similar species (Petrusek  
et al., 2004). Later studies using dna-barcod-
ing detected a cryptic species of the M. bra-
chiata Jurine, 1820 complex in Hungary (Nedli 
et al., 2014) and in Northern Eurasia (Bekker 
et al., 2016). More recently, analysis of coi 
sequences revealed four species complexes 
with eleven lineages of Moina across China 
(Ni et al., 2019). Very recent integrative taxo-
nomic studies have also explored underesti-
mated species diversity of Japanese moinids 
(Makino et al., 2020), diversity in the M. 
macrocopa complex worldwide (Montoliu-
Elena et al., 2019) and in the M. micrura com-
plex worldwide (Elias-Gutierrez et al., 2019). 
There have been relatively few studies includ-
ing moinids from Africa (Etile et al., 2020; 
Ghaouaci et al., 2018; Jeje, 1989; Marrone et al., 
2016; Smirnov, 2008). Based on morphology, a 
previous study reported M. reticulata Daday, 
1905 in West Africa (Lamoot & Dumont, 
1974). In Nigeria, three species of Moina (M. 
micrura, M. reticulata and M. dubia Richard, 
1874) and one species of Moinodaphnia 
(Moinodaphnia macleayi King, 1853) were 
recorded (Jeje, 1989). However, there have 
been no studies on phylogeography and lin-
eage/genetic diversity of Moinidae from 
Nigeria, despite the importance of this region 
as a biogeographic hotspot (e.g., Myers et al., 
2000; Penner et al., 2013).

The present study assessed genetic diversity 
of Moinidae within a small area of Southeast 
Nigeria, with emphasis on possible hybrid-
ization/gene introgression. dna sequences 
from three regions of the genome were used: 
the mitochondrial cytochrome oxidase c sub-
unit I gene (coi), and the nuclear internal 
transcribed spacer regions (its-1 and its-2). 
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We placed Moinidae species from Southeast 
Nigeria in a global context by utilizing previ-
ously published sequences. We also estimated 
the existence and number of new lineages 
within the family Moinidae, by using two dif-
ferent species-delimitation methods. Finally, 
we tested the hypothesis that hybridization 
and introgression could occur among mem-
bers of the Moinidae from tropical regions, 
as observed in other zooplankton elsewhere 
(Hebert, 1985).

Methods

Sampling
Zooplankton samples were collected from 32 
locations (lakes or ponds) in Southeast Nigeria 
(Fig. 1) during August and September of 2018. 
Three or four sampling sites were selected 
from each location, and a plankton net (mesh 
size 125 μm) was hauled vertically through the 
water column. Samples collected from differ-
ent sites in the same locations were pooled 
and preserved with 95% ethanol at 4°C in 
the laboratory. Moinidae was only detected in 
11 out of the 32 locations investigated in this 
study.

Morphological examination
For morphological examination, animals 
were selected from alcohol-preserved sam-
ples under a dissecting microscope, placed on 
slides and examined under a high-resolution 
optical microscope (eclipse Ci-S, Nikon). Ten 
parthenogenetic females from each species 
of Moinidae were examined (Supplementary 
Fig. S1) based on five key morphological char-
acteristics, including head, antenna ii, limb 
I, valve and postabdomen (Elias-Gutierrez  
et al., 2019; Goulden, 1968; Montoliu-Elena  
et al., 2019). In addition, the morphology of 
adult males and ephippial female (if present) 
from each species of Moinidae were recorded.

dna extraction and sequencing
On average, ten individuals of Moinidae 
(identified based on morphological character-
istics under a microscope) per location were 
randomly selected for dna extraction follow-
ing a standard protease-K digestion protocol 
(Schwenk et al., 1998). Sample sizes were low 
(N < 3) for one of the 11 populations because of 
the low frequency of moinids in the zooplank-
ton there. Each individual was placed in a  
20 μL H3 buffer (10 mM Tris-HCl, pH 8.3, 0.05 
M KCl, 0.005% Tween 20 and 0.005% np-40) 
with final concentration 0.1 mg/mL protein-
ase K, and incubated for 16 h at 55℃ in a water 
bath with mild shaking. The proteinase K was 
then irreversibly denatured by a 12 min incu-
bation at 95℃. Finally, the tube with dna was 
centrifuged briefly and stored at 4℃ before 
pcr.

A 680 bp segment of the mitochondrial 
cytochrome c oxidase subunit I (coi) gene, a 
810 bp segment of the first nuclear internal tran-
scribed spacer (its-1) and a 1050 bp segment of 
the second nuclear internal transcribed spacer 
(its-2) were used as genetic markers. For coi, 
pcr amplification used a standard primer pair; 
lco1490 and hco2198 (Folmer et al., 1994), with 
cycling conditions as in our previous study (Ni 
et al., 2019). pcr products were then purified 
and sequenced in the forward direction, using 
an abi prism 3730 dna capillary sequencer, 
by Majobio Bio-pharm Technology Co., Ltd 
(Shanghai, China). Ninety-seven individuals 
were successfully sequenced at the coi locus, 
and then an average of 10 individuals from 
each of the three coi lineages (corresponding 
to morphospecies: see below) identified (31 
individuals in total; Table 1) were chosen for 
sequencing of the nuclear internal transcribed 
spacers (its-1 or/and its-2). Amplification of 
the its-1 and its-2 regions was performed using 
primers 18sd and 5.8br, 5.8bf and 28sd2br, 
respectively (Taylor et al., 2005), following 
the protocol used in our previous studies (Ni  
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et al., 2019; Wang et al., 2021). As its fragments 
sometimes had multiple heterozygous sites 
(because of the presence of different alleles), 
cloning was carried out to obtain unambig-
uous chromatograms (Ni et al., 2019; Wang 
et al., 2021). Up to 15 clones were sequenced 
for each its pcr product: only identical 
sequences obtained at least twice per pcr 
product were selected for further analysis. All 
its pcr products were sequenced using the 
forward primer on an abi prism 3730 dna 
capillary sequencer by Majobio Bio-pharm 
Technology Co., Ltd (Shanghai, China). All the 
chromatograms were carefully checked and 
manually corrected in mega X (Kumar et al., 
2018), and the quality scores of the sequences 
were examined in Chromas Lite Version 2.1 
(Technelysium Pty. Ltd., South Brisbane, 
Australia). For all markers, chromatograms 
with double peaks or noise were re-sequenced 
in the reverse direction, and only chromato-
grams with high quality sequences (Phred 
quality score > 40) were chosen for the subse-
quent genetic analysis. All new sequences were 

submitted to GenBank and assigned acces-
sion numbers: coi: MZ505633-MZ505638, 
its-1: MZ504730-MZ504744 and its-2: 
MZ504753-MZ504780.

Sequence alignment and genetic diversity
For coi, unique haplotypes were identified 
in DnaSP 6 (Rozas et al., 2017). These were 
then aligned together with the 110 haplotypes 
represented among 416 reference sequences 
retrieved from GenBank (Supplementary 
Table S1), using Clustal W (Thompson et al., 
1994) in mega X (Kumar et al., 2018). For 
its fragments, unique alleles were verified 
in DnaSP 6, and then aligned using muscle 
(Edgar, 2004) in mega X. Twenty-five refer-
ence sequences of Moinidae its fragments 
were retrieved from GenBank (Supplementary 
Table S2) and aligned together with the its 
unique haplotypes in this study. For each 
species, the number of haplotypes (N2), hap-
lotype diversity (H) and nucleotide diversity 
(π) were calculated in dnasp 6 for both coi 
and its markers. Intra-individual differences 

figure 1	 Geographic locations of sampling for Moinidae in Southeast Nigeria. Solid black circles indicate 
locations where moinids were present, empty circles indicate locations where no moinids were 
detected. Large colored circles near solid black circles represent the distribution of coi lineages.  
For abbreviations of location names, refer to Table 1.
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between its-1 or its-2 alleles in heterozygotes 
was calculated in mega X.

Phylogenetic analyses
Potential loss of phylogenetic signal because of 
substitution saturation among coi sequences 
was assessed using the test of Xia et al. (2003) 
implemented in dambe 5 (Xia, 2013). jModel-
Test 2.1.3 (Darriba et al., 2012) was then used to 
determine the best-fitting evolutionary mod-
els and partitioning schemes by employing 
the greedy algorithm and the Bayesian infor-
mation criterion. A phylogenetic tree was 
constructed from the coi alignment applying 
the Bayesian method in beast 2 (Bouckaert  
et al., 2014). The analysis was run for 
10,000,000 generations and a tree recorded 
every 1000 generations. The first 25% were 
discarded as burn-in, and the final 7,500 trees 
summarized using TreeAnnotator. gtr+g was 
found to be the best fitted substitution model 
(Huelsenbeck & Ronquist, 2001). A strict clock 
and a birth-death tree model were used as pri-
ors to obtain an ultrametric tree for the gener-
alized mixed Yule coalescent model analyses. 
Tracer v1.6 (Rambaut et al., 2018) was applied 
to ensure that the analysis had run for a suf-
ficient number of generations. Ceriodaphnia 
Dana, 1853, a member of the Cladocera phy-
logenetically close to Moinidae, was used 
as an outgroup (Bekker et al., 2016; Ni et al., 
2019). Similarly, a Bayesian phylogenetic tree 
was constructed separately for the its-1 and 
its-2 marker in beast 2 using the gtr+i+g 
substitution model.

Detection of new lineages and 
phylogeographic analyses
Two independent species-delimitation meth-
ods were used to test the hypothesis that 
Moinidae is a complex of reproductively 
isolated species/lineages: the general mixed 
Yule coalescent model (gmyc, Pons et al., 
2006) and Poisson tree processes methods Lo
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(ptp, Zhang et al., 2013). These methods were 
applied to all genetic markers. The gmyc 
is a likelihood-based method for delimit-
ing species/lineages by fitting within- and 
between-species branching models to recon-
struct gene trees using an ultrametric tree. 
The gmyc modelling was carried out using 
the splits package (Ezard et al., 2009) in  
R 3.6.1 (R Development Core Team, 2013). 
The ptp calculations were performed on the  
bptp webserver (http://species.h-its.org/ptp/),  
with 100,000 mcmc generations, thinning 
set to 100 and burn-in at 25% and perform-
ing a Bayesian search. The input phylogenetic 
trees were generated with beast 2 as above. 
Finally, to visualize genealogical relationships 
among Moinidae lineages within species, 
coi haplotype networks were constructed in 
haploviewer (Salzburger et al., 2011). Here, 
626 Moinidae reference sequences, for which 
there was detailed collection information, 
were chosen from 21 geographical regions, 
including the Bolivia, Canada, China (Eastern 
Plain, Inner Mongolia-Xiangjiang Plateau, 
Northeast Plain, Qinghai-Tibet Plateau and 
Yunnan-Guizhou Plateau), Czech Republic, 
Hungary, India, Japan, Kazakhstan, Korea, 
Mexico, Russia (Central Siberian Plateau, the 
East European Plain, the East Siberia and the 
Western Siberian Plain), Spain, Thailand, and 
U.S.A, see Supplementary Table S3. The max-
imum likelihood trees inferred with mega X 
with the best model (gtr+g) were used as 
input.

Results

Morphological examination
Our morphological examination revealed 
three moinid species in Southeast Nigeria: 
M. cf. micrura, M. cf. macrocopa and 
Moinodaphnia macleayi (All the voucher 
specimens are preserved in Zooplankton 

Collection at Fudan University; Fig. 2a-p, and 
Table 2). M. cf. micrura (Fig. 2a) and M. cf. 
macrocopa (Fig. 2h) could be distinguished 
by two key morphological features: arrange-
ment of the setules on the postero-ventral 
margin and setae of limb I. The setules on 
the postero-ventral margin of M. cf. micrura 
are grouped (Fig. 2g), but those of M. cf. mac-
rocopa are not. The setae of the penultimate 
segment of limb 1 of M. cf. macrocopa bears 
strong denticles (Fig. 2j), whereas the cor-
responding seta of M. cf. micrura bears rela-
tively thin setules. We only found males and 
sexual females of M. cf. micrura (Fig. 2b and 
c). The ephippium carried by the latter con-
tains a sexual egg which is reticulated over 
its surface (Fig. 2c). Parthenogenetic females 
of M. macleayi could be easily distinguished 
from other species because they have an ocel-
lus and a long spine on the exopod of antenna 
ii (Fig. 2m and n).

Genetic diversity
A total of 97 moinid individuals (an average 
of 8.8 individuals per population) were suc-
cessfully sequenced at the coi (478 bp in the 
aligned dataset); among them, six unique coi 
haplotypes were detected (Table 1). Three 
haplotypes (aor1, aor2 and aor3) belonged 
to M. macleayi, two haplotypes (O1P1 and 
ihe1) to M. cf. micrura and one haplotype 
(N1O1) to M. cf. macrocopa (Table 1). For each 
morphologically defined species, the popu-
lation haplotype diversity (H) of coi ranged 
from 0 to 0.711, and the population nucleo-
tide diversity (π) ranged from 0 to 0.00190 
(Table 1). The coi alignment (excluding the 
outgroup) contained 121 variable sites. In 
total, 15 individuals belonging to 3 species/
lineages were sequenced at locus its-1 (5 het-
erozygotes and 10 homozygotes, resulting in 
a total of 20 sequences; 677 bp in the aligned 
dataset; Table 3); among them 16 unique its-1 
alleles were detected (Tables 1 and 3). For 
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figure 2	 Morphology of Moinidae from Southeast Nigeria. Monia cf. micrura from the Nome Pool 2, Amaho: 
lateral view of (a) parthenogenetic female, (b) male and (c) ephippial female; (d) antenna ii,  
(e) postabdomen (f) valve and (g) postero-ventral margin of valve of the parthenogenetic female. 
Monia cf. macrocopa, parthenogenetic female from Nome Pool 1: (h) lateral view, (i) antenna ii,  
(j) limb I, (k) postabdomen and (l) valve. Moinodaphnia macleayi, parthenogenetic female from 
Adanni Opanda Rd Pool 1: (m) lateral view, (n) antenna ii, (o) postabdomen and (p) valve.  
Scale bars 0.1 mm.
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its-2, 26 individuals belonging to 3 species/
lineages were sequenced (6 heterozygotes 
and 19 homozygotes, resulting in a total of 31 
sequences; 955 bp in the aligned dataset; Table 
3); among them 28 unique its-2 alleles were 
detected (Tables 1 and 3). The haplotype diver-
sity (H) ranged from 0.818 to 1 (mean = 0.930) 
for its-1 and from 0.772 to 1 (mean = 0.967) for 
its-2, and the nucleotide diversity (π) ranged 
from 0.00846 to 0.32709 (mean = 0.11792) and 
from 0 to 0.04884 (mean = 0.01599) for its-
2. The amount of intra-individual difference 
between alleles of heterozygotes at its-1 
ranged from 1 bp to 11 bp, and at its-2 ranged 
from 3 bp to 150 bp (due to variable numbers 
of simple-sequence repeats; data not shown).

Phylogeny and gene introgression
Based on the coi Bayesian tree, two inde-
pendent species-delimitation methods (i.e. 
gmyc and bPTP) consistently indicated that 
Southeast Nigerian Moinidae populations fell 
into three distinct lineages, each represent-
ing a single morphological species: Moina cf. 
macrocopa (lineage vi in Fig. 3), M. cf. micrura 
(b) and Moinodaphnia macleayi (n). Posterior 
probability (pp) support for these species/lin-
eages by the bPTP method was consistently 
> 0.90. Our coi phylogeny shows that M. cf. 
micrura and M. cf. macrocopa are paraphy-
letic groups. One lineage of M. cf. micrura 
(lineage I) is more closely related to the M. 
cf. macrocopa clade than to the remaining 
M. cf. micrura lineages (Fig. 3). This lineage 
also included sequences from specimens 
identified as M. weismanni Ishikawa, 1896. 
The identity of these merits further investi-
gation. No Nigerian sequences occupied par-
aphyletic positions. Both of the nuclear (i.e., 
its-1 and its-2) Bayesian trees also indicated 
the presence of three species from Southeast 
Nigeria (Fig. 4). Interestingly, two individuals 
that were morphologically M. cf. macrocopa 
and had its alleles typical of that species had 

mtDNA sequences typical of M. cf. micrura 
(Table 3 and Fig. 4a). Additionally, one indi-
vidual that corresponded morphologically 
to M. cf. macrocopa had one its-2 allele typ-
ical of that species and one typical of M. cf. 
micrura (Table 3 and Fig. 4b). This individual 
also had a mitochondrial sequence typical of 
M. cf. micrura (Table 3). Moreover, one its-1 
allele of M. cf. macrocopa was shared between 
Chinese and Nigerian individuals. Different 
moinid species/lineages co-existed in the 
same lake across a small geographical scale 
in Southeast Nigeria (Table 1 and Fig. 1). Of 
particular note, M. cf. micrura and M. cf. mac-
rocopa coexisted in N1O (Table 1 and Fig. 1). 
Intriguingly, the two introgressed individuals 
co-existed with both their parental species in 
N1O.

Biogeography
The name M. cf. micrura has been applied to 
moinids from more countries than any other. 
It has been reported from 14 out of 22 sur-
veyed regions, including China (Eastern Plain, 
Inner Mongolia-Xinjiang Plateau, Northeast 
Plain and Yunnan-Guizhou Plateau), Czech 
Republic, Hungary, India, Japan, Kazakhstan, 
Korea, Mexico, Nigeria, Russia (East European 
Plain) and Spain (Fig. 5). Moinids that we 
classed as M. cf. micrura were also the most 
widely distributed species in Southeast 
Nigeria, where it was found in 7 out of 11 
lakes (Fig. 1). The lineage (b) of this species 
in Southeast Nigeria has been found nowhere 
else in the world (Figs 3 and 5). The second 
most frequently occurring species in this 
study was Moinodaphnia macleayi, detected 
in 6 out of 11 lakes (Fig. 1). Again, the Nigerian 
lineage (n) is new and known from nowhere 
else (Figs 3 and 5). One M. cf. macrocopa line-
age (vi) was detected in a single lake (N1O) in 
this study. The single Nigerian haplotype from 
this lineage is also known from China (Eastern 
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figure 3	 Bayesian phylogenetic tree and species- delimitation of Moinidae from Southeast Nigeria, based 
on the mitochondrial coi gene (478 bp). A single representative of each haplotype (for reference 
sequences see Supplementary Table S1) is included in the tree. Codes of Moinidae haplotypes from 
Nigeria are provided in Table 1. Only posterior probabilities > 0.70 are shown. The numbers in the 
bands relating to the bPTP method indicate the statistical support (pp) for lineage membership. 
The lineage id s are shown in columns relating to the species-delimitation methods, and the newly 
detected lineages from Nigeria are indicated in colored squares. Abbreviations of country names in 
which each haplotype was detected are, bo: Bolivia, CA: Canada, CN: China, CZ: Czech Republic,  
HU: Hungary, IN: India, JP: Japan, KZ: Kazakhstan, KR: Korea, MX: Mexico, MN: Mongolia, NG: Nigeria, 
RU: Russia, TH: Thailand, UA: Ukraine, US: U.S.A.
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Plain), India, Japan, Russia (East Siberia and 
Western Siberian Plain) and Spain (Fig. 5).

Discussion

Lineage diversity in Moinidae from 
Southeast Nigeria
In line with previous surveys from Nigeria 
(Egborge et al., 1994; Jeje, 1989; Ovie & Adeniji, 
1994), our morphological examination of 
moinids from a small geographical area in 

Southeast Nigeria revealed the presence 
of Moina cf. macrocopa, M. cf. micrura and 
Moinodaphnia macleayi. Our mtDNA-based 
phylogeny placed each of these three spe-
cies in a single lineage, nested among con-
specifics from other parts of the world. 
Two out of these three lineages are newly 
reported. With the advance of genetic tools, 
multiple new lineages in freshwater zoo-
plankton taxa are indeed increasingly being 
recognized. Examples are common among 
monogont rotifers (e.g., Fontaneto et al., 2009;  

figure 4	 Bayesian phylogenetic tree of the (a) its-1 region (677 bp) and (b) its-2 region (955 bp) of Moinidae 
lineages from Nigeria. Only posterior probabilities > 0.70 are shown. The lineage id s are shown in 
columns relating to the species-delimitation methods, and those newly detected from Nigeria are 
indicated in colored squares. The mismatch assignments by coi and its-1 are in bold and highlighted 
with an asterisk. For abbreviations of country names refer to Fig. 3.

genetic diversity of moinidae in nigeria

Downloaded from Brill.com11/06/2021 10:22:23PM
via free access



480

Gabaldon et al., 2016) and cladocerans (e.g., 
Adamowicz et al., 2009; Forro et al., 2008; 
Petrusek et al., 2012).

Studies on Moina in Eurasia have gener-
ally found several coi lineages representing 
each morpho-species (Bekker et al., 2016; Ni 
et al., 2019). In contrast, we detected only one 
lineage per moinid species from Southeast 
Nigeria, suggesting a low lineage diversity 
per species there. It is important to point out, 
however, that we only sampled a few individ-
uals collected over a short span of time in a 
small geographical area.

Gene introgression among moinid lineages
Mito-nuclear discordances, signatures of 
hybridization and introgression have been fre-
quently reported in animals (reviewed in  Toews 
& Brelsford, 2012). Examples from Cladocera 
include species within Daphnia (Thielsch et al., 
2017) and Diaphanosoma Fischer, 1850 (Liu et 

al., 2018). A very recent study has also observed 
mito-nuclear mismatches in the genus Moina 
in China: one morphologically M. cf. micrura 
individual possessing M. cf. micrura mtDNA 
had its-1 alleles of the M. cf. brachiata clade 
(Ni et al., 2019). In the case of our individuals 
N1O64-2 and N2O2-2 from Nigeria, the mito-
chondrial background was of M. cf. micrura 
and the nuclear was of M. cf. macrocopa: mor-
phology was also consistent with the latter. This 
suggests a past hybridization between these 
two species, followed by introgression into 
M. cf. macrocopa. It is impossible to say how 
ancient the initial hybridization was: the mito-
chondrial lineage is distinct from other line-
ages of M. cf. micrura, which could reflect an 
ancient origin, or could reflect a local Nigerian 
population of M. cf. micrura that has not pre-
viously been sampled. We prefer the latter 
explanation: the same mitochondrial lineage 
was found in individual N1O24-4, which we 

figure 5	 Haplotype network of Moinidae lineages within species, based on the mitochondrial coi gene 
(478 bp). Each circle represents a unique haplotype and its size reflects the number of sequences. 
Segment sizes within circles indicate the distribution of haplotypes among different regions (color 
key to regions is on the left side of the figure). The lineage id s are shown in columns relating to the 
species-delimitation methods, and those newly detected from Nigeria are indicated in colored squares. 
The number of marks on connecting lines shows the number of mutations separating haplotypes.
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believe to be a result of recent hybridization. 
This individual had two its-2 alleles, one typ-
ical of M. cf. micrura and the other typical of 
M. cf. macrocopa (unfortunately we did not 
have sufficient dna to amplify its-1 for further 
confirmation). F1 hybrids (or individuals clon-
ally descended from them) would be expected 
to have its (and other nuclear) alleles typical 
of both parental species in equal proportions 
(Dunn et al., 2012; Harrison and Larson, 2014). 
Back-crossing of the hybrid into only one of the 
parental species will, over generations, greatly 
reduce the representation of nuclear genes of 
the other species (Breeuwer & Werren, 1995). 
Thus, we believe individual N1O24-4 to be a 
relatively recent hybrid. Our data therefore 
suggested that gene introgression/hybridiza-
tion occurs between M. cf. micrura and M. cf. 
macrocopa in Southeast Nigeria. Interestingly, 
we found that these two species could co-exist 
in the same lakes. Sympatry provides a possi-
bility for interspecific hybridization that is a 
frequently observed in zooplankton (Smirnov, 
1976). Although cyto-nuclear discordance in 
Moina most likely results from hybridization 
and subsequent introgression of the mitochon-
drial genome (Gompert et al., 2008; Linnen & 
Farrell, 2007), other explanations are possible. 
These include incomplete lineage sorting of 
ancestral polymorphisms (Franco et al., 2015; 
Mckay & Zink, 2010), and selection acting on 
mitochondrial genes (Cheviron & Brumfield, 
2009; Pavlova et al., 2013).

In agreement with a recent study (Ni et al., 
2019), our data showed apparent paraphyly 
in the coi phylogeny of moinid species. This 
phenomenon could reflect introgression of 
mitochondrial genomes of one species into 
the nuclear background of another follow-
ing hybridization (Funk & Omland, 2003). 
Paraphyly in phylogenies has already been 
detected in other cladocerans, especially in 
the water-flea genus Daphnia (e.g., Colbourne 
et al., 1998; Hebert et al., 1989). For example, 

populations of D. pulicaria Forbes, 1893 con-
tain mtDNA genomes derived through intro-
gression with D. pulex Leydig, 1860, rendering 
the former paraphyletic with respect to the 
latter (Hebert et al., 1989). Another explana-
tion for apparent paraphyly is misidentifica-
tion of specimens for which sequences have 
been deposited in GenBank.

Phylogeography of Moinidae
Our mtDNA-based haplotype network shows 
that M. cf. micrura (type locality Czech 
Republic) has a global distribution and 
many lineages. This species is represented in 
Southeast Nigeria only by one new lineage 
(including two haplotypes) found nowhere 
else to date. Previous studies have shown that 
Moina lineages can be restricted to a certain 
region (Ni et al., 2019; Smirnov, 1976), which 
may be a common phenomenon among 
globally distributed zooplankton taxa (e.g., 
Andrews et al., 2014; Colbourne et al., 1998; 
Cornils et al., 2017). However, one haplotype 
of M. cf. macrocopa (type locality of M. macro-
copa s.str. is Europe) that we found in Nigeria 
has also been detected in China (Eastern 
Plain), India, Japan, Russia (East Siberia and 
Western Siberian Plain) and Spain. One its-1 
allele of M. cf. macrocopa that we found in 
Nigeria has also been reported from China. It 
seems that at least some lineages of this spe-
cies are very widespread, suggesting relatively 
recent dispersal. Indeed, it is evident that M. 
cf. macrocopa is a widespread Old-World spe-
cies, known from across the Palaearctic as well 
as from Uganda (Montoliu-Elena et al., 2019) 
and now Nigeria. For such global distribution, 
birds could be important vectors for the pas-
sive dispersal of dormant eggs of freshwater 
zooplankton (Havel & Shurin, 2004). The dis-
persal of M. cf. macrocopa could be also due 
to recent human transport. The potential for 
humans to unwittingly translocate zooplank-
ton taxa requires further investigation.
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Moinodaphnia macleayi (type locality 
Australia) is widely distributed in Afrotropical, 
Australasian, Nearctic, Neotropical, Oriental, 
and Palaearctic regions (Kotov et al., 2013; 
Smirnov, 1976). However, the taxonomy of 
the genus Moinodaphnia is not well devel-
oped. Our data shows a new lineage (i.e., 
“n”) of Moinodaphnia macleayi from Nigeria. 
This lineage could belong to the “forgotten” 
taxon Moinodaphnia mocquerysi Richard, 
1892, which has been regarded as a junior 
synonym of M. macleayi (Kotov & Ferrari, 
2010). Further studies are called for to put 
this lineage into an appropriate global phylo-
geography of the genus Moinodaphnia. Also, 
further sampling in Nigeria, and West Africa 
generally, is needed to check for the presence 
of other species from Moinidae in this region. 
Several moinids, e.g., M. dumonti Kotov, Elías-
Gutiérrez & Granados-Ramírez, 2005, have 
been described from tropical South America 
(Kotov et al., 2005). It will be interesting to 
discover whether some of these also occur in 
tropical Africa.

In conclusion, we have detected three dis-
tinct species of Moinidae within a small geo-
graphical area in Southeast Nigeria. Our data 
revealed several examples of discordance 
between mtDNA and nuclear its phylogenies, 
indicative of interspecific hybridization and 
subsequent introgression between Moinidae 
species. Future studies are called for to inves-
tigate other geographical areas, and more hab-
itat types such as puddles, small temporary 
pools and natural lakes, to ensure the lineage 
diversity and gene introgression in Moinidae 
from Africa are better undersood.
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