Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild

Quigley, Kate M., Marzonie, Magena, Ramsby, Blake, Abrego, David, Milton, Grant, van Oppen, Madeleine J.H., and Bay, Line K. (2021) Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Frontiers in Marine Science, 8. 636177.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.3389/fmars.2021.63617...
 
11
645


Abstract

Novel restoration methods are currently under consideration worldwide to help coral reefs recover or become more resilient to higher temperature stress. Critical field-based information concerning the paradigm of “local is best” is lacking for many methods; information which is essential to determine the risk and feasibility associated with restoration. One method involves breeding corals from different reef regions with expected variation in heat tolerance and moving those offspring to new locations to enhance offspring survival; thereby augmenting local stock to enhance survival for anticipated warming. In this study, surviving colonies from the 2016 to 2017 mass bleaching events on the Great Barrier Reef (GBR) were reproductively crossed and they included colonies sourced from northern (three) and central (two) reefs. The gravid colonies of Acropora tenuis were collected across 6° of latitude, and they were spawned to produce a total of 17 purebred and hybrid crosses. Juvenile corals (3,748 individual colonies settled on 1,474 terracotta tiles) were deployed to Davies reef in the central GBR after 4 months of aquarium rearing. Survival, growth, and coral colour (as a proxy for bleaching) were assessed after 0, 91, and 217 days of field deployment. Overall, a high percentage of juveniles (17% ± 2.5 SE) survived relative to expected survival at the final census. Survival was significantly higher for central purebred crosses, hybrid crosses had intermediate survival while northern purebreds had the lowest survival. Colour and growth rates (0.001−0.006 mm2 day–1) were not significantly different amongst central, northern, or hybrid crosses but were of a reverse pattern compared to survival. On average, northern purebred crosses grew the fastest, followed by hybrid crosses, and then central purebred crosses. Modelled growth trajectories suggest that northern purebreds would take 8 years to grow to reproductive size, hybrids would take nine, and central purebreds would require 12. All deployed juvenile corals paled over time in the field although the colour of A. tenuis juveniles did not differ significantly amongst central, northern, or hybrid crosses. Growth and survival trade-off analysis showed that although most crosses did not outperform the native central juveniles, two of the eight hybrid crosses (SBxLS, DRxCU) demonstrated faster time to reproductive age and increased survival. Overall, reduced time to reach reproductive size and minimal trade-offs in at least two of the eight hybrids suggest that these crosses may accelerate and supplement recovery through natural re-seeding of genes sourced from northern reefs.

Item ID: 70520
Item Type: Article (Research - C1)
ISSN: 2296-7745
Keywords: bleaching, coral, hybridisation, reproduction, restoration, selective breeding, survival
Copyright Information: Copyright © 2021 Quigley, Marzonie, Ramsby, Abrego, Milton, van Oppen and Bay. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Date Deposited: 06 May 2022 05:54
Downloads: Total: 645
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page