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ABSTRACT
We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose
a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure
drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of
THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated
values derived from our proposed set using a multi-term solution of Boltzmann’s equation. We observe discrepancies between the simulation
and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of
unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is
a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we
initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields
from 0.001 to 10 000 Td.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0043759., s

I. INTRODUCTION

The study of non-equilibrium electron transport in biological
matter underpins a diverse range of scientific fields and applications.
Of particular interest is the medical sector, where electron-induced
processes in human tissue occur in both medical imaging and
therapy.1 In these applications, ionizing radiation liberates large
numbers of low-energy secondary electrons (∼30 eV), which
undergo a variety of energy deposition processes in the biomolecules
that constitute human tissue.2 These thermalized electrons are

known to undergo dissociative electron attachment (DEA), which
has been attributed in part to the damage associated with such
ionizing radiation, either directly through inducing single or dou-
ble strand breaks in DNA or indirectly through the interactions
of electron-induced radicals with DNA. Accurate kinetic simula-
tions of electron transport in biological matter, including a full
description of the interactions with each of the various biomolec-
ular constituents, are therefore required in order to fully under-
stand radiation damage and comprehensively inform dosimetry
models.
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The modeling of electron transport in biomolecules has also
found recent application in plasma medicine, which is a rel-
atively new field motivated by the synergistic interactions of
low-temperature atmospheric pressure plasmas (LTAPPs) with bio-
logical tissue.3–5 Human tissue is generally modeled as a bulk liquid
so that the system simplifies to a three-phase problem consisting of a
bulk gas, a gas–liquid interface, and a bulk liquid.4,5 While the inter-
actions of the reactive oxygen and nitrogen species (RONS), pro-
duced in the plasma–liquid interface, are known to induce many of
the synergistic effects,3 a predictive understanding of plasma treat-
ments can only be obtained through a complete understanding of
all of the plasma–tissue interactions, including the electron-impact
generation of radicals.2

Despite its importance, a full soft-condensed phase tissue
description of electron transport is currently in its infancy. When
applying kinetic modeling techniques, biological matter is currently
approximated as water vapor, despite biological media being neither
water nor a gas, nor being decoupled entirely from electron interac-
tions as in plasma medical device modeling, but rather a complex
mixture of biological molecules in a soft-condensed phase.6–8 As
such, quantitative modeling of electron transport through biological
media requires the attainment of complete and accurate sets of cross
sections for all electron interactions with all relevant biomolecules,
including water, in the soft-condensed phase.

As low-energy electron interactions with DNA are difficult
to study, focus has turned to the individual components of DNA,
in addition to their structural analogs. One component that has
received considerable attention is 2-deoxyribose, a sugar that
links phosphate groups in the DNA backbone, which has well-
studied surrogates including tetrahydrofuran (THF, C4H8O) and
α-tetrahydrofurfuryl alcohol (THFA, C5H10O2).9 Between these,
THF has received the most attention, with a number of proposed
complete electron impact cross section sets present in the litera-
ture.10–17 In comparison, however, while individual electron-THFA
cross sections are known, a complete set is presently still lacking. In
this investigation, we attempt to remedy this gap in the literature
by constructing and refining a complete and self-consistent set of
electron-THFA cross sections in the gas-phase, with the motivation
being that such a set can be adapted to the soft-condensed phase
through appropriate modifications using pair correlation func-
tions.18,19 The present investigation is especially warranted given
that, in comparison to THF, THFA has been identified as a superior
analog for 2-deoxyribose.20,21

Key to the derivation of our cross section set is the measure-
ment and subsequent analysis of electron swarm transport coef-
ficients in admixtures of THFA and argon. By comparing these
measurements to simulated transport coefficients, the accuracy and
self-consistency of our cross section set can be assessed.22 Any dis-
crepancies that are observed can then be used to inform appropriate
adjustments to the cross sections in order to reduce the discrepan-
cies with experiment. By iterating this process, such discrepancies
can be minimized. This inverse swarm problem of unfolding cross
sections from swarm measurements has a long and successful his-
tory.23–30 However, being an inverse problem, it is often the case
that there is no single unique set of cross sections that is consis-
tent with a given set of swarm measurements. This nonuniqueness
poses a fundamental challenge in automating swarm analysis using
numerical optimization algorithms,31–38 as while such algorithms

diligently minimize the error in the associated transport coefficients,
they lack the intuition about what constitutes a physically plausi-
ble cross section set. As such, to try and ensure the most success,
these iterative adjustments to the cross section set must be carefully
performed by an expert that can use their prior knowledge to rule
out unphysical solutions. Despite these challenges, we have recently
had some success in employing machine learning models to solve
the inverse swarm problem automatically,17,39 an approach that was
originally explored by Morgan40 decades earlier. By training these
models on cross sections derived from the LXCat project,41–43 they
can, in a sense, “learn” what constitutes a physically plausible cross
section set. Recently,17 we trained an artificial neural network model
in order to refine the electron-THF cross section set of de Urquijo
et al.16 Promisingly, the set of cross sections determined by this neu-
ral network was found to be of comparable quality to the set of de
Urquijo et al. that was refined “by hand.” LXCat cross sections have
also been applied recently by Nam et al.44 to train a neural net-
work for the classification of cross sections according to their type
(i.e., elastic, excitation, ionization, or attachment).

The remainder of this paper is structured as follows: In Sec. II,
we briefly describe our data-driven approach to solving the inverse
swarm problem, including the nature of the cross sections and
transport coefficients used to train the machine learning model.
Section III provides a review of existing electron-THFA cross sec-
tions in the literature. These measured and calculated integral
cross sections (ICSs) are then employed to construct a “proposed”
database for electron-THFA scattering, which is also described in
this section. Note that several of the present authors have had recent
experience in constructing databases for electron and positron scat-
tering problems45–48 but that the success of this approach does
depend on the volume of relevant data available and by its very
construction can be highly selective. In Sec. IV, details of our
experimental technique for measuring the THFA-argon gas mixture
transport coefficients are provided, with the results of these mea-
surements also being presented. Note also in this section that results
from our Boltzmann equation analysis, using our “proposed” cross
sections, are provided and compared against the measured data.
In Sec. V, a refined set of THFA electron scattering cross sections,
using our machine learning/neural network-based approach, are
presented and discussed, with results from their application in our
Boltzmann equation analysis, for simulated transport parameters,
being given in Sec. VI. Finally, Sec. VII presents our conclusions
from the current investigation and gives some suggestions for future
work.

II. NEURAL NETWORK FOR CROSS SECTION
REGRESSION

In this section, we briefly describe the architecture and applica-
tion of our neural network for the regression of electron-THFA cross
sections from swarm transport data. For a more detailed description
of this approach to inverting the swarm problem, we refer the reader
to our previous publications (Refs. 39 and 17).

A. Neural network architecture
In this work, we perform the cross section regression by utiliz-

ing neural networks of the form
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y(x) = (A4 ○mish ○A3 ○mish ○A2 ○mish ○A1)(x), (1)

where An(x) ≡ Wnx + bn are affine mappings, ○ denotes the func-
tion composition, and mish(x) = x tanh(ln(1 + ex))49 is a nonlinear
activation function that is applied element-wise. The neural network
[Eq. (1)] is said to be fully connected as the matrices of weights, Wn,
and vectors of biases, bn, are dense. The number of weights and
biases is correlated with the capacity of the neural network to per-
form a particular nonlinear mapping from the input vector x to the
output vector y. With the exception of b4, the size of which must
match the output of the network, we specify 256 biases per bias vec-
tor and size the weight matrices accordingly. Naturally, the output of
our neural network for swarm analysis contains the electron-THFA
cross sections of interest,

y =
⎡⎢⎢⎢⎢⎢⎣

σ1(ε)
σ2(ε)
⋮

⎤⎥⎥⎥⎥⎥⎦
. (2)

As these cross sections are functions of energy, we accordingly
include the energy ε as an element of the input vector x. To solve the
inverse swarm problem, we populate the remaining input elements
with the swarm transport coefficient measurements,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
W1

W2

⋮
(αeff/n0)1

(αeff/n0)2

⋮
(n0DL)1

(n0DL)2

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where W denotes the drift velocity, αeff denotes the effective
Townsend first ionization coefficient, DL denotes the longitudi-
nal diffusion coefficient, and n0 is the background neutral number
density.

Cross section regression in this way is particularly appealing
due to the versatility of neural networks. So long as the energy ε
remains an input to the network, we can in principle derive cross
sections from any collection of experimental measurements. In fact,
in forming our initial proposed set of electron-THFA cross sections
in Sec. III, we derive plausible vibrational and electronic excitation
cross sections in this way from the limited number of experimental
measurements that are currently available.

It should finally be noted that we normalize all inputs and out-
puts of the neural network by first taking the logarithm and then
performing a linear mapping onto the domain [−1, 1]. As a conse-
quence of this log-transformation, we are restricted to inputs and
outputs that are positive. This poses a difficulty when predicting
cross sections below the threshold. In such instances, we replace
cross sections equal to zero with a suitably small positive number,
which we take to be 10−26 m2. Consequently, if the neural network

outputs a cross section less than 10−26 m2, we interpret the output
as zero. This allows the threshold energy to be determined implicitly
from the output of the neural network.

B. Training data
For training the neural network [Eq. (1)], we use, as required,

elastic, excitation, ionization, and attachment cross sections from
the LXCat project.41–43,50–68 Specifically, we generate realistic cross
sections for training by taking random pairwise geometric combina-
tions of cross sections from LXCat using the formula

σ(ε) = σ1−r
1 (ε + ε1 − ε1−r

1 εr
2)σr

2(ε + ε2 − ε1−r
1 εr

2), (4)

where σ1(ε) and σ2(ε) are cross sections of a given process chosen
randomly without replacement, ε1 and ε2 are their respective thresh-
old energies, and r ∈ [0, 1] is a uniformly sampled mixing ratio.
We apply similar geometric combinations when we wish to con-
strain training cross sections within known experimental error bars.
Specifically, we ensure that σ1(ε) is itself constrained and then per-
turb about it with a random σ2(ε) and a mixing ratio r chosen small
enough so as not to violate the prescribed constraints.

Once cross sections have been selected for training, they must
be sampled at various energies within the domain of interest. In
this work, we are concerned with the domain ε ∈ [10−3 eV, 103 eV],
which we sample randomly within using

ε = 10s eV, (5)

where s ∈ [−3, 3] is a uniformly distributed random number.
To complete the input vector of our input/output training

pair, we calculate corresponding transport coefficients using a well-
benchmarked multi-term solution of Boltzmann’s equation.22,69,70

For good measure, we employ the ten-term approximation for all
cross section sets used for training. Additionally, to simulate the
random error present in the experimental swarm measurements,
we multiply our simulated transport coefficients by a small amount
of random noise sampled from a log-normal distribution. Specif-
ically, we sample the natural logarithm of this noise factor from
a normal distribution with a mean of 0 and a standard deviation
of 0.03.

C. Training procedure
The neural network is implemented and trained using the

Flux.jl machine learning framework.71 Before training, we initialize
the neural network biases to zero and weights to uniform random
numbers as described by Glorot and Bengio.72 Then, to train the net-
work, we perform numerical optimization of its weights and biases
so as to minimize the mean absolute error of the cross sections fitted
by the neural network. We choose the mean absolute error mea-
sure due to its robustness in the presence of outliers. During the
optimization, we repeatedly update the weights and biases using the
Adam optimizer73 with step size α = 10−3, exponential decay rates
β1 = 0.9 and β2 = 0.999, and small parameter ϵ = 10−8. For each
update of the neural network parameters with the optimizer, we
consider a random batch of 4096 input/output training examples.
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Each of these batches consist of 16 random LXCat-derived cross
section sets, with each set sampled at 256 random energies using
Eq. (5). In total, the training dataset consists of 50 000 unique sets of
cross sections. Training is continued until the transport coefficients
resulting from the fitted cross section set best match the measured
pulsed-Townsend transport coefficients that were used to perform
the fit.

III. ELECTRON-THFA CROSS SECTION DATA REVIEW
AND INITIAL PROPOSALS
A. Electronic excitation cross sections

Electronic-state scattering results for electron-THFA includes
the experimental differential cross section (DCS) data of Chiari
et al.74 and the corresponding integral cross section (ICS) data of
Duque et al.,21 the latter of which are plotted in Fig. 1. These authors
identify five Rydberg electronic-state bands for THFA,20 although
due to insufficient energy resolution in the experimental apparatus,
these are resolved into only three separate electronic-state bands.
These bands are reported as having threshold energies of 6.2, 7.6,
and 8.2 eV for bands 1 + 2, band 3, and bands 4 + 5, respectively.
To construct our proposed electronic excitation cross sections for
THFA, we make use of these threshold energies alongside the ICS
data of Duque et al. To interpolate these data, as well as extrapo-
late to higher energies, we employ a neural network of the form of
Eq. (1) to fit a plausible excitation cross section for each case. Specif-
ically, for a given band, we input to the network the ICS data at
the four energies considered by Chiari et al. and Duque et al. (20,
30, 40, and 50 eV), as well as the threshold energy for that band.
The resulting neural network regression, and initial proposed ICS,
for each band is plotted in Fig. 1. In each case, a plausible energy
location of the peak cross section value is identified automatically by
the network.

FIG. 1. Proposed THFA discrete electronic excitation cross sections, alongside the
experimental measurements21 to which our initial proposals were fitted. See also
the legend in the figure.

B. Vibrational excitation cross sections
Vibrational scattering data for electron-THFA consists only of

the experimental DCS and ICS data of Duque et al.,75 at the inci-
dent energies of 20, 30, 40, and 50 eV. The four vibrational modes
of THFA identified by Duque et al. are the CC stretch, CH2 stretch,
OH stretch + combination band, and 2 × CH2 stretch overtone,
with respective threshold energies of approximately 0.12, 0.33, 0.5,
and 0.7 eV. For our proposed THFA vibrational excitation cross
sections, we make use of these ICS data with these correspond-
ing energy thresholds. At lower energies, we employ the THF data
of Khakoo et al.76 for the same vibrational modes, defined at the
energies 2, 10, 15, and 20 eV. Note that, here, we scale the data
of Khakoo et al. a little, so as to match the THFA data of Duque
et al. at the overlapping point of 20 eV. This approach is thought
to be reasonable due to THF and THFA having similar struc-
tures and intrinsic molecular properties (e.g., dipole moment and
dipole polarizability). At very low energies, down to the thresh-
old in each case, we make use of the THF CC stretch data of
Allan.77 To accomplish this, we need to shift Allan’s measurement
to each respective THFA threshold and also to scale so as to min-
imize the discontinuity with the overlapping scaled measurements
of Khakoo et al. We then subsequently performed a smoothing
cubic spline interpolation78 through the measurements of Duque
et al., the scaled measurements of Khakoo et al., and the shifted
and scaled measurement of Allan et al. (up to 1 eV above thresh-
old in each case). Finally, above 50 eV, we employ the same neural
network regression approach used in Sec. III A for electronic exci-
tation interpolation/extrapolation. Specifically, for each vibrational
mode, we consider as input to that neural network the threshold
energy and the four measurements of Duque et al. in each case. The
output of the neural network is then the vibrational integral cross
section at points above 50 eV (up to 1000 eV). We join the resulting
high-energy extrapolation with the smoothing cubic spline interpo-
lation at 50 eV by a further scaling. The final proposed vibrational
excitation cross sections for THFA are plotted in Fig. 2, along-
side all of the experimental measurements from which they are
derived.

C. Electron impact ionization cross section
Available scattering data for electron impact ionization of

THFA include the theoretical ICS data of Możejko and Sanche,79

the experimental ICS results of Bull et al.,80 and the theoretical ICS
data of Duque et al.21 These are each plotted in Fig. 3. Both of
the aforementioned theoretical investigations use a semi-classical
binary-encounter-Bethe (BEB) formalism,21,79,81 with Duque et al.
also having employed a modified IAM-SCAR approach.21 The mod-
ification used by Duque et al. was originally proposed in Ref. 82 and
allows the separation of the ionization ICS from the total “inelastic”
ICS provided by the IAM-SCAR approach. The data of Bull et al.
are determined from measurements of ion and electron currents
using the Beer–Lambert law80 and agree quite well with the BEB
results in terms of both their shape and the position of the cross sec-
tion maximum, while being generally lower in magnitude compared
to the theoretical results. As the sole experimental data available,
and from a group with a long history of making reliable ionization
cross section measurements, we use the ionization ICS of Bull et al.
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FIG. 2. Proposed vibrational excitation cross sections, alongside the experimen-
tal measurements75–77 to which our initial proposed data were fitted. The four
vibrational modes here are CC stretch (blue), CH2 stretch (orange), OH stretch
+ combination (green), and 2 × CH2 stretch (red). See also the legend in the
figure.

as the basis for our proposed ionization cross section. For energies
above the maximum considered by Bull et al. (285 eV), we make
use of the modified IAM-SCAR results of Duque et al. For energies
below the minimum considered by Bull et al. (10 eV), we specify an
ionization threshold of 9.69 eV, as was obtained by Dampc et al.83

through the analysis of THFA photoelectron spectra. This resulting
initial proposed ionization cross section can also be found plotted in
Fig. 3.

FIG. 3. Proposed electron impact ionization cross section, alongside previous
experimental and theoretical results21,79,80 from which it was derived. See also
the legend in the figure.

D. Electron attachment cross section
To our knowledge, there are currently no attachment scat-

tering data available for THFA in the literature. There are, how-
ever, dissociative electron attachment (DEA) cross sections avail-
able for some other structurally similar biomolecules, including
THF10,15–17,84,85 and 3-hydroxytetrahydrofuran (3-hTHF),84 from
which we can obtain a very rough initial estimate for that of THFA.
Brunger9 noted that the most important electronic-structure quan-
tities for determining the relative magnitude of DEA cross sections
between biomolecules are the dipole moment and dipole polariz-
ability of each molecule, with the dipole polarizability being the
most significant. While of course this is very much a first order
approximation, it does provide at least some physical basis to what
follows. On average, across all five of its conformers at room tem-
perature,20 THFA has a large dipole polarizability of ∼ 63.38a3

0,20,21

where a0 is the Bohr radius. For construction of our proposed elec-
tron attachment cross section for THFA, we prioritize using the
available 3-hTHF DEA data over that for THF, as both 3-hTHF and
THFA contain a hydroxyl group, the presence of which has been
shown experimentally to enhance DEA.84 Specifically, we choose
to use the 3-hTHF DEA measurement of Aflatooni et al.84 Com-
pared to THFA, 3-hTHF has an average dipole polarizability of
∼ 50.8281a3

0,86,87 a value we obtain simply by averaging the the-
oretically determined values of its two most energetically stable
conformers of 50.6779a3

0 and 50.9782a3
0.86 Accordingly, we scale

up the 3-hTHF DEA measurement of Aflatooni et al. by the ratio
between the THFA and 3-hTHF dipole polarizabilities (×1.247).
This then completes the DEA component of our proposed attach-
ment cross section. At energies below 0.1 eV, where DEA is impos-
sible and any attachment is inherently non-dissociative, we make
use of the electron attachment cross section for THF derived by
Stokes et al.17 using a neural network-based analysis of swarm trans-
port data. Of course, it is also necessary to scale this cross sec-
tion (×52.71) so that the peak magnitude for DEA matches that
for the scaled 3-hTHF DEA measurement used at higher energies.
Finally, we perform a smoothing cubic spline interpolation78 over
the entire range being considered. The resulting proposed electron
attachment cross section for THFA can be found plotted in Fig. 4,
alongside the scaled THF and 3-hTHF counterparts it was derived
from.

E. Grand total cross section
Grand total cross section (TCS) scattering data for electron-

THFA include the theoretical TCS results from Milosavljević et al.,88

the experimental TCS data of Możejko et al.,89 the theoretical TCS
data of Zecca et al.,90 and the theoretical TCS data of Duque et al.21

These are summarized in Fig. 5. The experimental data of Może-
jko et al. are derived by applying the Beer–Lambert formula,89 to
the attenuated and unattenuated electron beam intensities, in a lin-
ear transmission experiment. Those data are not corrected for the
forward-scattering effect89 and are therefore expected to be missing
the significant effect of the rotational cross sections at lower ener-
gies. The theoretical data of Milosavljević et al. are calculated using
the IAM-SCAR approach, which yields combined elastic, electronic
excitation, neutral dissociation, and ionization processes, while lack-
ing contributions from rotational, vibrational excitation, and DEA
processes. The TCS data of Zecca et al. are calculated using the
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FIG. 4. Proposed electron attachment cross section, alongside the previous
results17,84 from which it was derived. See also the legend in the figure.

IAM-SCAR + R procedure and include all processes except for
vibrational excitation and DEA. Here, rotational excitation is
included using a Born approximation-based method. The data of
Duque et al. are also calculated using the IAM-SCAR + R proce-
dure, but the innovation of Chiari et al.82 is also employed in this
case to separate the ionization channel from the rest of the “inelas-
tic” data. The TCS data of Duque et al. therefore also include all
processes except for vibrational excitation and DEA but are able to
individually resolve the elastic, rotational, discrete electronic-state
excitation, and ionization cross sections. For our proposed grand
TCS for THFA, we prioritize the experimental data of Możejko et al.

FIG. 5. Proposed grand total cross section, alongside previous experimental and
theoretical total cross sections.21,88–90 See also the legend in the figure.

over the theoretical results. However, to use these data, we must
first correct for the forward-scattering effect by increasing the mag-
nitude of this cross section at lower energies. To determine the
extent of this correction, we use the TCS data of Duque et al. as
a guide, to which we add our proposed vibrational excitation and
DEA cross sections to form an initial approximate grand TCS. Next,
we scale the experimental data of Możejko et al. so as to best match
this approximation. In particular, we scale by an energy-dependent
correction of the power-law form 1 + 5.169ε−1.050, which has the
greatest effect at smaller energies, while leaving the experimental
data at higher energies unaffected. At energies above 370 eV, we use
the same approximate grand TCS data derived from Duque et al.
but scaled down (×0.88) so as to improve continuity with the
experimental data of Możejko et al. The resulting proposed grand
TCS is plotted in Fig. 5, alongside the various results from the
literature.21,88–90

F. Rotational cross section
Rotational scattering data for electron-THFA collisions include

the theoretical ICS data of Zecca et al.90 and the theoretical ICS data
of Duque et al.21 These are plotted in Fig. 6. Both of these rota-
tional cross sections are derived using the first Born approximation
(FBA), with Zecca et al. having calculated the rotational excitation
cross section, for J → J′ in THFA at 300 K, by weighting the pop-
ulation for the Jth rotational quantum number at that temperature
and estimating the average excitation energy from the correspond-
ing rotational constants. On the other hand, Duque et al. used the
procedure of Jain.91 All the integral rotational cross section data are
given in terms of a single summed rotational cross section, with the
ICS data of Duque et al. calculated from assuming an average rota-
tional threshold energy of 0.74 meV. As we are relying on the TCS
data of Duque et al. to guide the form of our proposed grand TCS,
for consistency, we also make use here of the data from Duque et al.
for our proposed rotational ICS, as shown in Fig. 6.

FIG. 6. Proposed rotational integral cross section, alongside previous theoretical
results.21,90 See also the legend in the figure.
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G. Elastic cross section
Elastic scattering data for electron-THFA collisions include the

theoretical DCS and ICS data of Możejko and Sanche,79 the theoret-
ical ICS data of Milosavljević et al.,88 and the theoretical ICS data
of Duque et al.21 These are summarized in Fig. 7. The calculations
of Możejko and Sanche are performed using the independent-atom
method (IAM), are applied with the additivity rule (AR), and have
been superseded by the calculations of Milosavljević et al. and Duque
et al., which use the IAM-SCAR procedure, that is, the IAM in con-
junction with a screening corrected additivity rule (SCAR). The ICS
data of both Milosavljević et al. and Duque et al. are in good agree-
ment with one another, and as such, we base our proposed THFA
elastic ICS on both of these results, with some minor modifications
in place for consistency with our proposed grand TCS. The resulting
proposed elastic ICS is plotted in Fig. 7. Even by accounting for all of
the cross sections proposed thus far (outlined in Secs. III A–III G),
there still remains a discrepancy in the grand TCS at intermediate
energies, which we attribute to neutral dissociation, as discussed in
Sec. III H.

H. Neutral dissociation cross section
A challenge in obtaining complete sets of electron-biomolecule

cross sections is the intractability of determining the neutral dissoci-
ation integral cross section from scattering experiments directly.92

Similarly, theoretical results are rare.48 Of course, in principle, it
can be found indirectly by subtracting all the other scattering cross
sections from the TCS, resulting in a remnant that is attributed
to neutral dissociation. Proceeding with this approach results in
the proposed THFA neutral dissociation cross section plotted in
Fig. 8, with an apparent threshold energy of 18.4 eV. However, as
the accuracy of this remnant is predicated on the collective accu-
racy of all other cross sections outlined thus far, it is not antici-
pated to be particularly reliable. As an alternative to this approach,
swarm experiments provide an implicit way of elucidating the

FIG. 7. Proposed elastic integral cross section, alongside previous theoretical
results.21,79,88 See also the legend in the figure.

FIG. 8. Proposed neutral dissociation cross section. See text for further details.

neutral dissociation cross section through assessment of the self-
consistency of a cross section set. Indeed, the neutral dissociation
cross section of THF has previously been characterized through the
swarm analysis of Casey et al.15 and de Urquijo et al.,16 as well as
recently by Stokes et al.17 using the same machine learning formal-
ism described in Sec. II and employed later in Sec. V of the present
investigation.

I. Quasielastic momentum transfer cross section
For the purposes of performing transport calculations, we form

a proposed quasielastic (elastic + rotational) momentum transfer
cross section (MTCS) by scaling our proposed quasielastic ICS by

FIG. 9. Proposed quasielastic momentum transfer cross section. See text for
further details.
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the ratio of quasielastic MTCS to ICS of Duque et al.21 At ener-
gies below 1 eV, we utilize a power-law extrapolation that is fitted to
the quasielastic MTCS of Duque et al. in this regime. Our resulting
proposed quasielastic MTCS is plotted in Fig. 9.

IV. PULSED-TOWNSEND SWARM MEASUREMENTS
FOR ASSESSING THE SELF-CONSISTENCY
OF THE PROPOSED CROSS SECTION SET

To assess the quality of our proposed set of electron-
THFA cross sections, we perform a number of pulsed-Townsend
swarm experiments from which we obtain drift velocities, effective
Townsend first ionization coefficients, and longitudinal diffusion
coefficients for admixtures of THFA in argon. We consider mix-
ture ratios of 0.2%, 0.5%, 1%, 2%, and 5% THFA, across a range of
reduced electric fields, from 1 to 450 Td, where 1 Td = 1 Townsend
= 10−21 V m2. The results from these measurements—which are
tabulated in our Appendix, Tables I–V—were derived from a pulsed-
Townsend apparatus whose technique and methods of analysis of
the electron avalanche waveforms have been accounted for in detail
previously.93,94 The pulsed-Townsend method is based on the mea-
surement of the total displacement current due to the motion of
electrons and ions within a parallel plate capacitor that produces a
highly homogeneous field upon the application of a highly stable
and very low ripple DC voltage between 150 V and 5 kV, depend-
ing on the E/n0 and n0 conditions of the experiment. The capac-
itor through which the charge carriers drift and react consists of
an aluminum cathode and a non-magnetic stainless steel anode of
12 cm diameter each, separated by an accurately measured distance
of 3.1 cm to within an accuracy of 0.025 mm. The initial photo-
electrons are generated from the cathode by the incidence of a UV
laser pulse (1 mJ–2 mJ, 355 nm, 3 ns). When the dominant processes
involved in the avalanche are due to the electrons and stable, non-
reacting, ions then any collisional ionization or attachment events
are due only to electrons. Furthermore, since the electron drift veloc-
ity is 102–103 times larger than that of the ions, the resulting total
current can readily be separated into a fast component due mostly to
the electrons, followed by that of the slower ions. The analysis of the
electron component leads to the derivation of the flux electron drift
velocity, W, and the density-normalized effective ionization coeffi-
cient, αeff/n0 = (α − η)/n0, where α and η are the ionization and
electron attachment coefficients. A very stable voltage in the range
0.2–5 kV was applied to the anode in order to produce the highly
homogeneous electric field E, according to the E/n0 value selected
and the gas density n0 in the discharge vessel. The stated purity of the
commercial THFA sample used was 99.0% (Sigma-Aldrich) and that
of Ar was 99.995% (Praxair). Because of the very low vapor pressure
of THFA, namely, 0.2 Torr at 293 K, the maximum pressure allowed
in the discharge vessel was 0.18 Torr. This very low filling pressure
value hindered the measurements of the electron swarm coefficients
for pure THFA. The mere presence of the electron avalanche pro-
duces a space charge field, which is superposed to the externally
applied one. Thus, care must be taken to keep the minimum exter-
nal voltage high enough so that the space charge field is smaller than
1% of that applied to the anode. With the present configuration,
with an interelectrode distance of 3.1 cm, we could only measure
THFA mixtures with Ar successfully from 0.2% to 5% THFA. The

minimum external voltage was 200 V. The measurements were per-
formed at room temperature in the range 293 K–300 K, measured
with a precision of ±0.5 K, while the gas mixture pressure was mon-
itored with an absolute pressure capacitance gauge (±0.15% uncer-
tainty). The displacement current due to the electrons was measured
with a very low-noise, 40 MHz amplifier with a transimpedance of
105 V/A. The measured electron transients were analyzed using the
formula for the electron current in the external circuit derived by
Brambring,95

I(t) = n0qW
2L

eαeffWt{erfc[(W + αeffDL)t − L√
4DLt

]

− e
W+αeffDL

DL
Lerfc[(W + αeffDL)t + L√

4DLt
]}, (6)

where L is the drift distance and erfc(x) = 1 − 2√
π ∫

x
0 e−u2

du is the
complementary error function. Thus, we have three swarm parame-
ters to determine, namely, W, αeff, and DL. The process is simplified
by determining initial values of W and αeff, derived from a basic, geo-
metrical analysis96,97 and inserted into a simulator to fit the whole
transient, thereby obtaining DL and refined values of αeff and W.
Typical uncertainties for W, αeff, and DL were ±2%, ±6%, and ±12%,
respectively. Note that these transport coefficients can be related to
the net ionization frequency, Rnet; the bulk drift velocity, WB; and
the bulk diffusion coefficient, DB ,L, via98

Rnet = αeffW, (7)

WB =W + αeffDL, (8)

DB,L = DL. (9)

Using our proposed cross section set, we apply a well-benchmarked
multi-term solution of Boltzmann’s equation22,70,99 to derive simu-
lated pulsed-Townsend transport coefficients for comparison to our
admixture measurements. For calculating these admixture transport
coefficients, we use the argon cross section set present in the Puech
database65 on LXCat.41–43 The simulated transport coefficients are
plotted alongside the experimental values in Fig. 10. Figure 10(a)
compares the drift velocities and shows qualitative agreement at
low-to-intermediate fields, with the proposed dataset underestimat-
ing its magnitude slightly at the highest fields considered. Interest-
ingly, while both measured and simulated drift velocities exhibit
negative differential conductivity (NDC)—drift velocity decreas-
ing with increasing reduced electric field—there is disagreement in
the extent of NDC, with the simulated drift velocities exhibiting
NDC over a much larger range of fields. Figure 10(b) compares
the effective Townsend first ionization coefficients and shows that
those that result from the proposed set overestimate the magni-
tude in the electropositive regime and underestimate the magnitude
in the electronegative regime. That is, overall, the simulated effec-
tive Townsend first ionization coefficients are too positive, suggest-
ing that an increase in the magnitude of the proposed attachment
cross section is required, as well as a decrease in the magnitude of
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FIG. 10. Measured pulsed-Townsend swarm transport coefficients (markers) of (a)
the drift velocity, W, (b) the effective Townsend first ionization coefficients, αeff/n0,
and (c) the longitudinal diffusion coefficients, n0DL. Simulated transport coefficients
(dashed curves), derived from the proposed cross section set presented in Sec. III,
are also plotted for comparison.

the proposed ionization cross section. Figure 10(c) compares the
longitudinal diffusion coefficients and shows the poorest agree-
ment between simulation and experiment across all of the consid-
ered transport coefficients with the simulated diffusion coefficients

consistently underestimating the measurements. Fortunately, the
general shape of the simulated diffusion coefficients appears to be
in fair qualitative agreement with experiment.

V. REFINED ELECTRON-THFA CROSS SECTIONS
Given the results in Fig. 10, we now employ the neural network

model [Eq. (1)] to solve the inverse problem of mapping from our
admixture swarm measurements to a selection of desired electron-
THFA cross sections. Specifically, we choose to fit the neutral dis-
sociation cross section, electron attachment cross section, electron
impact ionization cross section, and quasielastic MTCS. By replac-
ing those cross sections in our earlier proposed set, with those
predicted by the neural network, we complete our refined set of
electron-THFA cross sections.

A. Refined neutral dissociation cross section
As very little can be stated about the nature of neutral disso-

ciation in THFA, we choose to place no explicit constraints on the
neutral dissociation cross section when training the neural network,
thus forming training data, using Eq. (4), to directly combine ran-
dom pairs of excitation cross sections from the LXCat project. The
resulting confidence band of training examples is plotted in Fig. 11,
alongside the subsequent refined fit provided by the neural network,
as well as the original proposed cross section for comparison. Com-
pared to that which was proposed originally, the neural network pre-
dicts a neutral dissociation cross section that is substantially smaller
in magnitude, peaking at 8.4 × 10−24 m2 vs 9.4 × 10−20 m2, while
also having a smaller threshold energy, with a value of 3.96 vs
18.4 eV. Promisingly, the neural network has also resolved a plausi-
ble high-energy tail—a feature that is lost when determining neural
dissociation as a residual of the grand TCS.

FIG. 11. Neural network regression results for the THFA neutral dissociation cross
section, alongside the earlier proposed ICS for comparison. See also the legend
in the figure.
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B. Refined electron attachment cross section
Due to the current lack of electron-THFA attachment data in

the literature, the attachment cross sections used for training the
neural network are chosen in a similarly unconstrained fashion as
those used to refine neutral dissociation. That is, Eq. (4) is used to
combine random pairs of LXCat attachment cross sections for train-
ing, while enforcing no additional explicit cross section constraints.
The resulting confidence band of training examples is plotted in
Fig. 12, alongside the refined fit provided by the neural network, as
well as the original proposed attachment cross section. The neural
network predicts an attachment cross section that is more uniform
than that which was proposed initially, thus resulting in some sub-
stantial differences in different energy regimes. For example, at low
energies, near 10−3 eV, the refinement is over two orders of mag-
nitude smaller than the initial proposal. At intermediate energies,
around 3 eV, the refinement rises slightly in magnitude while the
proposal drops significantly, resulting in the refinement exceeding
the proposal by almost an order of magnitude. Both the refine-
ment and the initial proposal have a peak near 6 eV, although the
refined attachment cross section has a peak magnitude that is almost
a factor of 4 smaller than that for the initial proposal. At higher
energies, past this peak, both attachment cross sections decay fairly
rapidly in magnitude, with practically no attachment beyond 12 eV
in the refinement, compared to 10 eV for the original proposed
data.

C. Refined electron impact ionization
cross section

Given the general agreement among the ionization cross sec-
tions reviewed thus far, we choose to constrain the ionization train-
ing examples to within the vicinity of our resulting initial proposal.
We make these constraints particularly stringent at higher energies,
where the theoretical results are expected to be more accurate and

FIG. 12. Neural network regression results for the THFA dissociative electron
attachment cross section, alongside the earlier proposed ICS for comparison. See
also the legend in the figure.

where our swarm analysis is expected to be less informative. Across
all training examples, we use the same threshold energy of 9.69 eV,
as was done for our initial proposed ionization cross section. Con-
sequently, the ionization training cross sections are formed using a
formula very similar to Eq. (4),

σ(ε) = σ1−r(ε)
1 (ε)σr(ε)

2 (ε + ε2 − 9.69 eV), (10)

where σ(ε) is the ionization cross section used for training, σ1(ε)
is our initial proposed ionization cross section, σ2(ε) is a randomly
chosen LXCat ionization cross section, and ε2 is that cross section’s
corresponding threshold energy, and we also introduce an energy-
dependent mixing ratio that varies from 0.2 to 0.0 as the energy
varies from the ionization threshold to 103 eV,

r(ε) = 0.2
ln( ε

103 eV)
ln( 9.69 eV

103 eV )
. (11)

The resulting constrained confidence band of training examples
is plotted in Fig. 13, alongside the refined fit provided by the
neural network, as well as the original proposed ionization cross
section. As was expected, the refined ionization cross section pre-
dicted by the neural network is smaller in magnitude, peaking
at 5.5 × 10−20 m2 compared to 15 × 10−20 m2 for what we
proposed initially. Nonetheless, such a large drop in magnitude
(∼2.7 times) is a little concerning, given the reputation of Bull
et al.80 group. However, THFA is a very difficult molecule to work
with experimentally, so such a mismatch may indeed be possible in
this case.

FIG. 13. Neural network regression results for the THFA electron impact ionization
cross section, alongside the earlier proposed ICS and the previous experimental
and theoretical results21,79,80 from which it was derived. See also the legend in the
figure.
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FIG. 14. Neural network regression results for the THFA quasielastic MTCS,
alongside the earlier proposed MTCS for comparison. See also the legend in the
figure.

D. Refined quasielastic momentum transfer
cross section

As with the ionization cross section, we expect our proposed
quasielastic MTCS to be most accurate at higher energies. As such,
we proceed similar to our approach with ionization and sample each
quasielastic MTCS for training using the following formula:

σ(ε) = σ1−r(ε)
1 (ε)σr(ε)

2 (ε), (12)

where σ(ε) is the MTCS cross section used for training, σ1(ε) is our
initial proposed quasielastic MTCS, and σ2(ε) is a randomly chosen

FIG. 15. Neural network regression results for the THFA grand TCS, alongside the
original proposed TCS for comparison. See also the legend in the figure.

LXCat elastic cross section, and we define here the energy-dependent
mixing ratio that varies from 1.0 to 0.15 to 0.0 as the energy varies
from 10−3 eV to 1 eV to 103 eV,

r(ε) = 0.15

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 17
3

ln( ε
1 eV)

ln( 103 eV
1 eV )

, 10−3 eV ≤ ε ≤ 1 eV,

1 −
ln( ε

1 eV)
ln( 103 eV

1 eV )
, 1 eV ≤ ε ≤ 103 eV.

(13)

The resulting constrained confidence band of training examples is
plotted in Fig. 14, alongside the refined fit provided by the neu-
ral network, as well as the original proposed quasielastic MTCS.
The refined quasielastic MTCS provided by the neural network is
essentially identical to the proposal at energies above 1 eV. Below

FIG. 16. (a) Simulated drift velocities from both our original proposed database
and our refined database, compared to corresponding results from our admix-
ture swarm measurements. (b) Corresponding percentage errors in the sim-
ulated values relative to the swarm measurements. See also legends in
figures.
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1 eV, however, the neural network predicts quasielastic MTCS that is
significantly smaller than the proposal, steadily decreasing in relative
magnitude as energy is decreased. The greatest difference occurs at
10−3 eV, where the refined quasielastic MTCS is roughly two orders
of magnitude smaller than its counterpart from our initial proposed
set.

E. Refined grand total cross section
Although it is not considered explicitly, the grand TCS of each

cross section set used for training is naturally affected by the afore-
mentioned constraints placed on the neutral dissociation, attach-
ment, and ionization cross sections. The resulting constrained con-
fidence band of training examples is plotted in Fig. 15, alongside
the refined fit provided by the neural network, as well as the orig-
inal proposed grand TCS. The neural network predictions result in a
grand TCS that is smaller than the initial proposal for energies above
10 eV or so while coinciding below this energy. The greatest differ-
ence arises at 90 eV with a reduction in magnitude of 43%, most of

FIG. 17. (a) Simulated effective Townsend first ionization coefficients from both
our original proposed database and our refined database, compared to corre-
sponding results from our admixture swarm measurements. (b) Corresponding
percentage errors in the simulated values relative to the swarm measurements.
See also legends in figures.

which being due to the reduction in the ionization cross section (see
Fig. 13).

VI. TRANSPORT COEFFICIENTS OF THE REFINED
ELECTRON-THFA CROSS SECTION SET
A. Refined admixture transport coefficients

Using our refined set of electron-THFA cross sections, we plot
revised simulated transport coefficients in Figs. 16–18 for compari-
son to both our admixture swarm measurements and to the trans-
port coefficients calculated previously for our initial proposed cross
section set. Respectively, the drift velocities, effective Townsend first
ionization coefficients, and longitudinal diffusion coefficients are
each plotted in Figs. 16(a)–18(a), with corresponding percentage
error differences plotted in Figs. 16(b)–18(b). Figure 16 shows that
the refined set of electron-THFA cross sections has, in general,
brought the simulated drift velocities closer to the results from the

FIG. 18. (a) Simulated longitudinal diffusion coefficients from both our original pro-
posed database and our refined database, compared to corresponding results
from our admixture swarm measurements. (b) Corresponding percentage errors
in the simulated values relative to the swarm measurements. See also legends in
figures.
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experimental measurements. There are some instances where the
mismatch has increased, but these are infrequent. The large dis-
crepancies between simulation and experiment remain at low fields,
with the refinement having very little effect on the drift velocities
in this regime. Figure 17 shows a substantial improvement in the
effective Townsend first ionization coefficients after the cross sec-
tion refinement. Overall, both the relative error and the shape of
the simulated effective Townsend first ionization coefficients have
improved, with the most benefit seen in the electropositive regime.
Figure 18 shows a slight worsening in the accuracy of the simulated
longitudinal diffusion coefficients after the neural network refine-
ment, contrary to the other transport coefficients. It should be noted,
however, that the shape of the plotted longitudinal diffusion coeffi-
cients has appeared to improve slightly with the refined cross section
dataset.

B. Transport coefficients in pure THFA
Figure 19 shows the results of using our refined cross section

set to simulate electron swarm transport coefficients in pure gaseous

THFA at 300 K, across a range of reduced electric fields from
0.001 Td up to 10 000 Td. We employ our multi-term Boltzmann
solver here also but find the two-term approximation to be fairly suf-
ficient for all but diffusion at the highest E/n0 considered, which can
be in error by up to 59% in the case of the bulk longitudinal diffu-
sion coefficient. Figure 19(a) shows the mean energy of the electron
swarm, alongside that for the background THFA vapor for compar-
ison. In the low-field regime, the mean electron energy is ∼26 meV,
which is substantially lower than the thermal background of∼39 meV
due primarily to attachment cooling. As E/n0 increases, heating due
to the field increases the mean energy of the swarm to eventually
reach thermal equilibrium with the background THFA at ∼0.175 Td.
Beyond this E/n0, the mean energy continues increasing mono-
tonically, with its ascent occasionally slowing due to the onset of
the excitation channels (around 0.5 Td) and the ionization channel
(around 200 Td). Figure 19(b) shows rate coefficients for quasielas-
tic momentum transfer, summed excitation, attachment, and ioniza-
tion. The quasielastic momentum transfer rate coefficient remains
fairly constant up until 30 Td, after which it increases slightly, likely
due to the maximum in the magnitude of the quasielastic MTCS

FIG. 19. Calculated mean electron energy (a), rate coefficients (b), drift velocities (c), and diffusion coefficients (d) for electrons in pure THFA vapor at 300 K over a range of
reduced electric fields. See also the legends for further details.
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at ∼0.18 eV. The summed excitation rate coefficient starts off con-
stant at very low fields but begins to increase, rather early, from
5 × 10−2 Td due to the additional opening of the vibrational excita-
tion channels. This increase continues monotonically until reaching
a maximum at ∼1200 Td, after which the summed excitation rate
decreases slightly at very high fields. The attachment rate coefficient
also starts off as being constant, before increasing monotonically to
a peak at ∼350 Td, likely due to the associated peaks in the attach-
ment cross section magnitude at ∼2.6 and ∼6.4 eV. As there is no
appreciable attachment cross section beyond ∼12 eV, there is a cor-
responding drop in the attachment rate coefficient from this point
onward. The ionization rate coefficient is zero at low fields before
increasing monotonically and becoming appreciable from around
200 Td, onward. Figure 19(c) shows the bulk and flux drift velocities
of the swarm, both of which are seen to increase monotonically with
increasing E/n0. At low fields, the flux drift velocity slightly exceeds
the bulk, indicating that electrons are being preferentially attached
at the front of the swarm and so shifting the center of mass toward
the rear. At intermediate fields, between roughly 1 and 300 Td, non-
conservative effects are sufficiently small such that the bulk and flux
drift velocities coincide. Above 300 Td, the bulk drift velocity now
exceeds the flux due to ionization preferentially creating electrons at
the front of the swarm. Figure 19(d) shows the bulk and flux diffu-
sion coefficients of the swarm in both the longitudinal and transverse
directions relative to the field. As with the drift velocities, for inter-
mediate E/n0 between roughly 1 and 300 Td, nonconservative effects
are minimal and the bulk and flux diffusion coefficients coincide.
The transverse diffusion coefficient differs the least between its flux
and bulk counterparts. At low fields, below 1 Td, there is only a very
slight decrease in the bulk transverse diffusion compared to its flux
counterpart, which we attribute to the slight preferential attachment
of electrons toward the sides of the swarm. At high fields, above
300 Td, there is a substantial increase in bulk transverse diffusion
over the flux, which we naturally attribute to the preferential ion-
ization production of electrons toward the swarm sides. The bulk
longitudinal coefficient follows a similar trend, for these same rea-
sons of preferential attachment and ionization in the longitudinal
direction.

VII. CONCLUSION
We have formed a complete and self-consistent set of electron-

THFA cross sections by constructing an initially proposed set from
the literature and then refining its least-certain aspects by measuring
and analyzing electron swarm transport coefficients in admixtures
of THFA in argon. Notably, this swarm analysis and cross section
refinement were performed automatically and objectively using a
neural network model [Eq. (1)] trained on cross sections from the
LXCat project.41–43 Our neural network determined plausible cross
sections for attachment and neutral dissociation in their entirety
from the measured swarm data as well as cross sections for ion-
ization and quasielastic momentum transfer subject to constraints
given by known experimental error bars. We subsequently used our
Boltzmann equation solver to calculate transport coefficients for
this refined cross section set and found an improved consistency
with our experimental admixture measurements. We also calcu-
lated transport coefficients for electrons in pure THFA, revealing

the interesting phenomenon of attachment cooling of the electron
swarm below the thermal background.

Given the similar methodology and swarm measurements
between the present investigation and our previous successful refine-
ment of an electron-THF cross section set,17 we believe our refined
set of electron-THFA cross sections should be of comparable qual-
ity, if not a little better, to one hand-fitted by an expert. As there
is evidently still some room for improvement, it is fortunate that
this machine learning approach makes it straightforward to revisit
THFA as new swarm data, cross section constraints, or LXCat
training data become available.

A known limitation17,39 of the present machine learning
approach to swarm analysis is that it provides a unique solution
to a problem for which multiple plausible solutions are likely to
exist. In the future, we intend to address this deficiency by quanti-
fying the uncertainty in the predicted cross sections using a suitable
alternative machine learning model.100–105 Finally, we also plan to
apply our machine learning approach to determine complete and
self-consistent cross section sets for other molecules of biological
interest, including those for water.6
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APPENDIX: PULSED-TOWNSEND ELECTRON SWARM
MEASUREMENT RESULTS FOR VARIOUS
ADMIXTURES OF THFA IN ARGON

TABLE I. Measured pulsed-Townsend electron swarm transport coefficients for a
0.2% admixture of THFA in argon. Estimated experimental uncertainties are ±2%
for drift velocities, W ; ±6% for effective Townsend first ionization coefficients, αeff/n0;
and ±12% for longitudinal diffusion coefficients, n0DL.

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

1.0 0.903 7.43
1.2 0.964 5.16
1.4 1.03 4.98
1.6 1.05 −1.24 3.62
1.8 1.06 −1.26 3.17
2.0 1.04 −2.08 2.47
2.3 0.996 −1.72 1.91
2.6 0.944 −1.63 1.64
3.0 0.885 −1.43 1.65
3.3 0.849 −1.45 1.63
3.6 0.825 −1.24 1.76
4.0 0.801 −1.25 1.98
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TABLE I. (Continued.)

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

4.5 0.787 −1.32 2.39
5.0 0.789 −1.32 2.39
5.5 0.801 3.14
6.0 0.814 3.51
7.0 0.857 4.07
8.0 0.908 1.19 4.99
9.0 0.975 1.91 5.16
10 1.05 2.97 6.17
12 1.18 4.75 6.56
14 1.32 6.67 8.50
16 1.49 6.69 8.07
18 1.66 7.34 7.82
20 1.83 7.17 7.38
23 2.12 7.80 5.52
26 2.38 9.12 4.71
30 2.71 17.3 4.96
33 2.98 24.8 4.33
36 3.21 35.5 4.38
40 3.52 53.2 3.88
45 3.86 82.2 3.91
50 4.23 120 3.89
55 4.59 163 3.84
60 4.98 206 3.75
70 5.69 325 3.92
80 6.43 454 3.87
90 7.07 623 3.82
100 7.80 707 3.81
120 9.23 996 4.04
140 10.6 1400 4.45
160 12.0 1780 4.79
180 13.6 2070 4.58
200 14.8 2270 4.85
230 17.1 2900 4.57
260 19.7 3600 5.56
300 23.4 3890 5.49
330 25.0 4380 5.76

TABLE II. Measured pulsed-Townsend electron swarm transport coefficients for a
0.5% admixture of THFA in argon. The estimated experimental uncertainties are ±2%
for drift velocities, W ; ± 6% for effective Townsend first ionization coefficients, αeff/n0;
and ±12% for longitudinal diffusion coefficients, n0DL.

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

2.6 1.59 −1.54 3.14
3.0 1.58 2.85
3.3 1.54 −2.37 2.51
3.6 1.49 −2.71 2.16
4.0 1.44 −3.34 2.26
4.5 1.38 −3.56 2.29

TABLE II. (Continued.)

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

5.0 1.32 −3.89 2.35
5.5 1.29 −3.55 2.36
6.0 1.26 −4.73 2.40
7.0 1.25 −4.52 2.44
8.0 1.27 −3.62 2.77
9.0 1.30 −3.17 3.11
10 1.34 −2.49 3.32
12 1.45 −2.29 3.78
14 1.57 3.98
16 1.70 4.27
18 1.85 2.67 4.88
20 2.00 4.14 4.64
23 2.20 6.36 4.84
26 2.40 11.6 5.22
30 2.71 20.6 5.22
33 2.92 30.8 5.22
36 3.16 42.0 5.01
40 3.49 61.8 4.37
45 3.89 90.2 3.80
50 4.23 120 3.74
55 4.62 171 3.57
60 4.93 219 3.58
70 5.75 334 3.72
80 6.30 445 3.81
90 7.00 560 3.84
100 7.62 727 3.93
120 8.94 1020 4.05
140 10.7 1360 4.64
160 12.0 1590 5.10
180 13.2 2080 4.57
200 14.8 2300 4.75
230 17.6 3010 5.52
260 19.9 3500 5.06
300 23.4
330 25.4

TABLE III. Measured pulsed-Townsend electron swarm transport coefficients for a
1% admixture of THFA in argon. The estimated experimental uncertainties are ±2%
for drift velocities, W ; ±6% for effective Townsend first ionization coefficients, αeff/n0;
and ±12% for longitudinal diffusion coefficients, n0DL.

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

5.5 1.92 −3.65 2.56
6.0 1.88 −3.32 2.70
7.0 1.80 −4.28 2.54
8.0 1.78 −3.66 2.70
9.0 1.76 −3.78 2.75
10 1.76 −2.78 2.75
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TABLE III. (Continued.)

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

12 1.80 −2.76 3.04
14 1.89 −2.39 3.38
16 1.98
18 2.10
20 2.18 3.03 4.23
23 2.38 4.15 4.76
26 2.56 8.58 4.76
30 2.83 16.0 4.73
33 3.05 27.3 4.56
36 3.28 36.5 4.24
40 3.54 55.0 4.28
45 3.96 80.9 3.94
50 4.25 113 3.83
55 4.62 161 3.74
60 5.04 215 3.62
70 5.70 320 3.63
80 6.31 454 3.75
90 7.00 603 3.90
100 7.65 767 4.24
120 9.05 1060 4.64
140 10.4 1360 4.43
160 11.8 1550 4.46
180 13.4 2010 4.44
200 14.8 2390 4.54
230 16.9 3110 4.77
260 19.9 3560 5.46
300 22.9
330 25.6
360 28.2
400 30.4

TABLE IV. Measured pulsed-Townsend electron swarm transport coefficients for a
2% admixture of THFA in argon. The estimated experimental uncertainties are ±2%
for drift velocities, W ; ±6% for effective Townsend first ionization coefficients, αeff/n0;
and ±12% for longitudinal diffusion coefficients, n0DL.

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

10 2.55 −13.0 2.45
12 2.48 −12.8 2.57
14 2.49 −12.7 2.73
16 2.53 −11.3 2.93
18 2.59 −9.13 3.03
20 2.68 −8.29 3.06
23 2.83 −4.70 3.20
26 2.99 −1.81 3.35
30 3.23 7.66 3.46
33 3.42 14.6 3.48
36 3.58 22.1 3.49
40 3.84 36.0 3.55

TABLE IV. (Continued.)

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

45 4.16 59.6 3.64
50 4.48 92.1 3.71
55 4.79 132 3.79
60 5.15 177 3.98
70 5.79 297 3.92
80 6.52 449 3.94
90 7.01 556 3.89
100 7.90 661 4.10
120 9.08 950 4.44
140 10.6 1200 4.40
160 12.1 1660 4.72
180 13.4 1930 5.08
200 15.0 2470 4.79
230 17.8 2860 5.63
260 19.4 3340 5.06
300 23.6
330 26.0
360 28.7
400 32.1
450 34.5

TABLE V. Measured pulsed-Townsend electron swarm transport coefficients for a 5%
admixture of THFA in argon. The estimated experimental uncertainties are ±2% for
drift velocities, W ;±6% for effective Townsend first ionization coefficients, αeff/n0; and
±12% for longitudinal diffusion coefficients, n0DL.

αeff/n0 n0DL

E/n0 (Td) W (104 m s−1) (10−24 m2) (1024 m−1 s−1)

26 3.89 −21.4 2.88
30 4.03 −9.54 2.99
33 4.16 −9.47 3.01
36 4.29 −2.91 3.09
40 4.55 3.40 3.21
45 4.84 15.7 3.36
50 5.11 30.6 3.41
55 5.40 63.0 3.40
60 5.73 99.1 3.37
70 6.30 178 3.48
80 6.88 306 3.69
90 7.48 438 3.97
100 8.10 582 4.10
120 9.49 918 4.25
140 10.9 1260 4.82
160 12.4 1630 5.07
180 13.5 2100 5.14
200 15.3 2350 4.75
230 18.1 2770 5.57
260 19.8 3330 5.07
330 26.5
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S. Dujko, Z. Petrovic, R. Robson, and R. White, “Foundations and interpretations
of the pulsed-Townsend experiment,” Plasma Sources Sci. Technol. (published
online).
99R. D. White, R. E. Robson, B. Schmidt, and M. A. Morrison, J. Phys. D: Appl.
Phys. 36, 3125–3131 (2003).
100C. M. Bishop, Mixture density networks http://publications.aston.ac.uk/id/
eprint/373/, 1994.
101K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using
deep conditional generative models,” in Advances in Neural Information Process-
ing Systems, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (Curran Associates, Inc., 2015), Vol. 28, pp. 3483–3491.
102M. Mirza and S. Osindero, arXiv:1411.1784 (2014).
103L. Dinh, D. Krueger, and Y. Bengio, in 3rd International Conference on
Learning Representations, ICLR 2015 - Workshop Track Proceedings, 2015;
arXiv:1410.8516.
104L. Dinh, J. Sohl-Dickstein, and S. Bengio, arXiv:1605.08803 (2016).
105D. P. Kingma and P. Dhariwal, Glow: Generative Flow with Invertible 1×1 Con-
volutions Advances in Neural Information Processing Systems, edited by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran
Associates, Inc., 2018), Vol. 31, pp. 10215–10224.

J. Chem. Phys. 154, 084306 (2021); doi: 10.1063/5.0043759 154, 084306-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp
http://www.lxcat.net/Morgan
http://www.lxcat.net/NGFSRDW
http://www.lxcat.net/Phelps
http://www.lxcat.net/Puech
http://www.lxcat.net/QUANTEMOL
http://www.lxcat.net/SIGLO
http://www.lxcat.net/TRINITI
https://doi.org/10.1088/0022-3727/42/19/194001
https://doi.org/10.1088/0022-3727/42/19/194001
https://doi.org/10.1088/1361-6595/aa51ef
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/1412.6980
https://doi.org/10.1063/1.4885856
https://doi.org/10.1063/1.4885856
https://doi.org/10.1063/1.4879779
https://doi.org/10.1063/1.4879779
https://doi.org/10.1103/PhysRevA.88.012705
https://doi.org/10.1088/0953-4075/40/17/020
https://doi.org/10.1007/BF02162161
https://doi.org/10.1016/j.radphyschem.2004.10.001
https://doi.org/10.1039/C4CP00490F
https://doi.org/10.1103/RevModPhys.88.025004
https://doi.org/10.1088/0953-4075/46/23/235202
https://doi.org/10.1088/0953-4075/46/23/235202
https://doi.org/10.1016/j.cplett.2017.04.084
https://doi.org/10.1063/1.2229209
https://doi.org/10.1016/j.ijms.2014.01.017
https://doi.org/10.1088/0953-4075/41/8/085201
https://doi.org/10.1088/1367-2630/10/5/053002
https://doi.org/10.1140/epjd/e2006-00138-7
https://doi.org/10.1140/epjd/e2006-00138-7
https://doi.org/10.1016/j.cplett.2006.08.077
https://doi.org/10.1016/j.cplett.2006.08.077
https://doi.org/10.1088/1367-2630/13/6/063019
https://doi.org/10.1088/1367-2630/13/6/063019
https://doi.org/10.1088/0953-4075/21/5/018
https://doi.org/10.13182/FST13-A16446
https://doi.org/10.1088/0022-3727/35/18/306
https://doi.org/10.1088/0022-3727/46/35/355207
https://doi.org/10.1088/0022-3727/46/35/355207
https://doi.org/10.1007/BF01380826
https://doi.org/10.1140/epjd/e2012-20676-5
https://doi.org/10.1088/1361-6595/abe729
https://doi.org/10.1088/0022-3727/36/24/006
https://doi.org/10.1088/0022-3727/36/24/006
http://publications.aston.ac.uk/id/eprint/373/
http://publications.aston.ac.uk/id/eprint/373/
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

