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Abstract: The most important first step in the management and remediation of contaminated ground-
water aquifers is unknown contaminant source characterization. Often, the hydrogeological field
data available for accurate source characterization are very sparse. In addition, hydrogeological and
geochemical parameter estimates and field measurements are uncertain. Particularly in complex
contaminated sites such as abandoned mine sites, the geochemical processes are very complex and
identifying the sources of contamination in terms of location, magnitude, and duration, and determi-
nation of the pathways of pollution become very difficult. The reactive nature of the contaminant
species makes the geochemical transport process very difficult to model and predict. Additionally,
the source identification inverse problem is often non-unique and ill posed. This study is about
developing and demonstrating a source characterization methodology for a complex contaminated
aquifer with multiple reactive species. This study presents linked simulation optimization-based
methodologies for characterization of unknown groundwater pollution source characteristics, i.e., lo-
cation, magnitude and duration or timing. Optimization models are solved using an adaptive
simulated annealing (ASA) optimization algorithm. The performance of the developed methodology
is evaluated for different complex scenarios of groundwater pollution such as distributed mine waste
dumps with reactive chemical species. The method is also applied to a real-life contaminated aquifer
to demonstrate the potential applicability and optimal characterization results. The illustrative
example site is a mine site in Northern Australia that is no longer active.

Keywords: optimal contaminant source characterization; multiple species reactive transport; con-
taminated aquifer; evolutionary optimization; linked simulation optimization

1. Introduction

The remediation of contaminated aquifers is a challenging task in groundwater re-
source management. Effective and reliable management of groundwater resources first
requires the identification of the contaminant sources [1]. Numerous problem-solving
approaches have been proposed in recent decades to address contaminant source identifica-
tion problems [2,3]. Among these approaches, linked simulation-optimization models have
been progressively applied to identify groundwater contaminant source characteristics in
contaminated aquifers. However, over the years, most researchers studied point sources
or ideally shaped non-point pollution sources [4–6]. More so, such studies considered the
contaminants in the transport model as non-reactive in homogeneous geological media
while solving the unknown source identification optimization problem. Even though such
models can be simulated by considering ideally shaped or point sources, they cannot be
used to determine the characteristics of distributed groundwater contaminant sources
with reactive contaminants [7,8]. Furthermore, in highly heterogeneous geological me-
dia involving geochemical reactions (both kinetic and equilibrium reactions) of reactive
contaminant species, the simulation of the transport process becomes more complex and
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difficult [9]. The main aim of this study was to show the feasibility and applicability of
an integrated simulation and optimization approach for unknown contamination source
identification in a regional-scale contaminated aquifer with very complex hydrogeological
and geochemical processes. The aim was also to demonstrate how a very limited amount
of field measurements, a typical scenario in many such field problems, can be utilized for
developing both flow and reactive transport models for a complex contaminated aquifer.
The methodology and the performance evaluation results presented here demonstrate the
feasibility of solving the very complex unknown groundwater pollution sources charac-
terization in terms of intensity, location, and duration with limited field measurements,
while successfully integrating the uncertain and complex geochemical environment in a
mine site.

The optimal characterization of the contaminant sources requires accurate simulation
of the flow and transport processes occurring in the contaminated aquifer. The contami-
nation scenario at an operational or abandoned mine site is generally very complex due
to geological heterogeneity, distributed sources and the presence of multiple reactive
species in the mined mineral ores [10]. In addition, at abandoned mine sites, monitoring
of spatially- and temporarily-varying hydraulic heads and concentrations is usually very
sparse and inadequate. Optimal characterization of contaminant sources also requires the
use of an accurate flow and transport simulation model [11–15]. Accurate and reliable
identification of contaminant sources at an abandoned mine site is, therefore, especially
complex and difficult. Source characterization is the first step towards reliable and sus-
tainable contamination remediation. The issue of accurately characterizing contaminant
sources at poorly monitored abandoned mining sites is crucial since the soil matrix and
groundwater contamination have important influences on human health, vegetation and
ecological systems [16]. Thus, solving contaminant source problems in complex aquifers
characterized by many aquifer parameter dissimilarities requires methods that are robust,
efficient and able to handle data uncertainty [17].

To optimally identify spatially-distributed groundwater contamination sources, the
source flux, activity duration, and time of initiation need to be determined [18]. However,
when multiple reactive chemical species are present as contaminants, identification of
the sources in terms of the individual species involved is required before developing a
remediation strategy.

Previous distributed contamination source characterization models for typical mine
sites were reported in Jha and Datta [19]. They developed a linked simulation optimization-
based methodology for estimating the release histories of spatially-distributed fixed pol-
lution sources at an illustrative abandoned mine site, but the pollution sources were
considered as conservative. In their method, adaptive simulated annealing (ASA) was
used as an optimization algorithm to determine source concentrations at the pit. Similarly,
Ayvaz [20] developed a genetic algorithm-based simulation-optimization model to deter-
mine the spatial distributions and source fluxes of areal groundwater pollution sources.
This model was evaluated on a simple hypothetical aquifer model under ideal conditions.
Eshafani and Datta [21] developed genetic programming models as surrogate models
for the characterization of distributed contaminant sources at a contaminated mine site.
Genetic programming-based trained surrogate models were used to approximate complex
transport processes involving reactive species. However, this study did not individually
characterize the constituents of multiple contaminant species.

The objective of the present research was to develop and illustrate the use of a linked
simulation-optimization approach to solving distributed groundwater pollution source
identification problems in a complex groundwater system, with emphasis on multiple
reactive species. To the best of our knowledge, the potential of this approach for addressing
multiple reactive species contaminant sources is still largely unexplored.

For this work, it was assumed that the observed concentrations are measured at several
monitoring locations, dispersed in space, and monitoring contaminant transients over a
period. If there are multiple contamination sources in an aquifer, each monitoring location
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detects a mixture of contamination fields (plumes) originating from different locations.
It is assumed that each contaminant source releases a different geochemical constituent
that is mixed in the aquifer, and that the resultant mixture is detected at the observation
locations. Additionally, the geochemical constituents are reactive, and their transport is
impacted by geochemical reactions or other fluid/solid interactions in the porous media
where the flow occurs. The aim is to identify the number, locations and activity times of
contamination sources.

The scenario of having very limited flow and concentration measurement data was
incorporated to represent the typical situations of contaminated sites. The effective integra-
tion of a source identification optimization modelling technique with an accurate simulation
of contaminant transport from distributed sources with complex pollutant geochemistry is
addressed. The proposed approach is then evaluated for efficiency, accuracy and applicabil-
ity. In the proposed approach, the groundwater flow and reactive transport processes are
simulated by modelling the aquifer system of an abandoned (no longer functioning) ura-
nium mine located in the Northern Territory of Australia. The three-dimensional coupled
physical and chemical transport process simulator HYDROGEOCHEM 5.0 [22] is used to
numerically simulate the flow and reactive chemical transport processes.

The objectives of our study are three-fold. The first objective is to evaluate the per-
formance of an inverse source identification problem formulation to identify contaminant
source characteristics based on a synthetic case study with highly complex hydrogeologi-
cal and aquifer properties. This is important because, despite the advantages of using a
simulation-optimization formulation to solve an inverse unknown groundwater problem,
this approach has largely been applied to statistical-type heterogeneities, knowing well
how the type of heterogeneities largely influence mass transport.

The second objective is to test the efficiency and advantages of using an adaptive
simulated annealing optimization algorithm (ASA) to demonstrate the feasibility of charac-
terizing multiple species concentrations from distributed sources. ASA is a global optimiza-
tion algorithm that depends on randomly sampling important parameter space [23]. In
contrast to the deterministic approaches, the exponential annealing schedules in the ASA
allow resources to be used adaptively on re-annealing and convergence in all dimensions,
guaranteeing extensive global search in the first phases of the search and quick convergence
in the final phases of the projected stopping criteria in the formulated problem of source
identification [24]. While ASA optimization has been applied to a variety of optimization
problems [25], this study applied ASA to characterize multiple contaminant species in
source identification problem.

The third objective is to provide an optimization benchmark case that allows opti-
mization strategies on objective functions defined over a discrete domain and inspired
by real applications. The performance of the developed method is evaluated using field
measurement data in a real complex contaminated aquifer system. It initially uses synthetic
data (to be able to evaluate the performance for different variations of the scenarios in the
field) on the multiple species concentration identification at the distributed sources. The
reason being, actual contaminant source characteristics are unknown. Therefore, such a
methodology can be validated using synthetic simulated data only. The geophysical aquifer
characteristics are based on field conditions. The performance evaluation is carried out
using limited concentration data obtained at the study site to characterize the contaminant
sources. The developed method is applied to an abandoned uranium mining site in the
Northern Territory, Australia, and an associated contaminated groundwater system.

2. Materials and Methods
2.1. Study Area

The Rum Jungle Mine site is located in the tropical wet-dry climatic region of northern
Australia. The mine areas consist of the east branch of the Finniss River approximately
8.5 km upstream of its confluence with the west branch of the Finniss River. The region
is characterized by a tropical savannah-like climate and typically receives approximately
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1500 mm of annual rainfall. Most of this rainfall (90% or more) occurs during a wet season
that lasts from November to April, with no sustained rainfall occurring from May to
September. Surface water enters the mine site from the east via the upper east branch of
the Finniss River and from the southeast via Fitch Creek. River flows vary in response to
intra annual variability in rainfall and changes over the course of a year [26]. The mine
area mineral field contains polymetallic ore deposits, such as the Ranger and Woodcutters
ore deposits. The mine site includes the Giant’s reef fault. The main lithological units are
the Rum Jungle Complex and meta-sedimentary and subordinate meta-volcanic rocks of
the Mount Partridge Group. The Rum Jungle Complex consists mainly of granites and
the Mount Partridge Group consists of sedimentary units: Geolsec formation, the Whites
formation, the Coomalie Dolostone, and the Crater formation [27].

Methods

In this section, a general mathematical formulation of the source identification problem
and its notation are presented. The proposed linked simulation-optimization method of
source characterization has a two-phase structure of numerical simulation and optimization.

2.2. Groundwater Flow and Transport Simulation
2.2.1. Modelling of Groundwater Flow and Contaminant Transport

The 3D finite element-based reactive transport simulator HYDROGEOCHEM 5.0 was
utilized in this study to model the aquifer flow and transport processes. The flow and
reactive transport models are described in the following sections.

2.2.2. Governing flow Equations

The general equations for flow through saturated-unsaturated media are based on: (1)
fluid continuity, (2) solid continuity, (3) fluid movement (Darcy’s law), (4) stabilization of
media, and (5) water compressibility [28]:

ρ

ρo
F

∂h
∂t

= − ·
(

ρ

ρo
V
)
+

ρ∗

ρo
q, (1)

where F = a generalized storage coefficient (1/L), defined as:

F = α′
θ

ne
+ β′θ + ne

dS
dh

, (2)

K = the hydraulic conductivity tensor (L/T), defined as:

K =
ρg
µ

K =
ρ/ρO
µ/µO

ρog
µO

KsKr =
(ρ/ρo)

(µ/µo)
Ksokr, (3)

and V = Darcy’s velocity (L/T), described as:

V = −K ·
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ρo

ρ
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)
, (4)

where ρ is the fluid density [M/L3], ρo is the reference fluid density at zero chemical con-
centration and at the reference temperature [M/L3], F is the generalized storage coefficient
[1/L], h is the pressure head [L], t is time [T], ρ∗ is the fluid density of either injection
(ρ∗ = ρ) or withdrawal (= ρ) [M/L3], q is a source or sink representing artificial injection
or withdrawal of fluid [(L3/L3)/T], V is the specific discharge or Darcy’s velocity [L/T], K
is the hydraulic conductivity tensor [L/T], z is the potential head [L], α′ is the modified com-
pressibility of the media [1/L], θ is the effective moisture content [L3/L3], ne is the effective
porosity [L3/L3], β′ is the modified compressibility of the liquid [1/L], S is the degree of
saturation of water, g is acceleration due to gravity (L/T2), µo is the fluid dynamic viscosity
at zero chemical concentration and at the reference temperature M/(L/T), µ is the fluid
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dynamic viscosity M/(L/T), Kso is the reference saturated hydraulic conductivity tensor
[L/T], and kr is the relative permeability or relative hydraulic conductivity (dimensionless).

The finite element method is used to solve Equations (1)–(4), and the constitutive rela-
tionships between pressure heads, hydraulic conductivity tensor, and degree of saturation
along with the appropriate initial and boundary conditions. The initial conditions for this
study were obtained from field measurements. In the case of transient simulation, the
initial conditions must be realistic and consistent. Initial conditions that are not appropriate
are likely to introduce either non-convergence or non-realistic solutions, and therefore these
conditions need to be specified as close to the actual situation. In a number of situations,
it may be impossible to measure the initial pressure field across an entire study domain.
In such situations, an alternative way of setting the initial conditions is to assume that, in
general, steady-state flow conditions may have existed. Therefore, the simulation results
from a steady-state simulation with steady-state-specified boundary conditions used.

2.2.3. Governing Reactive Transport Equations

The governing equations for the reactive transport of the reactive biogeochemical
system are discussed below. The governing equations for transport were derived based
on the continuity of mass and Fick’s flux laws [22,28]. The main transport processes
are advection, dispersion and diffusion, source and sink and biogeochemical reactions
(including radioactive decay). The general transport equation governing the temporal-
spatial distribution of any biogeochemical species in a reactive system is described below.
Let Ci be the concentration of the ith species; then, the governing equation for Ci is obtained
by applying the principle of mass balance in integral form, as follows [28]:

∂θCi
∂t

+ θα′
∂h
∂t

Ci = L(Ci) + θri + Mi, i ∈ {M} (5)

where L is the transport operator denoting:

L(Ci) = −•(VCi) + •
[

θD•C i

]
(6)
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∫
v
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∫

Γ
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∫
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∫

v
θ ridv +

∫
v
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where Ci is the concentration of the ith species in moles per unit volume [M/L3]; ν is the
material volume containing a constant amount of media (L3); Γ is the surface enclosing
the material volume ν (L2); n is the outward unit vector normal to the surface Γ; ri is
the production rate of the ith species due to biogeochemical reactions, in chemical mass
per water volume per unit time [M/L3/T]; {M} = {1,2, . . . ,M}, in which M is the number
of biogeochemical species; D is the dispersion coefficient tensor [L2/T]; and Mi is the
source/sink of the ith species in chemical mass per unit volume of media [M/L3/T]; M is
the number of biogeochemical species; vi is the transporting velocity relative to the solid of
the ith biogeochemical species (L/T); θri is the production rate of the ith species per unit
medium volume due to all biogeochemical reactions [(M/L3)/T], Ji is the surface flux of
the ith species due to dispersion and diffusion with respect to the relative fluid velocity
[(M/T)/L2] and Vi is the transporting velocity relative to the solid of the ith biogeochemical
species (L/T).

As in the flow model, in order to simulate reactive transport across a wide range of
problems, appropriate transport boundary conditions were applied in the model. The phys-
ical definitions and mathematical descriptions of these boundary conditions are comparable
to those of the flow model.

2.2.4. Equations for Geochemical Processes

The production of a species along its transport path is governed by a number of
biogeochemical processes. One of the difficult aspects of geochemical modelling is the
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formulation of a governing rate equation to represent the chemical processes governing
the rate of production of any species (ri in Equation (5)) and its associated parameters. The
formulation of rate equations related to all N reactions is a critical issue in the modelling of
mixed equilibrium and geochemical kinetic reactions. A rate equation is essential for the
quantitative description of a general geochemical reaction that is written as follows [28]:

∑
i∈{M}

µikĈi ↔ ∑
i∈{M}

νikĈi, k ∈ {N} (8)

where Ĉi is the chemical formula of the ith species; µik is the reaction stoichiometry of the
ith species in the kth reaction associated with the reactants; νik is the reaction stoichiometry
of the ith species in the kth reaction associated with the products; and {N} = {1, 2, . . . , N}, in
which N is the number of reactions.

For all geochemical reactions, two categories of reactions exist: kinetic and equilibrium.
Assuming that there are NE fast/equilibrium reactions (all of which must be independent)
and NK slow/kinetic reactions [16], then the number of reactions will be: N = NE + NK.

Due to the nature of the study area and its complexities, a reaction-based formulation
was chosen to represent all the geochemical processes in the aquifer site. In a reaction-
based formulation, all biogeochemical processes are conceptualized and transformed into
a reaction network [28]. This is to consider the contributions of the individual process
reaction interplays in the aquifer system and avoid the possibility of the production rate
being represented as a lumped rate of all reactions of a particular process which, in this
specific instance, will not identify individual reaction rates.

The difficulty in applying the reactive transport model to real-world problems is in
transforming the understanding of biogeochemical processes into reaction networks with a
rate equation for each reaction. The transformation is a complex task without which our
understanding of the aquifer system will be incomplete or inadequate.

2.3. Solution Technique

Equations governing the flow and reactive transport processes are a set of partial
differential equations that require solving and coupling through flow and transport solu-
tions. The linearized matrix equations can be solved by using the finite element method
by applying a number of numerical schemes. A two-step method was used to solve the
chemical transport equations and chemical equilibrium equations. Once the solutions for a
specific time-step converges, the calculation continues to the next time step [22].

Finite element methods were used for temporal discretization of the governing partial
differential equations in the flow model and reactive transport model. The Galerkin finite
element method was used for spatial discretization of the modified Richards equation.
Meanwhile, scalar reactive transport equations were solved using both conventional finite
element methods and hybrid Lagrangian–Eulerian finite element methods for spatial
discretization. The solutions to the chemical equilibrium equations were obtained using
the Newton–Raphson or Picard methods. Three numerical schemes (iteration approach,
operator splitting approach, and predictor–corrector approach) were used to couple the
hydrological transport and geochemical reactions. Since this study involves a complex
three-dimensional model containing more than 6000 elements, 4000 nodes and 33 species, it
was more efficient to solve it using the operator splitting approach. Hence, coupling of the
transport and geochemical reactions was achieved using the operator splitting approach.

The first phase of the adopted methodology consists of a numerical simulation of
the physical processes of flow and reactive transport in the groundwater system. To
solve the source identification problem, the governing equations of groundwater flow and
transport are solved to accurately represent the flow and transport processes occurring in
the contaminated aquifer system. The simulation of these processes requires data on the
hydraulic head fields and contaminant concentrations so that the governing groundwater
flow and transport equations, respectively, can be solved. Multiple reactive transport and
mixtures of contaminant plumes in an aquifer present an intricate problem likely influenced



Int. J. Environ. Res. Public Health 2021, 18, 4776 7 of 42

by, but not limited to, complexation, precipitation–dissolution, adsorption–desorption,
advection, dispersion and diffusion, and the chemical processes of aqueous, ion-exchange,
redox and acid–base reactions.

This study used contaminant concentration measurements for the mine site that were
obtained by a previous study [29–31]. These data are very limited and only cover two years
of monitoring. The concentration calibration results of the present study were compared
with these limited measurement data. No other concentration data were available. This
study illustrates the limitations in modelling flow and transport processes at such a site
with very limited field measurements. The limitations in concentration data, and the very
limited knowledge on aquifer parameter values, were a challenge to the development of
a well-calibrated simulation model. Such a challenge is common in this area of research.
This is also one of the reasons why a large number of modelling iterations with different
assumptions of recharge, boundary conditions, and initial head and concentration values
was needed to achieve an acceptably calibrated model. The implementation of flow and
transport simulation models should be considered in light of such limitations and the
challenges common to contaminated aquifer sites such as the current one.

2.4. Conceptual and Numerical Development
Conceptual Approach Overview

A numerical groundwater flow model was constructed to simulate the groundwater
flow system at the Rum Jungle Mine site from 2010 to 2012 [32]. This numerical flow model
is a mathematical representation of a conceptual model that enables a quantitative repre-
sentation of real field features. The numerical representation is based on the assumption
that the aquifer system at the mine site is subdivided into hydro-stratigraphic units that
represent the waste rock dumps and naturally occurring bedrock aquifers. Each hydro-
stratigraphic unit is characterized as a single model layer with representative hydraulic
properties. Recharge is estimated as a percentage of incident rainfall assigned to infiltration
sections at the site based on elevation. The waste rock dumps and open pits represent a
single top layer of variable thickness. The other geological aquifer units are represented
as model layers with constant thickness across the model domain. The flooded open pit
is represented by specified head boundary conditions that are equivalent to the water
levels observed in the pits during the simulation period. Groundwater movement in the
hydro-stratigraphic units follows Darcy’s law.

2.5. Numerical Model Setup
2.5.1. Flow Model

The finite element method was used for temporal discretization of the underlying
partial differential equations in the flow model. The finite element mesh generated for the
numerical model consists of 6587 nodes and 10,704 elements. The Galerkin finite element
method was used for spatial discretization of the modified Richards equation governing
the pressure fields. The numerical model starts at year 2010 because this is when data
became available and ends in 2012. Therefore, the numerical model covers a period of
approximately 730 days. For time discretization, time steps of 30 days were set. This time
discretization criterion resulted in a total of 24 time steps.

The numerical model domain was spatially discretized into a three-dimensional mesh
with a triangular wedge mesh. In planar view, each element is represented triangularly,
whereas the thickness of the elements depends on the number of layers used to vertically
discretize the model domain. For this model, the elements in layers were assigned a
set of hydraulic properties based on different material types to represent the complex
heterogeneity of the aquifer. The thickness of the elements varies according to lithology.
The model is made up of six layers and covers a maximum elevation of approximately
110 m. Surface topography elevation values obtained from a digital elevation model (DEM)
were used to define the top of Layer 1. Figure 1a shows an aerial layout of the Rum Jungle
Mine with the various mine sections and Figure 1b shows details of the geology and mineral



Int. J. Environ. Res. Public Health 2021, 18, 4776 8 of 42

deposits. Figure 2 shows the discretization and resulting finite-element mesh in spatial
discretization process performed for the numerical model. Layer thicknesses are vertical
in depth, with an overall model thickness of 150 m. Layer thicknesses were assigned as
follows. Layer 1, which mainly consists of waste rock dumps and tailings, was assigned
variable thickness. Layer 2 thickness = 0–7.5 m, Layer 3 = 7.5–15 m, Layer 4 = 15–45 m,
Layer 5 = 45–105 m, and Layer 6 = 105–150 m. The tops and bottoms of Layers 3 to 6 were
set to the thickness values listed above and were fixed throughout the modelling process.

2.5.2. Boundary Conditions

Several boundary conditions were set for modelling the flow and transport processes
of this study area. Specified heads were set to element nodes that interconnect the perime-
ters of the flooded pits in Layers 2 and 3. Elements and nodes surrounding the pits
representing the bedrock aquifer in contact with water inside the pits were set to head val-
ues equal to the measured groundwater level in the pits. The model does not simulate flows
within the flooded open pits themselves, so elements within the head boundary are not
active. Pit water levels and groundwater levels at monitoring points nearby are adapted to
represent the open pit as a head boundary condition derived from the groundwater levels
measured in monitoring points situated nearer to this boundary. The northern boundary
where the Finnish River is located was assigned a constant head boundary condition, as
were the creeks alongside the Finnish River’s east side and the creeks at the southern
boundaries of the model. For these boundaries, river-bed elevations, and temporally vary-
ing river head values, obtained through field observations, were assigned. A transient
constant head boundary was set that simulates groundwater water-level changes in the
main, intermediate and brown pits, and the river. The finite element method provided ease
of using variable meshes, ease of incorporating all the boundary conditions and accurate
geometric representations of the aquifer system. The discretization of the study area and
model boundary conditions is shown in Figure 2.
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2.5.3. Model Input Parameters

Several input parameters for aquifer properties and boundary conditions were used
to broadly describe characteristics of the aquifer. Aquifer properties defines the geological
medium through which groundwater flows in terms of porosity, hydraulic conductivity,
bulk density, and moisture content, while groundwater boundary conditions describe the
water flux between aquifer layers and surface features such as groundwater recharge rate
and well pumping schedule. The hydraulic conductivity values and specific yield/specific
storage values used for the model’s hydro-stratigraphic units were estimated from pumping
tests described in previous studies [34].

The initial hydraulic head for the model was based on groundwater-level data mea-
sured at 22 monitoring wells in August 2010. The initial hydraulic head ranged from
50 to 71 m Australia height datum (mAHD). Groundwater recharge was estimated from
annual rainfall data recorded at the site. It was assumed that net recharge by rainfall and
flows from the flooded open pits were the only sources of water input to the groundwater
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system within the model domain. The aquifer is recharged largely by rainfall and sources
of surface water bodies. The rainfall distribution acrosss the study area was estimated
from annual rainfall records for the study area, which was 2372 mm per year. Based on
calibration and validation of the flow models, the vertical annual recharge was assumed to
be 25% of the average gross rainfall over the study area. Groundwater flow processes were
simulated using the hydrogeological parameters listed in Table 1. The vertical and horizon-
tal hydraulic conductivities (Kx and Kz, respectively) are shown in Table 2 for the different
geological layers of the study area. The hydraulic conductivity in the other horizontal
direction, Ky, was assumed to be same as the horizontal hydraulic conductivity Kx.
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Table 1. The study aquifer’s physical and hydrogeological properties.

Parameter Value

Number of nodes 6587
Number of elements 10,704
Effective porosity, θ 0.28

Longitudinal dispersivity, αL 10 m/d
Transverse dispersivity, αT 0.1 m/d

Vertical dispersivity, αV 0.01
Average rainfall 2372 mm/year

Number of nodes 6587

Table 2. Hydraulic conductivity and layer thickness values of the study aquifer.

Model Layer
Hydraulic Conductivity

Thickness (m)
Kx (m/day) Kz (m/day)

Layer 1 0.13 0.12 3
Layer 2 1.21 1.21 7.5
Layer 3 0.44 0.44 7.5
Layer 4 0.65 0.65 30
Layer 5 0.11 0.11 60
Layer 6 0.04 0.04 45

2.5.4. Reactive Transport Model

To represent the reactive geochemical processes that occur at the study site, a set of
reaction networks consisting of equilibrium and kinetic reactions that describe the aquifer’s
geochemical processes was formulated, based on contamination and groundwater quality
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data [10]. HYDROGEOCHEM 5.0 was used to simulate reactive chemical transport and
the long-term behaviour of contaminant movement in the aquifer. This study considered
the hydrogeochemical transport of six components—OH−, Cu2+, Fe2+, Fe3+, Mn2+ and
UO2

2+—and an aqueous complexation of 17 species and three minerals (pyrite, uran-
ite and chalcopyrite). Geochemical reactions of precipitation and dissolution aqueous
complexation, and mineral dissolution were also incorporated into the transport model.

Since the actual fluxes of the six assumed sources of contamination (four waste rock
dumps and two pits) are not known, the groundwater contaminant concentrations mea-
sured at several monitoring locations were used as initial concentration data. The first step
of contaminant transport modelling is to observe how the contaminant spreads over the
field with varying groundwater heads. The groundwater contaminant concentrations mea-
sured at some monitoring locations were used in the reactive transport modelling. These
concentrations were constant at selected monitoring points on specific days. Additionally,
some of these contaminant concentrations were quite low and tended to decrease very
quickly or even almost disappear after a few days, probably due to nominal immediate
dilution, which is not realistic. To properly model and achieve realistic modelling, it was
necessary to interpolate the known concentration data for the whole study area before
using them in transport modelling. Hence, an interpolation of the concentrations was per-
formed for the model domain area before conducting the contaminant transport modelling.
Only a few points, which were unevenly scattered across the site, were available for the
interpolation, but this is quite typical in hydrogeological studies.

The reason for interpolating contaminant concentrations is to provide a more realistic
contaminant distribution as compared to a concentration values scattered even in a non-
contaminated area whereas addressing the problem of concentration dilution. Furthermore,
there was only one concentration measurement available for each location and each con-
taminant. Even if this value was entered as a transient contaminant concentration, it would
be interpreted as a constant concentration and cause the modelling of the contaminant
process to be insignificant. Thus, even in a large time-scale simulation, such as that used in
this study, contaminant transport would not be detectable. The contaminant concentration
data obtained from interpolation were used only in the contaminant transport model as
starting concentrations. Thus, the interpolated concentration data were used as initial
concentrations. The reactive transport model was simulated (run) for a period of two years
(from 2012 to 2014) due to the availability of data. Assumed initial conditions for contami-
nant concentrations were specified in the simulation model based on groundwater quality
data from 2011. Copper (Cu2+), sulfate (SO4

2−), manganese (Mn2+), uranium (UO2
2+) and

iron (Fe2+) were introduced as initial contaminants in this study.

2.5.5. Conceptual Reactive Transport Modelling

The reactive transport model for the study area was built upon the flow model by
implementing the necessary transport conditions. These include the transport boundary
conditions, the total number of components and the species to be simulated. The assump-
tion is that the transport of contaminants is based solely on the simulated flow fields, which
may involve waste rock interactions at the four waste rock dumps (Figure 1) or mineral
interactions with the aquifer rock bed and formation of daughter products or additional
metal species.

The conceptual model for the reactive geochemical system is based on equilibrium and
kinetic reactions. The reactive system is entirely described by identifying chemical reactions
and the total number of chemical species involved in them. The standard equilibrium
reactions with appropriate equilibrium constant is used to represent all the fast reactions,
such as aqueous complexation reactions and the precipitation of secondary phases. Slow
reactions are represented by kinetic reactions and associated rate constants. This addresses
the dissolution reactions involving the major minerals occurring in the waste rock dumps
and pits. The reaction network describing the geochemical system of the study area, and the
associated rate constants obtained by modifying Yeh [16] equations, are shown in Table 3.
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Table 3. Typical chemical reactions during contaminant transport.

Chemical Reaction Constant Rate (log K)

H2O(aq) = H+ + OH− −13.99
H+ + SO4

2− = HSO4
- 1.99

Cu2+ + H2O = Cu(OH)+ + H+ −9.19
Cu2+ + SO4

2- = CuSO4 2.36
Cu2+ + 2H2O = Cu(OH)2 + 2H+ −16.19
Cu2+ + 3H2O = Cu(OH)3

- + 3H+ −26.9
Fe2+ + H2O = H+ + FeOH+ −9.50
Fe2+ + SO4

2- = FeSO4 2.20
Fe2+ + 2H2O = 2H+ + Fe(OH)2 −20.57
Fe2+ + 3H2O = 3H+ + Fe(OH)3

− −31.00

Fe2+ + 4H2O = 4H+ + Fe(OH)4
2− −46.00

Fe2+ + 2H2O = 2H+ Fe(OH)2 −12.10

Mn2+ + SO4
2− = MnSO4 2.26

Mn2+ + H2O = MnOH+ + H+ −10.59
Mn2+ + 3H2O = Mn(OH)3

− + 3H+ −34.08
UO2

2+ + SO4
2− = UO2SO4 2.95

UO2
2+ + SO4

2- = UO2(SO4)2
2− 4.00

2UO2
2+ + 2H2O = (UO2)2(OH)2

2+ + 2H+ −5.68
UO2

2+ + 2H2O = 2H+ + (UO2)(OH) −5.40

Fe(OH)3(s) +3H+ = Fe3+ + 3H2O Kf = 0.05
FeOOH(S) + 3H+ = Fe3+ + 3H2O Kf = 0.07
FeOOH(S) = FeOH Kf = 0.05

All equations specified in Table 3 were derived by modifying equations based on [16].

2.6. Model Calibration

The groundwater model was calibrated by iterative adjustment of aquifer parameters
and stresses to achieve the best match between the observed and simulated water levels.
A well-calibrated model accurately replicates hydrogeological conditions of real-world,
which is the first goal of modelling. Therefore, the calibrated flow model can provide
confidence in the predicted impacts on changes to the groundwater regime.

2.7. Validation of Flow Model

To verify the performance of the groundwater flow and transport models, the tran-
sient groundwater model was run for an extended two-year simulation period to replicate
groundwater levels from 2012 to 2014/2015. The developed flow model’s outputs (hy-
draulic heads) were verified against field data from 2014/2015. The model was validated by
comparing the solutions of the calibration simulation with a separate set of field measure-
ments not utilized for calibration. It was not possible to calibrate the contaminant transport
model as the contaminant source magnitudes, timings and locations could not be specified
accurately. The results obtained for this validation exercise are presented; they match
satisfactorily with field measurements and thereby demonstrate good predictive ability.
However, based on approximate assessment of the sources, the simulated concentrations
were informally compared with measured concentrations to ascertain, if the simulated
concentrations patterns are similar to the observed concentrations.

2.8. Adaptive Simulated Annealing Optimization Algorithm (ASA)

The second step involves using an optimization algorithm to find optimal candidate
solutions. The present study uses an ASA optimization algorithm in the optimal source
characterization model. This algorithm is preferred for its comparative efficiency in reach-
ing a global optimal solution. The optimization algorithm is used hereafter to minimize
the objective function formulation.
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The ASA global optimization algorithm relies on random importance-sampling of
parameter space [24]. It was created with the objective of speeding up the convergence of
standard SA methods [25]. The basic structure of the ASA algorithm is the same as that
of classical SA. There are, nevertheless, some key differences. It has new distributions for
the acceptance and state functions and a new annealing schedule. It uses independent
temperature scales for each fitted parameter and for the acceptance function. It also
performs reannealing at specific intervals. The ASA algorithm maintains the advantages of
SA but converges faster. Hence, the ASA algorithm is a powerful global optimization tool
for solving complex parameter estimation problems.

The major advantage of ASA is that the algorithm parameters are modified in an
adaptive way and that the solutions do not differ greatly if the parameters are updated
within acceptable limits. This contrasts with other optimization algorithms, where only
small variations in parameters, such as mutation probability, crossover probability, or
population size, cause major differences in solutions [25]. An additional benefit of ASA
over SA is that it overcomes the speed issue of traditional SA approaches and ensures fast
convergence towards a global minimum solution.

2.9. Source Identification Using Simulation Optimization

The simulation-optimization model simulates the physical processes of flow and
reactive transport within an optimization model. The flow and reactive transport simula-
tion models are considered as important binding constraints for the optimization model.
In this identification model, the flow and transport simulation models are linked to the
optimization model using the ASA algorithm to find the solution.

In simulation-optimization models, the groundwater contaminant source identifica-
tion problem is formulated as a forward-time simulation in combination with an opti-
mization model. The simulation-optimization model simulates the physical processes of
flow and reactive transport within the optimization model. The flow and reactive trans-
port simulation models are treated as important binding constraints for the optimization
model to ensure that the simulated source responses fare properly simulated. Therefore,
any feasible solution of the optimization model is based on the implemented flow and
transport simulation models. The advantage of this approach is that it becomes possible to
incorporate any complex numerical simulation model to the optimization model.

In the source identification model, the flow and transport simulation models are linked
to the optimization model using the ASA algorithm to find a solution. Figure 3 shows a
flowchart of the simulation optimization and program execution sequence for groundwater
contaminant source identification.

2.10. Mathematical Formulation of Simulation-Optimization Models

The main goal of the contaminant source identification model is to characterize each
source according to the geochemically reactive species that are reacting in the aquifer. The
source characteristics of interest include location and release duration and magnitude [35,36].
The source identification model uses the optimization approach to provide candidate
solutions for a set of source characteristics. It minimizes a weighted objective function of
the differences between the simulated and observed species concentrations at monitoring
locations within the model domain.

The optimization model generates candidate concentrations of species associated
with each potential distributed source location. In this case, five candidate solutions of
species concentrations are generated by the optimization algorithm at six separate po-
tential distributed source locations. These candidate concentration solutions generated
by the optimization algorithm are utilized to estimate spatial and temporal contaminant
species concentrations in different time periods for monitoring locations at which field
concentrations have been measured. Appropriate constraint conditions can be imposed
on the parameters of the model. The optimization algorithm then evaluates the objective
function. The objective function value is defined as a function of the differences between
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the observed and simulated concentrations of different reactive species at monitoring
locations in different time periods. Optimal source characterization is obtained by solv-
ing the optimization model to minimize the objective function. The objective function
of the simulation-optimization model used for source characterization was formulated
as follows [10]:

Minimize F =
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Subject to : Ck
simiob

= f (x, y, z, Csim) (10)

The weight wk
iob can be described as : wk

iob =
1(

Ck
obsiob

+ η
)2 (11)

where:
Csp

k
obsiob

is the observed concentration of a species at monitoring location iob in the kth

time period; Csp
k
simiob

is the concentration of a species estimated by the source identification
model at monitoring location iob in the kth time period; sp1, sp2, sp3, sp4 are species
numbers one, two, three and four, respectively, involved in the chemical reaction; nob is the
total number of concentration observation locations; nk is the total number of concentration
observation time periods; nspe is the total number of species involved; f (x, y, z, Csim)
represents the concentration simulation results at location coordinates defined by x, y, z
obtained from the transport simulation model; wk

iob is an assigned weight corresponding
to observation location iob and time period k; and η is an appropriate constant that is the
average of the highest and lowest concentrations of each species. This ensures that errors
at low concentrations do not dominate the solution.

Development of a Linked Simulation-Optimization Model for Source Characterization
based on Multiple Species of Contaminants

A finite element-based three-dimensional numerical simulator (HYDROGEOCHEM
5.0) was used to simulate the flow and transport processes in the study area aquifer.
Hydrological variables, including Darcy’s velocity and moisture content, are necessary
in determining the transport of contaminants through saturated-unsaturated subsurface
systems. These variables need to be specified to solve the basic governing equations
in a simulation model. These variables can be iteratively estimated by calibration of a
simulation model.

A linked simulation-optimization approach linking the groundwater numerical simu-
lation model with an optimization model that incorporates an ASA algorithm was imple-
mented. Integrating a numerical simulation model with an optimization algorithm results
in significant performance improvement over source identification results obtained through
conventional standalone simulation or optimization methods. In the linked simulation-
optimization methodology, the first step is to develop a groundwater simulation model
that computes head and species concentration values at different monitoring locations in
different time steps. In the second step, the simulation model is externally linked with
the optimization model. Whenever the optimization procedure requires the objective
function and/or constraint evaluation, it calls the simulation model while passing the
candidate solutions to the simulator. Then, the simulation model executes and returns the
resulting concentrations. An ASA algorithm acts as a driver model that calls the simulation
model by passing variables and gets back the corresponding objective function value. The
ASA then adjusts the variables to compute a new objective function and continues for
several iterations until there is no further improvement or the stopping criteria are satisfied.
The ASA used as the optimization routine calls the calibrated simulation model during
each iteration.
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Figure 3. Schematic illustration of the linked simulation-optimization model using adaptive simulated annealing. 

  

Figure 3. Schematic illustration of the linked simulation-optimization model using adaptive simulated annealing.

A computer code was written in C++ language to interface the ASA and calibrated
groundwater simulation model, thus facilitating communication between the simulation
and optimization models. The C++ based code acts as a subroutine that has a set of
instructions designed to communicate between the FORTRAN-based numerical simulation
program and the C-language-based optimization program of ASA to perform frequently
used operations within the linked simulation-optimization methodology.

For the simulation and optimization models to work efficiently together to optimally
solve the source identification problem, they must be interfaced. This requires the design
and implementation of a linking script that facilitates communication (recursive calls)
between each module, hence the C++ code. Each time an optimization model requires
a function evaluation or constraint evaluation, it calls the simulation model. Figure 1
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shows the program’s execution sequence. The ASA algorithm starts from an initial guessed
solution given by the user. Candidate source concentrations are generated randomly by
the ASA algorithm as possible solutions. For each species’ set of source concentration
values, the numerical simulation is executed once to update the concentration in response
to the source concentrations. The output of the simulation consists of concentration
values for all nodal points in the simulation domain. The concentration values for the
selected observation locations are forwarded to the optimization module. The optimization
algorithm evaluates the constraints and checks for termination. If the constraints are not
satisfied, then it computes new source concentrations based on the ASA model and passes
them to the numerical simulation model. Based on the HYDROGEOCHEM results, a new
set of source concentrations is formed and HYDROGEOCHEM is called again to compute
the concentrations. This process is continued until an optimal solution is reached based on
the objective function and the constraints. The time period for optimization is given by the
user. The numerical model will start running from the initial time period, irrespective of
the optimization time period and, through this, the numerical model will take care of the
time relationship. HYDROGEOCHEM 5.0 uses many input files, but during optimization,
only the candidate source concentrations of individual contaminants change. All other
parameters do not change; hence, only the source concentration files are modified using
the linking C++ code during each iteration. The idea here is to introduce new candidate
solutions through the source concentration files and then run the whole optimization
model. The file containing the concentrations of individual contaminant species at different
time steps and different observation locations is checked by solving the objective function,
whether the constraints are satisfied or not.

2.11. Performance Evaluation

To evaluate the performance of the proposed optimal contaminant source characteriza-
tion methodology, concentration measurements taken at monitoring locations in different
time steps were utilized as a part of the real-life illustrative scenario. To test the reliability
and robustness of the proposed methodology in real scenarios, synthetic concentration
measurement errors were incorporated by introducing various amounts of synthetically
generated, normally distributed error in the simulated concentration values [37]. The
perturbed simulated concentrations represent erroneous measurements, and are defined
as follows:

ertCk
simiob

= Ck
simiob

+ ε•a•Ck
simiob

(12)

where:
pertCk

simiob
is a perturbed simulated concentration; Ck

simiob
is a simulated concentration;

ε is a normally distributed error term with a zero mean and standard deviation of one; a is
a fraction, such that 0 < a < 1. For example; a is varied from 0.05 to 0.2. a < 0.10 corresponds
to a low noise level, 0.10 < a < 0.15 corresponds to a moderate noise level, and a. 0.15
corresponds to high noise level [37].

Model for Erroneous Concentration Measurement Values

For evaluation purposes, simulated concentration values were perturbed to represent
measurement errors. Adding randomly-generated random errors to the simulated concen-
trations perturbed these simulated values. The normally distributed random error terms
are used to simulate the errors that generally occur in field measurements. The perturbed
concentration values were computed as follows [38]:

Cobs (ML, t) = Csim (ML, t) + ε r (13)

where:
Cobs (ML, t) is the measured or observed concentration of a species at monitoring

location ML at time t; Csim (ML, t) is the simulated concentration at location ML and time t
from the numerical simulation model; and ε r = is a random error term.
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Here, the random variable ε r is assumed to follow a normal distribution with mean = 0
and standard deviation = a.Csim (ML, t). Furthermore, the error term is defined as:

ε r = e. a. Csim (ML, t) (14)

where a = a fraction (0 ≤ a ≤ 1.0) and e = normal deviates.
For this study, MATLAB (R2017a) software was used to generate standard normal

deviates (e). The value of a was varied from 0.05 to 0.2, where higher values indicate a
higher level of noise in the data. It was assumed that values of a < 0.10 correspond to a
low noise level, 0.1 ≤ a ≤ 0.15 corresponds to a moderate noise level, and a > 0.15 corre-
sponds to a high noise level [37,39]. Additionally, for performance evaluation purposes a
normal distribution of errors is assumed. Any other suitable distribution function may be
incorporated. The value of Cobs (ML, t) can be negative if e is negative, a is large and Csim
(ML, t) is small. Generally, such a situation is less probable if a is small and e is also small.
Otherwise, a truncated normal distribution may be used.

2.12. Optimal Source Characterization

The numerical simulation model used to solve the three-dimensional flow and reactive
biogeochemical transport processes was utilized in the linked simulation-optimization
model for optimal source characterization of different distributed sources in the con-
taminated mine site area. For evaluation purposes only, concentration measurements at
specified monitoring locations were simulated (synthetic measurements) by the calibrated
numerical flow and transport simulation model. These concentration data were generated
for specified source characteristics. Then, they were used with the linked simulation-
optimization models to evaluate the potential applicability, accuracy and feasibility of the
developed methodology. After evaluating the performance utilizing synthetic simulated
measurement data, the developed methodology was applied to characterize sources based
on contamination measurements obtained in the study area.

However, as is generally the case for such large-scale, complex, contaminated aquifer
sites, the contaminant sources are unknown. Hence, the source concentration magnitudes
or source activity starting times cannot be validated. Hence, synthetic concentration values
were utilized with the calibrated flow model to evaluate the performance of the source
characterization methodology. Concentrations of contaminants measured in the field [40]
in 2011 and 2012 were used in the source characterization process.

3. Results
3.1. A Numerical Simulation Model
3.1.1. Calibration of the Flow Model

For a model to be able to adequately and accurately simulate field parameters, it
needs proper calibration. The aim of calibrating a model is to tune the hydrogeological
parameters until the model approximates field measurements such as hydraulic heads and
concentrations. The idea is to simulate the physical processes in the aquifer accurately. The
flow model was calibrated for hydrogeological parameters and boundary conditions by
running the forward simulation repeatedly and manually adjusting the input parameters
selected for calibration, including boundary conditions, within their allowable ranges in
each run until a satisfactory match between the modelled and field results was achieved. In
this study, a trial-and-error procedure was used. It is worthwhile noting that the numerical
simulation codes utilized in this study do not follow an automated calibration procedure
such as PEST [41]. Manual trial-and-error calibration runs are conceptually straightforward
and require intuitive judgment of the results obtained from multiple forward simula-
tion runs. This process is flexible, allowing logical adjustments of parameter values and
structures, including changes in mesh designs and the representation of the geological
framework. For this study, the purpose of calibration was to obtain hydraulic conductivity
and recharge estimates for the modelled aquifer based on limited field measurements.
Calibration was attempted without changing the hydrogeological zones defined by the
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distribution of hydrogeological units present at the site. Calibration was attained through
refinement of the model parameters and features, including hydraulic conductivity in the
horizontal and vertical dimensions, and recharge and hydraulic conductivity assigned to
the sections used to replicate the influence of the fault.

Since the flow model simulation started in December 2010, groundwater head data
measured from 20 monitoring locations in December 2010 were used to calibrate it.
Throughout the calibration process, the hydraulic conductivity values of the different
soil materials and rock types were varied within the acceptable range of field-measured
hydraulic conductivity values in Table 2. Simulation runs were repeated until a reasonable
match between the observed and estimated hydraulic head values was reached under
the transient-state simulation conditions. Different values of hydraulic conductivity were
obtained after calibration. The hydraulic conductivity values differed from layer to layer
based on the varying material properties of each layer. Each layer had specific hydraulic
conductivity values. The hydraulic conductivity values ranged from 0.1 to 5 m/day with
the exception of the fault zone that cuts through the east side of the model, which had
values as high as 75 m/day.

Hydraulic head measurements from 22 observation locations were used to calibrate
the simulation model. Data from 2010 to 2012 were used to calibrate the flow model,
while data from 2012 to 2014 were used to validate it. For the purposes of calibration, a
percentage of annual rainfall was defined as a recharge value in the model. The calibration
targets for the developed model were set to be within 2 m of the hydraulic head values
observed at the observation locations.

Determining the exact boundary conditions of a model domain is a difficult task when
measurement data are limited. Without exact or characteristic boundary conditions, a
model may not accurately represent a field process. It is therefore necessary to implement
realistic boundary conditions in a model that reflects the conditions of the site. One of the
most difficult tasks in the calibration process is to properly assign the correct boundary
conditions. The boundary conditions must therefore also be determined on the basis of the
preliminary results of the calibration. The boundary conditions of the model are manually
adjusted to achieve the calibration targets. In this study, simulated hydraulic heads were
compared with field-measured hydraulic heads at monitoring points. Groundwater gener-
ally flows from the higher elevations of the study area towards the central area, towards
the east branch of the Finniss River northwards.

The hydraulic head calibration results are illustrated by the bar graphs in Figure 4a,
which compare the simulated and measured values. The same comparison is presented
in Figure 4b but as a line graph. A graph of the simulated and observed groundwater
levels at selected monitoring locations after calibration is given in Figure 4. This figure
shows the monitoring location of wells on the x axis and the head values in metres on the
y axis. Figure 4b comparse the observed and simulated heads for the two-year period of
2010–2012. Figure 4a,b show that there is an acceptable match between the field-measured
and simulated heads. There is a small difference between the measured and simulated
heads, which may be due to various errors and uncertainties in measurement, measure-
ment/estimation of parameters, and boundary conditions. Variations within the model
elements due to minor deviations in the hydraulic parameters, as is commonly found in
groundwater modelling investigations, may be an additional cause. The deviation between
the simulated and measured hydraulic heads does not exceed 5% of the field-measured val-
ues, so the calibration process can be said to have made the model reasonably approximate
the observed groundwater head values. The calibration results, as a comparison between
observed and simulated groundwater levels, are shown in Figure 4.
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A scatterplot of simulated vs. observed values can be considered as a calibration
graph. A plot for the calibration period (2010–2012) is shown in Figure 4 Statistical analysis
of the calibrated model results shows that the residual mean (RM) groundwater levels at
the monitoring locations during the calibration period ranged from 0.01 to 2.97 m. The
mean absolute error (MAE) was calculated as 0.82 m, and the standard deviation is 0.77 m.
The normalized root mean squared (NRMS) was 0.09 and the root mean square error is 1.10.
The correlation coefficient (R) is 0.90. The scatterplot in Figure 5a shows the comparison
of observed and simulated hydraulic heads, confirming that the simulated head levels
were within an acceptable range of the measured heads. Figure 5b shows the correlation
between the measured and simulated heads with 95% confidence intervals on the mean
observed and measured values.

Int. J. Environ. Res. Public Health 2021, 18, 4776 21 of 46 
 

 

A scatterplot of simulated vs. observed values can be considered as a calibration 
graph. A plot for the calibration period (2010–2012) is shown in Figure 4 Statistical analysis 
of the calibrated model results shows that the residual mean (RM) groundwater levels at 
the monitoring locations during the calibration period ranged from 0.01 to 2.97 m. The 
mean absolute error (MAE) was calculated as 0.82 m, and the standard deviation is 0.77 
m. The normalized root mean squared (NRMS) was 0.09 and the root mean square error 
is 1.10. The correlation coefficient (R) is 0.90. The scatterplot in Figure 5a shows the 
comparison of observed and simulated hydraulic heads, confirming that the simulated 
head levels were within an acceptable range of the measured heads. Figure 5b shows the 
correlation between the measured and simulated heads with 95% confidence intervals on 
the mean observed and measured values. 

  
(a) (b) 

Figure 5. (a) Correlation between simulated and observed groundwater heads; (b) linear relationship between measured 
and Scheme 95. confidence intervals for the mean of the observed values and the observed values. 

The results of calibrating the simulated heads are presented in Table 4. The 
calibration of a numerical model is typically considered good if the NRMS error is < 5%. 
The computed NRMS values for the simulated heads are well below the target of 5%, 
suggesting good calibration to head targets and simulated hydraulic parameters. The 
residual average error for the total head data sampled at the 22 monitoring wells in 2010 
is 1.0168. The heads range in value from 50 to 70 m. The simulated heads at the monitoring 
points were then compared with the observed heads. Figure 4 shows bar charts that 
indicate a close relationship in the hydraulic heads. A Pearson correlation coefficient test 
was applied to the calibration results of the total heads. The correlation coefficient (r) of 
0.918 shows a close linear relationship between the observed and simulated heads. 

  

Figure 5. (a) Correlation between simulated and observed groundwater heads; (b) linear relationship between measured
and Scheme 95. confidence intervals for the mean of the observed values and the observed values.



Int. J. Environ. Res. Public Health 2021, 18, 4776 20 of 42

The results of calibrating the simulated heads are presented in Table 4. The calibration
of a numerical model is typically considered good if the NRMS error is <5%. The computed
NRMS values for the simulated heads are well below the target of 5%, suggesting good
calibration to head targets and simulated hydraulic parameters. The residual average
error for the total head data sampled at the 22 monitoring wells in 2010 is 1.0168. The
heads range in value from 50 to 70 m. The simulated heads at the monitoring points were
then compared with the observed heads. Figure 4 shows bar charts that indicate a close
relationship in the hydraulic heads. A Pearson correlation coefficient test was applied to
the calibration results of the total heads. The correlation coefficient (r) of 0.918 shows a
close linear relationship between the observed and simulated heads.

Table 4. Validation of hydraulic head values for 2015 (values in m AHD).

Monitoring Well Observed Head (m) Simulated Head (m) Residual (m)

PMB1a 63.42 63.01 0.41
PMB1b 63.86 62.91 0.95
PMB4 62.44 63.03 −0.59
PMB5 58.26 59.13 −0.87
PMB6 58.76 58.59 0.17
PMB7 58.55 58.48 0.07

PMB8D 59.48 59.24 0.24
PMB10 59.62 59.81 −0.19
PMB11 59.14 59.66 −0.52
PMB12 59.76 60.04 −0.28
PMB13 60.21 60.04 0.17
PMB14 61.35 60.47 0.88
PMB17 60.65 60.02 0.63
PMB23 58.76 59.16 −0.4

RN22039 61.57 60.8 0.77
RN22081 60.98 61.23 −0.25
RN22085 65.12 64.49 0.63
RN22543 58.5 59.18 −0.68
RN23051 63.16 63.55 −0.39
RN23413 63.42 62.96 0.46
RN23419 63.37 63.59 −0.22
RN29993 62.88 63.36 −0.48

Field data approximately corresponding to the first 738 days were used to calibrate the
numerical model at all monitoring points. Field data from after this period were reserved
for validating the numerical model. Figure 6 shows the evaluation of the numerical model’s
performance in the calibration period. The simulated groundwater heads predict the field-
measured data reasonably well for the validation stage. Residuals between simulated and
measured groundwater heads were also calculated by means of mean absolute error (MAE),
NRMSE and RMSE. Table 5 shows the statistics for the calibration and validation periods.
Figure 6a,b show that the numerical model maintains its calibrated accuracy throughout
the validation period.

Table 5. Statistics of the residuals for the calibration and validation periods.

Statistic Calibrated Period Validation Period

Simulation period (days) 730 730
MAE (m) 0.82 0.72

Standard deviation (m) 0.77 0.91
NRMSE (m) 0.09 0.10
RMSE (m) 1.10 0.91
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3.1.2. Validation of the Flow Model

The validation results for the validation period of 2012–2014 are shown in Figure 6.
Table 4 presents the validation results in terms of hydraulic heads.

The availability of hydraulic head field measurements from 2012 to 2014 allowed
the model to be validated over this period, using the 2012 measured head distribution as
the initial condition. Simulation was carried out until 2014 using a time step period of
30 days. Figure 6 compares the hydraulic heads observed and simulated for this period,
illustrating a wide correspondence. Thus, after transient-state validation, the model is
shown to simulate groundwater levels with a reasonable level of accuracy.
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The validation residual results representing the differences between the observed and
simulated groundwater levels are given in Figure 6. This graph shows that the residuals
were typically less than 1 m (with the average depth of the aquifer being approximately
150 m) throughout the majority of the model domain, except in four monitoring well
locations: PMB2, PMB9D, PMB16 and PMB 18. These had larger head residuals and tended
to be in areas with a higher topographic relief and/or deeper water table, factors that tend
to cause high seasonal fluctuations in groundwater levels. In general, these areas were
more difficult to calibrate. Nevertheless, the spatial bias in head residuals was considered
acceptable for the purposes of this study.

A summary and comparison of the calibration and validation results are given in
Table 5. The maximum deviations in the predicted and measured hydraulic heads are
0.07 m and 0.95 m, respectively. Table 5 also shows that the deviations between the
measured and predicted heads are more or less of the same order for both the calibration
and validation results. Therefore, given the situation of having limited measured data and a
large and hydrogeologically complex study area with a multilayer aquifer, these validation
results show that the calibrated model can be utilized for the prediction of hydraulic head
under different input scenarios.

The numerical flow model for the Rum Jungle Mine site was calibrated using annual
groundwater-level data measured at a selection of bores since August 2010. Moreover, the
validation process suggests that the current calibration provides a reasonable approxima-
tion of current flow conditions at the Rum Jungle Mine site and can be used to predict the
response of the groundwater system for rehabilitation planning.

Concerning the calibration process, it is worth noting that the calibrated values of
hydraulic conductivity lie within the range of uncertainty in the values obtained by means
of hydrogeological characterization. Average hydraulic conductivity values were used due
to the complexity of the aquifer system. The nature of the aquifer requires that a layer
has approximately five different conductivity values, which causes convergence issues.
The model encountered challenges in converging when 14 distinct hydraulic conductivity
values were applied, as average values were used to represent the heterogenous and
anisotropic nature of the site as much as possible and to achieve model convergence.

3.2. Optimization Model

The aim of the performance evaluation process was to evaluate whether the source
characterization model can recover the actual source characteristics based on synthetic
concentration values [42]. Hence, in the linked simulation-optimization model for source
characterization, the calibrated numerical simulation models were used to generate syn-
thetic (simulated) concentration data. The reason for using synthetic data for performance
evaluation was to ensure that unknown errors in the actual measurements did not dis-
tort the performance evaluation results. Additionally, by using synthetic concentration
data, it is possible to test the performance with different scenarios of measurement error.
Furthermore, the actual sources may not be known, so the performance is evaluated with
synthetic concentrations generated for specified contaminant sources. This is to ensure
that the estimation results can be verified. Therefore, the source characteristics recov-
ered can be verified from the specified sources used to generate the synthetic data. If the
performance is satisfactory, the methodology should be useful for recovering the actual
source characteristics.

3.2.1. Case Studies for Model Demonstration

In the following sections, the model for identification of groundwater contaminant
sources is demonstrated using two case studies involving a mining area; (i) with simulated
(synthetic) measurements for testing (where the sources are known); and (ii) same study
area with observed concentrations to demonstrate practical applicability.
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Calibrated Model Testing with Simulated Data

This section focuses on a contaminated aquifer site (Figure 7) with six distributed
sources of contamination consisting of four waste rock dumps and two open mine pits
filled with water. The boundary conditions for flow are represented by the red border lines
shown in Figure 8. This case study involves a calibrated model of a real mine site in the
Northern Territory, Australia. It is adapted in this study to test the performance of the
multiple species source identification model, where individual contaminant species from
distributed sources are examined. There were six possible sources: four waste rock dump
sites, D1 (Main WRD), D2 (Intermediate WRD), D3 (Dyson Backfilled Pits), D4 (Dyson
WRD) and two open pits, P1 (Main Pit) and P2 (Intermediate Pit; Figure 7. There were nine
observation wells (W1, W2, W3, W4, W5, W6, W7, W8 and W9) at the study site (Figure 7),
which recorded concentrations of six contaminant species over a two-year period. The
thickness of the aquifer is 150 m. The aquifer is presumed to be anisotropic. The effective
porosity is taken to be 0.3. Table 6 shows the schedule of release of contaminant species,
with locations and magnitudes (contaminant concentrations). The releases were assumed
to occur over a two-year period and to be continuous thereafter.

Figure 7. Mine site aquifer with four contaminated waste rock disposal sites and nine observa-
tion wells.

A groundwater flow and transport model was run in HYDROGEOCHEM 5.0 to
simulate the flow and transport processes and generate synthetic concentrations at specified
observation wells. The simulation was carried out for a two-year period with a time-step of
30 days. The concentrations at the selected observation wells estimated by the simulation
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are shown in Figure 8a–d, which compares actual and predicted concentrations for species
at specific observation wells. These concentrations estimated by the simulation model
were treated as input observed concentration data for the source identification model. The
observed concentration data were fed to the source identification model for characterization
of the sources. The optimization algorithm used for this problem was ASA, which tries to
find a set of candidate source concentrations of individual contaminants by minimizing
the objective function [42,43] defined in Equation (11).

Results and discussion: case studies for model demonstration.
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Table 6. Contamination release schedule from distributed sources—simulated measurements for
testing (as sources are known).

Site Contaminant Concentration (mg/L)

Cu2+ SO4
2- UO2

2+ Fe2+

Main WRD 4.19 3430 0.568 0
Intermediate WRD 34.9 13800 1.840 349

Dyson Backfilled Pits 30.0 2500 1.590 4.865
Dyson WRD 4.63 579 0.155 2.74

Main Pit 55.0 8200 0.000 430
Intermediate Pit 60.0 3100 0.000 2.00

This section discusses the evaluation results obtained from the source identification
model using a calibrated model with simulated measurements for testing (as sources are
known) the performance. The source identification model was able to identify separate
contaminants concentrations. Six sources were used in the characterization. It is important
to note that, for this study, the contaminant sources (waste rock dumps) were characterized
in terms of concentrations rather than fluxes. This is so because species concentrations are
expressed in terms of moles per litre in the software used; hence, concentration multiplied
by volume flux gives the mass flux. Additionally, in the case of pits, it was assigned as a
boundary condition and hence expressed in terms of concentration.

The results of the source characterization evaluation are presented in Figure 8a–d.
Table 7 summarizes the error statistics related to the source characterization using error-free
concentration measurement data. Figure 8a–d compare the actual concentrations with those
estimated by the optimization model of specific contaminant species at the six sources.

Table 7. Comparison of percent average estimation error (PAEE, %) obtained for species at distributed
source locations using error-free data.

Source
PAEE (%)

Cu SO42− U Fe

Main WRD 0.1 3.8 4.3 0.0
Intermediate WRD 2.3 1.10 1.55 6.5

Dyson Backfilled Pit 3.32 2.35 0.26 5.35
Dyson WRD 0.33 1.99 5.5 5.22

Main Pit 1.30 0.11 0 0.50
Intermediate Pit 1.82 1.35 0 4.0

Figure 8a is a graph showing the concentration of the contaminant copper, where
the source concentrations are compared with the concentration solutions obtained from
the optimization model. The concentrations compared very well at all source locations
when error-free data were utilized. Figure 8b shows sulfate concentrations, where the
source concentrations are compared with the estimates of the optimization model. The
concentrations compared very well at all source locations when error-free data were utilized
as synthetic concentration measurements.

Figure 8c shows the concentrations of the contaminant uranium (in the form of UO2
2+),

where the source concentrations are compared with the concentration solutions obtained
from the optimization model. The actual and estimated concentrations compared very well
at all source locations when error-free data were utilized. The Main Pit and Intermediate
Pit sources did not show any bars since the source concentration of uranium was near
zero at these points. Hence, the optimization model was able to provide same value.
Figure 8d shows the concentrations of the contaminant iron (in the form of Fe2), where
the source concentrations are compared with the concentration solutions obtained from
the optimization model. The concentrations compared very well at all locations when
error-free synthetic data were used. Source locations at the Main WRD did not peak up,
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which reflects the same results for the optimization model. At the Intermediate Pit, the
concentration of iron was low, so does not show on the figure.

The performance of the linked simulation-optimization source characterization model
using an ASA optimization algorithm was evaluated in terms of percent average contami-
nant source estimation error (PAEE) [44]. PAEE was used to compare the input concentra-
tions of the generated and actual source locations. Mahar and Datta (2001) performed such
a comparison in terms of PAEE; using the formula:

PAEE (%) =

∣∣∣Co − C̃o

∣∣∣
C̃o

× 100 (15)

where Co is the actual input observed species concentration and C̃o is the species concen-
tration generated by the optimization model.

Using measured concentration data in the optimal source identification model, the
actual and optimization-generated species concentrations were accurately estimated within
a 10% average estimation error value. This is except for iron, which had a PAEE value of
6.5% at the Intermediate WRD. It can be seen that the PAEE value tends toward zero when
the generated concentrations approach the actual ones. Table 7 compares the calculated
PAEE values for the species at different source locations.

3.3. Source Identification for a Field Problem

This case study considers the transport of reactive contaminant species through an
aquifer system. The contamination came from acid mine drainage from waste rock dumps
and open mine pits that occurred continuously over a long time. It is associated with an
abandoned uranium mine in Australia. The modelled area is approximately 12 km2. It
is bounded by the upper east branch of the Finniss River on the left side and a specified
transient head boundary condition to the borders of the Main and Intermediate Open Pits.
The water levels in the open pits were used as the constant head values at the boundaries of
the pit. Groundwater contaminant concentrations measured at several monitoring locations
were used as specified concentrations in the reactive transport model. These concentrations
were estimated as constant values for species at selected monitoring points at specific time
intervals. There were six potential sources, consisting of two open pits and four waste
rock dumps: OP1, OP2, MWRD, IWRD, DBP and DWRD. These released reactive species
contaminants associated with AMD via a reactive transport process over a period of two
years. It is assumed that after two years of release, the contaminants stopped being released
at the study site. Nine observation wells, labelled OB1, OB2, OB3, OB4, OB5, OB6, OB7,
OB8 and OB9, recorded contaminant concentrations over a two-year simulation period.

3.3.1. Results and Discussion of Source Identification for a Field Problem

Based on the concentrations measured at the monitoring wells, source identification
was attempted using the optimization formulation in Equation (11). This equation provided
optimal source concentrations that matched the field measurements. Corresponding
measured concentrations were used to formulate the optimization model used in this study.
The concentrations of the species considered were used for optimal source characterization
of the distributed sources [44–47].

The optimal source characteristics of the species concentrations obtained from the
optimization model were then utilized as input source concentration parameters to model
and simulate the concentration plumes from the sources in this study area.

The use of concentrations measured at monitoring locations to identify sources is
discussed. The contours of simulated plumes of different species at different source
locations are shown in Figure 9a–e.
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Figure 9a shows a simulated contour map of Cu concentration plumes based on field-
measured concentrations. Figure 9b,c are simulated contour maps of SO4

2+ concentration
plumes represented in Layers 1 and 2, respectively. Comparing Figure 9b,c, it can be seen
that as the SO4

2+ moves from one layer to the other, the concentrations at the sources
also change. These contour maps show variations in concentrations as the plumes move
through different layers of the model. Figure 9d,e show simulated contour maps of UO2

2+

concentration plumes as characterized in Layers 1 and 2, respectively. These contour maps
show some variation in the concentrations as the plumes move through different layers of
the model.

Figure 9a–e represent the concentration plumes of species at different layer resulting
from characterized sources.

These contours can be used to compare point measurements of concentrations with
concentration estimates based on the contours. However, such comparisons are possible
only when the actual sources in the field are the same as those identified by the source
characterization inverse model, which is not possible in this case. However, few pointwise
concentration values seem to be of the same order as those in the field. This may help in
an intuitive validation of the source characterization process, as the physical conditions
assumed for the performance evaluations resemble the field conditions to a certain extent.
Selected points in specific areas in the point concentration comparison and the source
identification intuitive validation are discussed below.

The following monitoring bores were used for point concentration comparisons. Two
monitoring bores, MB 10-10 and MB 10-11, were positioned below the former copper
extraction pad. Monitoring bores MB 10-3 and MB 10-4 were located near the East Finnish
Diversion Channel. Monitoring bores PMB 10-5 and PMB 10-6 were situated near the
intermediate waste rock dump (IWRD). Monitoring bores MB 10-7, MB 10-12, MB 10-13
and MB 10-16 were located in the central mining area. Monitoring bores PMB 10-9S and
PMB 10-9D were sited near the east branch of the Finnish River and the intermediate pit.
Monitoring bores PMB 10-20 and PMB 10-21 were also positioned downstream of the
mine site. The simulated (sim) and field-observed (obs) concentrations of sulfate, copper,
uranium and iron at the monitoring bores are compared in Table 8.

Table 8. Comparison of observed (Obs) and simulated (Sim) contaminant concentrations (mg/L) at monitoring locations
based on final optimal sources from the source characterization model.

Sulphate (SO4
2+) Iron (Fe2+) Copper (Cu2+) Magnesium (Mn2+) Uranium (UO2

2+)

Bore Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim

PMB 10-3 493 500 0.542 0.55 2.41 3.00 1.81 1.79 0.073 0.07134
PMB 10-4 1250 1511 0.336 0.4 0.015 0.019 0.117 0.115 0.012 0.009117
PMB 10-5 212 200 0.054 0.06 0.001 0 0.084 0.09 0.003 0
PMB 10-6 1090 1050 0.03 0.04 0 0 0.649 0.7127 0.002 0

PMB 10-10 756 650 1.8 1.6 0.006 0.001112 0.22 0.21 0.085 0.0964
PMB 10-11 5180 5170 1.49 1.55 77.2 80 144 150 0.024 0.035
PMB 10-22 3810 3800 37.4 37.1 561 590 124 140 0.109 0.1763
PMB 10-24 1050 1000 0.56 0.61 52.6 55 18.3 20 0.162 0.113
RN022543 1340 1200 0 0 0.008 0.009 0.081 0.089 0.003 0.00354
RN022543 1140 1020 0.014 0.017 0.018 0.015 0.069 0.075 0.003 0.003
PMB 10-7 1450 1400 0.002 0.002113 0.003 0.002 0.002 0.01 0.006 0.005126

PMB 10-9S 350 285 0.22 0.33 0.003 0.002 0.474 0.5 0.009 0.008
PMB 10-9D 3270 3300 2.35 2.4 0.040 0.03 5.42 5.66 0.316 0.611

3.3.2. Results for Erroneous Concentration Measurement Values

Figures 10–13 compare the ASA-generated species concentrations at the distributed
sources with error perturbation values of 0.05, 0.10, 0.15 and 0.2. Each of the unknown
species’ source concentrations is marked on the y axes. The x axes have three bars for
each potential source location corresponding to concentration of a species at the source.



Int. J. Environ. Res. Public Health 2021, 18, 4776 30 of 42

The first bar is the actual value, the second represents estimated values based on error-
free concentration measurements, and the third bar represents estimated values based on
concentration measurements with perturbed erroneous measurement data.
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The results of source concentration identification using error-free data closely match
those using the actual source concentration values for all species and source areas, as
displayed in Figures 10–13.

Figure 14a–d show the errors in source estimation for different scenarios. The figures
compare the errors in a linear format with four error perturbation values of 0.1, 0.2, 0.15
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and 0.05. The error graph justifies the fact that when concentrations are perturbed, as in the
case of field measurements where uncertainties in measurement or recording are likely, the
optimization model shows that it is robust and capable of handling any form of data and,
at the same time, providing an optimal solution of source characteristics with a realistic
margin of error. Figure 14a–d show how minimal errors are observed when erroneous data
(randomly perturbed) are used as input for source characterization. In Figure 14a–d, the y
axis represents source estimation errors. The x axis depicts the different source locations,
where 1 = Main WRD, 2 = Intermediate WRD, 3 = Dyson Backfilled, 4 = Dyson WRD,
5 = Main Pit, and 6 = Intermediate Pit.
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4. Conclusions

This study involved as a first step, the development and calibration of a transient
groundwater flow model for a contaminated aquifer underlying an abandoned uranium
mine in the Northern Territory of Australia. This work was initiated as a fundamental step
to understand the flow of the aquifer system and to establish a multiple species reactive
transport model for a hydrogeologically complex contaminated aquifer. The outcome of
the model is the basis for a transient flow model and for reactive transport and predictive
modelling. The implementation of this model was based on subjective judgment of the
selection of appropriate data, due to their sparseness and reliability. The numerical flow
model was calibrated a two-year period of 2010–2012. The calibrated model was also
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validated according to selected hydrogeological parameters with data from 2012 to 2014.
The calibrated flow model and transport model were used to simulate the heads and
concentrations at various points in the study area. Overall, the calibrated model provided
a reasonable match with field observations, demonstrating strong hydraulic connection
to the materials at each layer. This validation process suggests that the current calibrated
model is a reasonable approximation of the current flow conditions at the Rum Jungle
Mine site and can be used to predict the responses of the groundwater system.

The challenge in using reactive transport models for modelling real-life scenarios is in
selecting the geochemical reactions that best describe the geochemical processes occurring
at the study site and transforming them into transport equations of (1) kinetic variables,
(2) components and (3) equilibrium variables. These can then be used for the computation
of equilibrium and kinetic rates to facilitate numerical contaminant transport simulations.

There was an acceptable level of agreement between the observed and simulated
hydraulic heads. Transient simulation of the groundwater hydraulic heads and movement
of reactive contaminants was accomplished with the developed simulation model. The
concentrations predicted for the species in the reaction network are of the same order of
magnitude as those of available measurements. Quantification of the contaminant sources
in terms of magnitude, location and duration of activity was not possible. Therefore,
the contaminant transport simulation calibration is, at best, subjective in this scenario.
Hence, the simulation models, once reasonably calibrated to site conditions, are potentially
good approximations, and similar approaches can be used for similar sites with similar
complex challenges.

The main aim of this study was to develop and demonstrate the utility of a source
characterization methodology applied to a mining site-contaminated aquifer that is no
longer used. The method uses a linked ASA optimization algorithm to model the transport
of multiple chemically-reactive species in a contaminated aquifer beneath a former mine
site in Australia. A numerical simulation model of the flow and transport processes
was developed that incorporates heterogeneous, anisotropic, hydrogeological parameters.
A performance evaluation demonstrated the potential applicability of this method to
simultaneously identifying the spatial distributions and input concentrations of unknown
areal groundwater contaminant sources. The method uses a limited amount of contaminant
species concentration data at different time intervals and monitoring well locations.

The preliminary evaluation results are encouraging and point towards the feasibility
of using the proposed method to optimally characterize the sources and pathways of
contamination in complex aquifers. The range of errors obtained for error and erroneous
cases ranges between 4% and 16%, etc.

This proposed methodology can overcome some of the shortcomings of some of the
currently available methods applied to optimal characterization of unknown contaminant
sources, particularly at very complex contaminated aquifer sites such as abandoned mines
that contain multiple species of reactive chemical contaminants. Such characterization is
an essential initial step for solving critical environmental problems and designing effective
contamination remediation strategies. This study also highlights limitations in utilizing and
implementing calibrated flow and transport simulation models calibrated with very limited
available site measurements, particularly in hydrogeologically and geochemically complex
contaminated aquifer sites. The issue of efficient and adequate monitoring network design
for improving the reliability and accuracy of unknown source identification remains a
challenge and needs further attention [48,49].
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