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Abstract: Anthropogenic and natural disturbances can cause degradation of ecosystems, reducing
their capacity to sustain biodiversity and provide ecosystem services. Understanding the extent
of ecosystem degradation is critical for estimating risks to ecosystems, yet there are few existing
methods to map degradation at the ecosystem scale and none using freely available satellite data for
mangrove ecosystems. In this study, we developed a quantitative classification model of mangrove
ecosystem degradation using freely available earth observation data. Crucially, a conceptual model of
mangrove ecosystem degradation was established to identify suitable remote sensing variables that
support the quantitative classification model, bridging the gap between satellite-derived variables
and ecosystem degradation with explicit ecological links. We applied our degradation model to
two case-studies, the mangroves of Rakhine State, Myanmar, which are severely threatened by
anthropogenic disturbances, and Shark River within the Everglades National Park, USA, which is
periodically disturbed by severe tropical storms. Our model suggested that 40% (597 km2) of the
extent of mangroves in Rakhine showed evidence of degradation. In the Everglades, the model
suggested that the extent of degraded mangrove forest increased from 5.1% to 97.4% following the
Category 4 Hurricane Irma in 2017. Quantitative accuracy assessments indicated the model achieved
overall accuracies of 77.6% and 79.1% for the Rakhine and the Everglades, respectively. We highlight
that using an ecological conceptual model as the basis for building quantitative classification models
to estimate the extent of ecosystem degradation ensures the ecological relevance of the classification
models. Our developed method enables researchers to move beyond only mapping ecosystem
distribution to condition and degradation as well. These results can help support ecosystem risk
assessments, natural capital accounting, and restoration planning and provide quantitative estimates
of ecosystem degradation for new global biodiversity targets.

Keywords: mangrove; ecosystem assessment; Myanmar; Everglades; satellite imagery; degradation;
ecosystem conceptual model
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1. Introduction

Ecosystem degradation is among the most important contributors to biodiversity
loss [1]. Degradation is often broadly defined as a departure from an ecosystem’s natural
range of variability [2] and can have substantial detrimental impacts on an ecosystems’
capacity to sustain services, such as carbon storage, resource provisioning, and water purifi-
cation and regulation [3,4]. Such departures from natural variability thus lead to negative
socioeconomic impacts at scales ranging from local to global [5]. Measures estimating
the extent of ecosystem degradation are a growing requirement of global environmental
policy frameworks, including the post-2020 Global Biodiversity Framework [6], the United
Nations (UN) Sustainable Development Goals [7], and the UN System for Environmental
Economic Accounting (SEEA) [8]. To support efforts to assess risks to global biodiversity,
evaluate global conservation targets, develop spatially explicit conservation and restoration
plans, and support environmental monitoring and management, there is an urgent need to
develop spatially explicit and ecologically relevant maps of ecosystem degradation.

Degradation can be defined, conceptualised, and represented in different ways, and
this inconsistency can cause confusion to researchers when trying to measure and map
it. For example, decreased provision of ecosystem services can be used to represent
degradation [9]. This anthropocentric approach focuses primarily on benefits to humans
and may neglect other important aspects of the ecosystem. Proximity to anthropogenic
pressures and disturbances can also be used to infer degradation based on the assumption
that these threats inherently cause degradation [10]. Such threat maps can be useful to
highlight areas requiring conservation action, but threat levels are not necessarily correlated
with realised ecosystem degradation due to variable ecosystem responses to different
threats [11–13]. Lastly, direct changes to an ecosystem’s composition, including species
assemblage and abundance [14]; structure, such as canopy cover [15]; or function, such
as productivity [16], can be used to represent degradation [2,17,18]. This approach is
more ecologically representative of the processes that underpin an ecosystem’s capacity to
support biodiversity and deliver ecosystem services [2]. On the other hand, an ecosystem
that is not degraded can be seen as intact, healthy, or in an ecological condition that
represents the ecosystem’s baseline state [19,20].

Maps of the distribution of ecosystem degradation may be developed from a range
of data types and information sources, producing results with varying degrees of accu-
racies, coverage, and resolution. In situ data, such as field observations, are a common
source of information about ecosystem degradation [18], but their collection is typically
labour-intensive, costly, and frequently limited in extent to local scales. Expert opinion is
also used for mapping ecosystem degradation, but this is often qualitative and difficult to
reproduce [18]. To overcome these limitations, satellite remote sensing data are increasingly
used because they provide a regularly collected data stream, often at the continental to
global scale, suitable for monitoring environmental change [21]. By leveraging the vast
amounts of information available from satellite data, a range of analyses to investigate
different aspects of ecosystem degradation are possible. Examples include: (i) time-series of
single satellite-derived indices, such as the normalised difference vegetation index (NDVI)
to identify changes in primary productivity [16,22]; (ii) temporal summaries of metrics to
model changes in the physical structure of ecosystems [23]; (iii) quantitative modelling of
satellite spectral bands [24]; (iv) generalised linear models to estimate ecosystem degra-
dation [25]; and (v) combination of threat maps with satellite-derived maps to identify
disturbed ecosystems [26].

Given the potential sources of data and methods available to ecologists, it is essential
that any statistical models of degradation include predictor variables relevant to the study
ecosystem’s components and processes, rather than simply including all possible data
without proper consideration [27]. In the context of mapping ecosystem degradation, a
simplified conceptual model depicting an ecosystem’s primary components, interactions,
and processes and identifying pathways to degradation can support the development
of a suitable quantitative model [2]. These conceptual models identify the core abiotic
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environment and the characteristic native biota of an ecosystem, the processes that connect
these components, and the primary drivers of change that affect the system (such as
threats) [2]. By developing conceptual models, assumptions are explicitly stated, and the
potential degradation pathways can be identified [28,29]. Crucially, conceptual models
facilitate the selection of empirical data that are expected to have explanatory power or
expected relationships with the processes that lead to ecosystem degradation. Following a
process of conceptual model development for predictor variable selection is particularly
important when developing models that could potentially use hundreds of data sources
sourced from extensive earth observation archives.

Mangrove ecosystems occur globally along tropical and warm temperate coastlines
and provide a wide range of ecosystem services, including acting as sources of food and fuel
for local communities, providing nursery sites for ecologically and commercially important
faunal species, contributing to climate regulation via high sequestration and storage capac-
ities, and enhancing coastal protection from storm events [30–32]. Early studies estimated
that 35% of the world’s mangrove extent was lost between 1980 and 2000 [33], though
the annual rate of mangrove forest loss slowed to an average of 0.26%–0.66% globally
between 2000–2012 [34] and down to 0.13% between 2000–2016 [35]. However, remaining
mangrove ecosystems are in various states of degradation as a result of a range of natural
and anthropogenic disturbances, including seawall construction, clearing for agri- and
aquaculture, overfishing, pollution, loss of tidal connectivity, and climate change related
disturbances such as sea level rise and extreme climatic events [12,13,35,36]. Despite their
importance and wide range of threats they face, many remote sensing studies focus primar-
ily on mapping mangrove ecosystem distribution and extent. Some studies used specific
vegetation indices to infer mangrove health, and a few studies used hyperspectral data to
classify mangroves into various health statuses [37]. To our knowledge, there is currently
no method of mapping mangrove ecosystem degradation using freely available satellite
data with explicit ecological links between satellite variables and mangrove degradation.

In this study, we developed a quantitative, spatially explicit, and ecologically meaning-
ful degradation model to estimate the extent of degradation for two case study mangrove
ecosystems that were impacted by contrasting threatening processes. We used a conceptual
model of mangrove ecosystems to identify satellite-derived variables for use as covariates,
focusing on variables that can detect mangrove vegetation degradation. Using high reso-
lution Google Earth imagery, we created a set of annotated point samples of mangroves
as training and testing data, focusing on their canopy cover and deviation from natural
variability. We then applied our degradation classification model to the two case study
sites. Crucially, the workflow developed here can also be applied to other ecosystems.

2. Materials and Methods

Our study aimed to estimate the extent of mangrove degradation with quantitative
classification models that incorporate satellite imagery. We focused on two case study
regions, each subject to different drivers of degradation (natural and anthropogenic), follow-
ing a consistent approach for model development, described in detail in the sections below:

1. defining study scope and describing the ecosystems;
2. identifying suitable model covariates using an ecosystem conceptual model;
3. developing a training/testing dataset that represents three ordinal states of degradation;
4. applying random forest classification models to each pixel in the two study areas to

develop wall-to-wall maps of mangrove degradation;
5. assessing the models’ performance with quantitative accuracy assessments.

2.1. Study Regions and Ecosystem Description

We selected two case studies where mangrove ecosystems with different typologies,
geographic locations, and species composition were degraded by contrasting degradation
drivers (Figure 1): (1) mangroves of the Rakhine state and Bassein district in Ayeyarwady
state, Myanmar (hereafter referred to as Rakhine mangroves); and (2) mangroves along the
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Shark River in the Everglades National Park, Florida, USA. To simplify model development
in both case studies, we included only pixels mapped as mangrove in the 2016 Global
Mangrove Watch (GMW) data [38].
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Figure 1. (A) Global mangrove extent from the Global Mangrove Watch 2016 dataset. (B) Case study region around Shark
River within the Everglades National Park in Florida. (C) The location of Rakhine and Ayeyarwady states (line-shaded)
within Myanmar. (D) Case study region for Rakhine mangroves along the coast of the Rakhine state and far west coast of
Ayeyarwady up to Cape Negrais.

The Rakhine mangroves ecosystem is one of four mangrove ecosystem types in
Myanmar (Rakhine mangroves forest on mud) [39]. The ecosystem consists of at least
28 mangrove species, including the critically endangered Bruguiera hainseii and Sonneratia
griffithii [40], and occurs across four geomorphic settings [41]. In Rakhine, anthropogenic
activities including the construction of artificial sea walls, tree harvesting, and conversion
to rice paddies, aquaculture, and oil palm plantations lead to extensive degradation of
mangroves. These activities disrupt the natural exchange of ocean and freshwater by
interrupting natural tidal, sedimentation, and salinity regimes (Figure 2) [42,43]. The region
is also affected by periodic storms, although their contribution to mangrove degradation is
considered low [44]. Owing to ongoing movement restrictions, in-situ data and published
studies are scarce for this region, but degradation caused by these activities is clearly
observable with high resolution satellite imagery (Figure 3). We modelled the extent of
degradation in Rakhine using satellite imagery collected in 2017.
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Table 1. Satellite-derived variables and their ecological link to mangrove degradation. Variables were identified with a
conceptual model of mangrove ecosystems (Figure 2).

Ecological Link Potential
Satellite-Derived Variable

Biotic/
Abiotic

Example
Satellite/Sensors

Earliest
Available

Year
Frequency Spatial

Resolution

1 Defoliation
Vegetation indices

Biotic
Landsat satellites,

Sentinel-2 1972 10–16 days
per satellite 10–80 m

Moisture indices Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

2 Dieback Change in land cover class Biotic Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

Vegetation indices Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

3
Reduced branch

density

Vegetation indices

Biotic

Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

Moisture indices Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

LiDAR waveform
derived indices GEDI 2019 Variable 25 m

L–band Radar backscatter
JERS-1 SAR, ALOS
PALSAR, ALOS-2

PALSAR-2
1992 14–46 days 10–100 m

4
Reduced

photosynthetic
capacity

Vegetation indices
Biotic

Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

Solar induced fluorescence OCO-2 2014 16 days 0.05◦

5
Stunted growth,

leaf number,
and emergence

Vegetation indices
Biotic

Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

LiDAR waveform
derived indices GEDI 2019 Variable 25 m

6 Evaporative stress Evapotranspiration Biotic ECOSTRESS 2018
1–7 days

over target
areas

70 m

7
Changes in

hydroperiod

Bare-earth topography
Abiotic

SRTM 2000 – 30 m

Water indices Landsat satellites,
Sentinel-2 1972 10–16 days

per satellite 10–80 m

Sea surface height TOPEX/Poseidon,
Jason 1992 10 days 11.2 km ×

5.1 km

LiDAR, light detection and ranging; GEDI, Global Ecosystem Dynamics Investigation; JERS-1 SAR, Japanese Earth Resources Satellite
1 Synthetic Aperture Radar; ALOS-PALSAR, Advanced Land Observing Satellite-Phased Array type L-band Synthetic Aperture Radar;
OCO-2, Orbiting Carbon Observatory 2; SRTM, Shuttle Radar Topography Mission.
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Figure 2. Simplified conceptual model of the threats and the ecological processes relevant to mapping
mangrove degradation in our analysis. Red boxes indicate threats, blue ovals represent the abiotic
processes, blue hexagons represent the abiotic environment, and the green hexagon represents
the biotic components of the mangrove ecosystem. Pointed arrowheads indicate positive effects,
rounded arrowheads indicate negative effects, and diamond arrowheads indicate context-dependent
effects. Numbers show potential satellite-derived variables to be used to detect specific ecological links
contributing to mangrove degradation from Table 1. A more complete model is presented in Figure S1.
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Figure 3. Examples of mangrove ecosystem degradation in Rakhine, Myanmar. (A) High resolution
imagery from Google Earth (2018) of mangroves in the region around the Wunbaik Forest Reserve,
Rakhine. Zoomed in images represent examples for (B) intact, (C) degraded, and (D) collapsed classes.
Image data provided by Landsat/Copernicus, CNES/Airbus, Google, and Maxar Technologies.

Our second study region is a small area of intensively-studied lagoonal mangroves
along Shark River, Everglades National Park, Florida, USA (Figure 1) [41]. This ecosystem
is dominated by only three mangrove species: Avicennia germinans, Laguncularia racemosa,
and Rhizophora mangle. All three species occur near the mouth of Shark River, while the
mangroves become progressively smaller and shorter upstream, with an increasing domi-
nance of R. mangle, along with increasing presence of mangrove-associate Conocarpus erectus
inland [45]. This ecosystem is considered relatively unaffected by direct anthropogenic
impacts, but periodic disturbance by severe storms leads to extensive loss of foliage and
structural damage [46,47]. We modelled the extent of degradation before (June 2016–May
2017) and after (November 2017–October 2018) a tropical cyclone (Hurricane Irma), which
caused severe short-term degradation to the ecosystem [48,49].

2.2. Conceptual Model

Using information from published literature, we developed a conceptual model of
mangrove ecosystems that assists in the identification of key pathways to mangrove degra-
dation (Figure S1). In our analysis, we focused on degradation of mangrove vegetation due
to its relative ease to be detected using satellites, though other aspects of the ecosystem
may also represent mangrove degradation [36]. We used the conceptual model to identify
satellite-derived variables and their ecological link to mangrove degradation (Table 1),
helping us choose appropriate variables that are likely to change as a result of mangrove
degradation. A simplified version of the conceptual model, focusing on the earth obser-
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vation data available and the degradation drivers relevant to our case study regions, is
presented here (Figure 2).

2.3. Training Data

Our model sought to predict the spatial distribution of degraded mangroves, formu-
lated as discrete classes representing ordinal states of mangrove condition. We developed
a training set to reflect these states, consisting of confirmed occurrences of the three target
map classes:

1. intact, representing mangrove pixels with closed canopies and no visible indication of
departure from natural variability at the interannual level (maintained at more than
5 years (Figure 3B);

2. degraded, representing mangrove pixels with visible degradation (departure from
natural variability) but with mangrove trees still present (Figure 3C);

3. collapsed, representing pixels mapped as mangrove in 2016 by GMW without any
evidence of the mangrove tree presence at the time of analysis (Figure 3D).

Importantly, the training data created reflects overall mangrove condition and do not
necessarily reflect each of the ecological links identified in Table 1. Here, we used a closed
canopy as a prerequisite to be included within the intact class. We recognise that some
mangrove species may have low canopy cover even when not degraded and that this is a
limitation to our model. We used high resolution Google Earth imagery collected during
the dry season (available for >90% of our study areas) for the analysis years for each case
study to interactively identify point locations for each class. Although the high-resolution
images were only available during the dry season, our training sample should not be too
affected, as mangroves are unlikely to change in appearance throughout the year. For a
pixel to be labelled as intact in the training set (Figure 3B), it met the following criteria:

• part of a mangrove forest patch that is at least 5 hectares (ha) in area;
• closed canopy cover with no underlying substrate observed from Google Earth imagery;
• no obvious anthropogenic structures and disturbances observed from Google

Earth imagery;
• maintained the above criteria for at least 5 years.

Pixels in the training set annotated as degraded (Figure 3C) met the criteria:

• mangrove trees can be observed in Google Earth imagery (thus not collapsed);
• low canopy cover and/or isolated trees observed from Google Earth imagery, and/or;
• browning and/or tree death observable from Google Earth imagery.

Training pixels that represented the collapsed class were necessary for Rakhine man-
groves, where parts of the study area were mapped as mangroves in the GMW 2016 data [38]
but did not include any mangrove trees in Google Earth imagery in 2017 (Figure 3D). This
could either be due to a recent collapse of the mangrove forest (e.g., land conversion) or
misclassifications in the GMW dataset. Our final training set for the Rakhine mangroves
degradation model comprised 130 intact, 130 degraded points, and 60 collapsed points.
Independent validation data were collected at a later stage (see Section 2.6).

Owing to the Shark River case study before/after hurricane design, we used Google
Earth imagery from before and after Hurricane Irma to identify intact (early 2017) and
degraded pixels (early 2018). Collapsed pixels were not necessary for this region, and our
final training set here comprised 50 intact and 50 degraded points. Independent validation
data were collected at a later stage (see Section 2.6).

2.4. Covariate Selection and Processing

We developed our covariate set using the conceptual model. We considered various
satellites to use as data sources (Table 1), but the two main criteria were adequate spatial
resolution and adequate temporal coverage. OCO-2 (Orbiting Carbon Observatory 2)
and TOPEX/Poseidon had spatial resolutions that were too coarse, while GEDI (Global
Ecosystem Dynamics Investigation), ECOSTRESS, and SRTM (Shuttle Radar Topography
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Mission) did not have data for our study period. This left Landsat, Sentinel-2, and ALOS-2
PALSAR-2 (Advanced Land Observing Satellite 2 Phased Array type L-band Synthetic
Aperture Radar 2) for us to consider. Ultimately, we decided on using Landsat and ALOS-2
PALSAR-2. We omitted Sentinel-2 data because of its similarity with Landsat; any variables
derived from it would have mirrored those from Landsat, leading to the indices being
included twice. Between Landsat and Sentinel-2, we chose to use Landsat due to the
availability of analysis-ready data with reliable cloud-masking data. The main advantage
of using Sentinel-2 would have been the higher spatial resolution, though this would have
been nullified as we used GMW data as our mangrove masks, which themselves were at
25 m resolution.

The final covariate set, totalling seven data layers, consisted of 30 m resolution layers
processed from Landsat-8 (five covariate layers) and ALOS-2 PALSAR 2 (yearly mosaic;
two covariate layers resampled to 30 m). Landsat-8 was used to create NDVI (Equation (1)),
Normalised Difference Moisture Index (NDMI; Equation (2)), and Normalised Difference
Water Index (NDWI; Equation (3)) layers. We chose to use derived spectral indices, as we
can readily present the proposed mechanisms for each covariate using information from the
literature (Table 2). For example, we expected intact mangroves to have higher NDVI and
NDMI and a lower NDWI than degraded mangroves (Table 2) [50,51]. Despite mangroves
being highly dynamic systems, we also expected degraded mangroves to be less tempo-
rally stable, as vegetation structure and sediment stability in degraded areas may exhibit
greater temporal variability, resulting in higher standard deviation in NDVI and NDMI
(Table 2) [52]. Lastly, there is evidence that L-band Synthetic Aperture Radar (SAR;
available from ALOS-2 PALSAR-2) is highly correlated with mangrove biomass, where,
with certain limitations, decreased backscatter values correlate to decreased biomass
(Table 2) [53].

NDVI =
NIR − Red
NIR + Red

(1)

NDMI =
NIR − SWIR1
NIR + SWIR1

(2)

NDWI =
Green − NIR
Green + NIR

(3)

Table 2. Satellite-derived covariates used to model mangrove degradation. The table suggests the expected mechanism for
detecting mangrove degradation.

Covariate Proposed Mechanism Reference

Annual NDVI mean Intact mangrove forests have higher mean NDVI as they are more photosynthetically
active and have higher canopy cover and LAI. [50]

Annual NDVI SD Intact mangroves have a more stable NDVI as they are productive and throughout the
year as evergreen trees. [52]

Annual NDMI mean Intact mangroves with higher canopy cover have higher average NDMI. [51]

Annual NDMI SD Intact mangroves have a more stable NDMI as they remain productive and have high
cover throughout the year as evergreen trees. [52]

Annual NDWI mean Intact mangrove forests have lower average NDWI as they have higher canopy cover,
and multi-spectral satellites cannot typically detect underlying water.

L-band SAR backscatter
(yearly mosaic) – HV

Intact mangroves have backscatter within a certain range. Decreased backscatter value
suggests decreased biomass. HV is more sensitive to upper canopy. [53,54]

L-band SAR backscatter
(yearly mosaic) – HH

Intact mangroves have backscatter within a certain range. Decreased backscatter value
suggests decreased biomass, though double-bounce scattering on bare ground and

water surfaces can also lead to higher backscatter values. HH has higher contrast when
tree cover is completely lost.

[53,54]

NDVI, Normalized Difference Vegetation Index; LAI, Leaf Area Index; SD, standard deviation; NDMI, Normalized Difference Moisture
Index; NDWI, Normalized Difference Water Index; SAR, synthetic aperture radar; HV, horizontal emitted, vertical received polarisation;
HH, horizontal emitted, horizontal received polarization.
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To aggregate the annual Landsat-8 data into single layers for each variable [23],
we first masked clouds using the CFMask band [55], computed the three indices, and
then calculated pixel-specific means (for all three indices) and standard deviations (for
NDVI and NDMI only) over a one year period. ALOS-2 PALSAR-2 data were processed
to yearly mosaics for both horizontal emitted, horizontal received (HH) and horizontal
emitted, vertical received (HV) polarisations, and a refined Lee filter was applied to both
layers [56,57]. By using annual summaries and mosaics, we minimised any sub-annual
variations, such as phenology or tidal effects which may bias our classifications. All data
processing was conducted in Google Earth Engine [58]. ALOS-2 PALSAR-2 data were not
available on Google Earth Engine for Shark River at the time of analysis and were therefore
not included in the model.

2.5. Classification Models

Due to their ease of implementation, proven ability to classify mangrove forests [35,59],
and ability to capture non-linear relationships, we developed random forest classification
models, one of the most commonly used algorithms provided by Google Earth Engine
for classification tasks [60], to map mangrove degradation for our two case study ecosys-
tems [61].

As a result of the ordinal nature of our three output classes and the inability of random
forest models to account for ordering information [62], we formulated a two-step process
for Rakhine mangroves. A random forest model was first trained to classify all pixels
as intact or not intact using training data from the intact class and a merged “not-intact”
class comprising both degraded and collapsed training points. We then trained a second
random forest model classifying all pixels as collapsed or not using the collapsed training
samples and the remaining points merged into a “not-collapsed” class. Splitting the
classification models in this manner further allowed us to investigate potential differences
in the variables that may be important to differentiate between intact, degraded, and
collapsed mangroves. Both random forest models in Rakhine included all seven covariates
layers. We selected fifty trees (ntree = 50), and mtry was set to the default value (square
root of the number of variables) for both models. Landsat covariate layers were calculated
from all non-cloud obstructed pixels (based on CFMask [55]) from 2017 and the filtered
2017 ALOS-2 PALSAR-2 annual mosaics and used as the covariate layers [57].

The resulting maps from these two models were combined into a single output using
the rules: (i) pixels classified as intact in the first model and not collapsed in the second
model were assigned a final class of intact; (ii) pixels classified as not intact and collapsed
were assigned a final class of collapsed; and (iii) all remaining pixels were assigned a final
class of degraded.

A single two-class random forest classifier was used to map intact and degraded pixels
across the Shark River study site (as there was no need for a collapsed class in this region),
producing “pre-disturbance” and “post-disturbance” maps of mangrove degradation. This
random forest model included five covariate layers, as ALOS-2 PALSAR-2 data were not
available on Google Earth Engine for the post-disturbance period at the time of analysis.
We selected fifty trees (ntree = 50), and mtry was set to the default value (square root of the
number of variables). The annual metrics before the hurricane were calculated from all
non-cloud obstructed pixels (based on CFMask [55]) between 1 June 2016 and 31 May 2017,
while the annual metrics after the hurricane were calculated from all non-cloud obstructed
pixels between 1 November 2017 and 31 October 2018.

We also investigated the relative importance (Gini importance) of the variables that
were included in each model to highlight the variables important to the classification
models and whether the same variables were important for the different models [63].

2.6. Area Estimation and Accuracy Assessment

We assessed the accuracy of our model using error matrices and following best
practicing procedures, ensuring the accuracy estimates were non-biased [64]. We developed
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an independent validation set using stratified random sampling with equal allocation for
each study region (Rakhine mangroves: n = 2,700; Florida: n = 600). For Rakhine mangroves,
four independent assessors (authors CKFL, CD, TAW, NJM) assigned the testing points
to a class following the criteria described in Section 2.4. From the 2700 points sampled
in Rakhine, 300 points were given to all four assessors to estimate agreement between
assessors using Fleiss’ Kappa (not to be confused with the Kappa coefficient sometimes
used to assess classification accuracy) [65,66]. The remaining 2400 were split into four
equal sets, and each assessor was given a different set to validate. The 600 points sampled
from Shark River were assessed by a single assessor (CKFL). The error matrices were also
used to calculate the area and the confidence intervals of each class using an unbiased
estimator [64].

3. Results
3.1. Degradation Distribution, Area Estimation, and Accuracy Assessment of Rakhine Mangroves

Our model suggested that 48.4% (standard error (SE) 0.8) (732km2 (SE 12)) of Rakhine
mangroves were intact, 39.5% (SE 0.9) (597km2 (SE 13)) were degraded, and 12.0% (SE 0.5)
(182km2 (SE 8)) collapsed. The model indicated that degradation was widespread across the
entire case study region (Figure 4). The northern districts had a relatively higher proportion
of degraded mangroves, with the districts of Maungtaw and Sittwe recording more than
half of their mangrove’s distribution as degraded (Table 3). The southern districts of
Thandwe and Bassein had the lowest percentage of degraded mangroves, though more
than a quarter of the districts’ mangroves were still mapped as degraded.

Table 3. Percentage of mangroves mapped as degraded per district sorted by latitude and the per-
centage of mangroves within each district relative to the entire Rakhine mangroves case study region.

District Percentage Degraded
Mangrove in District (%)

Proportion of Total Mangroves in
Rakhine Mangroves Case Study Region

Maungtaw 59.0 <0.01
Buthidaung 48.1 <0.01

Sittwe 64.6 0.15
Kyaunkpyu 48.5 0.56

Thandwe 35.4 0.23
Bassein (Ayeyarwady) 29.8 0.05

Additionally, mangroves in Wunbaik Forest Reserve (within Kyaunkypyu district)
accounted for 9.8% of the total extent of Rakhine mangroves, and despite its protected status,
25.3% of the mangroves within the forest reserve was mapped as degraded. Extensive
mangrove degradation was also identified in areas surrounding the forest reserve (Table 3;
Figure 4C).

Agreement between the four independent accuracy assessment analysts returned an
overall Fleiss’ Kappa of 0.69 (p < 0.05; Table 4). The Kappa values were significant for
all classes, though agreement was highest for collapsed (Kappa = 0.884) and lowest for
degraded (Kappa = 0.559).

Table 4. Results for Fleiss’ Kappa for four assessors for each class.

Class Kappa p-Value

Intact 0.673 <0.001
Degraded 0.559 <0.001
Collapsed 0.844 <0.001
Combined 0.690 <0.001
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The accuracy assessment suggested that the model under-represented both intact
(−4.9%) and collapsed classes (−2.0%), while the degraded class was over-represented
(7.0%) (Table 5). The User’s and Producer’s accuracies for the degraded class in Rakhine
were 69.3% and 81.5%, respectively and the overall model accuracy for the Rakhine
was 77.6%.

Table 5. Error matrix of the Rakhine mangroves degradation model. Cell entries represent percent of
total area. Map categories are in rows while the reference categories are in columns.

Intact Degraded Collapsed User’s Accuracy

Intact 39.4% 6.3% 0.7% 84.9%
Degraded 9.0% 32.2% 5.3% 69.3%
Collapsed 0.1% 1.0% 6.0% 85.1%

Producer’s accuracy 81.3% 81.5% 50.2% Overall accuracy: 77.6%

For the collapse-not-collapsed model, NDMI standard deviation was the most impor-
tant variable, while the HH band and the NDWI mean were the least important variables
(Table 6). The intact-not-intact model had more balanced relative importance across all
variables, with NDMI mean having the highest importance (Table 7). Interestingly, the
standard deviation measures appear to have been more important when differentiating
between whether mangroves were collapsed or not, while the mean measures were more
important when differentiating between intact and not intact mangroves.

Table 6. Relative importance of the variables for the model classifying collapsed and not-collapsed
pixels for Rakhine mangroves.

Variable Gini Importance

HH 8.506
HV 14.689

NDMI_mean 15.237
NDMI_stdDev 24.621
NDVI_mean 14.441

NDVI_stdDev 15.082
NDWI_mean 9.953

Table 7. Relative importance of the variables for the model classifying intact and not-intact pixels for
Rakhine mangroves.

Variable Gini Importance

HH 21.615
HV 19.406

NDMI_mean 24.45
NDMI_stdDev 19.059
NDVI_mean 23.646

NDVI_stdDev 18.056
NDWI_mean 19.242

3.2. Degradation Distribution, Area Estimation, and Accuracy Assessment of Shark River Mangroves

Our model suggested that, before Hurricane Irma, most of the Shark River study
region consisted of intact mangroves, with only 5.1% (SE 1.9) of the region classified as
degraded. However, after Hurricane Irma, the percentage of mangrove area identified as
degraded increased to 97.4% (SE 2.5).

Degradation after the storm was more prevalent closer to the open ocean on the south-
western side of the study region, along with the shorter mangroves in the north-eastern
side which were classified as degraded in both time periods. Only the central region of the
study area had some remaining patches of intact mangroves after the storm (Figure 5).
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within the Everglades National Park, showing Hurricane Irma’s track (B) Results of the degradation model for pre-Hurricane
Irma (2016–2017) and (C) Post-Hurricane Irma (2017–2018).

The User’s and Producer’s accuracies for the degraded class in Shark River were
73.9% and 86.7%, respectively, and the model had an overall accuracy of 79.1% (Table 8).
The accuracy assessment indicated that the model under-represented the intact mangrove
5. class and over-represented the degraded mangrove class by 8.2%. For this model,
NDVI mean and NDMI mean had the highest relative importance, while NDVI standard
deviation did not contribute to the model at all (Table 9). As the Shark River classification
did not include a collapsed class, the model here was similar to the intact-not-intact model
for Rakhine. These two models had similar relative variable importances, with the mean
measures having much higher importance than the standard deviation measures.

Table 8. Error matrix of Shark River mangrove degradation model. Cell entries represent percent of
area. Map categories are in rows while the reference categories are in columns.

Intact Degraded User’s Accuracy

Intact 38.0% 14.5% 85.7%
Degraded 6.3% 41.1% 73.9%

Producer’s accuracy 72.3% 86.7% Overall accuracy: 79.1%

Table 9. Relative importance of the variables for the model classifying intact and not-intact pixels for
Shark River mangroves.

Variable Gini Importance

NDMI_mean 8.651
NDMI_stdDev 1.244
NDVI_mean 9.125

NDVI_stdDev 0
NDWI_mean 6.488



Remote Sens. 2021, 13, 2047 14 of 19

4. Discussion

Despite the need for consistently quantified measures of ecosystem degradation [2,67], few
methods exist that estimate the distribution of degradation at the ecosystem-scale without
resource-intensive field data. We present a method that enables large scale assessments
of ecosystem condition using freely available satellite data linked to a defined ecosystem
conceptual, developing different classification models suitable for our two case study
regions. We found that more than half of the mangroves in our Rakhine study area
were identified as degraded or collapsed, while a single intense storm caused extensive
mangrove degradation along Shark River. Our study highlights the feasibility of moving
beyond area-based (i.e., ecosystem cover only) goals for conservation, which can greatly
underestimate negative impacts of ecosystem change on biodiversity and dependent
ecosystem services [68] by quantifying the various states of mangrove degradation.

The two case studies used the same conceptual model to build two different classifica-
tion models, with slight differences in the data included. Due to this, the mapped degraded
classes in our two case studies may not be directly quantitatively comparable but follow
the same conceptual definition and thus can both be used to investigate extent of mangrove
degradation. Our models were both able to detect mangrove degradation in both study
regions despite the different classification models and drivers of degradation. We found
that the highest incidence of degradation in Rakhine mangroves were in the north of the
study region, suggesting more extensive urban development in this region near to the
state capital of Sittwe is leading to more extensive mangrove degradation. This result
highlights the continued negative impact of anthropogenic activities on the mangroves
in the region, including physical damage to the forests via wood harvesting and changes
to water flows caused by the construction of dykes and seawalls, which are the initial
stages in developing aquaculture [44]. This degradation combined with the continued
mangrove loss detected in the region [43] reveals that Rakhine’s mangrove forests are likely
to continue to be degraded if no supplementary conservation actions are implemented.

In Shark River, our model identified the widespread impacts of a single intense storm
event, which caused widespread defoliation and mortality. Before the storm, we assumed
that all mangroves within a single case study region had the same classification criteria;
however, our model suggested that 5.1% of the study region was already degraded. Man-
groves mapped as degraded were found further inland on the north-eastern side of the
study region, where mangroves are dominated by the stunted R. mangle, mixed with herba-
ceous vegetation (Figure 5), and are consistently shorter than other mangroves in the study
region due to being chronically stressed due to limited water or nutrient availability [69].
Hurricane Irma in 2017 led to an additional 92.3% of the region’s mangroves becoming
degraded, with degradation more extensive near the coastline as the storm winds caused
more damage to the taller mangroves [49]. The degradation observed here may particularly
be a cause for concern if storms increase in frequency or intensity under climate change,
particularly in regions with prolonged recovery rates [49,70].

In our classification models, we included annual summaries of various Landsat-
derived indices along with ALOS-2 PALSAR-2 annual mosaic for Rakhine. The results
showed that different variables were important in differentiating between intact and not-
intact mangroves and collapsed and not-collapsed mangroves (Tables 6, 7 and 9). The
importance of the mean measures for differentiating between intact and not intact man-
groves suggest that the actual value of the indices is more important for intact mangroves,
which likely have much higher NDVI and NDMI values. On the other hand, the stability
of the values is more important when differentiating between whether mangroves have
collapsed or not. The ALOS-2 PALSAR-2 data were also important in the intact-not-intact
model, suggesting that it could have been a useful source of information for the Shark
River analysis.

By using a conceptual model to select ecological-meaningful variables for our classifi-
cation models, we can much more easily interpret the results of the variable importances
from the models and can directly use them to investigate whether the model behaviour
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matches the mechanisms proposed to affect mangrove degradation (Table 2). Moreover,
building a conceptual model prior to classification highlighted the data required to map
mangrove degradation and thus any data gaps and limitations when no suitable data were
available as input into the classification models. In the case studies here, no suitable data
to represent evaporative stress were included in our classification models despite their
potential importance in detecting mangrove degradation (Table 1) [46].

Despite providing ecologically meaningful inferences from the developed conceptual
mangrove ecosystem model and high quantitative model accuracies here, our present
approach has scope for further development. The data we used as explanatory variables
in our models were snapshots and did not take long-term (>one year) temporal trends
into account. As a result, potential ecosystem recovery was not assessed for either case
study. As such, our results here did not capture mangrove recovery in Shark River [49].
Similarly, our results for the Rakhine mangroves did not explicitly show a lack of recovery
from the anthropogenic threats. To produce results that track ecosystem degradation
over longer time periods, the models trained here can be applied to data collected by the
same satellite sensors at regular time intervals. Results produced in this manner allow
us to capture changes in mapped degradation, revealing potential recovery or continued
degradation through time. Using time-series maps produced this way can also help us
differentiate between mangroves that originally had close canopies and became degraded
and mangroves that naturally have open canopies.

Our models had accuracies of 77% and 79% and overestimated the extent of mangrove
degradation for both regions (Table 3). Inaccuracies were primarily due to the relatively
coarse spatial resolution of the underlying data, which is several times larger than a single
tree canopy. In cases where there were multiple land cover types within a single pixel,
such as mangroves along water courses (water and mangrove in a single pixel), or when
there were two or more degradation classes within a single pixel (for example, the border
between a degraded and intact mangroves), the model tended to classify these pixels as
degraded. Additional commission errors in the degraded class appeared to be due to pixels
that were initially misclassified in the GMW base map (e.g., other forest types, greenery in
villages). Our models assumed that all input pixels were mangrove pixels, meaning these
pixels misclassified by GMW did not fit into any of the criteria listed in Section 2.3. These
pixels were labelled as collapsed by assessors, though it was unlikely for the models to be
able to effectively classify them, as they were not developed to classify non-mangrove land
cover types. Additionally, the high-resolution Google Earth imagery used for training and
validation were only available during the dry season, but the data used as covariates in
our classification models were summarized over the entire year after cloud masking. This
could potentially bias our results, though it is unlikely mangroves will appear substantially
different throughout the year in high-resolution imagery. Despite these misclassifications,
we believe overestimating degradation is preferable to the alternative, as it provides more
conservative estimates following a precautionary approach.

Given the above sources of classification error, future development of the models
can improve the accuracy in several ways. Firstly, we can integrate an additional step
by explicitly modelling other land cover classes that help reduce uncertainties in the
underlying mangrove cover datasets. Secondly, data with finer spatial resolution, ideally
those finer than a single tree canopy, will help us and understand and minimise errors due
to mixed pixels, though this can lead to additional sources of errors from shadows and noise.
Thirdly, producing annual maps of mangrove degradation using the same models can
allow us to compare extent of degradation through time, providing information of potential
mangrove degradation and recovery. Lastly, modelling a continuous class of degradation
(e.g., from low to high levels), as opposed to simply classifying degradation into a single
class, will allow us to capture the severity of degradation as a continuous response variable.
This will likely require extensive field data collected explicitly quantifying the (relative)
severity of degradation as the objective. Examples will be data that capture ecosystem
composition, such as plant surveys specifying species richness, ecosystem structure, such
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as canopy cover measurements using a Cajanus tube [71], and ecosystem function, such
as estimating plot level net primary productivity. Additionally, field data can also be
incorporated as explanatory variables, providing additional information that captures
the specific components highlighted by the conceptual model. For example, data for soil
salinity within mangrove forests at various stages of degradation can be used to provide
information about the salinity regime to the models, while tide gauges can provide precise
information on the hydroperiod of the study site. Not only will these data increase the
accuracy of the models, spatially explicit maps of ecosystem degradation severity will also
provide additional information that the classification approach used here cannot provide.

5. Conclusions

The world’s ecosystems continue to be threatened as the human population and
activity rises [2,72]. In this study, we provided a method of developing quantitative
classification models that are ecologically relevant to map mangrove ecosystem degradation
using freely available satellite data. Our model, which quantifies the distribution of
observed mangrove forest degradation, can be adapted to assess and map conditions for a
range of ecosystem types globally. Such an approach promotes a robust, transparent, and
repeatable process for assessing the status of ecosystems and to move beyond area-based
ecosystem assessments. The findings here and the results produced using this method
would support efforts to conduct ecosystem risk assessments, such as the International
Union for Conservation of Nature (IUCN) Red List of Ecosystems [2] and global biodiversity
targets such as the post-2020 Global Biodiversity Framework [6] and the UN Sustainable
Development Goals [7]. Additionally, the System of Environmental Economic Accounting
measures ecosystem condition and capacity to provide ecosystem services [8], and the
United Nations Reduced Emissions from Deforestation and Degradation (REDD+) program
focuses on forests’ capacity for carbon storage [73], all of which should be informed by
maps of ecosystem degradation, providing critical nuances that are lost if only ecosystem
extent change is considered.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13112047/s1, Figure S1: Detailed mangrove conceptual model highlighting threats and
processes affecting mangrove degradation. Red boxes indicate threats, blue ovals represent the
abiotic processes, blue hexagons represent the abiotic environment, and green hexagons represent the
biotic components of the mangrove ecosystem. Pointed arrowheads indicate positive effects, rounded
arrowheads indicate negative effects, and diamond arrowheads indicate context-dependent effects.
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