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24 Abstract 

25 The structure of seafloor terrain affects the distribution and diversity of animals in all 

26 seascapes. Effects of terrain on fish assemblages have been reported from most 

27 ecosystems, but it is unclear whether bathymetric effects vary among seascapes or change 

28 in response to seafloor modification by humans. We reviewed the global literature linking 

29 seafloor terrain to fish species and assemblages (96 studies) and determined that relief (e.g. 

30 depth), complexity (e.g. roughness), feature classes (e.g. substrate types) and morphology 

31 (e.g. curvature), have widespread effects on fish assemblages. Research on the ecological 

32 consequences of terrain have focused on coral reefs, rocky reefs, continental shelves and 

33 the deep sea (n ≥ 20 studies), but are rarely tested in estuaries (n = 7). Fish associate with a 

34 variety of terrain attributes, and assemblages change with variation in the depth and aspect 

35 of bathymetric features in reef and shelf seascapes, and in the deep sea. Fish from different 

36 seascapes also respond to distinct metrics, with fluctuations in slope of slope (coral reefs), 

37 rugosity (rocky reefs) and slope (continental shelves, deep sea) each linked to changes in 

38 assemblage composition. Terrain simplification from coastal urbanisation (e.g. dredging) and 

39 resource extraction (e.g. trawling) can reduce fish diversity and abundance, but 

40 assemblages can also recover inside effective marine reserves. The consequences of these 

41 terrain changes for fish and fisheries are, however, rarely measured in most seascapes. The 

42 key challenge now is to examine how terrain modification and conservation combine to alter 

43 fish distributions and fisheries productivity across diverse coastal seascapes.

44

45 Keywords: bathymetry, fish, morphology, seafloor complexity, seascape ecology, vertical 
46 relief 
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74 1.0 INTRODUCTION

75 The spatial configuration of habitats, and the topographic complexity of seafloor terrain, 

76 combine to structure the distribution, abundance and diversity of fish populations and 

77 assemblages across seascapes (Bouchet et al., 2015; Brown et al., 2011; Pygas et al., 

78 2020). These spatial attributes are important because fish use multiple habitat types to feed 

79 and reproduce, and often aggregate in areas where seascape connectivity (i.e. spatial 

80 linkages between different habitat types) and terrain complexity are elevated (Green et al., 

81 2015; Nagelkerken et al., 2015; Olds et al., 2018b). Structurally complex fish habitats such 

82 as biogenic ecosystems (e.g. corals, oysters) and prominent geological structures (e.g. 

83 pinnacles, seamounts), are well recognised aggregators of both biodiversity and fisheries 

84 productivity, and have become focal points for spatial conservation planning and fisheries 

85 management (Bouchet et al., 2015; Pygas et al., 2020; Seitz et al., 2014). The two-

86 dimensional configuration and three-dimensional complexity of these bathymetric features 

87 are now routinely mapped with a diverse range of technologies to create digital elevation 

88 models (DEMs) of the seafloor, which combined with the geospatial processing power of 

89 modern computers, provides rich opportunities for research to investigate the ecological 

90 effects of seafloor terrain variation on fish assemblages and fisheries productivity (Costa et 

91 al., 2018b; Pittman & Brown, 2011; Stamoulis et al., 2018). 

92

93 The importance of seafloor terrain (e.g. relief, ruggedness, roughness) for fish is widely 

94 recognized (Moore et al., 2010; Pittman et al., 2009; Wedding et al., 2008), but not all 

95 metrics used to index terrain might be applicable (e.g. rugosity, Duvall et al., 2019; Pygas et 

96 al., 2020). The ecological effects of terrain, as well as, the importance of different terrain 

97 metrics, is likely to differ among seascapes (Bouchet et al., 2017; Rees et al., 2014; 

98 Wedding et al., 2019). Yet, there is no comprehensive synthesis that describes whether, and 

99 how, changes in seafloor terrain illicit distinct responses from fish assemblages in different 

100 seascapes. The terrain of most seascapes have been significantly modified by humans (e.g. 

101 via seafloor dredging, beach nourishing, trawling, urbanisation) and climate change (e.g. 
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102 through the mortality and degradation of reef-building corals), but the possible ecological 

103 effects of this terrain modification on fish assemblages and fisheries productivity are poorly 

104 understood (Collie et al., 2017; Madricardo et al., 2019; Perry & Alvarez-Filip, 2019; 

105 Stamoulis et al., 2018; Torres-Pulliza et al., 2020). 

106

107 Here, we reviewed the published literature that links variation in seafloor terrain to the 

108 distribution, abundance and diversity of fish assemblages. We searched the Elsevier Scopus 

109 and ISI Web of Knowledge databases using the keywords “fish” and “marine”, “coast”, 

110 “seascape” or “ocean”, and at least one of the following terms: “bathymetr*”, “terrain”, 

111 “topograph*”, “digital elevation”, “three-dimension*, “lidar” or “sonar” (see Supporting 

112 Information for more detail on Methods). The primary goals of this review were to determine 

113 global patterns in the: (1) geographical distribution and focus of research linking fish 

114 assemblages to changes in seafloor terrain; (2) ecological effects of seafloor terrain on fish 

115 assemblages; (3) consequences of terrain variation among different seascapes; (4) impacts 

116 of human activities that modify seafloor terrain and fish assemblages; and (5) ability for 

117 prominent terrain features to serve as targets for seascape conservation and fisheries 

118 management.

119

120 2.0  SEASCAPE ECOLOGY OF FISH IN TWO AND THREE DIMENSIONS
121
122 Two-dimensional maps of benthic habitats exist for many ecosystems, and these are 

123 interrogated using models (e.g. patch-matrix and patch-mosaic) (see review by Wedding et 

124 al., 2011) to predict how the composition (e.g. area, richness and diversity of habitat types) 

125 and configuration (e.g. proximity between different habitat types) of ecosystems, shape the 

126 distribution of fish assemblages (Henderson et al., 2020a; Swadling et al., 2019; van Lier et 

127 al., 2018). This approach has been used in many seascapes and typically shows that fish 

128 are most diverse and abundant in ecosystems that provide a variety of high-relief habitat 

129 features (e.g. coral reefs, seagrass meadows, mangrove forests), particularly when these 

130 occur close to other habitat that also contain complex structures (Nagelkerken et al., 2015; 
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131 Olds et al., 2016; Pittman, 2018). These models over-simplify the complexity of seascapes 

132 by assuming that the ecological values of ecosystems are consistent in two-dimensional 

133 space (McGarigal et al., 2009; Pittman, 2018; Pittman & Olds, 2015). The significance of 

134 habitat for fish assemblages, and other organisms, is however, also likely to vary with 

135 changes in bathymetry across seascapes (Olds et al., 2018b; Stamoulis et al., 2018). 

136 Gradient models that incorporate variation in the three-dimensional complexity of seascapes 

137 (e.g. terrain) are, therefore, likely to out-perform patch-matrix and patch-mosaic models in 

138 predicting spatial patterns in fish diversity and abundance (Sekund & Pittman, 2017; 

139 Wedding et al., 2019).

140

141 Spatial variation in terrain (e.g. seafloor complexity and relief) can modify the distribution of 

142 ecosystems and topographically complex features, across seascapes (Goes et al., 2019; 

143 Ismail et al., 2018; Wicaksono et al., 2019). These three-dimensional terrain features alter 

144 the hydrodynamic properties of seascapes through their effects on currents, tides and waves 

145 (Genin, 2004; Harris et al., 2018; Rogers et al., 2018b), and provide fish with important 

146 refuges from predation, feeding areas and spawning zones (Bouchet et al., 2017; Farmer et 

147 al., 2017; Pirtle et al., 2017). Terrain features have been derived, and widely mapped, on 

148 coral and rocky reefs, over continental shelves and in some areas of the deep sea, using 

149 passive (e.g. satellite imagery) and active (e.g. Light Detection and Ranging: LiDAR; Sound 

150 Navigation and Ranging: SONAR) sensors (Costa et al., 2018a; Goodell et al., 2018; Sievers 

151 et al., 2016; Wedding et al., 2019), and through emerging techniques such as Structure-

152 from-Motion (SfM) photogrammetry that derives digital terrain models from overlapping 

153 images (Bayley et al., 2019; González-Rivero et al., 2017; Leon et al., 2015; Storlazzi et al., 

154 2016). They are typically measured using a variety of terrain metrics, which index variation in 

155 the depth, vertical relief, morphology and complexity of the seafloor (Cameron et al., 2014; 

156 Oyafuso et al., 2017; Pirtle et al., 2017) and are summarised (e.g. mean, max, min, range, 

157 standard deviation) at a variety of spatial scales (e.g. metres to kilometres) (Knudby et al., 
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158 2011; Rees et al., 2018; Sekund & Pittman, 2017). Terrain metrics quantify properties of 

159 benthic ecosystems that underpin their role in providing habitat for fish, and variation in fish 

160 diversity and abundance have been linked to spatial variation in terrain metrics (e.g. rugosity, 

161 slope, slope of slope) on coral and rocky reefs, continental shelves and the deep sea 

162 (Coleman et al., 2016; Moore et al., 2016; Parra et al., 2017; Wedding et al., 2019). Well 

163 known examples that illustrate the significance of terrain features as fish habitat include: high 

164 rugosity on coral reefs (Pittman et al., 2007; Wedding et al., 2008), sheltered caves on rocky 

165 reefs (Monk et al., 2010; Pirtle et al., 2017), low-sloping soft sediments on continental 

166 shelves (Moore et al., 2016; Smoliński & Radtke, 2017), and high relief pinnacles in the deep 

167 sea (Leitner et al., 2017; Oyafuso et al., 2017). 

168

169 3.0 GLOBAL DISTRIBUTION OF RESEARCH EFFORT LINKING SEAFLOOR 
170 TERRAIN WITH FISH

171 We found 96 research articles in the peer-reviewed literature that investigated the effects of 

172 seafloor terrain on fish assemblages. This research was comprised of studies from coral reef 

173 (n = 27), rocky reef (n = 22), deep sea (depth range: 200 – 5000 m; n = 20), continental shelf 

174 (n = 20) and estuarine (n = 7) seascapes (Table S1). Research effort is geographically 

175 widespread, encompassing studies from the United States (n = 37), Australia (n = 20), 

176 France (n = 7), Antarctica (n = 4) and Brazil (n = 4) (Figure 1). 

177

178 4.0 FOCUS OF RESEARCH LINKING SEAFLOOR TERRAIN WITH FISH 

179 There was substantial variation in the approaches applied to quantify seafloor terrain 

180 structures, with 23 different terrain metrics being used across the 96 studies (mean per 

181 paper = 3, range: 1 - 10). Terrain metrics are derived using numerous Geographical 

182 Information Systems (GIS) (e.g. ArcGIS, QGIS, SAGA GIS) and toolboxes (e.g. Benthic 

183 Terrain Modeler, ArcGeomorphometry), which use discrete geoprocessing tools and 

184 mathematical equations to index different seafloor features (Rigol-Sanchez et al., 2015; 

185 Walbridge et al., 2018). However, many describe similar types of terrain variation, and are 
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186 therefore, characterized by high co-linearity with other similar terrain metrics (e.g. rugosity, 

187 slope, slope of slope) (Leitner et al., 2017; Monk et al., 2010; Sekund & Pittman, 2017). To 

188 better understand patterns of metric applications, we grouped terrain metrics into four 

189 categories based on similarities in the terrain features being indexed: (1) seafloor relief; (2) 

190 seafloor complexity; (3) seafloor feature class; and (4) seafloor morphology (Table 1; Figure 

191 1 & 2).

192

193 4.1 Seafloor relief

194 Seafloor relief is a measure of the depth and height of terrain features below sea level 

195 (Moore et al., 2010; Rees et al., 2014; Sievers et al., 2016). This component of terrain is 

196 widely recognized as a primary determinant in shaping both the distribution of fish 

197 populations, and the composition of fish assemblages (Coleman et al., 2018; Pereira et al., 

198 2018; Stamoulis et al., 2018). This is because variation in seafloor depth and relief is 

199 strongly linked to changes in many abiotic features (e.g. temperature, salinity, light) that 

200 regulate photosynthesis, alter patterns in diel vertical migration and bentho-pelagic coupling, 

201 and modify the structure of food-webs (Barbini et al., 2018; Jankowski et al., 2015; Young et 

202 al., 2018) (Table 2). Prominent high-relief features of the seafloor (e.g. pinnacles, 

203 seamounts) also serve as focal points for fish spawning aggregations, and resting points 

204 during long distance migrations (Clark et al., 2010; Farmer et al., 2017; Kobara & Heyman, 

205 2008; Rowden et al., 2010). Terrain metrics that index variation in seafloor depth and relief 

206 include: (1) average depth: the mean seafloor depth within a focal seascape (e.g. Pittman et 

207 al., 2009); (2) contour index: the percent change in depth, or vertical relief, within a focal 

208 seascape (e.g. Bouchet et al., 2017); and (3) vertical relief: the range of seafloor depths 

209 within a focal seascape (e.g. Moore et al., 2010) (Table 1; Figure 2).

210
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211 4.2 Seafloor complexity

212 Seafloor complexity is a measure of the topographic roughness of terrain features (Kuffner et 

213 al., 2007; Pittman & Brown, 2011; Stamoulis et al., 2018). Variation in the complexity of the 

214 seafloor has been linked to changes in the abundance and diversity of fishes across most 

215 seascapes (Bayley et al., 2019; Ferrari et al., 2018b; Oyafuso et al., 2017). Rough, rugged, 

216 and high rugosity features of the seafloor support a range of fish populations in high 

217 abundance because these areas are characterized by high niche diversity, and provide 

218 foraging areas, refuges from predation, and spawning sites for species from the full suite of 

219 functional groups (Ferrari et al., 2018b; Pygas et al., 2020; Wedding et al., 2008) (Table 2). 

220 Historically, seafloor complexity was measured in-situ (e.g. chain and tape rugosity; Risk, 

221 1972), and this is a useful predictor of fish abundance and diversity, but this technique is 

222 both time consuming and is typically limited to small areas of a single habitat (i.e. coral reefs) 

223 (Harborne et al., 2012; Kuffner et al., 2007; Wedding et al., 2008). Seafloor complexity can 

224 now be indexed with terrain metrics derived from bathymetric maps, which describe the 

225 complexity of the seafloor by comparing depth variation across a broad range of spatial 

226 scales (Dunn & Halpin, 2009; Pittman et al., 2007; Torres-Pulliza et al., 2020; Wilson et al., 

227 2007). Terrain metrics that quantify variation in seafloor complexity include: (1) depth 

228 standard deviation: the standard deviation of the depth of a feature below sea level (e.g. 

229 Pittman et al., 2007); (2) fractal dimensions: a ratio measure of seafloor roughness, typically 

230 measured as values between 2 and 3 (e.g. Pittman et al., 2009); (3) rugosity: the ratio of 

231 bathymetric and planar surface areas (Kuffner et al., 2007); (4) slope: the maximum change 

232 in elevation measured in degrees (e.g. Wedding & Friedlander, 2008); (4) slope of slope: the 

233 maximum rate of slope change measured in degrees of degrees (e.g. Pittman et al., 2009); 

234 and (5) benthic terrain ruggedness index (TRI) or vector ruggedness index (VRM): the 

235 ruggedness of the seafloor measured by accounting for changes in both slope and aspect, 

236 with values typically falling between 0 (low ruggedness) and 1 (high ruggedness) (e.g. 

237 Young et al., 2010) (Table 1; Figure 2). 

238
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239 4.3 Seafloor feature class

240 Seafloor feature class is a measure of the unique terrain features, or habitats, within a 

241 seascape (Kenny et al., 2003; Lundblad et al., 2006). Seascapes are comprised of diverse 

242 ecosystems and seafloor features, which provide multiple habitat functions for marine fauna, 

243 including refuge from predators, foraging areas, spawning sites and dispersal corridors 

244 (Henderson et al., 2019; Sheaves et al., 2015; Whitfield, 2017) (Table 2). The ecological 

245 values of discrete terrain features, or seafloor feature classes, can differ markedly between 

246 features with distinct physical characteristics, and this modifies the composition of fish 

247 assemblages across seascapes (Cameron et al., 2014; Giddens et al., 2019; Purkis et al., 

248 2008). Terrain metrics that represent this discrete variation in bathymetry, include: (1) 

249 backscatter: variation in the hardness, or softness, of the seafloor based on acoustic 

250 reflectance and scattering from multi-beam sonar (e.g. Monk et al., 2010); (2) bathymetric 

251 position index (BPI): categorises variation in seafloor elevation, with larger values indicating 

252 elevational highs (e.g. pinnacles, seamounts) and smaller values indicating elevational lows 

253 (e.g. valleys, trenches) (e.g. Iampietro et al., 2005); (3) depth-invariant index: variation 

254 among different habitats and substrates (e.g. reefs, seagrass, sand, mud, rock) based on the 

255 spectral bands of satellite imagery (e.g. Knudby et al., 2010); and (4) substratum 

256 classification: categorizes bathymetric maps into terrain features that differ in ecological or 

257 biophysical attributes, such as reefs and soft sediment (e.g. Hill et al., 2014; Moore et al., 

258 2016), reefs and lagoons (e.g. Knudby et al., 2011; Purkis et al., 2008), and peaks, slopes 

259 and valleys (e.g. Young et al., 2010) (Table 1; Figure 2).

260

261 4.4 Seafloor morphology

262 Seafloor morphology is a measure of the shape of terrain features, which encompasses 

263 variation in both their orientation (i.e. aspect) and level of roundness (i.e. curvature) (Abdul 

264 Wahab et al., 2018; Pittman et al., 2009; Stamoulis et al., 2018). These metrics are derived 

265 from the physical and earth sciences (i.e. geology, hydrology, geomorphology) and were first 

266 developed to describe water flow, quantify erosion and deposition rates and measure solar 
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267 radiation (Lecours et al., 2016; Leempoel et al., 2015; Moore, 1991; Pike, 2000). The aspect 

268 and curvature of terrain features can affect the distribution, diversity and abundance of 

269 marine fauna through their effects on local hydrodynamic conditions and light penetration 

270 (Bouchet et al., 2015; Pirtle et al., 2017; Stamoulis et al., 2018) (Table 2). These attributes 

271 combine to modify the distribution of: refuges to exposure (e.g. from currents, tides and 

272 waves), local productivity and food-web structure (e.g. through effects on plankton and 

273 algae), and both food and habitat availability for fish (Cameron et al., 2014; Moore et al., 

274 2010; Pittman & Brown, 2011). The aspect of a terrain feature is typically measured as it’s 

275 direction of orientation, with values ranging between 1 and -1 used to represent both 

276 “northness” (i.e. 1 = north; -1 = south) and “eastness” (i.e. 1 = east; -1 = west) (Table 1). A 

277 variety of other seafloor morphology metrics describe the characteristics of a curved surface, 

278 including: (1) curvature (i.e. absolute, maximum, mean, plan, profile or tangential curvature): 

279 the morphological shape of a feature, with negative values indicating convex curvature and 

280 positive values indicating concave curvature (e.g. Biber et al., 2014; Monk et al., 2010; 

281 Moore et al., 2009; Quattrini et al., 2012; Yates et al., 2019); (2) plane morphometry: the 

282 proportion of features without convexity or concavity (e.g. Cameron et al., 2014); (3) ridge 

283 morphometry: the proportion of convex features to cells with no curvature (e.g. Cameron et 

284 al., 2014); and (4) kurtosis: the sharpness of a curved feature (e.g. Bayley et al., 2019) 

285 (Table 1; Figure 2).

286

287 5.0 LINKS BETWEEN SEAFLOOR TERRAIN AND FISH DISTRIBUTION, 

288 ABUNDANCE AND DIVERSITY 

289 Variation in seafloor terrain has been linked to changes in the distribution of fish populations, 

290 and fluctuations in the abundance and diversity of fish, from coral reef, rocky reef, deep sea, 

291 continental shelf and estuarine seascapes (Figure 3). Across all seascapes examined in this 

292 review, more studies report positive (n = 111) than negative (n = 55) effects, and more 

293 studies report significant (n = 166, combined positive and negative effects) then neutral 

294 effects (n = 146) of terrain, on fish diversity and abundance (Figure 3; see Supporting 
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295 Information for methods used to define variable responses). Variability in the direction and 

296 strength of association between terrain structure and fish response may relate to the way 

297 terrain was quantified (i.e. the choice of metrics), differences in the habitat structure of focal 

298 seascapes (i.e. coral reef, rocky reef, deep sea, continental shelf, estuary) and scale effects. 

299 Overall, there have been more positive and negative, than neutral, associations between fish 

300 diversity and abundance, and metrics that index seafloor relief, seafloor complexity and 

301 seafloor feature class (Figure 3). By contrast, there have been more neutral, than negative 

302 or positive, associations between fish diversity and abundance, and metrics that index 

303 seafloor morphology (Figure 3). These findings suggest that variation in fish abundance and 

304 diversity might be positively linked to the relief and complexity of terrain features, rather than 

305 the morphology of the seafloor (Moore et al., 2016; Oyafuso et al., 2017). There were, 

306 however, substantial differences in the ecological effects of seafloor terrain among 

307 seascapes.

308

309 There is a significant bias in the distribution of research on seafloor terrain among 

310 seascapes, with most studies focusing on the ecological effects of terrain variation on coral 

311 reefs (n = 27), rocky reefs (n = 22), the deep sea (n = 20) and continental shelves (n = 20), 

312 and comparatively fewer studies linking terrain features to fish assemblages in estuaries (n = 

313 7) (Figure 3, Table S1). Positive effects of terrain on fish were more common in studies from 

314 rocky reefs and the deep sea, whereas negative effects were more common in studies from 

315 continental shelves and estuaries. By contrast, the effects of terrain on fish were highly 

316 variable in studies from coral reefs, which report more neutral, then either positive or 

317 negative, effects (Figure 3). These results indicate that the response of fish assemblages to 

318 seafloor terrain might vary among seascapes and suggest that different metrics may be 

319 needed to index terrain effects on fish in distinct ecosystems. A large number of studies (n = 

320 146) report neutral effects of seafloor terrain on fish diversity and abundance, and these 

321 results might be hindered by the adoption of terrain metrics that are not particularly suited to 

322 the seascape of interest (e.g. slope on coral reefs, mean curvature on rocky reefs and 
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323 rugosity on continental shelves) (Coleman et al., 2016; Schultz et al., 2014; Wedding & 

324 Friedlander, 2008). The prevalence of neutral effects might also reflect species-specific 

325 terrain associations that limit the detectability of significant effects of terrain on community 

326 metrics (e.g. fish abundance, diversity, biomass), or the application of statistical analyses 

327 that either fail to incorporate the correct linearity of fish-terrain relationships (e.g. using linear 

328 regressions to model non-linear relationships), or do not include variable interactions 

329 (Knudby et al., 2011; Oyafuso et al., 2017; Pittman et al., 2007). 

330

331 6.0 CONSISTENCY IN TERRAIN EFFECTS AMONG MARINE SEASCAPES

332 6.1 Coral reef 

333 Twenty-seven studies using a total of 17 different terrain metrics investigated the influence of 

334 seafloor terrain on coral reef fishes, including metrics to quantify seafloor relief (n = 16), 

335 complexity (n = 23), feature class (n = 10) and morphology (n = 9) (Table S1, Figure 4).

336

337 Seafloor relief

338 The ecological effects of seafloor relief on coral reef fishes were highly variable, with studies 

339 reporting positive (53%), negative (16%) and neutral (31%) effects (Figure 4). Two terrain 

340 metrics have been used to index effects of seafloor relief on coral reef fish: average depth (n 

341 = 14) and vertical relief (n = 5), with average depth being the best performing metric (Figures 

342 5 & 6, Table S4). Positive effects of seafloor relief have been reported from research on both 

343 vertical relief (60%) and average depth (50%), negative effects from research on average 

344 depth (21%), and neutral effects from research on both vertical relief (40%) and average 

345 depth (29%) (Figure S1; see Tables 3 & S5 for additional details). 

346

347 Seafloor complexity

348 The ecological effects of seafloor complexity on coral reef fishes were either positive (50%) 

349 or neutral (48%) (Figure 4). Five terrain metrics have been used to index effects of seafloor 
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350 complexity on coral reef fish, including: rugosity (n = 15), slope (n = 8), slope of slope (n = 

351 8), depth standard deviation (n = 6) and fractal dimensions (n = 1), with slope of slope being 

352 the best performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor complexity 

353 have been reported from research on slope of slope (75%), rugosity (53%), slope (38%) and 

354 depth standard deviation (33%), negative effects from research on slope (12%), and neutral 

355 effects from research on fractal dimension (100%), depth standard deviation (67%), slope 

356 (50%), rugosity (47%) and slope of slope (25%) (Figure S1; see Tables 3 & S5 for additional 

357 details). 

358

359 Seafloor feature class

360 The ecological effects of seafloor feature class on coral reef fishes were either positive 

361 (45%) or neutral (55%) (Figure 4). Four terrain metrics have been used to index effects of 

362 seafloor feature class on coral reef fishes: substratum classification (n = 4), backscatter (n = 

363 3), BPI (n = 2) and depth-invariant index (n = 2), with substratum classification being the best 

364 performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor feature class have 

365 been reported from research on substratum classification (100%) and backscatter (33%), 

366 and neutral effects from research on depth-invariant index (100%) and backscatter (67%) 

367 (Figure S1; see Tables 3 & S5 for additional details). 

368

369 Seafloor morphology

370 The ecological effects of seafloor morphology on coral reef fishes were highly variable, with 

371 studies reporting positive (16%), negative (5%) and neutral (79%) effects (Figure 4). 

372 Six terrain metrics were used to index the effects of seafloor morphology on coral reef fish: 

373 plan curvature (n = 6), aspect (n = 4), mean curvature (n = 3), profile curvature (n = 3), 

374 absolute curvature (n = 2) and kurtosis (n = 1), with aspect being the best performing metric 

375 (Figures 5 & 6, Table S4). Most studies reported neutral effects of seafloor morphology on 

376 coral reef fishes, from research on absolute curvature (100%), mean curvature (100%), 

377 profile curvature (100%), kurtosis (100%), plan curvature (66%) and aspect (50%) (Figure 
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378 S1). Positive effects of seafloor morphology were, however, reported from research on 

379 aspect (50%) and plan curvature (17%), and negative effects were also reported from 

380 research on plan curvature (17%) (Figure S1; see Tables 3 & S5 for additional details). 

381

382 6.2 Rocky reef 

383 Twenty-two studies using 18 different terrain metrics investigated the ecological effects of 

384 seafloor terrain on rocky reef fishes, including metrics to quantify seafloor relief (n = 21), 

385 seafloor complexity (n = 21), seafloor feature class (n = 17) and seafloor morphology (n = 

386 12) (Table S1, Figure 4). 

387

388 Seafloor relief

389 The ecological effects of seafloor relief on rocky reef fishes were highly variable, with studies 

390 reporting positive (24%), negative (40%) and neutral (36%) effects (Figure 4). Two terrain 

391 metrics have been used to index the effects of seafloor relief on rocky reef fish: average 

392 depth (n = 18) and vertical relief (n = 7), with average depth being the best performing metric 

393 (Figures 5 & 6, Table S4). Positive effects of seafloor relief have been reported from 

394 research on both vertical relief (29%) and average depth (22%), negative effects from 

395 research on average depth (56%), and neutral effects from research on both vertical relief 

396 (71%) and average depth (22%) (Figure S2; see Tables 4 & S5 for additional details). 

397

398 Seafloor complexity

399 The ecological effects of seafloor complexity on rocky reef fishes were also highly variable, 

400 with studies reporting positive (42%), negative (8%) and neutral (50%) results (Figure 4). Six 

401 terrain metrics have been used to index effects of seafloor complexity on rocky reef fish: 

402 slope (n = 13), rugosity (n = 11), depth standard deviation (n = 5), TRI (n = 3), slope of slope 

403 (n = 2) and fractal dimension (n = 2), with rugosity being the best performing metric (Figures 

404 5 & 6, Table S4). Positive effects of seafloor complexity were reported from research on 

405 slope of slope (100%), rugosity (64%), fractal dimension (50%), slope (31%) and depth 
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406 standard deviation (20%), negative effects from research on slope (23%), and neutral effects 

407 from research on TRI (100%), depth standard deviation (80%), fractal dimensions (50%), 

408 slope (46%) and rugosity (36%) (Figure S2; see Tables 4 & S5 for additional details). 

409

410 Seafloor feature class

411 The ecological effects of seafloor feature class on rocky reef fishes were mostly positive 

412 (60%), but some studies also reported negative (15%) and neutral (25%) effects (Figure 4). 

413 Three terrain metrics have been used to index effects of seafloor feature class on rocky reef 

414 fishes: BPI (n = 13), backscatter (n = 5) and substratum classification (n = 2), with 

415 backscatter being the best performing metric (Figures 5 & 6, Table S4). Positive effects of 

416 seafloor feature class were reported from research on substratum classification (100%), 

417 backscatter (60%) and BPI (54%), negative effects from research on backscatter (20%) and 

418 BPI (15%), and neutral effects from research on BPI (31%) and backscatter (20%) (Figure 

419 S2; see Tables 4 & S5 for additional details). 

420

421 Seafloor morphology

422 The ecological effects of seafloor morphology on rocky reef fishes were highly variable, with 

423 studies reporting positive (21%), negative (18%) and neutral (61%) effects (Figure 4). Seven 

424 terrain metrics were used to test for the effects of seafloor morphology on rocky reef fish: 

425 aspect (n = 11), mean curvature (n = 5), plan curvature (n = 4), profile curvature (n = 4), 

426 maximum curvature (n = 2), plane morphometry (n = 1) and ridge morphometry (n = 1), with 

427 aspect being the best performing metric (Figures 5 & 6, Table S4). Positive effects of 

428 seafloor morphology have been reported from research on maximum curvature (50%), 

429 aspect (36%) and profile curvature (25%), negative effects from research on maximum 

430 curvature (50%) and aspect (36%), and neutral effects from research on mean curvature 

431 (100%), plan curvature (100%), plane morphometry (100%), ridge morphometry (100%), 

432 profile curvature (75%) and aspect (28%) (Figure S2; see Tables 4 & S5 for additional 

433 details). 
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434 6.3 Deep sea 

435 Twenty studies used 16 different terrain metrics to investigate the ecological effects of 

436 seafloor terrain on deep sea fishes, including metrics to quantify seafloor relief (n = 13), 

437 seafloor complexity (n = 15), seafloor feature class (n = 7) and seafloor morphology (n = 7) 

438 (Table S1, Figure 4).

439

440 Seafloor relief

441 The ecological effects of seafloor relief on deep sea fishes were mostly positive (60%), but 

442 there were also some reports of negative (20%) and neutral (20%) effects (Figure S1). Three 

443 terrain metrics were used to index the effects of seafloor relief on deep sea fish: average 

444 depth (n = 12), vertical relief (n = 2) and contour index (n = 1), with average depth being the 

445 best performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor relief were 

446 reported from research on average depth (75%), negative effects from research on average 

447 depth (25%), and neutral effects from research on contour index (100%) and vertical relief 

448 (100%) (Figure S3; see Tables 5 & S5 for additional details). 

449

450 Seafloor complexity

451 The effects of seafloor complexity on deep sea fishes were highly variable, with studies 

452 reporting either positive (38%) or neutral (62%) effects (Figure 4). Five terrain metrics were 

453 used to index effects of seafloor complexity on deep sea fish: slope (n = 10), rugosity (n = 4), 

454 TRI (n = 4), fractal dimensions (n = 2) and slope of slope (n = 1), with slope being the best 

455 performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor complexity were 

456 reported from research on slope (50%), rugosity (50%) and TRI (25%), and neutral effects 

457 from research on fractal dimension (100%), slope of slope (100%), TRI (75%), rugosity 

458 (50%) and slope (50%) (Figure S3; see Tables 5 & S5 for additional details). 

459

460 Seafloor feature class
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461 The ecological effects of seafloor feature class on deep sea fishes were mostly positive 

462 (75%), but some studies also reported neutral effects (25%) (Figure 4). Three terrain metrics 

463 were used to index effects of seafloor feature class on deep sea fish: BPI (n = 5), 

464 backscatter (n = 2) and substratum classification (n = 1), BPI being the best performing 

465 metric (Figures 5 & 6, Table S4). Positive effects of seafloor feature class were reported 

466 from research on backscatter (100%), substratum classification (100%) and BPI (60%), and 

467 neutral effects were reported from research on BPI (40%) (Figure S3; see Tables 5 & S5 for 

468 additional details). 

469

470 Seafloor morphology

471 The ecological effects of seafloor morphology were highly variable, with studies reporting 

472 positive (33%), negative (7%) and neutral (60%) effects on deep sea fishes (Figure 4). Five 

473 terrain metrics were used to index effects of seafloor morphology on deep sea fish: aspect (n 

474 = 7), mean curvature (n = 3), plan curvature (n = 2), profile curvature (n = 2) and tangential 

475 curvature (n = 1), with aspect being the best performing metric (Figures 5 & 6, Table S4). 

476 Positive effects of seafloor morphology have been reported from research on plan curvature 

477 (50%), profile curvature (50%), mean curvature (33%) and aspect (29%), negative effects 

478 from research on aspect (14%), and neutral effects from research on tangential curvature 

479 (100%), mean curvature (67%), aspect (57%), plan curvature (50%) and profile curvature 

480 (50%) (Figure S3; see Tables 5 & S5 for additional details). 

481

482 6.4 Continental shelf 

483 Twenty studies used 12 terrain metrics to investigate the effects of terrain on continental 

484 shelf fishes, including metrics to quantify seafloor relief (n = 16), seafloor complexity (n = 9), 

485 seafloor feature class (n = 7) and seafloor morphology (n = 4) (Table S1, Figure 4). 

486

487 Seafloor relief

Page 18 of 63Fish and Fisheries



19

488 The ecological effects of seafloor relief on fish from continental shelves were highly variable, 

489 with studies reporting positive (11%), negative (61%) and neutral (28%) effects (Figure 4). 

490 Two terrain metrics have been used to index effects of seafloor relief on continental shelf 

491 fish: average depth (n = 16) and vertical relief (n = 2), average depth being the best 

492 performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor relief were reported 

493 from research on vertical relief (50%) and average depth (6%), negative effects were 

494 reported from research on average depth (69%), and neutral effects from research on both 

495 vertical relief (50%) and average depth (25%) (Figure S4; see Tables 6 & S5 for additional 

496 details). 

497

498 Seafloor complexity

499 The ecological effects of seafloor complexity on fish from continental shelves were highly 

500 variable, with studies reporting positive (17%), negative (33%) and neutral (50%) effects 

501 (Figure 4). Three terrain metrics were used to index the effects of seafloor relief on 

502 continental shelf fish: slope (n = 8), rugosity (n = 2) and TRI (n = 2), with slope being the 

503 best performing metric (Figures 5 & 6, Table S4). Positive effects of seafloor complexity 

504 were reported from research on TRI (50%) and slope (12%), negative effects from research 

505 on TRI (50%) and slope (38%), and neutral effects from research on rugosity (100%) and 

506 slope (50%) (Figure S4; see Tables 6 & S5 for additional details). 

507

508 Seafloor feature class

509 The ecological effects of seafloor feature class on fish from continental shelves were either 

510 positive (29%), or negative (71%) (Figure 4). Two terrain metrics were used to index effects 

511 of seafloor feature class on continental shelf fish: backscatter (n = 6) and BPI (n = 1), with 

512 backscatter being the best performing metric (Figures 5 & 6, Table S4). Positive effects of 

513 seafloor feature class were reported from research on BPI (100%) and backscatter (17%), 

514 and negative effects from research on backscatter (83%) (Figure S4; see Tables 6 & S5 for 

515 additional details). 
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516 Seafloor morphology 

517 The ecological effects of seafloor morphology on fish from continental shelves are equivocal 

518 (Figure 4). Five terrain metrics have been used to index the effects of seafloor morphology 

519 on continental shelf fish: aspect (n = 2), mean curvature (n = 2), plan curvature (n = 2), 

520 profile curvature (n = 2) and maximum curvature (n = 1), but to date all studies have reported 

521 inconsistent, and neutral, effects (Figures 5, 6 & S4). 

522

523 6.5 Estuary

524 Seven studies used two terrain metrics to investigate the effects of seafloor terrain on 

525 estuarine fishes, including metrics to quantify seafloor relief (n = 7) and seafloor complexity 

526 (n = 1) (Table S1, Figure 4). The potential ecological effects of seafloor feature class and 

527 morphology have not been tested in estuarine seascapes (Figures 5, 6 & S5).

528

529 Seafloor relief

530 The ecological effects of seafloor relief on estuarine fishes were highly variable, with studies 

531 reporting positive (14%), negative (72%) and neutral (14%) effects (Figure 4). To date, only 

532 one terrain metric (average depth) has been used to index effects of seafloor relief on 

533 estuarine fish, and significant effects of variation in average depth have been reported in 

534 86% of studies (Figures 5, 6 & S5; see Tables 7 & S5 for additional details).

535

536 Seafloor complexity

537 The ecological effects of seafloor complexity on estuarine fishes have only been examined in 

538 one study, which reported neutral effects of variation in slope (Miller et al., 2015) (Figures 5, 

539 6 & S5).

540  
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541 7.0 IMPORTANCE OF SCALE IN STUDIES EXAMINING ECOLOGICAL EFFECTS OF 

542 TERRAIN VARIATION

543 The scale at which bathymetric features are measured can affect the ecological relevance of 

544 terrain metrics (Moudrý et al., 2019; Walbridge et al., 2018). Research articles included in 

545 this review have assessed the ecological effects of terrain on fish assemblages using 

546 metrics that were quantified across a variety of spatial scales (i.e. 0.5m – 1000m radii) (e.g. 

547 Coleman et al., 2016; Sievers et al., 2016). This is also known to affect the detectability of 

548 relationships between fish assemblages and terrain features, because fish habitat 

549 associations, movements and home ranges are scale dependent (Coleman et al., 2016; 

550 Knudby et al., 2011; Kuffner et al., 2007; Pittman & McAlpine, 2003). For example, fish use a 

551 variety of habitats throughout their life cycle, and home ranges can differ fundamentally 

552 between species, and indeed individuals, with variation in site fidelity and body size (Kuffner 

553 et al., 2007; Pittman & Brown, 2011; Pittman et al., 2009). 

554

555 When insufficient information is available on the home ranges and movement patterns of fish 

556 species or assemblages, a multi-scale approach for quantifying terrain metrics is most 

557 suitable. This is because species respond to terrain variation differently, using distinct 

558 features at different scales, and these terrain associations can also change with life-stage 

559 progression (e.g. Monk et al., 2011; Pittman & Brown, 2011; Rees et al., 2018). The spatial 

560 scale over which terrain metrics are quantified, might also change among ecosystems, due 

561 to variation in both the complexity and relief of terrain features between consolidated (e.g. 

562 reefs) and unconsolidated (e.g. estuaries) seascapes. The ecological effects of terrain 

563 features are often reported from snapshots in time and over relatively small spatial scales 

564 (i.e. 100s of metres) in ecosystems containing complex structures (e.g. coral and rocky 

565 reefs) (e.g. Pittman & Brown, 2011; Rees et al., 2018). Responses of fish to terrain might, 

566 however, operate at large spatial scales (i.e. 1000s of metres) in unconsolidated ecosystems 

567 where terrain complexity is lower (e.g. continental shelves, estuaries) (e.g. Farmer et al., 

568 2017; Lathrop et al., 2006). There is, however, no data that can be used to test whether the 
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569 effects of terrain operate at distinct spatial scales in different seascapes. Nevertheless, 

570 identifying the scale that fish respond to seafloor terrain is critical for effective spatial 

571 conservation planning and fisheries management in coastal seascapes (Kuffner et al., 2007; 

572 Pittman & Brown, 2011; Wedding et al., 2019).

573

574 8.0 HUMANS MODIFY SEAFLOOR TERRAIN WITH CONSEQUENCES FOR FISH 

575 AND FISHERIES

576 Coastal seascapes are focal points for urban development, recreation, and fishing, and have 

577 been profoundly transformed to accommodate the demands of expanding human 

578 populations (Heery et al., 2017; Mayer-Pinto et al., 2018). In urban seascapes, natural 

579 ecosystems, such as mangroves, saltmarshes and seagrasses, are often degraded, become 

580 fragmented, or have been replaced, by hard artificial structures, including concrete walls, 

581 rock revetments, bridges, jetties and pontoons (Bishop et al., 2017; Bulleri & Chapman, 

582 2010; Dafforn et al., 2015). The seafloor of many urban estuaries and coastal seas has also 

583 been modified by dredging to improve shipping, extraction of sand to replenish sandy 

584 beaches, the deposition of dredged sediments outside shipping channels, and the 

585 construction of groynes, breakwaters and other engineered structures (Freeman et al., 2019; 

586 Heery et al., 2017; Macura et al., 2019; Sheaves et al., 2014). These anthropogenic habitat 

587 changes significantly impact coastal fish populations, particularly when natural shorelines 

588 are replaced by engineered structures and when dredging results in the simplification of 

589 estuarine seafloors (Brook et al., 2018; Olds et al., 2018a; Rochette et al., 2010; Wenger et 

590 al., 2017). The impacts of terrain modification on fish are, however, rarely tested with 

591 empirical data. 

592

593 Features of the seafloor that are characterized by high vertical relief, terrain complexity and 

594 morphological variability (e.g. seamounts, submarine canyons, shoals, pinnacles, ledges and 

595 caves) typically support a diversity of fishes in high abundance (Iampietro et al., 2005; 

596 Oyafuso et al., 2017; Pirtle et al., 2017; Rees et al., 2018). The significance of these 
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597 ‘hotspots’ for fish assemblages is widely appreciated, and they are frequently targeted by 

598 commercial (e.g. offshore trawlers that harvest over seamounts), recreational (e.g. line 

599 fishers that target coastal ledges) and artisanal (e.g. woven trap fishers that focus on 

600 offshore pinnacles) fishers because they are aggregation sites, which concentrate desired 

601 fish species in great numbers (Borland et al., 2017; Forcada et al., 2010; Nilsson & Ziegler, 

602 2007; Stamoulis et al., 2018; Williams et al., 2020). Seafloor terrain features that are 

603 characterized by high relief and complexity also support productive fisheries, and typically 

604 yield larger catches (per unit effort) of target species than areas of comparatively 

605 homogenous bathymetry (Bouchet et al., 2017; Fonseca et al., 2017; March et al., 2014; 

606 Salarpouri et al., 2018). Heavy fishing pressure can reduce the abundance and size of fish 

607 populations, modify the diversity of fish assemblages, and lead to trophic cascades that 

608 change the condition and functioning of entire ecosystems (Estes et al., 2011; Jackson et al., 

609 2001; Pauly et al., 1998). Some fishing techniques (e.g. trawling, dredging, anchoring) 

610 impact directly upon the structure of the seafloor and fundamentally alter terrain features, 

611 which can result in the loss of habitat functions and lead to further declines in fisheries 

612 productivity (Bayley et al., 2019; Friedlander et al., 1999; Gascuel et al., 2016; Kaiser et al., 

613 2002; Puig et al., 2012; Thrush & Dayton, 2002). These biophysical impacts from fishing are, 

614 however, usually examined independently from the potential ecological consequences of 

615 terrain modification. Nevertheless, there is some evidence to show that terrain simplification 

616 from destructive fishing practices is associated with declines in fish diversity and abundance 

617 in some seascapes (e.g. Bayley et al., 2019), but this is rarely linked to trends in fisheries 

618 catches.

619

620 Human actions modify the three-dimensional structure of the seafloor via a multitude of 

621 stressors, including urbanisation, dredging and fishing, and this often has negative 

622 consequences for fish assemblages, but some forms of seafloor modification (e.g. the 

623 construction of artificial structures, restoration initiatives) can result in increased seafloor 

624 complexity that has positive effects on fish abundance and diversity (Charbonnel et al., 
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625 2002; Gilby et al., 2018; Morris et al., 2018). The implementation of restoration initiatives 

626 (e.g. oyster reefs), artificial reefs and marine infrastructure (e.g. rock walls, pipelines, oil 

627 platforms, renewable energy structures) can provide high-relief habitat for a diversity of fish 

628 species, and these structures are often hotspots for fish diversity, especially when they are 

629 located within soft-sediment seascapes with low habitat diversity (e.g. estuaries, continental 

630 shelves) (Folpp et al., 2020; Gilby et al., 2019; Love et al., 2019; Raoux et al., 2017). There 

631 are many three-dimensional considerations that are incorporated into the design of 

632 restoration units and artificial structures (e.g. eco-engineering) (Gilby et al., 2018; Hylkema 

633 et al., 2020; Strain et al., 2018), but the effects of these seafloor modifications on fish 

634 assemblages are seldom linked to alterations to terrain complexity or morphology, and it is 

635 not known whether seafloor terrain surrounding artificial or restored fish habitats alters their 

636 ecological value for fish assemblages in coastal seascapes. 

637

638 The ecological consequences of terrain modification can be measured, and monitored to 

639 inform adaptive management, using a variety of terrain metrics, which index variation in the 

640 depth, vertical relief, morphology and complexity of the seafloor (Goodell et al., 2018; 

641 Sievers et al., 2016; Wedding et al., 2019). Seafloor terrain features have been derived, and 

642 widely mapped, for many marine ecosystems and seascapes (see Section 5), but are rarely 

643 used to index the ecological effects of terrain alterations, on fish assemblages. The 

644 application of terrain metrics for describing, and measuring, the ecological impacts of 

645 anthropogenic seafloor modification is a promising avenue for future research, which should 

646 help to streamline decisions in marine spatial planning (Pittman & Brown, 2011; Stamoulis et 

647 al., 2018; Wedding et al., 2019).

648

649 9.0 TERRAIN FEATURES PROVIDE FOCAL POINTS FOR SEASCAPE 

650 CONSERVATION AND RESTORATION

651 In combination with ecological drivers, the two-dimensional configuration and three-

652 dimensional complexity of seascapes strongly influences the distribution of fish populations 
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653 and assemblages (Pittman & Olds, 2015; Wedding et al., 2019). Given the ecological 

654 significance of these features for fish, their spatial distribution in coastal seascapes is also 

655 likely to influence how fish populations and assemblages respond to coastal management, 

656 such as marine conservation and restoration initiatives (Pittman & Brown, 2011; Rees et al., 

657 2018; Wedding et al., 2019). 

658

659 Marine reserves, sanctuaries and restoration sites have been implemented worldwide in an 

660 attempt to promote biodiversity, enhance ecological health and resilience, and support the 

661 delivery of ecosystem services, by limiting the impacts of extractive and transformative 

662 anthropogenic stressors (e.g. fishing, urbanization, eutrophication) (Gaines et al., 2010; 

663 Halpern, 2003; Rey Benayas et al., 2009). Successful no-take marine reserves, and habitat 

664 restoration projects, can increase the abundance, diversity and biomass of fish, and support 

665 the productivity of linked fisheries, and are particularly effective when they are sited in 

666 locations that optimize two-dimensional spatial connectivity with a diversity of other fish 

667 habitats (Gilby et al., 2018; Magris et al., 2018; Olds et al., 2016). This is because many 

668 species move across seascapes, among habitats and high-relief habitat features, and these 

669 migrations link ecosystems, both within and between reserves and restoration areas. It is 

670 likely that these movements also depend on the bathymetric characteristics of the seafloor, 

671 and that they are positively connected to high terrain relief and complexity (Bouchet et al., 

672 2015; Pygas et al., 2020). Some species might aggregate around these features, whilst 

673 others move regularly between them, and both effects could serve to promote the 

674 performance of local conservation and restoration projects that are designed and cited to 

675 preserve these terrain characteristics (Pittman & Brown, 2011; Wedding et al., 2019).

676

677 To date, three studies have investigated how variation in the three-dimensional structure of 

678 the seafloor might influence the potential responses of fish assemblages to environmental 

679 management actions, and all focused on the performance of marine reserves. The results of 

680 this research show that high terrain complexity (quantified by both depth standard deviation 
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681 and rugosity) can enhance reserve effects on fish diversity and abundance in two coral and 

682 rocky reef seascapes in the Pacific (Bayley et al., 2019; Rees et al., 2018), but not on a coral 

683 reef in the Western Caribbean (Huntington et al., 2010). These findings are encouraging, but 

684 considerably more research is needed to describe how changes in seafloor terrain affect 

685 conservation and restoration performance, and to explore opportunities for integrating 

686 bathymetric data, particularly for high-relief terrain features that concentrate diversity, into 

687 spatial prioritization decisions (Ferrari et al., 2018a; Fonseca et al., 2017). Furthermore, 

688 bathymetric data has utility as a spatial proxy for the prioritisation of management actions, 

689 and predicting the spatial distribution of vulnerable species, in locations where biological 

690 data is poor (Ferrari et al., 2018a; Fonseca et al., 2017).  

691

692 The effects of climate change pose a major challenge to the design, monitoring and 

693 performance of environmental management initiatives in marine seascapes (Magris et al., 

694 2014; Roberts et al., 2017). Changes to the global climate are altering the abiotic conditions 

695 that characterize most marine ecosystems (e.g. temperature, pH, sea level), degrading the 

696 ecological condition and resilience of habitat forming species (e.g. corals, kelps and 

697 seagrasses) and terrain features (e.g. as a consequence of coral degradation), and causing 

698 range extensions and relocations for many species, which must move, either geographically 

699 or topographically (i.e. towards the poles or to greater depths), to escape extreme 

700 environmental perturbation, and follow the distribution of their ecological niches (Constable 

701 et al., 2014; Lauchlan & Nagelkerken, 2020; Nye et al., 2009). For example, climate change 

702 has already had deleterious impacts in coral reef seascapes, resulting in significant losses of 

703 live coral cover, the degradation of reef terrain complexity, and the poleward migration of 

704 numerous species (Alvarez-Filip et al., 2009; Hughes et al., 2003; Leggat et al., 2019; 

705 Munday et al., 2008; Rogers et al., 2018a). Prominent terrain features, which are located in 

706 water that is either deeper or at higher latitudes than current distributions might, therefore, 

707 provide supplementary habitats, or stepping stones, for migrating species, and could 

708 become hotspots that support high fish diversity and productive fisheries in the future (Brown 
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709 & Thatje, 2015; Vestfals et al., 2016). It is also possible that some terrain features (e.g. rocky 

710 headlands, deep channels, continental slopes, reefs and shoals) might serve as barriers that 

711 limit opportunities for range shifts and, consequently, increase the vulnerability of some 

712 species to climate change (Hollowed et al., 2013; Munday et al., 2008). To conserve fish 

713 species, protect fish habitats, and manage fisheries under a changing climate, it will be 

714 imperative to understand how fish populations and assemblages interact with seafloor 

715 terrain, and to identify which types of terrain features provide critical fish habitats that might 

716 facilitate, or obstruct, changes in the distribution of fish diversity, abundance and biomass in 

717 response to climate change (Goodell et al., 2018; Lenoir et al., 2011; Moore et al., 2009). 

718 Spatial scenarios that model the degradation of coral reef complexity on habitat suitability for 

719 fish species demonstrate the utility of high-resolution bathymetric maps in forecasting 

720 impacts from accelerated climate change, which can help inform the design of future 

721 management actions (Newman et al., 2015; Pittman et al., 2011).

722

723 10.0 FUTURE DIRECTIONS AND RESEARCH PRIORITIES

724 The role of seafloor terrain in shaping fish populations and assemblages is well documented 

725 (n = ≥ 20) for hard-bottom habitats with high seafloor complexity (e.g. rocky reefs, coral 

726 reefs), or soft-sediment habitats that have been the focus of intensive terrain mapping 

727 programs (e.g. deep sea, continental shelves) (Ferrari et al., 2018b; Pittman & Brown, 2011; 

728 Wedding et al., 2019). By contrast, much less is known about the effects of seafloor terrain 

729 on fish assemblages in shallow soft-sediment seascapes; we found only seven papers for 

730 estuaries and there has been no work on nearshore waters, such as the surf zones of sandy 

731 beaches, that are difficult to map with conventional techniques due to the harsh 

732 hydrodynamic activity (Borland et al., 2017; Bradley et al., 2017; Henderson et al., 2019; 

733 Mosman et al., 2020). Thus, focusing on data-deficient seascapes in the coastal zone, 

734 particularly estuaries and surf zones, is timely (research priority 1, Table 8).

735
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736 Fish respond to terrain features at a variety of spatial scales, and this varies between 

737 species, and with changes in life stages and movement capabilities, which necessitates the 

738 adoption of a multi-scale approach in fish – terrain research (Pittman & Brown, 2011; Rees 

739 et al., 2018; Sievers et al., 2016). The scale over which terrain features influence fish 

740 assemblages might also vary with changes in the structure and complexity of the seafloor, 

741 for example fish might respond to terrain differently in coral reef and estuarine environments, 

742 but there is no data that can be used to measure whether the ecological effects of terrain 

743 operate at distinct spatial scales in different seascapes (research priority 2, Table 8).

744

745 Fish move through seascapes to feed, breed and disperse, and these migrations are partly 

746 determined by the spatial configuration of habitats (i.e. seascape context), which shape the 

747 distribution, abundance and diversity of fish assemblages in most seascapes (Olson et al., 

748 2019; Ortodossi et al., 2019; Perry et al., 2018). Seafloor terrain can also modify the 

749 movement of fish species between different habitats, and these properties likely interact with 

750 seascape context to determine the spatial distribution of fish populations (Moore et al., 2011; 

751 Sekund & Pittman, 2017; Wedding et al., 2019). We do not know, however, whether 

752 variation in the three-dimensional properties of the seafloor influence the effects of two-

753 dimensional seascape context, and connectivity, on fish assemblages (research priority 3, 

754 Table 8). 

755

756 Seafloor terrain features are commonly utilized as foraging areas, resting sites, and 

757 spawning locations by numerous fish species. Fish move among these as they grow and 

758 mature, and as their resource requirements change, and may use particular terrain features 

759 as stepping stones (e.g. high-relief pinnacles) or dispersal corridors (e.g. deep channels) 

760 (Engelhard et al., 2017; Green et al., 2015; Olds et al., 2016). The movement of many fish 

761 species has been linked to prominent high-relief features in some seascapes (e.g. deep 

762 channels in estuaries, seamounts in the deep sea, rocky shoals in continental shelves) 

763 (Holland & Dean Grubbs, 2008; Hondorp et al., 2017; Siceloff & Howell, 2013), but these 
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764 movements are rarely linked to terrain (but see Fabrizio et al., 2013; Huff et al., 2011), and it 

765 is not clear whether the location and characteristics of terrain features shape the movement 

766 of fish across seascapes (research priority 4, Table 8). 

767

768 Some terrain features (i.e. unconsolidated sand bars and channels, rocky shoals and banks) 

769 are thought to be important nursery sites for some fish species (Pirtle et al., 2017; Rochette 

770 et al., 2010; Trimoreau et al., 2013). Effective nursery habitats enhance the abundance, 

771 growth and survival of juvenile fish, and contribute a greater biomass of these individuals to 

772 adult populations, which reside elsewhere in the wider seascape (Beck et al., 2001; Whitfield 

773 & Pattrick, 2015). There is, however, no data that can be used to determine the ecological 

774 values of prominent terrain features as nursery habitats for fish (research priority 5, Table 8). 

775

776 Fish perform a diversity of ecological functions (e.g. predation, herbivory, scavenging, 

777 nutrient cycling) that are critical for maintaining the ecological health, condition and resilience 

778 of ecosystems to disturbance (Catano et al., 2015; Henderson et al., 2020b; Martin et al., 

779 2018; Ruttenberg et al., 2019). Variation in seafloor terrain can modify the trophic 

780 composition of fish assemblages in most seascapes, and alter the spatial distribution of 

781 many fish trophic guilds (e.g. piscivores, herbivores, corallivores) (Ferrari et al., 2018b; 

782 Pittman et al., 2009; Purkis et al., 2008). It is not clear, however, whether these structural 

783 effects of terrain complexity on fish assemblages have functional consequences that shape 

784 the spatial distribution of key ecological processes (e.g. predation, herbivory) (research 

785 priority 6, Table 8). 

786

787 High relief, and complex, terrain features (e.g. pinnacles, ledges, caves) often support a 

788 diversity of apex predators because they provide important resting points on long-distance 

789 migrations, aggregation sites for spawning, and abundant feeding opportunities (Farmer et 

790 al., 2017; Kuffner et al., 2010; Morato et al., 2010; Pirtle et al., 2017). It is likely that these 

791 higher-order predators also exert strong top-down effects in local ecosystems, via both direct 
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792 predation and elevated predation risk effects, which alter the distribution, abundance and 

793 behavior of their prey, and cascade through food-webs to shape the composition of benthic 

794 assemblages (Atwood et al., 2015; Baum & Worm, 2009; Estes et al., 2011). We do not 

795 know, however, whether the abundance and diversity of apex predators is linked to variation 

796 in the type, or characteristics, of undersea terrain features, or whether changes in seafloor 

797 relief and complexity modify the spatial distribution of predation events, and the intensity of 

798 trophic cascades (research priority 7, Table 8). 

799

800 In urban seascapes the seafloor is frequently heavily modified and fragmented by 

801 anthropogenic activity (e.g. shoreline hardening, dredging, trawling, fishing, the construction 

802 of groynes and breakwaters), which reduces the quality, and changes the structure, of 

803 terrain features (Freeman et al., 2019; Macura et al., 2019; Sheaves et al., 2014). It is 

804 plausible that the modification and fragmentation of seafloor terrain features can have 

805 ecological consequences for the spatial distribution and composition of fish assemblages 

806 (e.g. Bayley et al., 2019; Kaiser et al., 2002; Rochette et al., 2010), but this hypothesis has 

807 rarely been tested with empirical data (research priority 8, Table 8). 

808

809 There is limited data that can be used to describe the ecological effects of seafloor terrain on 

810 fish conservation, or the restoration of fish habitats. Only three studies have investigated the 

811 conservation benefits of terrain for fish, and results are inconclusive, indicating positive 

812 effects of complex terrain features on rocky reef reserves (Rees et al., 2018), and either 

813 positive (Bayley et al., 2019), or neutral (Huntington et al., 2010), effects of terrain 

814 complexity in reserves on coral reefs. Variation in the structure and complexity of the 

815 seafloor is also likely to influence the effectiveness of habitat restoration for fish (Gilby et al., 

816 2018), but this hypothesis has not been examined. More empirical data is, therefore, 

817 required to identify if seafloor terrain has conservation and restoration benefits for fish in 

818 coastal seascapes (research priority 9, Table 8). 

819
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820 Coastal seascapes are under threat from the increasing effects of climate change (Harley et 

821 al., 2006; Magris et al., 2014; Roberts et al., 2017), and recent research provides evidence 

822 that many species are already relocating to deeper habitats, or towards the poles, to track 

823 the abiotic conditions that characterize their ecological niches (Brown & Thatje, 2015; 

824 Lauchlan & Nagelkerken, 2020; Vestfals et al., 2016). It is also likely that as species alter 

825 their spatial distributions, some terrain features may provide supplementary habitats, and 

826 facilitate migration, whilst others might obstruct the expansion of species home ranges 

827 (Hollowed et al., 2013; Lenoir et al., 2011). The potential for prominent terrain features to 

828 serve as stepping-stones and sinks for climate driven range extensions will impact our 

829 capacity to effectively manage marine ecosystems, and data is therefore needed to identify 

830 terrain features that might serve as focal hotspots for conservation and restoration (research 

831 priority 10, Table 8). 

832

833 11.0 CONCLUSIONS

834 Variation in seafloor terrain is associated with significant, and widespread, ecological effects 

835 on fish populations and assemblages. Spatial patterns in fish diversity and abundance are 

836 linked to bathymetry on coral and rocky reefs, in the deep sea, over continental shelfs and in 

837 estuaries, and changes in the distribution of fish assemblages are most strongly correlated 

838 with variation in the average depth, slope, rugosity and aspect of terrain features. The 

839 ecological significance of these terrain properties for fish does, however, differ among 

840 seascapes, as does the spatial scale of their influence on fish populations and assemblages, 

841 and this likely reflects variation in seafloor complexity. Despite the clear importance of terrain 

842 features for fish, research is needed to better describe how changes in seafloor relief, 

843 complexity, class and morphology combine to shape the distribution, composition and 

844 functioning of fish assemblages in most seascapes. There is a reasonable to good coverage 

845 of studies on the effects of terrain variation on fish in coral and rocky reefs, but soft-sediment 

846 seascapes are either data-poor (e.g. estuaries) or completely neglected (e.g. surf zones). 

847 Humans have substantially modified the bathymetry of many seascapes, via cumulative 
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848 impacts resulting from urbanization, dredging and fishing. Yet, it is largely unknown whether 

849 and how, multiple anthropogenic stressors on seafloor terrain interact to affect the way fish 

850 species use coastal seascapes. The potential significance of bathymetric variation for 

851 conservation and restoration performance is also rarely tested with empirical data, despite 

852 the fact that these management actions typically restrict, or restore, actions that modify 

853 terrain complexity. A clearer understanding of how seafloor terrain shapes fish assemblages, 

854 and data to describe whether these relationships change with seafloor modification, 

855 conservation and restoration is essential for optimizing marine spatial planning and 

856 improving fisheries management.
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1605 Tables

1606 Table 1 Metrics used to link changes in terrain to variation in the composition of fish assemblages. Terrain metrics are grouped into four 
1607 categories (i.e. seafloor relief, seafloor complexity, seafloor feature class and seafloor morphology) based on similarities in the terrain features 
1608 they index. Descriptions and example references are provided for each terrain metric. 

Terrain metric Description Example
Seafloor relief

Average depth Average depth of a feature below sea level Maravelias (1999)
Contour index Percent change in the depth of a feature Bouchet et al. (2017)
Vertical relief Maximum range in the depth of a feature Moore et al. (2010)

Seafloor complexity
Depth (standard deviation) Standard deviation of the depth of a feature below sea level Pittman et al. (2007)
Fractal dimensions A ratio measure of seafloor roughness Pittman et al. (2009)
Rugosity Index of seafloor complexity: surface area to planar area ratio Kuffner et al. (2007)
Slope Maximum change in elevation (degrees) Wedding and Friedlander (2008)
Slope of slope Maximum rate of slope change (degrees of degrees) Pittman et al. (2009)
Terrain ruggedness index (TRI) 3D complexity of grid cells in surrounding neighbourhood Young et al. (2010)

Seafloor feature class
Backscatter Classifies features from the hardness or softness of the seafloor Maravelias (1999)
Bathymetric position index (BPI) Classifies features from seafloor elevation Iampietro et al. (2005)
Depth-invariant index Classifies features from the reflectance of different spectral bands Knudby et al. (2010)
Substratum classification Classifies features from bathymetric maps Purkis et al. (2008)

Seafloor morphology
Absolute curvature Maximum curvature of a feature (convex or concave) Knudby et al. (2011)
Aspect Compass direction of a feature Iampietro et al. (2008)
Kurtosis The sharpness of a curved surface Bayley et al. (2019)
Maximum curvature Maximum convexity of a feature Monk et al. (2010)
Mean curvature Combines the index of both profile and plan curvature (see below) Moore et al. (2009)
Plan curvature Horizontal curvature of a feature Pittman et al. (2009)
Plane morphometry Proportion of cells without concavity or convexity Cameron et al. (2014)
Profile curvature Vertical curvature of a feature Quattrini et al. (2012)
Ridge morphometry Proportion of convex cells at right angles to cells with no curvature Cameron et al. (2014)
Tangential curvature Curvature of a feature perpendicular to the slope gradient Biber et al. (2014)

1609
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1610 Table 2 Summary of common mechanisms proposed to account for observed relationships between fish and seafloor terrain.
1611

Terrain metric 
category

Mechanism Rationale References

Seafloor 
relief

Predator refuge Shallow and high-relief features provide refuge locations for small-bodied fishes by limiting 
the manoeuvrability of large-bodied predators

Bassett et al. (2018); Parra et al. 
(2017); Pirtle et al. (2017)

Food and habitat 
availability

Seafloor relief alters light availability, and primary production, and modifies the availability 
of food resources and vegetative habitat

Galaiduk et al. (2017); Hill et al. (2014)

Fisheries avoidance Large-bodied fish inhabit deep, high-relief seascapes where fishing susceptibility is reduced Stamoulis et al. (2018)

Water quality Abiotic water conditions (e.g. oxygen, temperature, pH, salinity) change with variation in 
seafloor relief

Parra et al. (2017); Smoliński and 
Radtke (2017); Weijerman et al. (2019)

Seafloor 
complexity

Predator refuge Seafloors with high architectural complexity have more spaces for small species and 
juveniles to hide from predators

Pittman et al. (2007); Ticzon et al. 
(2015); Wedding et al. (2019)

Predator detection High terrain variability limits the ability for species to detect approaching predators Catano et al. (2015); Ferrari et al. 
(2018b)

Food availability Seafloor complexity modifies the abundance and availability of prey species Coleman et al. (2016); Rees et al. 
(2018); Weijerman et al. (2019)

Foraging habitats Seafloor complexity modifies the distribution of foraging grounds Catano et al. (2015); Ferrari et al. 
(2018b)

Seafloor 
feature class

Food availability Different terrain features support distinct prey species and provide unique foraging 
opportunities 

Fabrizio et al. (2013); Leitner et al. 
(2017)

Predator refuge Variation in the structure of terrain features modifies their utility as predator refuges Auster et al. (2001); Misa (2013); 
Ticzon et al. (2015)

Reproduction sites Suitable spawning locations are determined by the distinct physical characteristics of terrain 
features

Farmer et al. (2017); Maravelias (1999)

Seafloor 
morphology

Hydrodynamic 
conditions

Seafloor morphology modifies the intensity and direction of water currents and wave 
conditions

Cameron et al. (2014); Coleman et al. 
(2016); Pirtle et al. (2017)

Food availability Altered hydrodynamic activity modifies the availability of prey species Coleman et al. (2016); Weijerman et al. 
(2019); Young et al. (2010)

Nutrient inputs Terrain morphology alters the prevalence, and intensity, of chemicals transported by run-off Stamoulis et al. (2018)

 Fisheries avoidance Species avoid hydrodynamically sheltered areas, that are target locations for fishers Stamoulis et al. (2018)
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1613 Table 3 Summary of the effects of terrain on fish assemblages in coral reef seascapes (see Table S5 for more details). 
Terrain metric category Terrain metric Fish metric Effect Reference
Seafloor relief Average depth Total abundance, diversity or biomass Positive Knudby et al. (2011); Stamoulis et al. (2018); Walker et al. (2009)

Abundance, biomass or presence of 7 
species

Positive Pittman and Brown (2011); Pittman et al. (2009); Roos et al. (2015); 
Yates et al. (2016)

Biomass of 1 family Positive Pittman et al. (2009)
Biomass of 1 functional group Positive Pittman et al. (2009)
Total abundance, diversity, density or               
biomass

Negative Abdul Wahab et al. (2018); Costa et al. (2014); Wedding et al. (2019)

Abundance or presence of 2 species Negative Goodell et al. (2018); Pittman and Brown (2011)
Vertical relief Total diversity Positive Walker et al. (2009)

Seafloor complexity Depth (SD) Total diversity or density Positive Costa et al. (2014); Pittman et al. (2007)

Rugosity Total abundance, diversity or biomass Positive Bayley et al. (2019); Knudby et al. (2010); Purkis et al. (2008); 
Walker et al. (2009); Wedding et al. (2008)

Abundance, biomass or presence of 3 
species

Positive Pittman and Brown (2011); Pittman et al. (2009)

Abundance or diversity of 3 functional groups Positive Catano et al. (2015); (Pittman et al., 2009); Purkis et al. (2008)

Slope Total abundance, biomass or length Positive Abdul Wahab et al. (2018); Stamoulis et al. (2018)

Abundance or biomass of 1 species Positive Pittman et al. (2009)

Abundance of 1 functional group Positive Pittman et al. (2009)

Total diversity, functional diversity or 
functional redundancy

Negative Yeager et al. (2017)

Slope of slope Total abundance, diversity, body length, 
density or biomass

Positive Pittman et al. (2009); Roos et al. (2015); Stamoulis et al. (2018); 
Wedding et al. (2019)

Abundance or biomass of 4 species Positive Pittman and Brown (2011); Pittman et al. (2009)

Biomass of 2 families Positive Pittman et al. (2009)

Abundance, biomass or diversity of 2 
functional groups

Positive Pittman et al. (2009)

Seafloor feature class Backscatter Density or biomass of 5 species Positive Bejarano et al. (2011)

Substratum 
classification

Total abundance, diversity or biomass Positive Knudby et al. (2011); Purkis et al. (2008); Ticzon et al. (2015); 
Walker et al. (2009);

Seafloor morphology Aspect Total biomass or length Positive Stamoulis et al. (2018); Wedding et al. (2019)

Plan curvature Abundance or biomass of 3 species Positive Pittman and Brown (2011); Pittman et al. (2007)

Biomass of 1 family Positive Pittman et al. (2007)

Biomass of 1 functional group Positive Pittman et al. (2007)

Page 49 of 63 Fish and Fisheries



50

1614 Table 4 Summary of the effects of terrain on fish assemblages in rocky reef seascapes (see Table S5 for more details).
Terrain metric category Terrain metric Fish metric Effect Reference
Seafloor relief Average depth Abundance, presence or biomass of 20 

species
Positive Bassett et al. (2018); Cameron et al. (2014); Ferrari et al. 

(2018a); Monk et al. (2010); Moore et al. (2010); Wedding and 
Yoklavich (2015)

Abundance of 1 functional group Positive Ferrari et al. (2018a)

Total diversity Negative Cameron et al. (2014)
Abundance or presence of 16 species Negative Cameron et al. (2014); Fabrizio et al. (2013); Huff et al. (2011); 

Iampietro et al. (2008); Monk et al. (2010); Moore et al. (2010); 
Pirtle et al. (2017); Sievers et al. (2016)

Biomass of 1 family Negative Ferrari et al. (2018a)

Abundance, biomass or presence of 6 
functional groups

Negative Ferrari et al. (2018a); Ferrari et al. (2018b); Weijerman et al. 
(2019)

Vertical relief Biomass, density or length of 3 species Positive Sievers et al. (2016)

Abundance of 1 family Positive Williams et al. (2019)

Density of 2 species Negative Sievers et al. (2016)
Seafloor complexity Depth (SD) Abundance of 1 species Positive Rees et al. (2018)

Fractal 
dimensions

Abundance of 6 species Positive Ferrari et al. (2018a)

Rugosity Total abundance & diversity Positive Cameron et al. (2014); Coleman et al. (2016); Williams et al. 
(2019)

Abundance or presence of 5 species Positive Monk et al. (2011); Monk et al. (2010); Williams et al. (2019)

Abundance of 1 family Positive Williams et al. (2019)

Abundance of 2 functional groups Positive Ferrari et al. (2018b)

Slope Abundance of 6 species Positive Cameron et al. (2014); Fabrizio et al. (2013); Williams et al. 
(2019)

Abundance of 1 family Positive Williams et al. (2019)

Biomass or presence of 2 functional groups Positive Weijerman et al. (2019)

Total diversity Negative Cameron et al. (2014)

Presence of 5 species Negative Pirtle et al. (2017)

Abundance of 3 functional groups Negative Ferrari et al. (2018b)

Slope of slope Total diversity Positive Young and Carr (2015)

Abundance, density or biomass of 9 species Positive Wedding and Yoklavich (2015); Young and Carr (2015)

Seafloor feature class Backscatter Abundance, density, presence or length of 
10 species

Positive Fabrizio et al. (2013); Monk et al. (2010); Sievers et al. (2016)
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Biomass & presence of 2 functional groups Positive Weijerman et al. (2019)

Presence or length of 3 species Negative Monk et al. (2011); Sievers et al. (2016)

BPI Total diversity Positive Cameron et al. (2014)

Biomass, density or presence of 15 species Positive Huff et al. (2011); Iampietro et al. (2005); Iampietro et al. (2008); 
Moore et al. (2010); Pirtle et al. (2017); Young and Carr (2015); 
Young et al. (2010)

Presence of 2 species Negative Pirtle et al. (2017)

Substratum 
classification

Presence of 1 species Positive Huff et al. (2011)

Seafloor morphology Aspect Total diversity Positive Cameron et al. (2014)

Abundance or presence of 12 species Positive Cameron et al. (2014); Iampietro et al. (2008); Monk et al. (2010); 
(Pirtle et al., 2017)

Total diversity Negative Coleman et al. (2016)

Abundance or presence of 7 species Negative Huff et al. (2011); Moore et al. (2010); Pirtle et al. (2017)

Presence or biomass of 3 functional groups Negative Weijerman et al. (2019)

Maximum 
curvature

Presence of 1 species Positive Monk et al. (2011)

Presence of 3 species Negative Monk et al. (2010)

1615

1616
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1617 Table 5 Summary of the effects of terrain on fish assemblages in deep sea seascapes (see Table S5 for more details).
Terrain metric category Terrain metric Fish metric Effect Reference
Seafloor relief Average depth Presence, biomass or length of 7 species Positive Biber et al. (2014); Chang et al. (2012); Hill et al. (2017); 

Loots et al. (2007); Oyafuso et al. (2017); Péron et al. 
(2016); Wieczorek et al. (2014); Yates et al. (2019)

Presence of 3 genera Positive Gomez et al. (2015)

Abundance, biomass or presence of 16 
species

Negative Barcala et al. (2020); Chang et al. (2012); Hill et al. (2017); 
Lenoir et al. (2011); Oyafuso et al. (2017); Parra et al. 
(2017)

Seafloor complexity Fractal 
dimensions

Abundance of 1 species Negative Quattrini et al. (2012)

Rugosity Abundance or presence of 7 species Positive Biber et al. (2014); Oyafuso et al. (2017); Quattrini et al. 
(2012)

Slope Abundance or size of 11 species Positive Oyafuso et al. (2017); Parra et al. (2017); Quattrini et al. 
(2012)

Presence or abundance of 2 species Negative Oyafuso et al. (2017); Quattrini et al. (2012)

VRI Total abundance Positive Price et al. (2019)

Seafloor feature class Backscatter Abundance or size of 6 species Positive Misa (2013); Oyafuso et al. (2017)

Presence of 2 species Negative Oyafuso et al. (2017)

BPI Total abundance, diversity or length Positive Giddens et al. (2019); Leitner et al. (2017)

Abundance of 8 species Positive Leitner et al. (2017)

Substratum 
classification

Presence of 3 species Positive Parra et al. (2017)

Presence of 3 species Negative Parra et al. (2017)

Seafloor morphology Aspect Abundance or presence of 13 species Positive Leitner et al. (2017); Parra et al. (2017); Quattrini et al. 
(2012)

Abundance or presence of 6 species Negative Oyafuso et al. (2017); Parra et al. (2017); Quattrini et al. 
(2012)

Mean curvature Abundance or presence of 4 species Positive Oyafuso et al. (2017); Quattrini et al. (2012)

Abundance of 1 species Negative Quattrini et al. (2012)

Plan curvature Abundance of 3 species Positive Quattrini et al. (2012)

Profile curvature Abundance of 2 species Positive Quattrini et al. (2012)

1618
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1619 Table 6 Summary of the effects of terrain on fish assemblages in continental shelf seascapes (see Table S5 for more details).
Terrain metric category Terrain metric Fish metric Effect Reference
Seafloor relief Average depth Presence of 9 species Positive Galaiduk et al. (2017); Lathrop et al. (2006); Moore et al. 

(2016)

Total abundance or diversity Negative Hill et al. (2014); Schultz et al. (2014); Smoliński and 
Radtke (2017)

Abundance or presence of 9 species Negative Bellido et al. (2008); Cote et al. (1998); Galaiduk et al. 
(2017); Giannoulaki et al. (2011); Maravelias (1999); Moore 
et al. (2016); Salarpouri et al. (2018); Stein et al. (2004)

Vertical relief Presence of 2 species Positive Galaiduk et al. (2017)
Presence of 2 species Negative Galaiduk et al. (2017)

Seafloor complexity Slope Presence of 3 species Positive Moore et al. (2016)
Total abundance or diversity Negative Smith and Lindholm (2016); Smoliński and Radtke (2017)
Presence of 2 species Negative Salarpouri et al. (2018)

TRI Total abundance or diversity Negative Smith and Lindholm (2016)
Seafloor feature class Backscatter Abundance of 3 species Positive Auster et al. (2001); Farmer et al. (2017); Schultz et al. 

(2015)
Total diversity Negative Schultz et al. (2015)

Abundance or presence of 12 species Negative Auster et al. (2001); Farmer et al. (2017); Lathrop et al. 
(2006); Maravelias (1999); Moore et al. (2016); Schultz et 
al. (2015)

BPI Presence of 2 species Positive Farmer et al. (2017)

Presence of 1 species Negative Farmer et al. (2017)

1620

Page 53 of 63 Fish and Fisheries



54

1621 Table 7 Summary of the effects of terrain on fish assemblages in estuarine seascapes (see Table S5 for more details).
Terrain metric category Terrain metric Fish metric Effect Reference
Seafloor relief Average depth Abundance, density, presence or length of 

3 species
Negative Becker et al. (2017); Le Pape et al. (2003); Nicolas et al. (2007); 

Rochette et al. (2010); Trimoreau et al. (2013)
Length of 2 species Positive Meynecke et al. (2008)

1622
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1623 Table 8 Priority questions for research on the effects of terrain on fish assemblages. References provide examples of methods that could be 
1624 used to investigate each question.

Priority research questions
1. Data-deficient ecosystems: how does terrain variation shape fish assemblages in soft-sediment 

seascapes that are under-sampled (e.g. estuaries, coastal seas) (e.g. Becker et al., 2017).

2. Spatial scale: do the effects of seafloor terrain operate at distinct spatial scales in different seascapes 
(e.g. Pittman & Brown, 2011)?

3. Seascape context: does seafloor terrain modify the importance of spatial context between 
ecosystems (e.g. mangroves, seagrasses, coral reefs) for fish (e.g. Sekund & Pittman 2017)?

4. Fish movement: does terrain determine how fish move throughout seascapes and what seafloor 
features are pivotal in shaping fish movements (e.g. Huff et al., 2011)?

5. Nursery habitats: which terrain features are most important for creating favourable conditions for the 
recruitment, survival and growth of juvenile fish (e.g. Trimoreau et al., 2013)?

6. Functional ecology: does seafloor terrain change the context that species perform different 
ecological functions (e.g. scavenging, herbivory, predation) (e.g. Catano et al., 2015)?

7. Predators: are apex predators consistently associated with particular terrain features and does this 
correspond to changes in the trophic and assemblage composition of fish (e.g. Weijerman et al., 
2019)?

8. Urbanization: how do multiple anthropogenic stressors (i.e. dredging, shoreline armouring) change 
the ecological value of terrain features for fish (e.g. Rochette et al., 2010)?

9. Marine reserves: how do fish respond to terrain within a conservation context, and can seafloor 
terrain enhance the performance of marine reserves for fish (e.g. Rees et al., 2018)?

10. Climate change: are there terrain features that could provide supplementary habitat, or obstructions, 
for species that alter their spatial distributions in response to climate change (e.g. Lenoir et al., 2011)?
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1626 Figure Legends

1627
1628 Figure 1 Global distribution of research linking changes in seafloor terrain to variation in the 
1629 composition of fish assemblages (n = 96). Pie charts illustrate the categories of terrain 
1630 metrics examined and are scaled to represent the number of studies from each country. 
1631 Arrows indicate the geographic region of research for large countries where research effort 
1632 has been intensive. Global bathymetry map courtesy of GEBCO (https://www.gebco.net/). 
1633 mbsl = metres below sea level. Figure appears in colour in the online version only [Colour 
1634 figure can be viewed at wileyonlinelibrary.com]
1635
1636
1637 Figure 2 Terrain metrics were grouped into four categories based on similarities in the 
1638 bathymetric features they index. Seafloor relief metrics (a) measure the depth and height of 
1639 bathymetric features (e.g. average depth, vertical relief). Seafloor complexity metrics (b) 
1640 describe the vertical roughness of the seabed (e.g. rugosity, slope, slope of slope). Seafloor 
1641 feature class (c) metrics categorise features based on discrete bathymetric variation (e.g. 
1642 rock, soft sediment). Seafloor morphology metrics (d) quantify the physical characteristics of 
1643 bathymetric features (e.g. aspect, curvature) (Table 1). Symbols courtesy of the IAN Network 
1644 (http://ian.umces.edu/symbols/). Figure appears in colour in the online version only [Colour 
1645 figure can be viewed at wileyonlinelibrary.com]
1646
1647
1648 Figure 3 Non-metric multidimensional scaling (nMDS) ordinations and scaled segmented 
1649 bubble plots illustrating differences in the number of studies that reported positive, negative 
1650 and neutral effects of terrain metrics within each category, and seascape. P-values were 
1651 derived from two-way permutational analysis of variance (PERMANOVA) testing for 
1652 differences in the predictive performance of terrain metrics among seascapes and terrain 
1653 metric categories (Table S2). Dotted lines around ordinations illustrate significant differences 
1654 (p < 0.05) in the predictive performance of groups of terrain metrics (i.e. number of positive, 
1655 negative and neutral effects) among seascapes and terrain metric categories, as defined by 
1656 pair-wise tests following PERMANOVA (Table S3). Figure appears in colour in the online 
1657 version only [Colour figure can be viewed at wileyonlinelibrary.com]
1658
1659
1660 Figure 4 Summary of studies reporting positive, negative or neutral effects of seafloor terrain 
1661 (indexed as variation in relief, morphology, complexity and feature class) on fish 
1662 assemblages from coral reef, rocky reef, deep sea, continental shelf and estuarine 
1663 seascapes. Figure appears in colour in the online version only [Colour figure can be viewed 
1664 at wileyonlinelibrary.com]
1665
1666
1667 Figure 5 Consistency in the predictive performance of terrain metrics among seascapes (i.e. 
1668 the proportion of studies reporting significant positive or negative effects from those that 
1669 measured each metric). Coloured boxes designate terrain metric categories: blue (seafloor 
1670 relief), yellow (seafloor complexity), green (seafloor feature class) and red (seafloor 
1671 morphology). Black bars highlight the best performing terrain metric in each category for 
1672 each seascape (e.g. average depth was the best seafloor relief metric in all seascapes, and 
1673 rugosity was the best seafloor complexity metric in rocky reef seascapes). Terrain metrics 
1674 that were used in two, or fewer, studies were omitted from performance calculations due to 
1675 data limitations. SD = standard deviation. Figure appears in colour in the online version only 
1676 [Colour figure can be viewed at wileyonlinelibrary.com]
1677
1678
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1679 Figure 6 Summary of terrain metrics that were correlated with the strongest effects on fish 
1680 assemblages in each seascape. Numbers represent the total research effort for each terrain 
1681 metric, and pie charts illustrate the proportion of studies reporting positive (blue), negative 
1682 (orange) or neutral (grey) effects (see Figures S1 – S5 for data on the performance of each 
1683 terrain metric in each seascape). Figure appears in colour in the online version only [Colour 
1684 figure can be viewed at wileyonlinelibrary.com]
1685

1686
1687
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