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The protein tyrosine phosphatase receptor type-C (PTPRC) gene encodes the common
leukocyte antigen (CD45) receptor. CD45 affects cell adhesion, migration, cytokine
signalling, cell development, and activation state. Four families of the gene have been
identified in cattle: a taurine group (Family 1), two indicine groups (Families 2 and 4) and an
African “taurindicine” group (Family 3). Host resistance in cattle to infestation with ticks is
moderately heritable and primarily manifests as prevention of attachment and feeding by
larvae. This study was conducted to describe the effects of PTPRC genotype on immune-
response phenotypes in cattle that display a variable immune responsiveness to ticks.
Thirty tick-naïve Santa-Gertrudis cattle (a stabilized composite of 5/8 taurine and 3/8
indicine) were artificially infested with ticks weekly for 13 weeks and ranked according to
their tick counts. Blood samples were taken from control and tick-challenged cattle
immediately before, then at 21 d after infestation and each subsequent week for 9 weeks.
Assays included erythrocyte profiles, white blood cell counts, the percentage of cellular
subsets comprising the peripheral blood mononuclear cell (PBMC) population, and the
ability of PBMC to recognize and proliferate in response to stimulation with tick antigens in
vitro. The cattle were PTPRC genotyped using a RFLP assay that differentiated Family 1
and 3 together (220 bp), from Family 2 (462 bp), and from Family 4 (486 bp). The PTPRC
allele frequencies were Family 1/3 = 0.34; Family 2 = 0.47; Family 4 = 0.19. There was no
significant association between PTPRC genotype and tick count. Each copy of the Family
1/3 allele significantly decreased total leucocyte count (WCC) and CD8+ cells. Increasing
dosage of Family 2 alleles significantly increased red blood cell count (RCC), haematocrit
org July 2021 | Volume 12 | Article 6759791
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(PCV), and haemoglobin (Hb) concentration in blood. Increasing dosage of the Family 4
allele was associated with increased WCC, reduced RCC, reduced PCV and reduced Hb.
Homozygote Family 1/3 animals had consistently lower IgG1 in response to tick Ag than
homozygote Family 2 animals. The PTPRC genotype influences the bovine immune
response to ticks but was not associated with the observed variation in resistance to tick
infestation in this study.
Keywords: ticks & TBDs, host resistance, immunity, parasite, immunoglobulin, erythron, leukocytes
INTRODUCTION

PTPRC or protein tyrosine phosphatase receptor-type C, also
known as CD45, or leukocyte common antigen (LCA) is a key
component of the signal transduction cascade in immune cells
(1). Throughout this report, we refer to PTPRC as the gene
encoding CD45, although the gene as annotated for human and
mouse has several aliases: B220, CD45, CD45R, Cd45, GP180,
LCA, L-CA, Ly-, LY5, Ly-5, Lyt-, Lyt-4,T200. CD45 was initially
investigated in cattle for its potential involvement in pathogen
tolerance in African cattle (2). They found that allelic
polymorphisms in CD45 constituted the basis for differential
antibody staining in peripheral blood leukocytes from cattle of
African, European, and Indian origin, and suggested that
polymorphism might be associated with tolerance to regionally
endemic pathogens.

CD45 is an abundant cell surface glycoprotein found in the
plasma of all nucleated hematopoietic cells and controls the
immune response by dephosphorylating molecules that initiate
antigen receptor signalling in T- and B-cell cells, such as the Src
family kinases (SFKs) (3, 4). There are many isoforms of differing
molecular weight due to the alternative splicing of exons 4, 5 and
6 (referred to as A, B and C) in the extracellular domain. The
smallest isoform is CD45RO of approximately 180 kDa, lacking
all of the alternatively spliced exons, whereas the largest isoform
that includes all three exons – CD45RABC is about 240 kDa and
heavily glycosylated (1, 3, 5). In addition to these variably spliced
domains, the protein comprises three fibronectin type III (FN3)
repeats, a short transmembrane domain, and a cytoplasmic
region of two tandemly duplicated PTPase homology domains
(D1 and D2), in which only D1 is catalytically active (3). The
expression of PTPRC is tightly regulated depending on the cell
type, maturation, and activation state. Although nucleotide
sequence in the extracellular domains is highly variable, the
isoform structures are largely conserved across species (3, 6). In
Bos taurus cattle, PTPRC is on chromosome 16, has at least 30
exons and nine characterized isoforms (Gene ID: 407152, NCBI,
2021). Human and B. taurus PTPRC sequences show
approximately 70% sequence identity. In humans five CD45
isoforms are well characterized (6). Ballingall et al. (2) initially
considered PTPRC as one of several genes that might influence
the diverse responses of African and Asian cattle to endemic
pathogens in Africa. They noted that peripheral blood leukocytes
from African and European taurine cattle had similar CD45RO
antibody staining patterns whereas in indicine cattle, the pattern
was variable. The pattern of staining corresponded with four
org 2
distinct allelic families of PTPRC: B. taurus, Bos indicus (×2), and
cattle of African origin (2, 7).

Ballingal et al. (2) showed that there appeared to be strong
natural selection on extracellular domains of CD45 protein and
proposed that it was likely to be a determinant of the immunity
of cattle to endemic pathogens. Loss-of-function mutations of
PTPRC have consequences related to immunodeficiency and
malignancy in humans and mice (4) and CD45 has been
associated with disease in cattle. A microarray-based study
showed that PTPRC expression in the mesenteric lymph nodes
of cattle with high resistance to gastrointestinal nematodes was
increased, which was subsequently confirmed by qRT PCR (8).
In a study on the reactivity of subsets of leukocytes present in the
skin of B. taurus and B. indicus cattle infested with R. australis,
antibodies specific for CD45 and CD45RO epitopes bound
differentially in taurine and indicine cattle (9). In a follow-up
study using tick resistant and susceptible Santa Gertrudis cattle,
the reactivity of cells to CD45 and CD45RO mAbs also differed
between resistant and susceptible cattle of the same breed (10). It
was proposed that CD45 variants of B. indicus lack the epitopes
recognized by mAb raised against CD45 and CD45RO in taurine
cattle, and that CD45 might therefore have potential as a
biomarker for resistance to infestation with cattle ticks.

We hypothesised that sequence variation in PTPRC in cattle
affects resistance to ticks and immune phenotype. Our aim here
was to take observations on erythrocytes, leukocytes and
immunoglobulins obtained from cattle that were experimentally
infested with R. australis in a previous experiment (10, 11),
genotype the animals for the major PTPRC variants, and
determine whether variation in these observations was
associated with the presence of PTPRC variants.
MATERIALS AND METHODS

Background Experimental Design,
Animals, Tick-Counts, and Immunological
Assays
The experimental methods are described in detail in the earlier
articles (10, 11) and summarized briefly here. Thirty-five tick-
naïve Santa-Gertrudis cattle (a stabilized composite of 5/8
taurine – Shorthorn – and 3/8 indicine – Brahman) were used
in this study, conducted near Brisbane, in Queensland, Australia.
The cattle were from a single property of origin and were selected
such that their parentage was as far as possible an even admixture
July 2021 | Volume 12 | Article 675979
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of sires. Five cattle were held as control animals on a separate,
tick-secure property within 5 km of the experimental farm, and
the remaining 30 were artificially infested by application to the
neck and withers of 10 000 (0.5 g) Rhipicephalus australis tick
larvae weekly for 13 weeks. Tick larvae were of the Non-Resistant
Field Strain (NRFS) that is maintained free of Babesia and
Anaplasma pathogens at the Queensland Department of
Agriculture and Fisheries’ Biosecurity Science Laboratories
(12). Tick counts were conducted weekly using the standard
tick count method of Utech et al. (13, 14). Each infestation
consisted of larvae applied to the neck and withers. Blood
samples were taken from control and tick-challenged cattle
immediately before the first infestation, then at 21 d post
primary infestation (PPI) and each subsequent week for 9
weeks. The study was conducted with approval from the
University of Queensland Animal Ethics - Production and
Companion Animals Committee (Approval numbers: SVS/864/
06/CRC and SVS/872/07/CRC).

Tick count data recorded over 13 weeks were originally
analysed using a mixed effects model applied to data
summarized over time (median, area under the curve, final
count) fit by restricted maximum likelihood (REML), to rank
each animal on its ability to resist tick infestation.

Erythrocyte profiles and white blood cell counts were
conducted using a VetABC animal blood cell counter (ABX
Hematologie). The percentages of cellular subsets comprising the
peripheral blood mononuclear cell (PBMC) population were
Frontiers in Immunology | www.frontiersin.org 3
determined using the Ab listed in Table 1 with a FACSCalibur
flow cytometer (Becton Dickinson Immunocytometry Systems),
as described in detail by Piper et al. (15). The ability of PBMC to
recognize tick antigen (Ag) and proliferate in response to
stimulation with antigens in vitro was quantified for
concanavalin-A (ConA), and Ag mixtures derived from soluble
fractions of salivary gland (SS), mid-gut (GS) or larvae (LS), or
membrane-bound fractions of salivary gland (SM) or mid-gut
(GM) in triplicate using the method described by Piper et al. (11).
Results of PBMC proliferation are expressed in terms of optical
density (OD) of microplate photometric readings at 450 nm.
IgG1 and IgG2 responses to tick infestation were conducted in
triplicate using an indirect ELISA, in wells coated with
fractionated tick Ag (salivary soluble – SS; gut membrane –
GM; gut soluble –GS; larval soluble – LS) as described in detail in
Piper et al. (15). Microtiter plates were coated with diluted tick
antigens. Sera were diluted and added to the microtiter plates in
triplicate. Monoclonal antibodies (mouse anti-bovine IgG1 and
mouse anti-bovine IgG2) were added to all wells. The conjugated
antibody (goat anti-mouse IgG heavy and light chain specific,
conjugated to horseradish peroxidase) was then added to each
well. A tetramethylbenzidine-peroxidase substrate was used to
develop the signal, and the reaction was stopped with
orthophosphoric acid. The absorbance was read at 450 nm and
the mean OD of each biological sample from triplicate wells was
used for statistical analysis.

Genotyping Assays
Thirty-four cattle were genotyped for PTPRC families using a
restriction-enzyme fragment length-polymorphism (RFLP)
assay that differentiated Family 1 and 3 together (220 bp
amplicon - taurine and African taurindicine families), from
Family 2 (462 bp - indicine), from Family 4 (486 bp -
indicine). Accession numbers of publicly available sequences
are shown in Table 2. Genotyping and sequencing assays
assessed the region of PTPRC previously identified as exon-9
by Ballingal et al. (2), but which we now consider to most likely
correspond with exon-5 or exon-6 (data not shown). The
distinguishing features of the 4 families are shown in Table 3.
We used a modification of their genotyping assay using the
primers CD45ex9_F: TCCTGGGGCTATTTTTGTTGGTGTT
and CD45ex9_R: AGGCTGCTCCGAGGTCACCA, with
annealing temperature of 59°C, and an expected fragment size
of 486 bp. The restriction site enzyme DdeI was used to cut only
the B. taurus (Family 1 & Family 3) reference sequence at
TABLE 1 | Monoclonal antibodies used and the cell subsets labelled in flow
cytometric analysis of cellular subsets.

Specificity Cell Subset Identity Source Isotype

Isotype control IgG1 Dako IgG1
CD3 T cells IgG1 VMRDb

CD4 T helper IL-A11 Cell culturea IgG2a
CD8 T cytotoxic IL-A51 Cell culturea IgG1
CD14 Monocytes MM61A VMRDb IgG1
CD25 Activated (IL-2Ra) IL-A111 Cell culturea IgG1
MHCII Macrophages,

dendritic cells, B cells,
activated T cells

IL-A21 Cell culturea IgG2a

WC3 B cells CC37 Cell culturea IgG1
WC1 gd T cells IL-A29 Cell culturea IgG1
Goat anti-mouse IgG-FITC Calbiochem IgG
aMonoclonal antibodies obtained from cell culture were derived from hybridomas sourced
from the International Livestock Research Institute in Kenya.
bVMRD, Veterinary Medical Research and Development Inc.
TABLE 2 | Accession numbers and references for nucleotide sequences used in this study.

Accession No. Species Exon/Region Genome Scaffold Reference

NC_037343.1 (77540526-77670102) Bos taurus ARS-UCD1.2 Chromosome 16 NCBI Nucleotide
NC_032665.1 (75903959-76032820) Bos indicus Bos_indicus_1.0 Chromosome 16
NC_040091.1 (76794293-76923526) Bos taurus x indicus UOA_Brahman_1 Chromosome 16
AJ278876 Bos indicus Partial Exon 9 Ballingal et al. (2)
AJ278877 Bos indicus Partial Exon 9
AJ278878 Bos indicus Partial Exon 9
AJ278879 Bos indicus Partial Exon 9
AJ400864 Bos taurus Partial mRNA PTPRC gene
July 2021 | Volume 12
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location 68,989. Genotyping was conducted by capillary
electrophoresis using a 3130 XL Genetic Analyzer
(Thermofisher, Australia). The amplicons generated for Family
1 and Family 3 were the shortest, at 220 bp, whereas Family 2,
with the 24-bp deletion, is 462 bp, and Family 4 is the complete
amplicon from forward to reverse primer of 486 bp (Figure 1).

Statistical Analysis
All statistical analysis was conducted using R version 4.0.3 [(16)
R Core Team, 2018]. Data consisted of 14 or 15 successive time-
series observations for each variable for each individual. Only a
subset of samples from resistant and susceptible animals had
originally been subjected to IgG quantification, so the
representation of each of the genotypes was uneven, with some
genotypes missing completely. Therefore, only those animals
with 220/220 (n = 3) and 462/462 (n=7) genotypes were included
in the analysis for IgG1 and IgG2. All dependent variables were
checked for normality by plotting as histograms and application
of the Shapiro-Wilk test of normality. Variables with non-
normal distributions were tested for compliance after natural
log and square root transformations, and if these did not yield
normally distributed data, they were then transformed using the
Johnson family of distributions using the “ls” procedure from the
R package “jtrans” (version 0.2.1). Given the highly skewed time-
responses of IgG1 and IgG2, only the distributions of the
Frontiers in Immunology | www.frontiersin.org 4
residuals of the GAMs were checked and all were found to
approximate normal distributions. Time was expected to be an
important explanatory variable, but there was no a priori reason
to expect any particular response function for any of the
dependent variables over time. Therefore, a generalized
additive model was used, with time as a smoothed effect, the
allele dosage as a fixed effect (for each of the three alleles, any
animal can have the value 0,1,2), and individual animal as a
random effect. The R function “gam” from the package “mgcv”
(version 1.8-33) was used (17), and models were tested using the
“gam.check” function (18). Residuals were plotted for each
model and checked for deviations from normality. Estimates of
p-values are presented in tables as obtained from the models, but
a statistical significance level (a) was set at 0.00083, consistent
with Bonferroni correction for testing of 60 variables. For the re-
analysis of resistance to ticks, a similar approach was taken to
make more efficient use of the non-summarized time-series data.
RESULTS

The most frequent allele was the 462, indicine Family 2, with a
relative frequency of 0.47 (32/68 possible alleles), followed by the
taurine Family 1/3 allele 220 at 0.34 (23/68 possible alleles), with
the 486 allele of the indicine Family 4 being least frequent at 0.19
(13/68 possible alleles). The distribution of genotypes and alleles
was uneven, the most common genotype being 462/462, the
indicine Family 2 (Table 4, 10/34 animal genotypes). However,
the observed frequencies of genotypes did not differ from
expectations under Hardy-Weinberg equilibrium (Table 4,
c2 = 3.314, p > 0.1).

Neither tick burden nor resistance category was significantly
influenced by the PTPRC genotype. Linear regressions of total or
median tick count against genotype were not significant (p =
0.46, 0.64, 0.74 for the 222, 462 and 486 genotypes respectively).
The GAMs for tick count considered each of 12 weekly
TABLE 3 | Major discriminating features of nucleotide sequence used for
defining the four distinct PTPRC families.

Family Constant Variant
Nucleotides

Insertions or
deletions

Genotype in
RFLP assay
(fragment
length)

Family 1
Taurine

Reference sequence Reference
sequence

220 bp

Family 2
Indicine

G<A 68,992 24 bp deletion
68,932

462 bp
T<A 68,995
A<G 69,001
(shared Family 2 & 4)
plus
2 unique SNP
G<A 68,876
T<A 68,964

Family 3
Taurindicine

9 unique SNP
AG<TT 68,798-9
G<A 68,850

ACA insertion at
68,895

220 bp

An insertion at
68,761
4 bp deletion at
68,792

G<A 68,852
A<G 68,865
G<A 68,894
T<A 68,897
C<G 68,899

Family 4
Indicine

G<A 68,992 Nil 486 bp
T<A 68,995
A<G 69,001
(shared Family 2 & 4)
Plus
3 unique SNP
G<C 68,890
A<G 68,928
A<G 68,930
FIGURE 1 | Amplification fragment sizes obtained by the genotyping assay
for each of the PTPRC families. The restriction site enzyme DdeI was used to
cut the Bos taurus (Family 1 & Family 3) reference sequence at location
68,989. Neither the Family 2 nor Family 4 alleles are cut at this location, and
these alleles are differentiated by the 24 bp deletion that is the main
characteristic of the Family 2 allele.
July 2021 | Volume 12 | Article 675979
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timepoints for each of 30 animals, commencing at three weeks
after initial infestation. Neither the effect of (smoothed) time nor
of dosage of any of the alleles was significant (p > 0.00083,
Figure 2 and Table 5).

Almost all the immunological and haematological assay results
were significantly affected by time (Table 5, Table S1 and Figures
S1–S3). Only Hb, platelet count and the response to larval soluble
Ag did not vary significantly (p > 0.00083) over time. White cell
count (WCC) was significantly affected by the doses of alleles 220
and 486. Each dose of allele 220 decreased WCC (p = 7.08 × 10-10),
whereas each dose of allele 486 increased WCC (p = 4.63 × 10-5,
Figure 3A). Red cell count (RCC) increased significantly (p = 1.39 ×
10-8, Figure 3B) with each dose of the 462 allele and decreased
Frontiers in Immunology | www.frontiersin.org 5
significantly with each dose of the 486 allele (p = 0.000369). PCV
and Hb followed this same pattern of significant increase with each
dose of the 462 allele and significant reduction with each dose of the
486 allele (Table 5). For the red blood cell variables, there were
distinct response patterns for 462 heterozygotes and 462/462
homozygotes (Figure 4). Among the immunolabelled cells, only
CD8+ cells were significantly associated with allele, being reduced in
cattle with each additional copy of the 220 allele (p = 0.000197,
Figure 5). Immunoglobulin responses were affected by genotype;
220/220 animals had consistently lower IgG1 in response to tick Ag
than the 462/462 animals. Most of the models failed to explain a
large proportion of the deviance – with the best model explaining
48% and the worst model explaining 4% of the deviance.
TABLE 4 | PTPRC allele and genotype frequencies.

Allele Allele
Count

Allele
Frequency

Genotype Genotype
Count

Expected Genotype
Frequency

Expected
Genotype Count

c2 p-value

220 23 0.34 D220/D220 5 0.11 4 3.314, df = 3 > 0.1
462 32 0.47 D220/D462 7 0.32 11
486 13 0.19 D220/D486 6 0.13 4

D462/D462 10 0.22 8
D462/D486 5 0.18 6
D486/D486 1 0.037 1

Genotype Controls Medium
Resistance

Resistant Susceptible Total

220/220 2 0 1 2 5
220/462 1 6 0 0 7
220/486 0 4 1 1 6
462/462 1 5 2 2 10
462/486 1 3 1 0 5
486/486 0 1 0 0 1
Total 5 19 5 5 34
July 2021 | V
olume 12 | Article
Part A: overall allele and genotype frequencies and assessment of Hardy-Weinberg equilibrium of alleles and genotypes. Part B: genotypes according to their resistance or experimental
status. (Control animals were not infested; the 5 animals with the lowest and highest tick counts were designated Resistant and Susceptible respectively, and the remainder (n=13) were
designated as medium).
FIGURE 2 | Tick counts by days after exposure, commencing at 21 d post infestation and continuing for 11 weeks. Data for the number of copies of the 462 allele
are shown, those animals without the allele in pale blue, and animals that were 462/462 in the darkest blue. Neither the count day nor the allele dose were significant
in the GAM (p > 0.00083, Table 5).
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DISCUSSION

The study on which this project is based (10, 11) was intended to
contrast local and systemic immune responses and haematology
between cattle of high resistance and those of low resistance to
tick infestations. An incidental finding of the original studies was
that highly resistant animals were less likely to have detectable
CD45+ or CD45RO+ cells in skin (10). However, that observation
was based on an extreme-group comparison of the 6 most
resistant and 6 least resistant animals. In the present study, we
genotyped PTPRC (CD45) for all the original animals in the trial
and found that although there was no significant relationship
between tick count and the dosage of any one of the three
differentiable alleles, large differences in erythrocyte, leukocyte
and humoral responses were observed among PTPRC genotypes:
the indicine Family 2 (462) allele was associated with a more
robust erythron; the “taurindicine” Family 1 allele (220) was
associated with lower leukocyte count, lower % gated CD8+ cells,
and lower IgG1 recognition of tick-specific Ag. Given that these
alleles are believed to have tick-resistant and tick-susceptible
origins respectively, there is some potential confounding of the
apparent allelic effects by alleles at other loci that are in linkage
disequilibrium (LD) with them. The Santa Gertrudis breed was
selected for this study intentionally to reduce confounding by
genetic background. The breed was established in Texas about
100 years ago as a hybrid between B. taurus and B. indicus cattle,
so it is expected that over 30-40 generations of breeding LD
should have been reduced among the linked genes and
Frontiers in Immunology | www.frontiersin.org 6
eliminated among the unlinked genes. It follows that caution is
required in extrapolating from contrasts among the genotypes in
this study to contrasts between indicine and taurine animals
from previous studies. It cannot be inferred that differences
between B. indicus and B. taurus cattle can be attributed to
variation in PTPRC genotype, nor that PTPRC genotype is
necessarily consistent in populations of B. taurus and B.
indicus cattle. Our unpublished sequence and genotyping data
suggest that Brahman cattle in Australia are diverse and include
members of all four families, whereas Holstein-Friesian cattle
seem to be almost exclusively taurine Family 1.

The most pronounced differences among genotypes were in
the variables relating to red blood cells. Cattle with the indicine
Family 2 allele for PTPRC (462) had higher RCC, PCV and Hb.
The Family 2 heterozygotes had significantly higher RCC than
the Family 2 homozygotes during the pre-infestation and early
infestation periods, but by 11 weeks the homozygote was also
high. Similar patterns were noted for PCV and Hb. At the end of
the study period, MCH was lowest in Family 2 homozygotes,
which, taken with the increase in RCC in these animals, is
consistent with a stronger regenerative response to blood loss.
Red cell counts have previously been reported to be higher in
tick-infested indicine than taurine cattle, in the absence of
Babesia and Anaplasma haemoparasites (15), and greater
resistance to reduction in erythrocyte counts of B. indicus
cattle that have been exposed to Babesia has also been
demonstrated (19). All nucleated haematopoietic cells express
CD45, the dominant isoforms being RO and RB (3). Although
TABLE 5 | Summary of GAM outputs for each of the models for tick count and each of the variables for which the main effect of allele frequency was considered to be
statistically significant (p < 0.00083).

Outcome variable Transformation Explanatory
variable

Intercept Effect
estimate

t p-value s(time)
F-value

S(time)
p-value

Deviance
explained

Tick Count (ticks) None needed Allele 220 220.978 -16.038 -2.618 0.00928 1.83 0.0536 7.8%
Allele 462 199.867 11.344 2.002 0.0461 1.807 0.0572 6.9%
Allele 486 205.721 5.612 0.621 0.535 1.57 0.114 5.5%

White cell count
(cells ×103/mm3)

Johnson Allele 220 0.23839 -0.32141 -5.777 1.39e-08 11.1 <2e-16 20.6%

Allele 462 -0.04420 0.08412 1.570 0.117 10.52 <2e-16 15.3%
Allele 486 -0.11413 0.24091 4.112 4.63e-05 10.78 <2e-16 17.9%

Red cell count
(cells ×106/mm3)

sqrt Allele 220 2.80477 -0.04098 -3.092 0.00211 12.02 3.53e-07 9.3%

Allele 462 2.71928 0.07549 6.295 7.08e-10 12.74 <2e-16 14.7%
Allele 486 2.80425 -0.04905 -3.587 0.000369 12.21 <2e-16 9.9%

PCV (%) Johnson Allele 220 0.13281 0.13281 2.215 0.0272 7.408 1.08e-06 8.9%
Allele 462 -0.20056 0.31662 5.753 1.59e-08 7.696 8.7e-07 14.1%
Allele 486 0.17799 -0.24550 -3.948 9.08e-05 7.548 1.24e-06 10.9%

Hb (g/dl) loge Allele 220 2.461282 -0.018942 -2.408 0.0164 1.128 0.361 3.1%
Allele 462 2.418265 0.039476 5.52 5.65e-08 1.178 0.319 7.9%
Allele 486 2.464186 -0.028318 -3.502 0.000507 1.148 0.343 4.4%

CD8 (% gated cells) Johnson Allele 220 3.66767 -0.12974 -3.753 0.000197 29.96 <2e-16 34.6%
Allele 462 3.50044 0.10380 3.21 0.00142 29.76 <2e-16 34.1%
Allele 486 3.57392 0.01088 0.3 0.764 29.16 <2e-16 32.6%

IgG1 – gut membrane – OD None Allele 220 1.25063 -0.16825 -3.711 0.000281 27.3 <2e-16 40.6%
IgG1 – gut soluble – OD None Allele 220 0.80045 -0.04853 -4.221 3.96e-05 79.52 <2e-16 40.6%
IgG1 – salivary soluble – OD None Allele 220 0.73197 -0.11101 -4.081 6.61e-05 30.54 <2e-16 48.7%
July 2021 | V
olume 12 | Arti
In all cases, the model includes measurement time as a smoothed variable, allele dosage as a fixed effect with three levels (that represent the number of copies of that allele that the
individual has: 0,1,2) and animal ID as a random effect. Data have not been back-transformed – model intercepts and effect estimates represent the intercept and effect sizes on the
transformed data. Results for the full set of outcome variables are shown in Table S1.
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A

B

FIGURE 3 | (A) White cell counts by day, commencing pre-infestation and continuing for 11 weeks. Data for the 220 allele are shown, those animals without the
allele in palest blue, and animals that were 220/220 in the darkest blue. Both day and the allele dose were highly significant in the GAM (p < 0.00083, Table 5).
(B) Red cell counts by day, commencing pre-infestation and continuing for 11 weeks. Data for the 462 allele are shown, those animals without the allele in palest
blue, and animals that were 462/462 in the darkest blue. Both day and the allele dose were highly significant terms in the GAM (p < 0.00083, Table 5).
A B

FIGURE 4 | Transformed RCC (tRCC - A) and transformed MCH (tMCH - B) for the initial (pre-infestation) and end (77 d post-infestation) time points, for each of the
genotypes. Horizontal dotted lines in red are the mean pre-infestation values for each of the transformed variables. For RCC, the effect of 462 allele dosage was
highly significant in the GAM (p < 0.00083, Table 5) but for MCH the effect approached significance (p = 0.00726, Table S1).
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most investigations on CD45 function have focused on immune
signalling, it has been shown that CD45 is an important
regulator of splenic erythropoiesis (20). Although the bulk of
erythropoiesis occurs in the bone marrow, splenic erythropoiesis,
supported by red pulp macrophages (RPM) makes an
important contribution to the expansion of the erythron in
response to diverse stressors including hypoxia, endotoxins,
bacterial and viral infections. Mice that are deficient in CD45
show abnormal erythropoiesis and accumulate progenitor forms
of erythrocytes (20). It has also been shown that CD45 is a
negative regulator of erythropoietin-dependent haematopoiesis
through its inhibition of Janus kinase (JAK) signalling pathways
(21). Therefore, there are several mechanisms by which
variation in CD45 genotype could influence haematopoiesis,
and the observations from our study are consistent with
the pathogen-driven selection hypothesis advanced by
Ballingal et al. (2).

Cattle with the taurine Family 1 (220) allele for PTPRC had
lower WCC and lower gated percentages of CD8+ cells (T
Frontiers in Immunology | www.frontiersin.org 8
cytotoxic cells) in circulation. Immunoglobulins specific to
three of five tick Ag mixtures differed highly significantly
between homozygotes of the Family 1/3 (220) and the Family
2 (462) genotypes. Among the cell proliferation assays conducted
in our study, genotype did not have a significant effect, using a
corrected for multiple comparisons to 0.00083. However, several
of the GAMs estimated p-values approaching this level (Family
1/3 allele 220: p = 0.00174 for ConA stimulation, and p = 0.00181
for larval soluble Ag). Diverse leukocytic responses to tick
infestation have been reported in tick-infested cattle of indicine
and taurine origins. Rechav (22) reported that Simmental
(B. taurus) cattle had higher leukocyte counts than Brahmans
(B. indicus) when infested with diverse species of African ticks.
We previously found a similar result in a contrast between tick-
infested Holstein-Friesian (B. taurus) and Brahman (B. indicus)
cattle (15). Immunoglobulin production in response to tick Ag
has been shown to differ between taurine and indicine cattle
exposed to ticks although the directions of the associations
have not been consistent among studies and experimental
A

B

FIGURE 5 | (A) Gated percentage of CD8+ cells by day, commencing pre-infestation and continuing for 11 weeks. Data for the 220 allele are shown, those animals
without the allele in palest blue, and animals that were 220/220 in the darkest blue. Both day and the allele dose were highly significant in the GAM (p < 0.00083,
Table 5). (B) IgG1 optical density (OD) in response to soluble salivary tick Ag by day, commencing pre-infestation and continuing for 15 weeks. Data for the 220
allele are shown and those animals without the allele (pale blue) are all 462/462 (dark blue). Both day and the genotype were highly significant terms in the GAM (p <
0.00083, Table 5).
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conditions (15, 23). Rocha Garcia et al. (24) confirmed that there
were clear differences between taurine and indicine cattle
in their ability to recognize and respond to tick Ag. The
lymphoproliferative, phagocytosis and oxidative burst activity
of neutrophils and monocytes differs between indicine and
taurine cattle, each responding differently to co-culturing with
R. microplus salivary gland extract (25). Ramachandra andWikel
(26) found substantial differences in taurine and indicine
leukocyte biology – T cells from B. indicus cattle had a
stronger proliferative response to ConA and peripheral blood
mononuclear cells from B. indicus cattle produced more IL-1 in
response to lipopolysaccharide (LPS). Given the many
mechanisms by which CD45 is known to modulate leukocyte
proliferation and cytokine responses to various stimuli (4, 21),
the divergent leukocyte biology evident in animals of the
different genotypes in our study is not surprising.

The immunological observations used in our study were
selected with a view to better understanding the mechanisms
underlying the differences in host resistance to tick infestation
rather than for the characterization of the complete
immunological phenotypes of animals of each of the PTPRC
genotypes. As such, we have an incomplete set of observations on
a relatively small dataset of animals that is not balanced by
genotype. However, our population does have the advantage of
being drawn from a breed in which we expect some of the
confounding effects of linkage disequilibrium to have been
reduced or eliminated. The effects of CD45 are mediated
largely by variation in isoform expression and glycosylation
rather than by variable ligand binding or variable enzyme
expression, and most of the clinically relevant polymorphisms
in humans influence isoform expression (4). At present there is
not enough information on the full genomic sequence variants of
PTPRC in cattle or isoform expression variants to confidently
relate the cattle genotypic families to any studies on human or
murine variants of PTPRC. Nonetheless, it seems safe to
conclude that variation in PTPRC is likely to contribute to
variation in the profiles and functions of leukocytes and
erythrocytes of cattle. In human medicine, CD45 isoform
expression is used as an important component of clinical
immunological profiles (27). In cattle, there are relatively few
reports on its application, although it has been used as one of
several markers of immune response to mastitis (28) and rumen
fluke (29), among others. In our study, PTPRC polymorphism
was strongly associated with divergent erythrocytic, leukocytic
and humoral responses to tick infestation. The extent to which
this might be useful to aid in the selection of adapted cattle will
depend on better knowledge of the variants in populations of
cattle, the link between polymorphism of PTPRC, form and
function of CD45, and possible interactions with other genes.
Frontiers in Immunology | www.frontiersin.org 9
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